JP7281972B2 - 電動作業機 - Google Patents

電動作業機 Download PDF

Info

Publication number
JP7281972B2
JP7281972B2 JP2019105681A JP2019105681A JP7281972B2 JP 7281972 B2 JP7281972 B2 JP 7281972B2 JP 2019105681 A JP2019105681 A JP 2019105681A JP 2019105681 A JP2019105681 A JP 2019105681A JP 7281972 B2 JP7281972 B2 JP 7281972B2
Authority
JP
Japan
Prior art keywords
power supply
control unit
conversion
operation state
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019105681A
Other languages
English (en)
Other versions
JP2020172014A (ja
Inventor
均 鈴木
明弘 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to CN202010090177.0A priority Critical patent/CN111817363A/zh
Priority to EP20165437.3A priority patent/EP3722893B1/en
Priority to US16/832,443 priority patent/US11133766B2/en
Priority to RU2020113241A priority patent/RU2789859C2/ru
Publication of JP2020172014A publication Critical patent/JP2020172014A/ja
Priority to US17/462,820 priority patent/US11824473B2/en
Application granted granted Critical
Publication of JP7281972B2 publication Critical patent/JP7281972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Operation Control Of Excavators (AREA)

Description

本開示は、電動作業機に関する。
電動作業機として、バッテリ(電源)からの電力供給により駆動する駆動部を備えるものがある(特許文献1)。電動作業機は、駆動部(例えば、モータ、ヒータなど)を制御する制御部と、バッテリからの電力を電圧変換して制御部に電力供給する制御部用電源と、を備える。この電動作業機は、不使用時におけるバッテリの過放電を抑制するために、制御部用電源による電力供給を遮断することで、制御部や制御部用電源での消費電力をゼロに抑えることができる。
なお、制御部用電源による電力供給を遮断した場合、(1)電力供給の遮断時には電動作業機と外部の機器との通信が不可能となる、(2)トリガの再操作からモータが動くまでにタイムラグが生じて使用感が低下する、といった事象が生じる可能性がある。
これに対して、電動作業機の不使用時には、制御部用電源による電力供給を遮断するのではなく、制御部を低電力動作状態(所謂、スリープモード)に移行する手法を用いることが考えられる。例えば、制御部の動作状態を、使用者による電動作業機の操作時に駆動部を制御する制御動作状態と、制御部の消費電力を低減するための低電力動作状態と、に移行可能に構成された制御部の利用が考えられる。つまり、この制御部は、バッテリの過放電を抑制するために低電力動作状態に移行可能に構成されている。
特開2006-341325号公報
しかし、上記の電動作業機では、制御部の動作状態を低電力動作状態に移行することで制御部の消費電力は低減できるものの、制御部用電源は電力変換動作を行うため、制御部用電源での消費電力を低減できない可能性がある。
例えば、制御部用電源として、リニアレギュレータを用いる場合、バッテリの出力電圧(電源電圧)が高くなると、リニアレギュレータでの損失Ls(=(Vin-Vout)×Io)が大きくなる。なお、Vinはリニアレギュレータへの入力電圧(換言すれば、バッテリの出力電圧)であり、Voutはリニアレギュレータからの出力電圧であり、Ioはリニアレギュレータの出力電流である。つまり、通常動作時には、電源電圧の高電圧化に応じて、制御部用電源において損失Lsに伴う消費電力が発生する。
これに対して、電源電圧の高電圧化による消費電力の増大を抑制するためには、制御部用電源として、DC-DCコンバータ等のスイッチングレギュレータを用いることが考えられる。しかし、一般的に、これらのスイッチングレギュレータは、自身が消費する動作電流が大きいため、仮に制御部がスリープモードに移行しても、このスイッチングレギュレータの動作電流が大きいため、全体としての低消費電力化が難しくなる。
つまり、電動作業機の不使用時に、制御部がスリープモードに移行して制御部の消費電力を低減できたとしても、制御部用電源での消費電力が存在することで、バッテリ(電源)の電力が消費されることになる。
そこで、本開示の一局面においては、電動作業機の不使用時における電力消費を低減できる電動作業機を提供できることが望ましい。
本開示の一局面は、電源からの電源電力を用いて駆動する駆動部を備える電動作業機であって、制御部と、制御部用電源と、動作状態判定部と、を備える。
制御部は、駆動部を制御するように構成されている。制御部用電源は、電源からの電源電力を電圧変換して、電圧変換後の制御部用電力を制御部に供給するように構成されている。制御部は、複数の動作状態に切替可能に構成されている。複数の動作状態は、駆動部を制御する制御動作状態と、制御動作状態よりも消費電力が低い低電力動作状態と、を少なくとも含む。
制御部用電源は、第1変換電源と、第2変換電源と、を備える。第1変換電源は、電源からの電源電力を電圧変換するにあたり、制御動作状態の制御部での最大消費電流である制御時最大電流を供給可能に構成されている。第2変換電源は、電源からの電源電力を電圧変換するにあたり、低電力動作状態の制御部での最大消費電流である低電力時最大電流を供給可能であり、かつ最大出力電流が制御時最大電流よりも小さく構成されている。
動作状態判定部は、制御部の動作状態が制御動作状態であるか低電力動作状態であるかを判定するように構成されている。
さらに、制御部用電源は、動作状態判定部にて制御部の動作状態が制御動作状態であると判定された場合には、第1変換状態に移行し、動作状態判定部にて制御部の動作状態が低電力動作状態と判定された場合には、第2変換状態に移行するように構成されている。第1変換状態は、少なくとも第1変換電源を用いて制御部に制御部用電力を供給する変換状態である。第2変換状態は、第1変換電源による電圧変換を停止し、少なくとも第2変換電源を用いて制御部に制御部用電力を供給する変換状態である。
この電動作業機は、制御部が低電力動作状態の場合には、制御部用電源での電圧変換にあたり第1変換電源を用いないため、第1変換電源での電力消費を抑制できる。このため、電動作業機の不使用時に制御部の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部での電力消費の低減のみならず、第1変換電源での電力消費を低減できるため、電動作業機の不使用時における電力消費量を低減できる。
次に、上述の電動作業機においては、制御部用電源は、使用者により当該電動作業機が操作されると、動作状態を第1変換状態に移行するように構成されてもよい。
つまり、制御部用電源の動作状態が第2変換状態であるときに、使用者により電動作業機が操作された場合には、制御部用電源は、制御部用電源の動作状態を第2変換状態から第1変換状態に移行する。これにより、制御部は、少なくとも第1変換電源によって制御部用電力が供給されるため、制御動作状態で必要な制御時最大電流の供給を受けることが可能となり、駆動部の制御が可能となる。なお、使用者による電動作業機の操作としては、例えば、使用者によるトリガスイッチの操作などが挙げられる。
次に、上述の電動作業機は、第1変換電源の出力部への逆流電流の流入を抑制する第1逆流電流抑制部を備えてもよい。この電動作業機は、第2変換電源から出力された電流が第1変換電源の出力部に流入するのを抑制できる。第1逆流電流抑制部は、例えば、第1変換電源に直列接続されたダイオードやFETなどのスイッチング素子を用いて構成してもよい。
次に、上述の電動作業機においては、制御部用電源は、第1電流経路と、第2電流経路と、を備えてもよい。第1電流経路は、電源から制御部に至る電流経路の一部であって、第1変換電源が備えられる電流経路である。第2電流経路は、第1電流経路に並列接続されるとともに、第2変換電源が備えられる電流経路である。
第1変換電源および第2変換電源は、それぞれ、電源電力を、電源が出力する電源電圧よりも低い制御部用電圧の制御部用電力に電圧変換し、電圧変換後の制御部用電力を供給可能に構成されている。
制御部用電源の第1変換状態は、少なくとも第1電流経路を介して第1変換電源を用いて制御部に制御部用電力を供給する状態であってもよい。制御部用電源の第2変換状態は、第1変換電源による電圧変換を停止し、かつ少なくとも第2電流経路を介して第2変換電源を用いて制御部に制御部用電力を供給する状態であってもよい。
この電動作業機は、制御部が低電力動作状態の場合には、制御部用電源が第2変換状態に移行して、第1変換電源を用いた電圧変換を停止するため、第1変換電源での電力消費を抑制できる。このため、電動作業機の不使用時に制御部の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部での電力消費のみならず、第1変換電源での電力消費を低減できるため、電動作業機の不使用時における電力消費量を低減できる。
次に、上述の電動作業機においては、第2逆流電流抑制部を備えてもよい。第2逆流電流抑制部は、第2電流経路のうち第2変換電源と制御部との間において、第2変換電源の出力部への逆流電流の流入を抑制するように構成されている。
この電動作業機は、第1変換電源から出力された電流が、逆流電流として第2変換電源の出力部に向けて流れるのを抑制できる。第2逆流電流抑制部は、例えば、第2変換電源に直列接続されたダイオードやFETなどのスイッチング素子を用いて構成しても良い。
次に、上述の電動作業機においては、第1変換電源の出力電圧と第2変換電源の出力電圧とは同一電圧値であってもよい。この電動作業機は、第1変換電源を用いる場合および第2変換電源を用いる場合のいずれにおいても、制御部への印加電圧を一定に維持することができ、第1変換電源と第2変換電源との切替時などにおいて、印加電圧の変動に起因する制御部の動作不良を抑制できる。
次に、上述の電動作業機においては、動作状態判定部は、第1状態通知信号と第2状態通知信号とを受信可能に構成されるとともに、第1状態通知信号を受信した場合には、制御部の動作状態が制御動作状態であると判定し、第2状態通知信号を受信した場合には、制御部の動作状態が低電力動作状態であると判定してもよい。第1状態通知信号は、制御部の動作状態が制御動作状態であることを示す通知信号である。第2状態通知信号は、制御部の動作状態が低電力動作状態であることを示す通知信号である。この電動作業機においては、動作状態判定部は、第1状態通知信号および第2状態通知信号に基づいて制御部の動作状態を判定することが可能である。
次に、上述の電動作業機においては、制御部用電源は、第3電流経路と、バイパス電流経路と、共通電流経路と、を備えてもよい。第3電流経路は、電源から制御部に至る電流経路の一部であって、第1変換電源が備えられる電流経路である。バイパス電流経路は、第3電流経路に並列接続される電流経路である。共通電流経路は、第3電流経路およびバイパス電流経路のそれぞれに対して直列接続されるとともに、第2変換電源が備えられる電流経路である。
第1変換電源は、電源電力を中間電源電力に電圧変換し、電圧変換後の中間電源電力を供給可能に構成されている。中間電源電力は、電源が出力する電源電圧よりも低い中間電源電圧で供給される電力である。
第2変換電源は、電源電力または中間電源電力を制御部用電力に電圧変換し、電圧変換後の制御部用電力を供給可能に構成されている。ここでの、制御部用電力は、中間電源電圧よりも低い制御部用電圧で供給される電力である。
制御部用電源の第1変換状態は、少なくとも第3電流経路および共通電流経路を介して第1変換電源および第2変換電源を用いて制御部に制御部用電力を供給する状態である。制御部用電源の第2変換状態は、第1変換電源による電圧変換を停止し、かつ少なくともバイパス電流経路および共通電流経路を介して第2変換電源を用いて制御部に制御部用電力を供給する状態である。
この電動作業機は、制御部が低電力動作状態の場合には、制御部用電源が第2変換状態に移行して、第1変換電源を用いた電圧変換を停止するため、第1変換電源での電力消費を抑制できる。このため、電動作業機の不使用時に制御部の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部での電力消費のみならず、第1変換電源での電力消費を低減できるため、電動作業機の不使用時における電力消費量を低減できる。
次に、上述の電動作業機においては、動作状態判定部は、バイパス電流経路に流れるバイパス電流が予め定められた動作基準値よりも大きいか否かを判定するように構成されてもよい。さらに、動作状態判定部は、バイパス電流が動作基準値よりも大きい場合には、制御部の動作状態が制御動作状態であると判定し、バイパス電流が動作基準値以下の場合には、制御部の動作状態が低電力動作状態であると判定してもよい。この電動作業機においては、動作状態判定部は、バイパス電流と動作基準値との比較結果に基づいて制御部の動作状態を判定することが可能である。
次に、上述の電動作業機においては、動作状態判定部は、第1状態通知信号と第2状態通知信号とを受信可能に構成されるとともに、バイパス電流が動作基準値よりも大きい、または、第1状態通知信号を受信した場合には、制御部の動作状態が記制御動作状態であると判定し、バイパス電流が動作基準値以下、かつ第2状態通知信号を受信した場合には、制御部の動作状態が低電力動作状態であると判定してもよい。第1状態通知信号は、制御部の動作状態が制御動作状態であることを示す通知信号である。第2状態通知信号は、制御部の動作状態が低電力動作状態であることを示す通知信号である。この電動作業機においては、動作状態判定部は、バイパス電流と動作基準値との比較結果に加えて、第1状態通知信号および第2状態通知信号に基づいて制御部の動作状態を判定することが可能である。
次に、上述の電動作業機においては、電源は、複数の電池パックを備えており、異なる電圧を出力する複数の電圧出力部を備えてもよく、第1変換電源および第2変換電源は、それぞれ、複数の電圧出力部のうちいずれか1つの出力電圧を電圧変換してもよい。
つまり、電源は、複数の電池パックを備える構成を採ることで、出力可能な最大電圧を電池パックの個数に応じて大きくすることができる。これにより、電動作業機は、より大きな電圧に基づくより大きな出力の動作が可能となる。
このような電動作業機においても、制御部が低電力動作状態の場合には、制御部用電源での電圧変換にあたり第1変換電源を用いないため、第1変換電源での電力消費を抑制でき、電動作業機の不使用時における電力消費量を低減できる。
次に、上述の電動作業機においては、第2変換電源は、複数の電圧出力部のうち出力電圧が最も小さい電圧出力部に接続されてもよい。これにより、第2変換電源での電圧変換における電圧変化量を小さくすることができ、電圧変化量が大きい場合に比べて電圧変換に伴う電力損失を低減できる。
