JP7268494B2 - 誘導加熱装置 - Google Patents

誘導加熱装置 Download PDF

Info

Publication number
JP7268494B2
JP7268494B2 JP2019114771A JP2019114771A JP7268494B2 JP 7268494 B2 JP7268494 B2 JP 7268494B2 JP 2019114771 A JP2019114771 A JP 2019114771A JP 2019114771 A JP2019114771 A JP 2019114771A JP 7268494 B2 JP7268494 B2 JP 7268494B2
Authority
JP
Japan
Prior art keywords
induction heating
magnetic
auxiliary plate
core
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114771A
Other languages
English (en)
Other versions
JP2021002451A (ja
Inventor
浩昭 中原
剛典 和田
陽平 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2019114771A priority Critical patent/JP7268494B2/ja
Publication of JP2021002451A publication Critical patent/JP2021002451A/ja
Application granted granted Critical
Publication of JP7268494B2 publication Critical patent/JP7268494B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、コアと、該コアに巻回されたコイルとを備える誘導加熱装置に関する。
ワークとして金属などの誘電体を加熱するのに該ワークに誘起される渦電流を利用する誘導加熱装置が知られている。誘導加熱装置は、コアと、該コアのまわりに巻回されたコイルとを備えており、コイルに交流電流を通電することによって磁束を発生させ、該磁束をコアの端部からワークに供給することにより、ワークに渦電流を発生させる。誘導加熱はワーク内部の渦電流によって内部からの発熱ができるので効率が高く迅速な加熱が可能である。
また板材などの加熱には、特許文献1のようなC型コアを備える誘導加熱装置が用いられることがある。このような誘導加熱装置では、一対の磁極がワークを挟んだ対向位置に設けられていて磁路に大きなギャップがなく、C型コアの内部に磁束が通過するループが形成されるため加熱効率が優れている。
特開2008-277216号公報
ところで、一対の磁極によってギャップが形成されて該ギャップにワークが配置される誘導加熱装置では、磁極間の磁束が比較的狭い範囲に集中する傾向がある。したがって、ギャップに配置されたワークは磁束が通過する狭い領域だけが局所的に加熱されて、広範囲を均一に加熱することが困難である。特に、ワークがギャップの領域から突出して配置されているような場合には、ワークに対して広い面積を加熱することが困難である。
磁束を通過する面積を広げるためには磁極自体の断面積を大きくすることが考えられるが、該磁極のまわりに巻回されたコイルのインダクタンスが増加するため電源を高電圧化する必要がある。高電圧化は電源にとって高負荷となるとともにコストアップとなる。また、磁極同士を接近させるように伸ばすと磁気抵抗が増加してしまう。
なお、特許文献1に記載の誘導加熱装置では磁極間のギャップに収束鉄心を設けている。この収束鉄心は磁束を一層集中させるためのものであり、ワークの形状に応じた広い面積を均一に加熱させることとは逆の作用を奏する。