次に、上述の電動作業機においては、第1変換電源は、複数の電圧出力部のうち、第2変換電源が接続された電圧出力部の出力電圧よりも出力電圧が大きい電圧出力部に接続されてもよい。これにより、第1変換電源から出力可能な電力量が、第2変換電源から出力可能な電力量よりも大きくなり、第1変換電源は、第2変換電源に比べて、制御部に対して十分な電力を供給することができる。
実施形態の電動作業機の斜視図である。 第1実施形態における電動作業機の電気的構成を表すブロック図である。 第1実施形態における、制御部での動作状態の切替と、制御部用電源での消費電流との関係を表したタイミングチャートである。 第2実施形態における電動作業機の電気的構成を表すブロック図である。 第2実施形態における、制御部での動作状態の切替と、第2制御部用電源での消費電流との関係を表したタイミングチャートである。 第3実施形態における電動作業機の電気的構成を表すブロック図である。 第3実施形態における、制御部での動作状態の切替と、第3制御部用電源での消費電流との関係を表したタイミングチャートである。 第4実施形態における電動作業機の電気的構成を表すブロック図である。 第4実施形態における、制御部での動作状態の切替と、第4制御部用電源での消費電流との関係を表したタイミングチャートである。 第5実施形態における電動作業機の電気的構成を表すブロック図である。 第6実施形態における電動作業機の電気的構成を表すブロック図である。
以下、本開示が適用された実施形態について、図面を用いて説明する。
尚、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
[1.第1実施形態]
[1-1.全体構成]
図1に示す電動作業機1は、例えば、充電式インパクトドライバとして構成されている。充電式インパクトドライバは、後述するバッテリパック100から供給される電力によって駆動される。充電式インパクトドライバは、例えば、ネジやボルトなどの締結部品を回転させるために用いられる。充電式インパクトドライバは、締結部品を回転させているときの負荷に応じて回転方向へ打撃を与えることにより、回転方向へ大きなトルクを発生可能に構成されている。
図1に示すように、本実施形態の電動作業機1は、本体2と、バッテリパック100とを備える。バッテリパック100は、本体2に着脱可能に構成されている。
本体2は、ハウジング3を備える。ハウジング3は、左右に分割された2つの半割ハウジング3a,3bを備え、これら半割ハウジング3a,3bが組み合わされて構成されている。ハウジング3は、例えば、樹脂を含む射出成形部材であってもよい。
本体2は、第1収容部5と、グリップ部6と、第2収容部7とを備える。第1収容部5には、チャックスリーブ8、LED10及び回転方向切替操作部11が設けられている。LED10は、電動作業機1の外部へ光を照射する。グリップ部6は、第1収容部5から延設されている。第2収容部7は、グリップ部6から延設されている。第2収容部7には、バッテリパック100が着脱されるバッテリ装着部7aが設けられている。
バッテリパック100は、繰り返し充電及び放電が可能な二次電池(図示省略)を備える。二次電池は、例えば、リチウムイオン電池であってもよいし、リチウムイオン電池とは異なる種類の二次電池であってもよい。バッテリパック100の出力電圧VB(以下、バッテリ電圧VBともいう)は、36[V]である。
グリップ部6は、電動作業機1の使用者が電動作業機1を使用する際にその使用者により把持される。グリップ部6には、トリガ操作部9が設けられている。使用者は、グリップ部6を把持しながら、トリガ操作部9を指で引き操作(トリガON操作)することができる。
[1-2.電動作業機の電気的構成]
電動作業機1の電気的構成について、図2を参照して説明する。図2は、バッテリパック100が本体2に装着された電動作業機1の電気的構成を示している。
図2に示すように、電動作業機1は、モータ61、制御部62、モータ駆動部63、制御部用電源64、動作状態判定部75を備える。電動作業機1は、モータ通電経路LM、電圧変換経路LC、第1電流経路LC1、第2電流経路LC2を備える。
モータ通電経路LMは、バッテリパック100の正極から、モータ61およびモータ駆動部63を介して、バッテリパック100の負極に至る通電経路である。電圧変換経路LCは、第1端がモータ通電経路LMの第1分岐点P1に接続され、第2端が制御部用電源64(詳細には、第2分岐点P2)に接続される。第1電流経路LC1および第2電流経路LC2は、制御部用電源64に備えられる。
モータ61は、ブラシ付きモータである。モータ61は、バッテリパック100からモータ通電経路LMを介して供給される電力を用いた電流通電によって駆動する。
モータ駆動部63は、モータ通電経路LMに直列接続されるスイッチング部(FETなど)を備えて構成されている。モータ駆動部63は、制御部62からのモータ駆動指令Smdに基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替えるとともに、モータ通電経路LMを通電状態または非通電状態に切替可能に構成されている。
制御部62は、CPU、記録部(ROM、RAM)、信号入出力部などを備えるマイクロコンピュータを備えて構成されている。制御部62は、後述する定電圧供給ライン81を介して電力供給を受ける。制御部62は、記録部に記憶されている各種プログラムをCPUが実行することで、各種処理を実行する。各種処理としては、例えば、モータ駆動指令Smdによってモータ61を制御するモータ制御処理、電動作業機1に異常が生じているか否かを判定する異常判定処理、制御部62の動作状態を複数の動作状態のいずれかに切替える動作状態切替処理などが含まれる。
なお、複数の動作状態としては、少なくとも制御動作状態および低電力動作状態が含まれる。制御動作状態は、モータ制御処理、異常判定処理などを実行可能な動作状態である。制御部62は、制御動作状態では、電動作業機1における各部の状態(モータ温度やモータ電流など)を測定する各種センサ(図示省略)からの測定信号をAD変換して異常判定処理などを実行する。制御動作状態の場合には、定電圧供給ライン81から供給される定電圧Vccは、AD変換の基準電圧となるため、電圧誤差を低減できるように高い電圧精度が要求される。低電力動作状態は、制御動作状態よりも消費電力が低い動作状態である。低電力動作状態は、いわゆるスリープ状態であり、制御部62での電力消費を低減する動作状態である。制御部62は、低電力動作状態では、AD変換等を実行せず、基準電圧(定電圧Vcc)と各種センサの測定信号との比較処理を行わない。低電力動作状態の場合には、定電圧供給ライン81から供給される定電圧Vccは、AD変換の基準電圧として利用されないため、制御動作状態と比べて、要求される電圧精度は低くなる。制御動作状態での制御部62の最大消費電流(制御時最大電流ICmax)は100mAであり、低電力動作状態での制御部62の最大消費電流(低電力時最大電流ISmax)は50μAである。
制御部62は、予め定められたスリープ判定時間Ts(例えば、5分)にわたり、使用者による操作(トリガ操作部9の操作など)が行われない状態が継続すると、制御部62の動作状態を、制御動作状態から低電力動作状態に移行するように構成されている。
制御部62は、実行中の動作状態に応じた状態通知信号Smoを出力するように構成されている。つまり、制御部62は、制御動作状態に移行すると、制御動作状態であることを示す状態通知信号Smo(以下、第1状態通知信号Smo1ともいう)を出力し、低電力動作状態に移行すると、低電力動作状態であることを示す状態通知信号Smo(以下、第2状態通知信号Smo2ともいう)を出力する。制御部62は、状態通知信号Smoを、少なくとも制御部用電源64(詳細には、後述する第1逆流電流抑制部69)および動作状態判定部75に対して出力する。
トリガ操作部9は、使用者による引き操作が行われると、トリガ信号Strを出力するように構成されている。トリガ操作部9は、使用者による引き操作の実行中は、グランド電位と同電位のトリガ信号Strを出力するように構成されている。トリガ信号Strは、少なくとも制御部62および動作状態判定部75に出力される。
動作状態判定部75は、制御部62の動作状態が制御動作状態であるか低電力動作状態であるかを判定するように構成されている。動作状態判定部75は、状態通知信号Smoおよびトリガ信号Strが入力されるとともに、状態通知信号Smoおよびトリガ信号Strのそれぞれの状態に応じて通電指令信号Sc1を出力するように構成されている。
動作状態判定部75は、第1状態通知信号Smo1が入力されるか、または、トリガ信号Strが入力される(換言すれば、使用者による引き操作の実行中)場合には、制御部62の動作状態が制御動作状態であると判定するように構成されている。動作状態判定部75は、第2状態通知信号Smo2が入力されるとともに、トリガ信号Strが入力されない(換言すれば、使用者による引き操作が実行されていない)場合には、制御部62の動作状態が低電流動作状態であると判定するように構成されている。動作状態判定部75は、判定結果に応じた通電指令信号Sc1を出力するように構成されている。
[1-3.制御部用電源]
制御部用電源64は、バッテリパック100からのバッテリ電圧VBを電圧変換して、電圧変換後の定電圧Vccを定電圧供給ライン81に対して出力する。定電圧Vccは、定電圧供給ライン81を介して、電動作業機1の各部(制御部62など)に供給される。本実施形態では、定電圧Vccは5[V]である。制御部用電源64から定電圧供給ライン81を介して供給される電力は、例えば、制御部62などの動作用電力として使用される。
制御部用電源64は、第1変換電源65、第1スイッチング部67、第1逆流電流抑制部69、第2変換電源71、第2逆流電流抑制部73、第1電流経路LC1、第2電流経路LC2を備える。
第1電流経路LC1は、バッテリパック100から制御部62に至る電流経路の一部であって、第1変換電源65が備えられる電流経路である。第2電流経路LC2は、第1電流経路LC1に並列接続されるとともに、第2変換電源71が備えられる電流経路である。第1電流経路LC1の第1端および第2電流経路LC2の第1端は、それぞれ第2分岐点P2に接続されるとともに、電圧変換経路LCに接続される。第1電流経路LC1の第2端および第2電流経路LC2の第2端は、それぞれ第3分岐点P3に接続されるとともに、定電圧供給ライン81に接続される。
第1電流経路LC1には、第2分岐点P2から第3分岐点P3にかけて、第1スイッチング部67、第1変換電源65、第1逆流電流抑制部69がこの順に配置されている。
第1変換電源65は、直流電圧を電圧変換して出力するDC-DCコンバータを備えている。第1変換電源65は、入力部65aに入力されたバッテリ電圧VBを電圧変換して、電圧変換後の定電圧Vccを出力部65bから出力する。第1変換電源65は、定電圧Vccとして5[V]を出力する。定電圧Vccは、定電圧供給ライン81を介して、電動作業機1の各部(制御部62など)に供給される。第1変換電源65は、電圧変換するにあたり、最大出力電流が100mA以上の性能を有しており、制御動作状態の制御部62での最大消費電流(制御時最大電流ICmax)を供給可能に構成されている。第1変換電源65での電圧変換に必要な電力消費量は、mAオーダーの消費電流に対応した電力消費量である。
第1スイッチング部67は、第1電流経路LC1のうち第2分岐点P2と第1変換電源65との間に設けられる。第1スイッチング部67は、第1電流経路LC1に直列接続されるスイッチング部(FETなど)を備えて構成されている。第1スイッチング部67は、動作状態判定部75からの通電指令信号Sc1に基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替可能に構成されている。第1スイッチング部67は、第1電流経路LC1における第2分岐点P2から第1変換電源65に向かう通電について、通電状態または非通電状態に切替可能に構成されている。これにより、第1スイッチング部67は、通電指令信号Sc1に基づいて、第1変換電源65へのバッテリ電圧VBの入力状態を切替可能に構成されている。
第1逆流電流抑制部69は、第1電流経路LC1のうち第1変換電源65と第3分岐点P3との間に設けられる。第1逆流電流抑制部69は、第1電流経路LC1に直列接続されるダイオード69aと、ダイオード69aと並列にスイッチング部69bと、を備えて構成される。ダイオード69aは、第1変換電源65から第3分岐点P3への通電を許容し、第3分岐点P3から第1変換電源65への通電を抑制するように構成されている。ここで、スイッチング部69bをFETとすれば、FET内に必ず存在する寄生ダイオードをダイオード69aとして利用してもよい。第1逆流電流抑制部69は、制御部62からの状態通知信号Smoに基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替えるとともに、第1電流経路LC1を通電状態または非通電状態に切替可能に構成されている。
これにより、第1逆流電流抑制部69は、スイッチング部69bが非通電状態になることで、第1変換電源65の出力部65bから定電圧供給ライン81へダイオード69aを介しての電流通電を許容するとともに、第3分岐点P3から第1変換電源65の出力部65bへの逆流電流の流入を抑制することができる。なお、ダイオード69aを介した出力部65bから定電圧供給ライン81への電流通電時には、出力部65bから出力される定電圧Vccが、ダイオード69aの順方向電圧(Vf)分だけ電圧降下して、定電圧供給ライン81へ出力される。また、第1逆流電流抑制部69は、スイッチング部69bが通電状態になることで、第1変換電源65の出力部65bから出力される定電圧Vccがダイオード69aで電圧降下することなく、定電圧供給ライン81へ定電圧Vccが出力される状態となる。
第2電流経路LC2には、第2分岐点P2から第3分岐点P3にかけて、第2変換電源71、第2逆流電流抑制部73がこの順に配置されている。
第2変換電源71は、直流電圧を電圧変換して出力するシリーズレギュレータを備えている。第2変換電源71は、入力部71aに入力されたバッテリ電圧VBを電圧変換して、電圧変換後の定電圧Vccを出力部71bから出力する。第2変換電源71は、定電圧Vccとして5[V]を出力する。定電圧Vccは、定電圧供給ライン81を介して、電動作業機1の各部(制御部62など)に供給される。第2変換電源71は、電圧変換するにあたり、最大出力電流が50μA以上の性能を有しており、低電力動作状態の制御部62での最大消費電流(低電力時最大電流ISmax)を供給可能に構成されている。第2変換電源71での電圧変換に必要な電力消費量は、μAオーダーの消費電流に対応した電力消費量である。第2変換電源71は、最大出力電流が制御時最大電流ICmaxよりも小さく構成されているため、第1変換電源65と比べて、電圧変換に必要な電力消費量が小さくなる。
第2逆流電流抑制部73は、第2電流経路LC2のうち第2変換電源71と第3分岐点P3との間に設けられる。第2逆流電流抑制部73は、第2電流経路LC2に直列接続されるダイオードを備えて構成されている。このダイオードは、第2変換電源71から第3分岐点P3への通電を許容し、第3分岐点P3から第2変換電源71への通電を抑制するように配置されている。このため、第2逆流電流抑制部73は、第2変換電源71の出力部71bから定電圧供給ライン81へ、定電圧Vccからダイオードの順方向電圧(Vf)分だけ電圧降下した電圧の出力を許容するとともに、第3分岐点P3から第2変換電源71の出力部71bへの逆流電流の流入を抑制するように構成されている。
このような構成の制御部用電源64は、動作状態判定部75から制御動作状態であることを示す通電指令信号Sc1が入力されると、第1変換電源65および第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