本発明は、上記の課題に鑑みてなされたものであって、ワークに対して広い面積をより均一に加熱することのできる誘導加熱装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる誘導加熱装置は、1以上のコアと、前記コアの端部であってワークが配置されるギャップ領域を介して対向する一対の磁極と、一対の前記磁極のまわりにそれぞれ巻回されたコイルと、一対の前記磁極の端部にそれぞれ設けられた磁性体の補助板と、を備え、前記ギャップ領域は一対の前記磁極によって挟まれた領域であり、前記補助板の一部は前記ギャップ領域から突出していることを特徴とする。
前記補助板は、前記磁極の端面よりも面積が大きくてもよい。
前記磁極の端部と前記補助板との間には非透磁性の隙間が設けられていてもよい。
前記補助板は、前記磁極の中心に対向する位置に孔が設けられていてもよい。
前記補助板は、前記ワークを均一に加熱させる所定方向について長尺な形状であってもよい。
前記コアは1つであり、一対の前記磁極は前記コアにおける両端部であってもよい。
前記コアは複数であり、一対の前記磁極は異なる前記コアにおけるそれぞれの一端部であってもよい。
一対の前記磁極は、前記コアによるループ状の磁束経路の一部で前記ギャップ領域を形成していてもよい。
前記コイルは、それぞれループ状の前記磁束経路に沿った同一方向に磁束を発生させる向きに巻回されており、それぞれ直列に接続されていてもよい。
本発明にかかる誘導加熱装置では、一対の磁極の端部にそれぞれ磁性体の補助板が設けられており、これらの補助板の一部がギャップ領域から突出していることから磁束が拡散され、局所的な磁気飽和が防止され、ワークに対して広い面積をより均一に加熱することができる。
図1は、実施の形態にかかる誘導加熱装置を示す模式正面図である。 図2は、図1におけるII~II線視による断面図である。 図3は、誘導加熱装置における中央左側部分の正面拡大図である。 図4は、変形例に係る誘導加熱装置を示す図であり、(a)は第1の変形例にかかる誘導加熱装置の模式図であり、(b)は第2の変形例にかかる誘導加熱装置の模式図である。 図5は、誘導加熱装置において、補助板の有無および隙間の有無によるコイルの間のインダクタンスと電流との解析結果による関係を示すグラフである。 図6は、誘導加熱装置において、補助板の有無および隙間の有無によるコイル間の電流と発熱量との解析結果による関係を示すグラフである。 図7は、補助板の有無によるワークの発熱分布を示すグラフである。
以下に、本発明にかかる誘導加熱装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。以下の実施例にかかる誘導加熱装置10はほぼ左右対称の構造であり、基本的に左側の構成要素には符号の添え字に「a」を付し、右側の構成要素には「b」を付す。ただし上下、左右など方向の表記は説明の便宜上のものであり、発明を限定するものではない。
図1は、本発明の実施形態にかかる誘導加熱装置10を示す模式正面図であり、図2は、図1におけるII~II線視による断面図である。
図1および図2に示すように、誘導加熱装置10は被加熱物としてのワーク12を加熱するものであり、インバータ14によって駆動される。
ワーク12は、例えば長尺な薄板形状であって、X方向(図1の横方向)に相対的に移送されながら加熱される。移送の速度や態様は設計条件により、例えば定速移送やステップ送りが適用される。ワーク12は、電気伝導性のよい金属(例えば、銅や銅合金等)である。ワーク12は、その用途により均一に加熱されることが望ましいものとする。仕様によって、ワーク12は固定された状態で加熱されてもよい。ワーク12は必ずしも1つの部材である必要はなく、例えば図1における左右中央部で突き合わされた2部材であって、誘導加熱装置10による加熱でロウ付けされるようにしてもよい。
誘導加熱装置10は、ワーク12の上方に配置された第1コア16と、ワーク12の下方に配置された第2コア18とを備える。第1コア16および第2コア18は図示しないフレームに固定されている。第1コア16および第2コア18は磁性体で構成された鉄心であって、例えばフェライトが用いられる。ワーク12は、基本的には第1コア16と第2コア18とから等しい距離に配置される。