また、制御部用電源64は、動作状態判定部75から低電力動作状態であることを示す通電指令信号Sc1が入力されると、第1変換電源65による電圧変換を停止し、第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
[1-4.制御部での動作状態の切替に伴う消費電流の変化状況]
次に、制御部62での動作状態の切替に伴う、制御部用電源64での消費電流Iaの変化状況について、図3を用いて説明する。
図3では、使用者によるトリガ操作部9の引き操作が終了した時点を時刻t0として、時間経過に伴う制御部62の動作状態の切替と、消費電流Iaの変化状況を示す。
時刻t0からスリープ判定時間Tsが経過した時刻t1までの期間中、使用者によるトリガ操作部9の引き操作が行われない状態が継続した場合には、制御部62は、動作状態を制御動作状態から低電力動作状態に移行するための処理(動作状態切替処理)を開始する。
制御部62は、動作状態切替処理を開始すると、まず、電動作業機1に備えられる各種機器や各種回路への電力供給を順次停止する処理を実行する。これに伴い、消費電流Iaは初期消費電流Ia0から徐々に減少し(時刻t1~t2)、停止する前の各種機器などでの電流消費量(第1電流変化量ΔIa1)に相当する電流が削減され、この時の消費電流Iaは第1消費電流Ia1まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、低電力動作状態であることを示す状態通知信号Smoを出力する処理を実行する(時刻t2)。これにより、第1変換電源65による電圧変換が停止されて、第1変換電源65での電圧変換に要する電流消費量(第2電流変化量ΔIa2)に相当する電流が削減され、この時の消費電流Iaは第2消費電流Ia2まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、制御部62そのものを低電力動作状態(スリープモード)に移行する処理を実行する(時刻t3)。これにより、制御部62における制御動作状態での電流消費量と低電力動作状態での電流消費量との差分に相当する電流消費量(第3電流変化量ΔIa3)に相当する電流が削減され、この時の消費電流Iaは第3消費電流Ia3まで減少する。
これらを実行することにより、制御部62は、動作状態切替処理を完了し、使用者によるトリガ操作部9の引き操作が行われるまでは、低電力動作状態を維持する。
このあと、使用者によるトリガ操作部9の引き操作が行われると(時刻t4)、制御部62にトリガ信号Strが入力される。これにより、制御部62そのものは、低電力動作状態(スリープモード)から制御動作状態へ移行(ウェイクアップ)する。そして、ウェイクアップした制御部62は、動作状態を低電力動作状態から制御動作状態に移行するための動作状態切替処理を開始する。また、トリガ操作部9からのトリガ信号Strは動作状態判定部75にも入力されて、動作状態判定部75からの通電指令信号Sc1が制御部用電源64に入力されると、第1変換電源65による電圧変換が開始される。従って、制御部62のウェイクアップと第1変換電源65の電圧変換動作に伴い、消費電流Iaが第1消費電流Ia1まで徐々に増加する(時刻t4~t5)。
次に、制御部62は、動作状態切替処理での1ステップとして、制御動作状態であることを示す状態通知信号Smo(第1状態通知信号Smo1)を出力する処理を実行する(時刻t5)。これにより、第1変換電源65の出力部65bから出力される定電圧Vccは、定電圧供給ライン81へ電圧降下することなく供給される。
次に、制御部62は、動作状態切替処理での1ステップとして、電動作業機1に備えられる各種機器や各種回路への電力供給を順次開始する処理を実行する(時刻t6)。これに伴い、消費電流Iaが初期消費電流Ia0まで増加する。
このように、本実施形態の電動作業機1は、制御部62での動作状態が低電力動作状態に移行した場合には、第1変換電源65での電圧変換を停止することで、第2電流変化量ΔIa2に相当する消費電流Iaを減少させることができる。
[1-5.効果]
以上説明したように、本実施形態の電動作業機1は、制御部62が低電力動作状態の場合には、制御部用電源64が第2変換状態に移行して、制御部用電源64での電圧変換にあたり第1変換電源65を用いないため、第1変換電源65での電力消費を抑制できる。このため、電動作業機1の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第1変換電源65での電力消費を低減できるため、電動作業機1の不使用時における電力消費量を低減できる。
次に、電動作業機1においては、制御部用電源64は、使用者により電動作業機1が操作(例えば、トリガ操作部9の引き操作など)されると、動作状態を第1変換状態に移行するように構成されている。つまり、制御部用電源64の動作状態が第2変換状態であるときに、使用者によりトリガ操作部9が操作された場合には、制御部用電源64は、制御部用電源64の動作状態を第2変換状態から第1変換状態に移行する。これにより、制御部62は、少なくとも第1変換電源65によって定電圧Vccが供給されるため、制御動作状態で必要な制御時最大電流ICmaxの供給を受けることが可能となり、モータ61の制御が可能となる。
次に、電動作業機1は、第1逆流電流抑制部69を備えるため、第1変換電源65の出力部65bへの逆流電流の流入を抑制できる。このため、電動作業機1は、第1逆流電流抑制部69によって、第2変換電源71から出力された電流が第3分岐点P3を介して第1変換電源65の出力部65bへ流入することを抑制できる。
次に、電動作業機1は、第2逆流電流抑制部73を備えるため、第2変換電源71の出力部71bへの逆流電流の流入を抑制できる。このため、電動作業機1は、第2逆流電流抑制部73によって、第1変換電源65から出力された電流が第3分岐点P3を介して第2変換電源71の出力部71bへ流入することを抑制できる。
次に、電動作業機1においては、第1変換電源65の出力電圧(定電圧Vcc=5[V])と第2変換電源71の出力電圧(定電圧Vcc=5[V])とが同一電圧値であり、さらに、第1逆流電流抑制部69においてダイオード69aと並列にスイッチング部69bが備えられ、第2逆流電流抑制部73はダイオードで構成される。このため、制御部62が制御動作状態となり、第1変換電源65と第2変換電源71が共に電圧出力し、かつ、スイッチング部69bがオンしている場合には、第1変換電源65から定電圧供給ライン81へ出力される電圧と、第2変換電源71から第2逆流電流抑制部73を介し定電圧供給ライン81へ出力される電圧と、が異なる値となる。具体的には、制御部62が制御動作状態の場合には、第1変換電源65から定電圧供給ライン81へ出力される電圧が定電圧Vccとなることに対し、第2変換電源71から第2逆流電流抑制部73を介し定電圧供給ライン81へ出力される電圧は、定電圧Vccからダイオードの順方向電圧(Vf)分だけ電圧降下した電圧となる。従って、制御部62が制御動作状態の場合には、制御部62には第1変換電源65から出力された電圧のみが供給されるため、制御部62の最大消費電流を、その供給能力がない第2変換電源71から供給する状態になることを抑制できる。
次に、電動作業機1においては、動作状態判定部75は、第1状態通知信号Smo1と第2状態通知信号Smo2とを受信可能に構成されている。動作状態判定部75は、第1状態通知信号Smo1を受信した場合には、制御部62の動作状態が制御動作状態であると判定し、第2状態通知信号Smo2を受信した場合には、制御部62の動作状態が低電力動作状態であると判定する。つまり、動作状態判定部75は、第1状態通知信号Smo1および第2状態通知信号Smo2に基づいて制御部62の動作状態を判定することが可能である。
[1-6.文言の対応関係]
ここで、文言の対応関係について説明する。
電動作業機1が電動作業機の一例に相当し、モータ61が駆動部の一例に相当し、バッテリパック100が電源の一例に相当する。
制御部62およびモータ駆動部63が制御部の一例に相当し、制御部用電源64が制御部用電源の一例に相当し、第1変換電源65が第1変換電源の一例に相当し、第2変換電源71が第2変換電源の一例に相当し、動作状態判定部75が動作状態判定部の一例に相当する。
第1逆流電流抑制部69が第1逆流電流抑制部の一例に相当し、第2逆流電流抑制部73が第2逆流電流抑制部の一例に相当し、第1電流経路LC1が第1電流経路の一例に相当し、第2電流経路LC2が第2電流経路の一例に相当する。
[2.第2実施形態]
第2実施形態として、上記実施形態(以下、第1実施形態ともいう)の電動作業機1における一部の構成要素を置き換えて構成された第2電動作業機21について説明する。
図4に示すように、第2電動作業機21は、電動作業機1のうち、制御部用電源64,モータ61,モータ駆動部63が、それぞれ第2制御部用電源91,ブラシレスモータ97,モータドライバ99に置き換えられて構成されている。
[2-1.第2制御部用電源]
第2制御部用電源91は、制御部用電源64のうち第1変換電源65に代えて、第3変換電源93および第4変換電源95を備えて構成されている。
第3変換電源93は、直流電圧を電圧変換して出力するDC-DCコンバータを備えている。第3変換電源93は、入力部93aに入力されたバッテリ電圧VBを電圧変換して、電圧変換後の第2定電圧Vddを出力部93bから出力する。第3変換電源93は、第2定電圧Vddとして15[V]を出力する。第3変換電源93は、電圧変換するにあたり、最大出力電流が150mAである。
第4変換電源95は、直流電圧を電圧変換して出力するシリーズレギュレータを備えている。第4変換電源95は、入力部95aに入力された第2定電圧Vddを電圧変換して、電圧変換後の定電圧Vccを出力部95bから出力する。第4変換電源95は、定電圧Vccとして5[V]を出力する。第4変換電源95は、電圧変換するにあたり、最大出力電流が100mAである。
つまり、第2制御部用電源91は、第3変換電源93および第4変換電源95を用いてバッテリ電圧VBを定電圧Vccに変換可能に構成されている。定電圧Vccは、定電圧供給ライン81を介して、第2電動作業機21の各部(制御部62など)に供給される。第3変換電源93および第4変換電源95での電圧変換に必要な電力消費量は、mAオーダーの消費電流に対応した電力消費量である。
このような構成の第2制御部用電源91は、動作状態判定部75から制御動作状態であることを示す通電指令信号Sc1が入力されると、第3変換電源93および第4変換電源95を用いて定電圧Vccを出力するとともに、第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
また、第2制御部用電源91は、動作状態判定部75から低電力動作状態であることを示す通電指令信号Sc1が入力されると、第3変換電源93および第4変換電源95による電圧変換を停止し、第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
ブラシレスモータ97は、三相ブラシレスモータを備えて構成されている。モータドライバ99は、バッテリパック100からの直流電流を、ブラシレスモータ97を駆動するための三相交流電流(U相駆動電流、V相駆動電流及びW相駆動電流)に変換して、ブラシレスモータ97へ出力する。モータドライバ99は、制御部62から入力されるモータ駆動指令Smdに従って、ブラシレスモータ97を駆動する。
[2-2.制御部での動作状態の切替に伴う消費電流の変化状況]
次に、制御部62での動作状態の切替に伴う、第2制御部用電源91での消費電流Iaの変化状況について、図5を用いて説明する。
図5では、使用者によるトリガ操作部9の引き操作が終了した時点を時刻t0として、時間経過に伴う制御部62の動作状態の切替と、消費電流Iaの変化状況を示す。
時刻t0からスリープ判定時間Tsが経過した時刻t11までの期間中、使用者によるトリガ操作部9の引き操作が行われない状態が継続した場合には、制御部62は、動作状態を制御動作状態から低電力動作状態に移行するための処理(動作状態切替処理)を開始する。
制御部62は、動作状態切替処理を開始すると、まず、第2電動作業機21に備えられる各種機器や各種回路への電力供給を順次停止する処理を実行する。これに伴い、消費電流Iaは第10消費電流Ia10から徐々に減少し(時刻t11~t12)、停止する前の各種機器などでの電流消費量(第1電流変化量ΔIa11)に相当する電流が削減され、この時の消費電流Iaは第11消費電流Ia11まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、低電力動作状態であることを示す状態通知信号Smoを出力する処理を実行する(時刻t12)。これにより、第3変換電源93および第4変換電源95による電圧変換が停止されて、第3変換電源93および第4変換電源95での電圧変換に要する電流消費量(第2電流変化量ΔIa12)に相当する電流が削減され、この時の消費電流Iaは第12消費電流Ia12まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、制御部62そのものを低電力動作状態(スリープモード)に移行する処理を実行する(時刻t13)。これにより、制御部62における制御動作状態での電流消費量と低電力動作状態での電流消費量との差分に相当する電流消費量(第3電流変化量ΔIa13)に相当する電流が削減され、この時の消費電流Iaは第13消費電流Ia13まで減少する。
これらを実行することにより、制御部62は、動作状態切替処理を完了し、使用者によるトリガ操作部9の引き操作が行われるまでは、低電力動作状態を維持する。
このあと、使用者によるトリガ操作部9の引き操作が行われると(時刻t14)、制御部62にトリガ信号Strが入力される。これにより、制御部62そのものは、低電力動作状態(スリープモード)から制御動作状態へ移行(ウェイクアップ)する。そして、ウェイクアップした制御部62は、動作状態を低電力動作状態から制御動作状態に移行するための動作状態切替処理を開始する。また、トリガ操作部9からのトリガ信号Strは動作状態判定部75にも入力されて、動作状態判定部75からの通電指令信号Sc1が第2制御部用電源91に入力されることで、第3変換電源93および第4変換電源95による電圧変換が開始される。従って、制御部62のウェイクアップと第3変換電源93および第4変換電源95の電圧変換動作に伴い、消費電流Iaが第11消費電流Ia11まで徐々に増加する(時刻t14~t15)。
次に、制御部62は、動作状態切替処理での1ステップとして、制御動作状態であることを示す状態通知信号Smo(第1状態通知信号Smo1)を出力する処理を実行する(時刻t15)。これにより、第4変換電源95の出力部95bから出力される定電圧Vccは、定電圧供給ライン81へ電圧降下することなく供給される。
次に、制御部62は、動作状態切替処理での1ステップとして、第2電動作業機21に備えられる各種機器や各種回路への電力供給を順次開始する処理を実行する(時刻t16)。これに伴い、消費電流Iaが第10消費電流Ia10まで増加する。
このように、第2電動作業機21は、制御部62での動作状態が低電力動作状態に移行した場合には、第3変換電源93および第4変換電源95での電圧変換を停止することで、第2電流変化量ΔIa12に相当する消費電流Iaを減少させることができる。
[2-3.効果]
以上説明したように、本第2実施形態の第2電動作業機21は、制御部62が低電力動作状態の場合には、第2制御部用電源91が第2変換状態に移行して、第2制御部用電源91での電圧変換にあたり第3変換電源93および第4変換電源95を用いないため、第3変換電源93および第4変換電源95での電力消費を抑制できる。このため、第2電動作業機21の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第3変換電源93および第4変換電源95での電力消費を低減できるため、第2電動作業機21の不使用時における電力消費量を低減できる。
[2-4.文言の対応関係]
ここで、文言の対応関係について説明する。
第2電動作業機21が電動作業機の一例に相当し、制御部62およびモータドライバ99が制御部の一例に相当し、ブラシレスモータ97が駆動部の一例に相当し、第2制御部用電源91が制御部用電源の一例に相当し、第3変換電源93および第4変換電源95が第1変換電源の一例に相当する。
[3.第3実施形態]
第3実施形態として、第2実施形態の第2電動作業機21における一部の構成要素を置き換えて構成された第3電動作業機23について説明する。
図6に示すように、第3電動作業機23は、第2電動作業機21のうち第2制御部用電源91が第3制御部用電源111に置き換えられて構成されている。
[3-1.第3制御部用電源]
第3制御部用電源111は、バッテリパック100からのバッテリ電圧VBを電圧変換して、電圧変換後の定電圧Vccを定電圧供給ライン81に対して出力する。定電圧Vccは、定電圧供給ライン81を介して、第3電動作業機23の各部(制御部62など)に供給される。第3実施形態では、定電圧Vccは5[V]である。第3制御部用電源111から定電圧供給ライン81を介して供給される電力は、例えば、制御部62などの動作用電力として使用される。
第3制御部用電源111は、第3変換電源93、第1スイッチング部67、逆流電流抑制部113、第4変換電源95、バイパス電流判定部115、第3電流経路LC3、バイパス電流経路LC4、共通電流経路LC5を備える。
このうち、第3変換電源93、第1スイッチング部67、第4変換電源95は、それぞれ、第2実施形態の第3変換電源93、第1スイッチング部67、第4変換電源95と同様の構成である。
第3電流経路LC3は、バッテリパック100から制御部62に至る電流経路の一部であって、第3変換電源93が備えられる電流経路である。バイパス電流経路LC4は、第3電流経路LC3に並列接続される電流経路である。共通電流経路LC5は、第3電流経路LC3およびバイパス電流経路LC4のそれぞれに対して直接接続されると共に、第4変換電源95が備えられる電流経路である。
第3電流経路LC3の第1端およびバイパス電流経路LC4の第1端は、それぞれ第4分岐点P4に接続されるとともに、電圧変換経路LCに接続される。第3電流経路LC3の第2端およびバイパス電流経路LC4の第2端は、それぞれ第5分岐点P5に接続されるとともに、共通電流経路LC5の第1端に接続される。共通電流経路LC5の第2端は、定電圧供給ライン81に接続される。
逆流電流抑制部113は、第3電流経路LC3のうち第3変換電源93と第5分岐点P5との間に設けられる。逆流電流抑制部113は、第3電流経路LC3に直列接続されるダイオードを備えて構成されている。このダイオードは、第3変換電源93から第5分岐点P5への通電を許容し、第5分岐点P5から第3変換電源93への通電を抑制するように配置されている。このため、逆流電流抑制部113は、第3変換電源93の出力部93bから第5分岐点P5への定電圧Vccの出力を許容するとともに、第5分岐点P5から第3変換電源93の出力部93bへの逆流電流の流入を抑制するように構成されている。
バイパス電流判定部115は、バイパス電流経路LC4に備えられている。バイパス電流判定部115は、検出用抵抗117と、電流判定部119と、を備える。検出用抵抗117は、バイパス電流経路LC4に直列接続された抵抗素子を備えるとともに、バイパス電流経路LC4に流れるバイパス電流Ibpに応じた検出電圧を出力可能に構成されている。電流判定部119は、FETを備えており、検出用抵抗117の両端電圧に基づいて、バイパス電流Ibpに応じた電流通知信号Siaを、動作状態判定部75に対して出力するように構成されている。
なお、第1スイッチング部67がオフの状態で、制御部62の動作状態が制御動作状態の場合には、定電圧供給ライン81を介した制御部62などでの電力消費量が大きくなり、バイパス電流Ibpは大きくなるため、第4変換電源95の入力部95aの電位が低くなる。また、第1スイッチング部67がオフの状態で、制御部62の動作状態が低電力動作状態の場合には、定電圧供給ライン81を介した制御部62などでの電力消費量が小さくなり、バイパス電流Ibpは小さくなるため、第4変換電源95の入力部95aの電位が高くなる。
電流判定部119は、バイパス電流Ibpに応じた電流通知信号Siaを出力するように構成されている。電流判定部119は、バイパス電流Ibpが予め定められた動作基準値Ith(例えば、5[mA])よりも大きい場合には、FETがON状態となり、電位がバッテリ電圧VBと同電位の電流通知信号Sia(以下、第1電流通知信号Sia1ともいう)を出力する。電流判定部119は、バイパス電流Ibpが動作基準値Ith以下の場合には、FETがOFF状態となり、電位がバッテリ電圧VBよりも低い電流通知信号Sia(以下、第2電流通知信号Sia2ともいう)を出力する。
つまり、バイパス電流判定部115は、バイパス電流Ibpと動作基準値Ithとの比較結果に基づいて、制御部62の動作状態が制御動作状態であるか低電力動作状態であるかを判定するように構成されている。
電流判定部119は、制御部62の動作状態が制御動作状態であると判定する場合には、第1電流通知信号Sia1を動作状態判定部75に対して出力する。これにより、動作状態判定部75から第1スイッチング部67に対して、制御動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が実行される。このとき、第3制御部用電源111は、第3変換電源93および第4変換電源95を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
電流判定部119は、制御部62の動作状態が低電力動作状態であると判定する場合には、第2電流通知信号Sia2を動作状態判定部75に対して出力する。これにより、動作状態判定部75から第1スイッチング部67に対して、低電力動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が停止される。このとき、第3制御部用電源111は、第4変換電源95を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
[3-2.制御部での動作状態の切替に伴う消費電流の変化状況]
次に、制御部62での動作状態の切替に伴う、第3制御部用電源111での消費電流Iaの変化状況について、図7を用いて説明する。
図7では、使用者によるトリガ操作部9の引き操作が終了した時点を時刻t0として、時間経過に伴う制御部62の動作状態の切替と、消費電流Iaの変化状況を示す。
時刻t0からスリープ判定時間Tsが経過した時刻t21までの期間中、使用者によるトリガ操作部9の引き操作が行われない状態が継続した場合には、制御部62は、動作状態を制御動作状態から低電力動作状態に移行するための処理(動作状態切替処理)を開始する。
制御部62は、動作状態切替処理を開始すると、まず、第3電動作業機23に備えられる各種機器や各種回路への電力供給を順次停止する処理を実行する。これに伴い、消費電流Iaは第20消費電流Ia20から徐々に減少し(時刻t21~t22)、停止する前の各種機器などでの電流消費量(第1電流変化量ΔIa21)に相当する電流が削減され、この時の消費電流Iaは第21消費電流Ia21まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、制御部62そのものを低電力動作状態(スリープモード)に移行する処理を実行する(時刻t22)。これにより、制御部62における制御動作状態での電流消費量と低電力動作状態での電流消費量との差分に相当する電流消費量(第2電流変化量ΔIa22)に相当する電流が削減され、この時の消費電流Iaは第22消費電流Ia22まで減少する。なお、第2電流変化量ΔIa22は、第1実施形態の第3電流変化量ΔIa3および第2実施形態の第3電流変化量ΔIa13に相当する。
このあと、制御部62での電流消費量の低下に伴い、バイパス電流判定部115が制御部62の動作状態を低電力動作状態であると判定すると、動作状態判定部75から第1スイッチング部67に対して、低電力動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が停止される。これにより、第3変換電源93での電圧変換に要する電流消費量(第3電流変化量ΔIa23)に相当する電流が削減され、この時の消費電流Iaは第23消費電流Ia23まで減少する。なお、第3電流変化量ΔIa23は、第1実施形態の第2電流変化量ΔIa2および第2実施形態の第2電流変化量ΔIa12に相当する。
これらを実行することにより、制御部62は、動作状態切替処理を完了し、使用者によるトリガ操作部9の引き操作が行われるまでは、低電力動作状態を維持する。
このあと、使用者によるトリガ操作部9の引き操作が行われると(時刻t24)、制御部62にトリガ信号Strが入力される。これにより、制御部62そのものは、低電力動作状態(スリープモード)から制御動作状態へ移行(ウェイクアップ)する。そして、ウェイクアップした制御部62は、動作状態を低電力動作状態から制御動作状態に移行するための動作状態切替処理を開始する。また、トリガ操作部9からのトリガ信号Strは動作状態判定部75にも入力されて、動作状態判定部75からの通電指令信号Sc1が第3制御部用電源111に入力されることで、第3変換電源93による電圧変換が開始される。従って、制御部62のウェイクアップと第3変換電源93の電圧変換動作に伴い、消費電流Iaが第21消費電流Ia21まで徐々に増加する(時刻t24~t25)。なお、消費電流Iaは、制御部62のウェイクアップによって、第23消費電流Ia23から第2電流変化量ΔIa22だけ増加して第24消費電流Ia24となる(時刻t24)。そのあと、消費電流Iaは、第3変換電源93の電圧変換動作によって、第3電流変化量ΔIa23だけ増加して第21消費電流Ia21となる(時刻t25)。
このとき、制御部62での電流消費量の増加に伴い、バイパス電流判定部115が制御部62の動作状態を制御動作状態であると判定すると、動作状態判定部75から第1スイッチング部67に対して、制御動作状態であることを示す通電指令信号Sc1が出力される。このとき、既に、トリガ操作部9からのトリガ信号Strに基づいて、第3変換電源93による電圧変換が実行されているが、使用者によるトリガ操作部9の操作が終了した場合でも、スリープ判定時間Tsが経過するまでは、制御部62の制御動作状態が維持されるとともに、第3変換電源93による電圧変換が継続される。
次に、制御部62は、動作状態切替処理での1ステップとして、第3電動作業機23に備えられる各種機器や各種回路への電力供給を順次開始する処理を実行する(時刻t26)。これに伴い、消費電流Iaが第20消費電流Ia20まで増加する。
このように、第3電動作業機23は、制御部62での動作状態が低電力動作状態に移行した場合には、バイパス電流判定部115での判定結果に基づいて、第3変換電源93での電圧変換を停止することで、第3電流変化量ΔIa23に相当する消費電流Iaを減少させることができる。
[3-3.効果]
以上説明したように、本第3実施形態の第3電動作業機23は、制御部62が低電力動作状態の場合には、バイパス電流判定部115での判定結果に基づいて、第3制御部用電源111が第2変換状態に移行して、第3制御部用電源111での電圧変換にあたり第3変換電源93を用いないため、第3変換電源93での電力消費を抑制できる。このため、第3電動作業機23の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第3変換電源93での電力消費を低減できるため、第3電動作業機23の不使用時における電力消費量を低減できる。
[3-4.文言の対応関係]
ここで、文言の対応関係について説明する。
第3電動作業機23が電動作業機の一例に相当し、制御部62およびモータドライバ99が制御部の一例に相当し、ブラシレスモータ97が駆動部の一例に相当し、第3制御部用電源111が制御部用電源の一例に相当し、第3変換電源93が第1変換電源の一例に相当し、第4変換電源95が第2変換電源の一例に相当する。
動作状態判定部75およびバイパス電流判定部115が動作状態判定部の一例に相当し、第3電流経路LC3が第3電流経路の一例に相当し、バイパス電流経路LC4がバイパス電流経路の一例に相当し、共通電流経路LC5が共通電流経路の一例に相当し、第2定電圧Vddが中間電源電圧の一例に相当し、動作基準値Ithが動作基準値の一例に相当する。
[4.第4実施形態]
第4実施形態として、第3実施形態の第3電動作業機23における一部の構成要素を置き換えて構成された第4電動作業機25について説明する。
図8に示すように、第4電動作業機25は、第3電動作業機23のうち第3制御部用電源111およびバイパス電流判定部115が、それぞれ、第4制御部用電源121および第2バイパス電流判定部131に置き換えられて構成されている。
[4-1.第4制御部用電源]
第4制御部用電源121は、バッテリパック100からのバッテリ電圧VBを電圧変換して、電圧変換後の定電圧Vccを定電圧供給ライン81に対して出力する。定電圧Vccは、定電圧供給ライン81を介して、第4電動作業機25の各部(制御部62など)に供給される。第4実施形態では、定電圧Vccは5[V]である。第4制御部用電源121から定電圧供給ライン81を介して供給される電力は、例えば、制御部62などの動作用電力として使用される。
第4制御部用電源121は、第3変換電源93、第1スイッチング部67、逆流電流抑制部113、第4変換電源95、制限抵抗部123、第3電流経路LC3、バイパス電流経路LC4、共通電流経路LC5を備える。
このうち、第3変換電源93、第1スイッチング部67、第4変換電源95、第3電流経路LC3、バイパス電流経路LC4、共通電流経路LC5は、それぞれ、第2実施形態の第3変換電源93、第1スイッチング部67、第4変換電源95、第3電流経路LC3、バイパス電流経路LC4、共通電流経路LC5と同様の構成である。
制限抵抗部123は、バイパス電流経路LC4に直列接続されている。制限抵抗部123は、抵抗素子を備えて構成されており、バイパス電流経路LC4に流れるバイパス電流Ibpが過大になることを抑制する。
第2バイパス電流判定部131は、ヒステリシスコンパレータ133、抵抗部135、抵抗部134、基準電圧部136を備える。第2バイパス電流判定部131は、第6経路LC6を介して第5分岐点P5に電気的に接続されており、第4変換電源95の入力部95aの電位を検出するとともに、バイパス電流Ibpを検出可能に構成されている。第2バイパス電流判定部131は、バイパス電流Ibpに応じた電流通知信号Siaを、動作状態判定部75に対して出力するように構成されている。
なお、第3実施形態で説明したように、第1スイッチング部67がオフの状態で、制御部62の動作状態が制御動作状態の場合には、定電圧供給ライン81を介した制御部62などでの電力消費量が大きくなり、バイパス電流Ibpは大きくなるため、第4変換電源95の入力部95aの電位が低くなる。また、第1スイッチング部67がオフの状態で、制御部62の動作状態が低電力動作状態の場合には、定電圧供給ライン81を介した制御部62などでの電力消費量が小さくなり、バイパス電流Ibpは小さくなるため、第4変換電源95の入力部95aの電位が高くなる。
第2バイパス電流判定部131は、バイパス電流Ibpが予め定められた動作基準値Ith(例えば、5[mA])よりも大きくなり、第5分岐点P5(第4変換電源95の入力部95a)の電位が判定電圧Vthを下回ると、電位がバッテリ電圧VBと同電位の電流通知信号Sia(以下、第1電流通知信号Sia1ともいう)を出力する。第2バイパス電流判定部131は、バイパス電流Ibpが動作基準値Ith以下となり、第5分岐点P5(第4変換電源95の入力部95a)の電位が判定電圧Vthを上回ると、電位がバッテリ電圧VBよりも低い電流通知信号Sia(以下、第2電流通知信号Sia2ともいう)を出力する。