第1コア16は2つの磁極20a,20bと、磁極20aと磁極20bとをつなぐ連接部20cと、磁極20aの端部のまわりに巻回されたコイル22aと、磁極20bの端部のまわりに巻回されたコイル22bとを備える。磁極20a,20bは、それぞれZ方向(図1の上下方向)に延在している。磁極20a、磁極20bおよび連接部20cはそれぞれブロック体であって相互に固定接続されていてもよい。なお、本願で磁極とはコアにおけるコイルが巻回される部分で、ワークに対して磁気的な作用を与える部分を意味する。
コイル22a,22bおよび後述するコイル26a,26bの導線はリッツ線および銅パイプ等で形成されている。これらのコイル22a,22b,26a,26b(以下、代表的にコイルCとも呼ぶ。)には冷媒を流通させてもよい。
第2コア18は第1コア16と同様の構成であり、2つの磁極24a,24bと、磁極24aと磁極24bとをつなぐ連接部22cと、磁極24aの端部のまわりに巻回されたコイル26aと、磁極24bの端部のまわりに巻回されたコイル26bとを備える。なお、第1コア16と第2コア18とは同構造であるが識別のために異なる符号を付している。第1コア16と第2コア18とはワーク12を挟んで対向する向きに配置されている。磁極20a,20bは磁極24a,24bに相当し、コイル22a,22bはコイル26a,26bに相当する。
磁極20aと磁極24aとは対をなしてZ方向に対向しており、その間にギャップ領域28aを形成している。同様に、磁極20bと磁極24bとは対をなしてZ方向に対向しており、その間にギャップ領域28bを形成している。ギャップ領域28a,28bについてはさらに後述する。
コイル22aとコイル22bとは接続線30uで接続され、コイル26aとコイル26bとは接続線30dで接続され、コイル22aとコイル26aとは接続線31で接続されている。つまり、4つのコイルCは直列に接続されている。インバータ14の電力線はコイル22bとコイル26bの各端部に接続されている。
4つのコイルCは、それぞれループ状の磁束経路に沿った同一方向に磁束Φを発生させる向きに巻回されている。このように、直列に接続された4つのコイルCは1台のインバータ14で駆動することができ、4つのコイルCに加わる電流が同期し、周波数や位相のずれがなく磁気干渉が生じない。なお、理解が容易となるように、図1の磁束Φは一方向に示しているが、実際のΦは交流の交番磁束である。
第1コア16は補助板32aと補助板32bとを備え、第2コア18は補助板34aと補助板34bとを備える。補助板32aは磁極20aの端部に設けられ、補助板32bは磁極20bの端部に設けられ、補助板34aは磁極24aの端部に設けられ、補助板34bは磁極24bの端部に設けられている。補助板32a,32b,34a,34b(以下、代表的に補助板Bとも呼ぶ)は、薄い磁性体である。補助板Bは平面視で、例えば矩形であり、X方向にある程度長く、それに直交するY方向(図2参照)についてワーク12とほぼ同じ幅となっている。つまり、補助板BはX方向に長尺な長方形となっている。補助板Bは第1コア16、第2コア18または図示しないフレームに固定されている。コイルCと補助板Bとは固定されていてもよい。
図3は、誘導加熱装置10における中央左側部分の正面拡大図である。なお、誘導加熱装置10における対称の右側部分も同構造であり、詳細な説明は省略する。
図3の仮想線で示すように、ギャップ領域28aは一対の磁極20aと磁極24aとによって挟まれた領域とする。つまり、磁極20aと磁極24aとは、第1コア16および第2コア18によるループ状の磁束Φ(図1参照)の経路の一部でギャップ領域28aを形成している。
補助板32a,34aはZ方向に対向して配置されており、それぞれX方向両端がギャップ領域28aから突出している。補助板32a,34aは磁極20a,24aの端面よりも面積が大きい。補助板32a,34aは、磁極20a,24a端面の中心に対向する位置に孔36が設けられている。
磁極20aの端部と補助板32aとの間には隙間38aが設けられており、磁極24aの端部と補助板34aとの間には隙間40aが設けられている。隙間38a,40aのZ方向の幅dは狭く、例えば0.5~2mm程度であり、より好適には1mm程度である。隙間38a,40aは開放されていて空気が満たされているが、空気以外にも非透磁性の材質で満たされていてもよい。