つまり、第2バイパス電流判定部131は、バイパス電流Ibpと動作基準値Ithとの比較結果に基づいて、制御部62の動作状態が制御動作状態であるか低電力動作状態であるかを判定するように構成されている。
なお、第2バイパス電流判定部131は、ヒステリシスコンパレータ133を備えており、第1電流通知信号Sia1の出力判定に用いる判定電圧Vth(以下、第1判定電圧Vth1ともいう)と、第2電流通知信号Sia2の出力判定に用いる判定電圧Vth(以下、第2判定電圧Vth2ともいう)と、をそれぞれ異なる値に設定できる。
例えば、基準電圧部136の出力電圧を、第2定電圧Vddに所定の調整電圧ΔVa(=2[V])を加算した判定電圧Vth(=Vdd+ΔVa=17[V])に設定し、ヒステリシスコンパレータ133によるヒステリシス幅は1[V]に設定した場合、第1判定電圧Vth1が16[V]となり、第2判定電圧Vth2が18[V]となる。
この場合、第2バイパス電流判定部131は、第5分岐点P5(第4変換電源95の入力部95a)の電位が16[V]を下回ると、制御部62の動作状態が制御動作状態であると判定し、第1電流通知信号Sia1の出力を開始する。その後、第5分岐点P5の電位が18[V]以下である間は、第2バイパス電流判定部131は、制御部62の動作状態が制御動作状態であると判定し、第1電流通知信号Sia1の出力を継続する。このあと、第2バイパス電流判定部131は、第5分岐点P5の電位が18[V]を上回ると、制御部62の動作状態が低電力動作状態であると判定し、第2電流通知信号Sia2の出力を開始する。その後、第5分岐点P5の電位が16[V]以上である間は、第2バイパス電流判定部131は、制御部62の動作状態が低電力動作状態であると判定し、第2電流通知信号Sia2の出力を継続する。このあと、第2バイパス電流判定部131は、第5分岐点P5の電位が16[V]を下回ると、第1電流通知信号Sia1の出力を開始する。
第2バイパス電流判定部131は、制御部62の動作状態が制御動作状態であると判定する場合には、第1電流通知信号Sia1を動作状態判定部75に対して出力する。これにより、動作状態判定部75から第1スイッチング部67に対して、制御動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が実行される。このとき、第4制御部用電源121は、第3変換電源93および第4変換電源95を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
第2バイパス電流判定部131は、制御部62の動作状態が低電力動作状態であると判定する場合には、第2電流通知信号Sia2を動作状態判定部75に対して出力する。これにより、動作状態判定部75から第1スイッチング部67に対して、低電力動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が停止される。このとき、第4制御部用電源121は、第4変換電源95を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
[4-2.制御部での動作状態の切替に伴う消費電流の変化状況]
次に、制御部62での動作状態の切替に伴う、第4制御部用電源121での消費電流Iaの変化状況について、図9を用いて説明する。
図9では、使用者によるトリガ操作部9の引き操作が終了した時点を時刻t0として、時間経過に伴う制御部62の動作状態の切替と、消費電流Iaの変化状況を示す。
時刻t0からスリープ判定時間Tsが経過した時刻t31までの期間中、使用者によるトリガ操作部9の引き操作が行われない状態が継続した場合には、制御部62は、動作状態を制御動作状態から低電力動作状態に移行するための処理(動作状態切替処理)を開始する。
制御部62は、動作状態切替処理を開始すると、まず、第4電動作業機25に備えられる各種機器や各種回路への電力供給を順次停止する処理を実行する。これに伴い、消費電流Iaは第30消費電流Ia30から徐々に減少し(時刻t31~t32)、停止する前の各種機器などでの電流消費量(第1電流変化量ΔIa31)に相当する電流が削減され、この時の消費電流Iaは第31消費電流Ia31まで減少する。
次に、制御部62は、動作状態切替処理での1ステップとして、制御部62そのものを低電力動作状態(スリープモード)に移行する処理を実行する(時刻t32)。これにより、制御部62における制御動作状態での電流消費量と低電力動作状態での電流消費量との差分に相当する電流消費量(第2電流変化量ΔIa32)に相当する電流が削減され、この時の消費電流Iaは第32消費電流Ia32まで減少する。
このあと、制御部62での電流消費量の低下に伴い、第2バイパス電流判定部131が制御部62の動作状態を低電力動作状態であると判定すると、動作状態判定部75から第1スイッチング部67に対して、低電力動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が停止される。これにより、第3変換電源93での電圧変換に要する電流消費量(第3電流変化量ΔIa33)に相当する電流が削減され、この時の消費電流Iaは第33消費電流Ia33まで減少する。
これらを実行することにより、制御部62は、動作状態切替処理を完了し、使用者によるトリガ操作部9の引き操作が行われるまでは、低電力動作状態を維持する。
このあと、使用者によるトリガ操作部9の引き操作が行われると(時刻t34)、制御部62にトリガ信号Strが入力される。これにより、制御部62そのものは、低電力動作状態(スリープモード)から制御動作状態へ移行(ウェイクアップ)する。そして、ウェイクアップした制御部62は、動作状態を低電力動作状態から制御動作状態に移行するための動作状態切替処理を開始する。また、トリガ操作部9からのトリガ信号Strは動作状態判定部75にも入力されて、動作状態判定部75からの通電指令信号Sc1が第4制御部用電源121に入力されることで、第3変換電源93による電圧変換が開始される。従って、制御部62のウェイクアップと第3変換電源93の電圧変換動作に伴い、消費電流Iaが第31消費電流Ia31まで徐々に増加する(時刻t34~t35)。なお、消費電流Iaは、制御部62のウェイクアップによって、第33消費電流Ia33から第2電流変化量ΔIa32だけ増加して第34消費電流Ia34となる(時刻t34)。そのあと、消費電流Iaは、第3変換電源93の電圧変換動作によって、第3電流変化量ΔIa33だけ増加して第31消費電流Ia31となる(時刻t35)。
このとき、制御部62での電流消費量の増加に伴い、第2バイパス電流判定部131が制御部62の動作状態を制御動作状態であると判定すると、動作状態判定部75から第1スイッチング部67に対して、制御動作状態であることを示す通電指令信号Sc1が出力される。このとき、既に、トリガ操作部9からのトリガ信号Strに基づいて、第3変換電源93による電圧変換が実行されているが、使用者によるトリガ操作部9の操作が終了した場合でも、スリープ判定時間Tsが経過するまでは、制御部62の制御動作状態が維持されるとともに、第3変換電源93による電圧変換が継続される。
次に、制御部62は、動作状態切替処理での1ステップとして、第4電動作業機25に備えられる各種機器や各種回路への電力供給を順次開始する処理を実行する(時刻t36)。これに伴い、消費電流Iaが第30消費電流Ia30まで増加する。
このように、第4電動作業機25は、制御部62での動作状態が低電力動作状態に移行した場合には、第2バイパス電流判定部131での判定結果に基づいて、第3変換電源93での電圧変換を停止することで、第3電流変化量ΔIa33に相当する消費電流Iaを減少させることができる。
[4-3.効果]
以上説明したように、本第4実施形態の第4電動作業機25は、制御部62が低電力動作状態の場合には、第2バイパス電流判定部131での判定結果に基づいて、第4制御部用電源121が第2変換状態に移行して、第4制御部用電源121での電圧変換にあたり第3変換電源93を用いないため、第3変換電源93での電力消費を抑制できる。このため、第4電動作業機25の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第3変換電源93での電力消費を低減できるため、第4電動作業機25の不使用時における電力消費量を低減できる。
[4-4.文言の対応関係]
ここで、文言の対応関係について説明する。
第4電動作業機25が電動作業機の一例に相当し、第4制御部用電源121が制御部用電源の一例に相当し、動作状態判定部75および第2バイパス電流判定部131が動作状態判定部の一例に相当する。
[5.第5実施形態]
第5実施形態として、第2実施形態の第2電動作業機21における一部の構成要素を変更して構成された第5電動作業機27について説明する。
図10に示すように、第5電動作業機27は、第2電動作業機21のうち、第2制御部用電源91を第5制御部用電源141に置き換えると共に、バッテリパック100を複数出力電源102に置き換えて構成されている。
複数出力電源102は、複数のバッテリパック(第1バッテリパック103、第2バッテリパック104)と、複数の電圧出力部(第1電圧出力部102a、第2電圧出力部102b)と、基準電極102cと、を備えている。
第1バッテリパック103および第2バッテリパック104は、直列接続されている。第1バッテリパック103および第2バッテリパック104は、それぞれ、繰り返し充電及び放電が可能な二次電池(図示省略)を備える。第1バッテリパック103の出力電圧は、36[V]である。第2バッテリパック104の出力電圧は、36[V]である。
第1電圧出力部102aは、第2バッテリパック104の正極に接続されている。第2電圧出力部102bは、第1バッテリパック103の正極および第2バッテリパック104の負極にそれぞれ接続されている。基準電極102cは、第1バッテリパック103の負極に接続されている。
複数出力電源102は、基準電極102cを基準として、複数の電圧出力部(第1電圧出力部102a、第2電圧出力部102b)がそれぞれ異なる電圧を出力するように構成されている。複数出力電源102は、第1電圧出力部102aから第1バッテリ電圧VB1(VB1=72[V])を出力し、第2電圧出力部102bから第2バッテリ電圧VB2(VB2=36[V])を出力する。
第1バッテリパック103は、出力電圧の低下など異常状態になると、第1遮断指令信号Sb1を出力する。第2バッテリパック104は、出力電圧の低下など異常状態になると、第2遮断指令信号Sb2を出力する。
[5-1.第5制御部用電源]
第5制御部用電源141は、複数出力電源102からの第1バッテリ電圧VB1および第2バッテリ電圧VB2のうちいずれかを電圧変換して、電圧変換後の定電圧Vcc(Vcc=5[V])を定電圧供給ライン81に対して出力する。
第5制御部用電源141は、第2制御部用電源91に対して、第2スイッチング部143および第3スイッチング部145を追加すると共に、第2電流経路LC2の接続先を変更した構成である。以下の説明では、第5制御部用電源141のうち第2制御部用電源91との相違点を中心に説明する。
第2電流経路LC2の第1端は、複数出力電源102の第2電圧出力部102bに接続されている。第2電流経路LC2の第2端は、第3分岐点P3に接続されるとともに、定電圧供給ライン81に接続される。
第2スイッチング部143および第3スイッチング部145は、第2電流経路LC2のうち、第2変換電源71の入力部71aと複数出力電源102の第2電圧出力部102bとの間に設けられている。第2スイッチング部143および第3スイッチング部145は、それぞれ、第2電流経路LC2に直列接続されるスイッチング部(FETなど)を備えて構成されている。
第2スイッチング部143は、第1バッテリパック103からの第1遮断指令信号Sb1に基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替可能に構成されている。第3スイッチング部145は、第2バッテリパック104からの第2遮断指令信号Sb2に基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替可能に構成されている。
第2スイッチング部143および第3スイッチング部145は、第2電流経路LC2における第2電圧出力部102bから第2変換電源71に向かう通電について、通電状態または非通電状態に切替可能に構成されている。これにより、第2スイッチング部143および第3スイッチング部145は、第1遮断指令信号Sb1および第2遮断指令信号Sb2に基づいて、第2変換電源71への第2バッテリ電圧VB2の入力状態を切替可能に構成されている。
第3変換電源93は、直流電圧を電圧変換して出力するDC-DCコンバータを備えている。第3変換電源93は、入力部93aに入力された第1バッテリ電圧VB1(VB1=72[V])を電圧変換して、電圧変換後の第2定電圧Vddを出力部93bから出力する。第3変換電源93は、第2定電圧Vddとして15[V]を出力する。第3変換電源93は、電圧変換するにあたり、最大出力電流が150mAである。
このような構成の第5制御部用電源141は、動作状態判定部75から制御動作状態であることを示す通電指令信号Sc1が入力されると、第3変換電源93および第4変換電源95を用いて定電圧Vccを出力するとともに、第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
また、第5制御部用電源141は、動作状態判定部75から低電力動作状態であることを示す通電指令信号Sc1が入力されると、第3変換電源93および第4変換電源95による電圧変換を停止し、第2変換電源71を用いて定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
さらに、第5制御部用電源141は、第1バッテリパック103からの第1遮断指令信号Sb1または第2バッテリパック104からの第2遮断指令信号Sb2に基づいて、第2スイッチング部143または第3スイッチング部145を非通電状態に設定することで、第2変換電源71への第2バッテリ電圧VB2の入力を停止する。つまり、第1バッテリパック103および第2バッテリパック104のうち少なくとも一方が異常状態になると、第5制御部用電源141は、第2変換電源71への第2バッテリ電圧VB2の入力を停止することで、第2変換電源71による定電圧Vccの出力を停止するように構成されている。
また、第5制御部用電源141は、電源保持回路147を備えてもよい。電源保持回路147は、第1電流経路LC1のうち第3変換電源93から第4変換電源95の間に接続されている。電源保持回路147は、抵抗147a、ダイオード147b、コンデンサ147cを備えている。
電源保持回路147は、コンデンサ147cの充電時には抵抗147aを経由してコンデンサ147cを充電し、コンデンサ147cの放電時にはダイオード147bを経由して放電するように構成されている。これにより、電源保持回路147は、コンデンサ147cの充電開始時の突入電流による第2定電圧Vddの落ち込みを防ぎつつ、コンデンサ147cの放電時にはすばやく放電できる。
電源保持回路147を備えることで、第3変換電源93が第2定電圧Vddの出力をOFFした後、一定期間中は、電源保持回路147のコンデンサ147cに充電された電荷によって第2定電圧Vddや定電圧Vccを維持でき、制御部62を駆動することができる。よって、突然、複数出力電源102が取り外された場合や何らかの異常により複数出力電源102からの出力(電源)を喪失した場合であっても、コンデンサ147cの放電により第2定電圧Vddや定電圧Vccが維持されることで、制御部62は、適切にシャットダウン処理を実施できる。なお、シャットダウンの処理としては、例えば、各種履歴情報、各種設定状態を不揮発性メモリに書き込む処理などが挙げられる。
[5-2.効果]