このように構成される誘導加熱装置10では、概念的に、磁極20aを通る磁束Φは下向き端部に到達すると隙間38aで一度拡散されてから補助板32aに入る。このとき、補助板32aには孔36が形成されていることから、該孔36を避けるようにX方向に広がりながら補助板32aに導かれる。また一般に、鉄心の中央では、ワーク12に発生させる誘導電流で相殺されるが、最も磁束が集中する。そのため、補助版32aに孔36を形成することで中央部の発熱を周辺部と同等にすることが出来る。
補助板32aはギャップ領域28aよりも突出していることから、磁束ΦはX方向にある程度導かれてさらに拡散し、その後補助板32aから放出されてワーク12に到達し、該ワーク12を加熱する。ワーク12から出た磁束Φは、補助板34a、隙間40aおよび磁極24aに対して今度は上下対称となるように収束して導かれる。図3では磁束Φが概念的に理解されるようにその範囲をドット地で示している。図3では磁束ΦのX方向の広がりを示しているが、直交するY方向についても補助板BのY方向幅に応じた作用がある。
このように、誘導加熱装置10では、磁極20a,24aの端部に補助板32a,34aが設けられており、該補助板32a,34aはギャップ領域28aから突出していることから磁束Φが広がり、ワーク12に対して広い面積で透過することになる。したがって、ワーク12が局所的に過度に加熱されることが抑制され、広い面積を均一に加熱することができる。補助板32a,34aは、磁極20a,24aの端面よりも面積が大きいことから、磁束Φを一層広げることができる。また、磁極20a,24aの端部と補助板32a,34aとの間には非透磁性の隙間38a,40aが設けられており、さらに補助板32a,34aには、孔36が設けられていることから磁束Φを一層広げることができる。
誘導加熱装置10においてワーク12はX方向に移送されているが、ステップ送りの場合、一定の範囲のみ加熱する場合、および移送を停止して加熱する場合に、ワーク12に対してX方向について均一に加熱することができて好適である。
また、X方向に移送している場合においても、磁束が所定箇所に集中しているよりも、本実施形態の構成によって分散させている方が位置ズレ等の影響が緩和する分、安定する。
さらに、磁束が所定箇所に集中していると局所的には極めて急速に温度が上昇する場合があり、一般の温調計や測定器で保温制御が難しく、また移送の開始時に過度の温度上昇が惹起される懸念がある。これに対して本実施形態の構成によれば磁束が分散されることから保温制御が容易となり、また移送開始時にも過度の温度上昇を防止できる。
誘導加熱装置10においては、磁束が適度に分散されることから、ワーク12の移送精度(例えば、X方向速度の安定性やY方向の位置決め)が低精度であっても該ワーク12を均一に加熱することができる。特に、高温・高磁束雰囲気での移送精度向上はコスト高になるが、誘導加熱装置10では、搬送について低精度、低コストの構成で足りる。
なお、条件により隙間38a,40aおよび孔36は設けられていなくても相応の効果が得られる。また、補助板32a,34aは周囲のいずれかの方向についてギャップ領域28aから突出していればよく、他の方向についてはギャップ領域28aの範囲内に収められていてもよいし、範囲外に突出していてもよい。補助板32a,34aは磁極20a,24aの端部の面積と同じかまたはそれより小さくてもよい。
磁束Φの拡散の程度や方向は補助板Bの形状や面積によって調整することも可能である。すなわち、ワーク12のサイズ、形状、向き、熱容量などに応じて、補助板Bを交換してもよい。補助板Bは広げたい加熱範囲の方向に長尺な形状(例えば、長方形や楕円形)にするとよく、上記の例では例えばワーク12の長尺方向(X方向)に沿って長くするとよい。また、それに直交する方向(上記の場合Y方向)にはワーク12の寸法とほぼ同じに設定すると効率的である。なお、このように補助板Bを長方形とした場合でワーク12が短尺方向(上記の場合Y方向)に多少ずれても加熱ムラの影響は小さいことが本願発明者によって確認されている。これはワーク12に発生する渦電流の特性によるものと考えられる。
また、補助板Bは正方形または円形とすることにより略等方向性となり、ワーク12の配置自由度が高まる。補助板Bは比較的小さい部品であることから交換が容易である。
次に、変形例にかかる誘導加熱装置10Aおよび10Bについて説明する。
図4は、変形例に係る誘導加熱装置を示す図であり、(a)は第1の変形例にかかる誘導加熱装置10Aの模式図であり、(b)は第2の変形例にかかる誘導加熱装置10Bの模式図である。以下の変形例の説明において、上記の誘導加熱装置10と同様の構成要素については同符号を付してその詳細な説明を省略する。
図4(a)に示すように、誘導加熱装置10Aは1つのコア42を備える。コア42はC型であり、ワーク12が配置されるギャップ領域28aを介してZ方向で対向する一対の磁極20a,24aと、磁極20a,24aからやや離れてZ方向に延在する架橋部44と、磁極20a,24aと架橋部44とをつなぐ連接部20c,24cとを有する。磁極20a,24aにはコイル22a,26aが巻回されている。コイル22a,26aは接続線31で直列に接続されており、インバータ14によって駆動される。誘導加熱装置10Aで加熱されるワーク12はX方向に延在する向きで固定されているが、X方向に直交するY方向に向かって延在する向きとし、該Y方向に相対的に移送しながら加熱してもよい。
図4(a)と図1とから明らかなように、誘導加熱装置10Aの左側部分は誘導加熱装置10の左側部分と同じ構成である。つまり、誘導加熱装置10Aは、誘導加熱装置10における一対の磁極20b,24bを架橋部44で置き換え、さらにコイル22b,26bおよび補助板32b,34bを省略したものである。誘導加熱装置10Aでは補助板32a,34aにより磁束Φが拡散されてワーク12に対して広い面積を均一に加熱することができる。
図4(b)に示すように、誘導加熱装置10Bは3つのコア46a、コア46bおよびコア46cを備える。以下、コア46a~46cにおける各構成要素について、説明の簡略化のため同符号を付す。各コア46a~46cは、両端の磁極48にそれぞれコイルCが巻回されている。コア46aとコア46b、コア46bとコア46c、およびコア46cとコア46aとは、それぞれ端部の磁極48同士が対向している。
各磁極48にはそれぞれコイルCが巻回されている。各磁極48の端部には微小な隙間を介して補助板Bが設けられている。
誘導加熱装置10Bでは3つのコア46a~46cに沿ったループ状の磁束Φが発生する。各コイルCは、それぞれループ状の磁束経路に沿った同一方向に磁束を発生させる向きに巻回されており、それぞれ直列に接続されている。これにより、各コイルCは1台のインバータ14(図1参照)で駆動可能である。
また、誘導加熱装置10Bにおいて、個別のコア46a~46cにおけるそれぞれの一端部を形成する6つの磁極48は、ギャップ領域を介して対向する3組の対をなしている。各対の磁極48,48は磁束Φの経路の一部でギャップ領域を形成しており、これらのギャップ領域には異なる形状のワーク54a,54b,54cが配置されている。
このように、誘導加熱装置10Bでは、各対の磁極48,48およびその周辺部の構造が上記の誘導加熱装置10とほぼ同様の構成になっており、補助板Bにより磁束Φが拡散されてワーク54a,54b,54cに対して広い面積を均一に加熱することができる。
なお、上記の誘導加熱装置10,10A,10Bはコアの数が1~3の例を示しているが、コアの数は4以上であってもよい。また、上記各実施例におけるコアに沿った磁束Φはループ状であると説明したがループ状とは広義であり、磁束Φは平面状の単純形状の輪である必要はなく、平面状または立体状のエンドレス形状であればよい。1以上のコアはこの磁束Φに沿うように配置すればよい。
次に、誘導加熱装置10A(図4(a)参照)を例にして、図5~図7を参照しながら補助板Bによる効果を示す。ここで、2枚の補助板Bは、それぞれギャップ領域28aの幅D(図4(a)参照)の1/5程度とした。隙間38a,40aの幅dは補助板Bの1/7程度とした。
図5は、誘導加熱装置10Aにおいて、補助板Bの有無および隙間38a,40aの有無によるコイル22aとコイル26aとの間のインダクタンスと電流との解析結果による関係を示すグラフである。
図5において、横軸はコイル22aとコイル26aとの間に流される電流[Arms]であり、縦軸はコイル22aとコイル26aとの間のインダクタンス[μH]である。ラインα1は、2つの補助板Bが隙間38a,40aを介して設けられている場合である。ラインβ1は、2つの補助板Bは設けられているが隙間38a,40aがない場合である。ラインγ1は2つの補助板Bが設けられていない場合である。