以上説明したように、第5実施形態の第5電動作業機27は、制御部62が低電力動作状態の場合には、第5制御部用電源141が第2変換状態に移行して、第5制御部用電源141での電圧変換にあたり第3変換電源93および第4変換電源95を用いないため、第3変換電源93および第4変換電源95での電力消費を抑制できる。このため、第5電動作業機27の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第3変換電源93および第4変換電源95での電力消費を低減できるため、第5電動作業機27の不使用時における電力消費量を低減できる。
また、第5電動作業機27は、電源として、複数の電池パックを備える複数出力電源102を用いており、1つの電池パックを用いる構成に比べて、より大きな電圧に基づくより大きな出力の動作が可能となる。なお、複数出力電源102は、複数の電池パックを備える構成を採ることで、出力可能な最大電圧を電池パックの個数に応じて大きくすることができる。
次に、第5電動作業機27においては、第2変換電源71は、複数の電圧出力部(第1電圧出力部102a,第2電圧出力部102b)のうち、出力電圧が最も大きい第1電圧出力部102aではなく、出力電圧が最も小さい第2電圧出力部102bに接続されている。つまり、第2変換電源71は、第1電圧出力部102aから出力される第1バッテリ電圧VB1(VB1=72[V])を定電圧Vcc(Vcc=5[V])に電圧変換するのではなく、第2バッテリ電圧VB2(VB1=36[V])を定電圧Vccに電圧変換するように構成されている。
これにより、第2変換電源71は、第1バッテリ電圧VB1を定電圧Vccに電圧変換する場合に比べて、第2変換電源71での電圧変換における電圧変化量を小さくすることができる。よって、第5電動作業機27は、第2変換電源71での電圧変換に伴う電力損失について、電圧変化量が大きい場合に比べて電圧変換に伴う電力損失を低減できる。
次に、第5電動作業機27においては、「第3変換電源93および第4変換電源95」(第1変換電源の一例に相当)は、複数出力電源102における複数の電圧出力部のうち、第2変換電源71が接続された第2電圧出力部102bの出力電圧(VB2=36[V])よりも出力電圧(VB1=72[V])が大きい第1電圧出力部102aに接続されている。これにより、「第3変換電源93および第4変換電源95」から出力可能な電力量が、第2変換電源71から出力可能な電力量よりも大きくなり、「第3変換電源93および第4変換電源95」は、第2変換電源71に比べて、制御部62に対して十分な電力を供給することができる。
[5-3.文言の対応関係]
ここで、文言の対応関係について説明する。
第5電動作業機27が電動作業機の一例に相当し、複数出力電源102が電源の一例に相当し、第5制御部用電源141が制御部用電源の一例に相当し、第3変換電源93および第4変換電源95が第1変換電源の一例に相当する。
[6.第6実施形態]
第6実施形態として、第3実施形態の第3電動作業機23における一部の構成要素を変更して構成された第6電動作業機29について説明する。
図11に示すように、第6電動作業機29は、第3電動作業機23のうち、第3制御部用電源111を第6制御部用電源151に置き換えると共に、バッテリパック100を複数出力電源102に置き換えて構成されている。
複数出力電源102は、第5実施形態の複数出力電源102と同様の構成であり、ここでの説明を省略する。
[6-1.第6制御部用電源]
第6制御部用電源151は、複数出力電源102からの第1バッテリ電圧VB1および第2バッテリ電圧VB2のうちいずれかを電圧変換して、電圧変換後の定電圧Vcc(Vcc=5[V])を定電圧供給ライン81に対して出力する。
第6制御部用電源151は、第3制御部用電源111に対して、第4スイッチング部153および第5スイッチング部155を追加すると共に、バイパス電流経路LC4の接続先を変更した構成である。以下の説明では、第6制御部用電源151のうち第3制御部用電源111との相違点を中心に説明する。
バイパス電流経路LC4の第1端は、複数出力電源102の第2電圧出力部102bに接続されている。バイパス電流経路LC4の第2端は、第5分岐点P5に接続されるとともに、共通電流経路LC5の第1端に接続される。
第4スイッチング部153および第5スイッチング部155は、バイパス電流経路LC4のうち、バイパス電流判定部115と複数出力電源102の第2電圧出力部102bとの間に設けられている。第4スイッチング部153および第5スイッチング部155は、それぞれ、バイパス電流経路LC4に直列接続されるスイッチング部(FETなど)を備えて構成されている。
第4スイッチング部153は、第1バッテリパック103からの第1遮断指令信号Sb1に基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替可能に構成されている。第5スイッチング部155は、第2バッテリパック104からの第2遮断指令信号Sb2に基づいて、スイッチング部を通電状態(ON状態)または非通電状態(OFF状態)に切替可能に構成されている。
第4スイッチング部153および第5スイッチング部155は、バイパス電流経路LC4における第2電圧出力部102bからバイパス電流判定部115を介して第4変換電源95に向かう通電について、通電状態または非通電状態に切替可能に構成されている。これにより、第4スイッチング部153および第5スイッチング部155は、第1遮断指令信号Sb1および第2遮断指令信号Sb2に基づいて、バイパス電流判定部115を介した第4変換電源95への第2バッテリ電圧VB2の入力状態を切替可能に構成されている。
第3変換電源93は、直流電圧を電圧変換して出力するDC-DCコンバータを備えている。第3変換電源93は、入力部93aに入力された第1バッテリ電圧VB1(VB1=72[V])を電圧変換して、電圧変換後の第2定電圧Vddを出力部93bから出力する。第3変換電源93は、第2定電圧Vddとして15[V]を出力する。第3変換電源93は、電圧変換するにあたり、最大出力電流が150mAである。
このような構成の第6制御部用電源151においては、電流判定部119から動作状態判定部75に対して第1電流通知信号Sia1が出力されると、動作状態判定部75から第1スイッチング部67に対して制御動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が実行される。このとき、第6制御部用電源151は、第3変換電源93および第4変換電源95を用いて第1バッテリ電圧VB1を定電圧Vccに電圧変換し、定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第1変換状態ともいう)に移行する。
また、第6制御部用電源151においては、電流判定部119から動作状態判定部75に対して第2電流通知信号Sia2が出力されると、動作状態判定部75から第1スイッチング部67に対して低電力動作状態であることを示す通電指令信号Sc1が出力されて、第3変換電源93による電圧変換が停止される。このとき、第6制御部用電源151は、第4変換電源95を用いて第2バッテリ電圧VB2を定電圧Vccに電圧変換し、定電圧Vccを出力することで、制御部62に制御部用電力を供給する状態(以下、第2変換状態ともいう)に移行する。
さらに、第6制御部用電源151は、第1バッテリパック103からの第1遮断指令信号Sb1または第2バッテリパック104からの第2遮断指令信号Sb2に基づいて、第4スイッチング部153または第5スイッチング部155を非通電状態に設定することで、バイパス電流経路LC4を介した第4変換電源95への第2バッテリ電圧VB2の入力を停止する。つまり、第1バッテリパック103および第2バッテリパック104のうち少なくとも一方が異常状態になると、第6制御部用電源151は、バイパス電流経路LC4を介した第4変換電源95への第2バッテリ電圧VB2の入力を停止することで、バイパス電流経路LC4を介した第4変換電源95による定電圧Vccの出力を停止するように構成されている。
[6-2.効果]
以上説明したように、第6実施形態の第6電動作業機29は、制御部62が低電力動作状態の場合には、第6制御部用電源151が第2変換状態に移行して、第6制御部用電源151での電圧変換にあたり第3変換電源93を用いないため、第3変換電源93での電力消費を抑制できる。このため、第6電動作業機29の不使用時に制御部62の動作状態が制御動作状態から低電力動作状態に移行した場合には、制御部62での電力消費の低減のみならず、第3変換電源93での電力消費を低減できるため、第6電動作業機29の不使用時における電力消費量を低減できる。
また、第6電動作業機29は、電源として、複数の電池パックを備える複数出力電源102を用いており、1つの電池パックを用いる構成に比べて、より大きな電圧に基づくより大きな出力の動作が可能となる。
次に、第6電動作業機29においては、第4変換電源95は、複数の電圧出力部(第1電圧出力部102a,第2電圧出力部102b)のうち、出力電圧が最も大きい第1電圧出力部102aではなく、出力電圧が最も小さい第2電圧出力部102bに接続されている。つまり、第4変換電源95は、第1電圧出力部102aから出力される第1バッテリ電圧VB1(VB1=72[V])を定電圧Vcc(Vcc=5[V])に電圧変換するのではなく、第2バッテリ電圧VB2(VB1=36[V])を定電圧Vccに電圧変換するように構成されている。
これにより、第4変換電源95は、第1バッテリ電圧VB1を定電圧Vccに電圧変換する場合に比べて、第4変換電源95での電圧変換における電圧変化量を小さくすることができる。よって、第6電動作業機29は、第4変換電源95での電圧変換に伴う電力損失について、電圧変化量が大きい場合に比べて電圧変換に伴う電力損失を低減できる。
次に、第6電動作業機29においては、「第3変換電源93および第4変換電源95」(第1変換電源の一例に相当)は、複数出力電源102における複数の電圧出力部のうち、第4変換電源95(第2変換電源の一例に相当)が接続された第2電圧出力部102bの出力電圧(VB2=36[V])よりも出力電圧(VB1=72[V])が大きい第1電圧出力部102aに接続されている。これにより、「第3変換電源93および第4変換電源95」から出力可能な電力量が、第4変換電源95を単独使用した場合に出力可能な電力量よりも大きくなり、「第3変換電源93および第4変換電源95」は、第4変換電源95を単独使用した場合に比べて、制御部62に対して十分な電力を供給することができる。
[6-3.文言の対応関係]
ここで、文言の対応関係について説明する。
第6電動作業機29が電動作業機の一例に相当し、複数出力電源102が電源の一例に相当し、第6制御部用電源151が制御部用電源の一例に相当し、「第3変換電源93および第4変換電源95」が第1変換電源の一例に相当し、第4変換電源95の単体が第2変換電源の一例に相当する。
[7.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。
(a)上記第3実施形態および第4実施形態では、制御部62から出力される状態通知信号Smoを利用しない形態について説明したが、第1実施形態および第2実施形態のように、状態通知信号Smoを利用する形態に変更してもよい。例えば、第3実施形態の第3電動作業機23において、バイパス電流判定部115から出力される電流通知信号Siaに加えて状態通知信号Smo(第1状態通知信号Smo1、第2状態通知信号Smo2)を動作状態判定部75に入力する構成としてもよい。つまり、動作状態判定部75は、第1状態通知信号Smo1と第2状態通知信号Smo2とを受信可能に構成してもよい。
この動作状態判定部75は、バイパス電流Ibpが動作基準値Ithよりも大きい、または、第1状態通知信号Smo1を受信した場合には、制御部62の動作状態が記制御動作状態であると判定する。この動作状態判定部75は、バイパス電流Ibpが動作基準値Ith以下、かつ第2状態通知信号Smo2を受信した場合には、制御部62の動作状態が低電力動作状態であると判定する。
この電動作業機においては、動作状態判定部75は、バイパス電流Ibpと動作基準値Ithとの比較結果に加えて、第1状態通知信号Smo1および第2状態通知信号Smo2に基づいて制御部62の動作状態を判定することが可能である。
なお、第4実施形態の第4電動作業機25においても、同様に、第2バイパス電流判定部131から出力される電流通知信号Siaに加えて状態通知信号Smo(第1状態通知信号Smo1、第2状態通知信号Smo2)を動作状態判定部75に入力する構成としてもよい。
また、動作状態判定部75で実行する動作判定処理を、制御部62の内部処理としての動作判定処理に置き換えてもよい。例えば、制御部62は、トリガ信号Strおよび状態通知信号Smoを用いて通電指令信号Sc1を生成して、通電指令信号Sc1を第1スイッチング部67に出力することで、第1スイッチング部67を制御してもよい。あるいは、制御部62は、電流通知信号Siaを受信可能に構成されて、トリガ信号Strおよび電流通知信号Siaを用いて通電指令信号Sc1を生成して、通電指令信号Sc1を第1スイッチング部67に出力することで、第1スイッチング部67を制御してもよい。
(b)第1逆流電流抑制部69は、FETなどのスイッチング部を備える構成に限られることはなく、例えば、ショットキーダイオードなど、逆流電流の流入を抑制できるものであり、かつ、順方向に電流を流した場合の電圧降下の低いものであれば、任意の構成を採用できる。第2逆流電流抑制部73も同様である。
(c)上記実施形態では、定電圧Vcc=5[V]、バッテリ電圧VB=36[V]、第2定電圧Vdd=15[V]である構成について説明したが、これらの各電圧はこれらの数値に限られることはなく、電動作業機の用途などに応じて適切な他の値であってもよい。
また、上記実施形態では、電圧を降圧変換する変換電源のみを備える構成について説明したが、本開示の電動作業機は、電圧を昇圧変換する変換電源を備える構成であってもよい。例えば、第2実施形態では、第3変換電源93がバッテリ電圧VBを第2定電圧Vddに降圧変換する構成であるが、他の形態として、第3変換電源93がバッテリ電圧VB(36[V])を第3定電圧Vee(例えば、51[V])に昇圧変換したあと、第5変換電源(図示省略)が第3定電圧Veeを第2定電圧Vdd(15[V])に降圧変換する構成を採用してもよい。なお、第3定電圧Veeは、バッテリ電圧VBよりも高電圧であるため、例えば、ハイサイドFETなどの電源として利用できる。また、電圧を昇圧変換する変換電源を備えることで、例えば、バッテリパック100の異常によりバッテリ電圧VBが第2定電圧Vdd(15[V])より低下した場合でも、第2定電圧Vddの生成が可能になる。
(d)本開示を適用できる電動作業機は、充電式インパクトドライバに限られることはなく、例えば、電動ハンマ、電動ハンマドリル、電動ドリル、電動ドライバ、電動レンチ、電動レシプロソー、電動ジグソー、電動カッター、電動チェンソー、電動カンナ、電動鋲打ち機、電動釘打ち機、電動ヘッジトリマ、電動芝刈り機、電動芝生バリカン、電動刈払機、電動クリーナ、電動ブロア、電動グラインダ、電動インパクトドライバ、電動マルノコ、電動ハンマドライバ、等であってもよい。
(e)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
1…電動作業機、9…トリガ操作部、21…第2電動作業機、23…第3電動作業機、25…第4電動作業機、27…第5電動作業機、29…第6電動作業機、61…モータ、62…制御部、63…モータ駆動部、64…制御部用電源、65…第1変換電源、67…第1スイッチング部、69…第1逆流電流抑制部、71…第2変換電源、73…第2逆流電流抑制部、75…動作状態判定部、81…定電圧供給ライン、91…第2制御部用電源、93…第3変換電源、95…第4変換電源、97…ブラシレスモータ、99…モータドライバ、100…バッテリパック、102…複数出力電源、111…第3制御部用電源、113…逆流電流抑制部、115…バイパス電流判定部、121…第4制御部用電源、131…第2バイパス電流判定部、141…第5制御部用電源、151…第6制御部用電源。

Claims (11)

  1. 電源からの電源電力を用いて駆動する駆動部を備える電動作業機であって、
    前記駆動部を制御するように構成された制御部と、
    前記電源からの前記電源電力を電圧変換して、電圧変換後の制御部用電力を前記制御部に供給する制御部用電源と、
    を備え、
    前記制御部は、前記駆動部を制御する制御動作状態と、前記制御動作状態よりも消費電力が低い低電力動作状態と、を少なくとも含む複数の動作状態に切替可能に構成され、
    前記制御部用電源は、
    前記電源からの前記電源電力を電圧変換するにあたり、前記制御動作状態の前記制御部での最大消費電流である制御時最大電流を供給可能に構成された第1変換電源と、
    前記電源からの前記電源電力を電圧変換するにあたり、前記低電力動作状態の前記制御部での最大消費電流である低電力時最大電流を供給可能であり、かつ最大出力電流が前記制御時最大電流よりも小さく構成された第2変換電源と、
    を備え、
    当該電動作業機は、
    前記制御部の動作状態が前記制御動作状態であるか前記低電力動作状態であるかを判定する動作状態判定部を備え、
    さらに、前記制御部用電源は、前記動作状態判定部にて前記制御部の動作状態が前記制御動作状態であると判定された場合には、少なくとも前記第1変換電源を用いて前記制御部に前記制御部用電力を供給する第1変換状態に移行し、前記動作状態判定部にて前記制御部の動作状態が前記低電力動作状態と判定された場合には、前記第1変換電源による電圧変換を停止し、少なくとも前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する第2変換状態に移行するように構成され、
    さらに、前記制御部用電源は、
    前記電源から前記制御部に至る電流経路の一部であって、前記第1変換電源が備えられる第1電流経路と、
    前記第1電流経路に並列接続されるとともに、前記第2変換電源が備えられる第2電流経路と、
    を備え、
    前記第1変換電源および前記第2変換電源は、それぞれ、前記電源電力を、前記電源が出力する電源電圧よりも低い制御部用電圧の前記制御部用電力に電圧変換し、電圧変換後の前記制御部用電力を供給可能に構成され、
    前記制御部用電源の前記第1変換状態は、少なくとも前記第1電流経路を介して前記第1変換電源を用いて前記制御部に前記制御部用電力を供給する状態であり、
    前記制御部用電源の前記第2変換状態は、前記第1変換電源による電圧変換を停止し、かつ少なくとも前記第2電流経路を介して前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する状態であり、
    前記動作状態判定部は、前記制御部の動作状態が前記制御動作状態であることを示す第1状態通知信号と、前記制御部の動作状態が前記低電力動作状態であることを示す第2状態通知信号と、を受信可能に構成されるとともに、前記第1状態通知信号を受信した場合には、前記制御部の動作状態が前記制御動作状態であると判定し、前記第2状態通知信号を受信した場合には、前記制御部の動作状態が前記低電力動作状態であると判定する、
    電動作業機。
  2. 請求項1に記載の電動作業機であって、
    前記第2電流経路のうち前記第2変換電源と前記制御部との間において、前記第2変換電源の出力部への逆流電流の流入を抑制する第2逆流電流抑制部を備える、
    電動作業機。
  3. 請求項1または請求項2に記載の電動作業機であって、
    前記第1変換電源の出力電圧と前記第2変換電源の出力電圧とは同一電圧値である、
    電動作業機。
  4. 電源からの電源電力を用いて駆動する駆動部を備える電動作業機であって、
    前記駆動部を制御するように構成された制御部と、
    前記電源からの前記電源電力を電圧変換して、電圧変換後の制御部用電力を前記制御部に供給する制御部用電源と、
    を備え、
    前記制御部は、前記駆動部を制御する制御動作状態と、前記制御動作状態よりも消費電力が低い低電力動作状態と、を少なくとも含む複数の動作状態に切替可能に構成され、
    前記制御部用電源は、
    前記電源からの前記電源電力を電圧変換するにあたり、前記制御動作状態の前記制御部での最大消費電流である制御時最大電流を供給可能に構成された第1変換電源と、
    前記電源からの前記電源電力を電圧変換するにあたり、前記低電力動作状態の前記制御部での最大消費電流である低電力時最大電流を供給可能であり、かつ最大出力電流が前記制御時最大電流よりも小さく構成された第2変換電源と、
    を備え、
    当該電動作業機は、
    前記制御部の動作状態が前記制御動作状態であるか前記低電力動作状態であるかを判定する動作状態判定部を備え、
    さらに、前記制御部用電源は、前記動作状態判定部にて前記制御部の動作状態が前記制御動作状態であると判定された場合には、少なくとも前記第1変換電源を用いて前記制御部に前記制御部用電力を供給する第1変換状態に移行し、前記動作状態判定部にて前記制御部の動作状態が前記低電力動作状態と判定された場合には、前記第1変換電源による電圧変換を停止し、少なくとも前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する第2変換状態に移行するように構成され、
    前記制御部用電源は、
    前記電源から前記制御部に至る電流経路の一部であって、前記第1変換電源が備えられる第3電流経路と、
    前記第3電流経路に並列接続されるバイパス電流経路と、
    前記第3電流経路および前記バイパス電流経路のそれぞれに対して直列接続されるとともに、前記第2変換電源が備えられる共通電流経路と、
    を備え、
    前記第1変換電源は、前記電源電力を、前記電源が出力する電源電圧よりも低い中間電源電圧の中間電源電力に電圧変換し、電圧変換後の前記中間電源電力を供給可能に構成され、
    前記第2変換電源は、前記電源電力または前記中間電源電力を、前記中間電源電圧よりも低い制御部用電圧の前記制御部用電力に電圧変換し、電圧変換後の前記制御部用電力を供給可能に構成され、
    前記制御部用電源の前記第1変換状態は、少なくとも前記第3電流経路および前記共通電流経路を介して前記第1変換電源および前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する状態であり、
    前記制御部用電源の前記第2変換状態は、前記第1変換電源による電圧変換を停止し、かつ少なくとも前記バイパス電流経路および前記共通電流経路を介して前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する状態である、
    電動作業機。
  5. 請求項4に記載の電動作業機であって、
    前記動作状態判定部は、前記バイパス電流経路に流れるバイパス電流が予め定められた動作基準値よりも大きいか否かを判定するように構成されており、
    さらに、前記動作状態判定部は、前記バイパス電流が前記動作基準値よりも大きい場合には、前記制御部の動作状態が前記制御動作状態であると判定し、前記バイパス電流が前記動作基準値以下の場合には、前記制御部の動作状態が前記低電力動作状態であると判定する、
    電動作業機。
  6. 請求項5に記載の電動作業機であって、
    前記動作状態判定部は、前記制御部の動作状態が前記制御動作状態であることを示す第1状態通知信号と、前記制御部の動作状態が前記低電力動作状態であることを示す第2状態通知信号と、を受信可能に構成されるとともに、
    さらに、前記動作状態判定部は、前記バイパス電流が前記動作基準値よりも大きい、または、前記第1状態通知信号を受信した場合には、前記制御部の動作状態が前記制御動作状態であると判定し、前記バイパス電流が前記動作基準値以下、かつ前記第2状態通知信号を受信した場合には、前記制御部の動作状態が前記低電力動作状態であると判定する、
    電動作業機。
  7. 電源からの電源電力を用いて駆動する駆動部を備える電動作業機であって、
    前記駆動部を制御するように構成された制御部と、
    前記電源からの前記電源電力を電圧変換して、電圧変換後の制御部用電力を前記制御部に供給する制御部用電源と、
    を備え、
    前記制御部は、前記駆動部を制御する制御動作状態と、前記制御動作状態よりも消費電力が低い低電力動作状態と、を少なくとも含む複数の動作状態に切替可能に構成され、
    前記制御部用電源は、
    前記電源からの前記電源電力を電圧変換するにあたり、前記制御動作状態の前記制御部での最大消費電流である制御時最大電流を供給可能に構成された第1変換電源と、
    前記電源からの前記電源電力を電圧変換するにあたり、前記低電力動作状態の前記制御部での最大消費電流である低電力時最大電流を供給可能であり、かつ最大出力電流が前記制御時最大電流よりも小さく構成された第2変換電源と、
    を備え、
    当該電動作業機は、
    前記制御部の動作状態が前記制御動作状態であるか前記低電力動作状態であるかを判定する動作状態判定部を備え、
    さらに、前記制御部用電源は、前記動作状態判定部にて前記制御部の動作状態が前記制御動作状態であると判定された場合には、少なくとも前記第1変換電源を用いて前記制御部に前記制御部用電力を供給する第1変換状態に移行し、前記動作状態判定部にて前記制御部の動作状態が前記低電力動作状態と判定された場合には、前記第1変換電源による電圧変換を停止し、少なくとも前記第2変換電源を用いて前記制御部に前記制御部用電力を供給する第2変換状態に移行するように構成され、
    前記電源は、複数の電池パックを備えており、異なる電圧を出力する複数の電圧出力部を備え、
    前記第1変換電源および前記第2変換電源は、それぞれ、前記複数の電圧出力部のうちいずれか1つの出力電圧を電圧変換する、
    電動作業機。
  8. 請求項7に記載の電動作業機であって、
    前記第2変換電源は、前記複数の電圧出力部のうち前記出力電圧が最も小さい前記電圧出力部に接続される、
    電動作業機。
  9. 請求項7または請求項8に記載の電動作業機であって、
    前記第1変換電源は、前記複数の電圧出力部のうち、前記第2変換電源が接続された前記電圧出力部の前記出力電圧よりも前記出力電圧が大きい前記電圧出力部に接続される、
    電動作業機。
  10. 請求項1から請求項9のうちいずれか一項に記載の電動作業機であって、
    前記制御部用電源は、使用者により当該電動作業機が操作されると、前記動作状態を前記第1変換状態に移行するように構成されている、
    電動作業機。
  11. 請求項1から請求項10のうちいずれか一項に記載の電動作業機であって、
    前記第1変換電源の出力部への逆流電流の流入を抑制する第1逆流電流抑制部を備える、
    電動作業機。
JP2019105681A 2019-04-11 2019-06-05 電動作業機 Active JP7281972B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010090177.0A CN111817363A (zh) 2019-04-11 2020-02-13 电动作业机
EP20165437.3A EP3722893B1 (en) 2019-04-11 2020-03-25 Electric working machine, and method for supplying electric power to controller of electric working machine
US16/832,443 US11133766B2 (en) 2019-04-11 2020-03-27 Electric working machine, and method for supplying electric power to controller of electric working machine
RU2020113241A RU2789859C2 (ru) 2019-04-11 2020-04-10 Электрическая рабочая машина и способ для подачи электропитания к контроллеру электрической рабочей машины
US17/462,820 US11824473B2 (en) 2019-04-11 2021-08-31 Electric working machine, and method for supplying electric power to controller of electric working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019075684 2019-04-11
JP2019075684 2019-04-11

Publications (2)

Publication Number Publication Date
JP2020172014A JP2020172014A (ja) 2020-10-22
JP7281972B2 true JP7281972B2 (ja) 2023-05-26

Family

ID=72829729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105681A Active JP7281972B2 (ja) 2019-04-11 2019-06-05 電動作業機

Country Status (2)

Country Link
JP (1) JP7281972B2 (ja)
CN (1) CN111817363A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200161A (ja) 2013-03-13 2014-10-23 パナソニック株式会社 制御装置の電源回路
JP5803115B2 (ja) 2011-01-31 2015-11-04 日本電気株式会社 電源装置及び情報処理装置並びに電源供給方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475080B (zh) * 2012-06-06 2015-06-10 三菱电机株式会社 电源供给装置和视频显示装置
JP5843836B2 (ja) * 2012-11-30 2016-01-13 キヤノン株式会社 電力供給回路
JP2015185377A (ja) * 2014-03-24 2015-10-22 東芝ライテック株式会社 点灯回路及び照明装置及び照明システム
JP2015185360A (ja) * 2014-03-24 2015-10-22 東芝ライテック株式会社 点灯回路及び照明装置及び照明システム
KR102214195B1 (ko) * 2014-07-02 2021-02-09 삼성전자 주식회사 디스플레이장치, 전원공급장치 및 그 전원공급방법
CN205986612U (zh) * 2016-08-03 2017-02-22 宝沃汽车(中国)有限公司 电机控制器的电源管理系统及具有其的车辆

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803115B2 (ja) 2011-01-31 2015-11-04 日本電気株式会社 電源装置及び情報処理装置並びに電源供給方法
JP2014200161A (ja) 2013-03-13 2014-10-23 パナソニック株式会社 制御装置の電源回路

Also Published As

Publication number Publication date
JP2020172014A (ja) 2020-10-22
RU2020113241A (ru) 2021-10-11
CN111817363A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
JP5510731B2 (ja) 電動工具
US6650555B2 (en) Switched-capacitor-type stabilized power circuit
EP3150338B1 (en) Electric tool, a motor assembly and motor drive system
WO2006118315A1 (ja) 多相電圧変換装置および車両
JP5395771B2 (ja) 電動工具
JP7427599B2 (ja) 電動作業機
JP2011229353A (ja) 電源装置
JP2014068486A (ja) 駆動制御回路及び電動工具
EP2445111A2 (en) Brushless motor driving circuit
JP4563259B2 (ja) 電動工具
EP3722893B1 (en) Electric working machine, and method for supplying electric power to controller of electric working machine
JP7281972B2 (ja) 電動作業機
JP6373661B2 (ja) バッテリパック
JP2006311729A (ja) 直流−直流電圧変換器
JP5648451B2 (ja) 電動工具
RU2789859C2 (ru) Электрическая рабочая машина и способ для подачи электропитания к контроллеру электрической рабочей машины
US20230050963A1 (en) Power supply regulator for a power tool battery pack
US9312795B2 (en) Electric power tool
WO2019097682A1 (ja) 電源装置
JP2022073082A (ja) 電動作業機
WO2014119216A1 (ja) 電動機械器具、及びその本体
JP6673347B2 (ja) 電動作業機
JP5326634B2 (ja) 同期整流型dc−dcコンバータ
JP6373660B2 (ja) バッテリパック
JP2014069253A (ja) 電動工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7281972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150