図5から了解されるように、補助板Bが隙間38a,40aを介して設けられている場合(α1)は、補助板Bがない場合(γ1)と較べてインダクタンスが適度に増加しており、しかも電流に対して大きな変化がない。一方、補助板Bは設けられているが隙間38a,40aがない場合(β1)は、隙間38a,40aがある場合(α1)と較べて電流域によってはインダクタンスが相当に高くなっている。
図6は、誘導加熱装置10Aにおいて、補助板Bの有無および隙間38a,40aの有無によるコイル22aとコイル26aとの間の電流と発熱量との解析結果による関係を示すグラフである。
図6において、横軸は図5と同様でコイル22aとコイル26aとの間に流される電流[Arms]である。縦軸は誘導加熱装置10Aによる発熱量[W]であり、実質的にはワーク12の加熱量である。図6におけるラインα2,β2,γ2は、それぞれ図5におけるラインα1,β1,γ1の場合に相当する。ラインα2,β2,γ2はラインα1,β1,γ1と逆の傾向を示す。
補助板Bが隙間38a,40aを介して設けられている場合(α2)は、補助板Bがない場合(γ2)と較べて発熱量が高く、電流が相当に大きい領域でも飽和することなく比例的に増加している。一方、補助板Bは設けられているが隙間38a,40aがない場合(β2)は、隙間38a,40aがある場合(α2)と較べて発熱量が小さく、しかも適用可能な電流域が狭い。これは、図5のラインβ1で示すようにインダクタンスの適正範囲が狭いことに基づく。
図5のラインα1および図6のラインα2によれば、2つの補助板Bが隙間38a,40aを介して設けられている場合には発熱量が大きく、効率が良いことが分かる。
図7は、補助板Bの有無によるワーク12の発熱分布を示すグラフである。図7において、横軸はワーク12の単位長さあたりの発熱量[W]であり、縦軸は先端12(図4(a)参照)からのX方向の距離である。ラインα3は、2つの補助板Bが隙間38a,40aを介して設けられている場合であり、上記のα1、α2の場合に相当する。ラインγ3は2つの補助板Bが設けられていない場合であり、上記のγ1,γ3の場合に相当する。ラインα3は電流を50Arms流した場合であり、ラインγ3は電流を80Arms流した場合である。
ラインα3とラインγ3とを比較すると、後者は電流が大きいにもかかわらず十分に加熱されている箇所は狭い範囲に限られている。仮に、後者の場合でさらに電流を大きくすると、狭い範囲だけが過度に加熱されることになる。一方、前者は電流が小さいにもかかわらず広い範囲で適度に加熱されており、効率がよいことが分かる。
上述したように、本実施の形態に係る誘導加熱装置10,10A,10Bでは、一対の磁極の端部にそれぞれ磁性体の補助板Bが設けられており、これらの補助板Bの一部がギャップ領域から突出していることから磁束Φが拡散され、局所的な磁気飽和が防止され、ワークに対して広い面積をより均一に加熱することができる。
本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
10,10A,10B 誘導加熱装置
12,54a,54b,54c ワーク
14 インバータ
16 第1コア(コア)
18 第2コア(コア)
20a,20b,24a,24b,48 磁極
22a,22b,26a,26b コイル
28a,28b ギャップ領域
32a,32b,34a,34b 補助板
36 孔
38a,40a 隙間
42,46a,46b,46c コア
Φ 磁束

Claims (8)

  1. 1以上のコアと、
    前記コアの端部であってワークが配置されるギャップ領域を介して対向する一対の磁極と、
    一対の前記磁極のまわりにそれぞれ巻回されたコイルと、
    一対の前記磁極の端部にそれぞれ設けられた磁性体の補助板と、
    を備え、
    前記ギャップ領域は一対の前記磁極によって挟まれた領域であり、
    前記補助板の一部は前記ギャップ領域から突出しており、
    前記磁極の端部と前記補助板との間には非透磁性の隙間が設けられていることを特徴とする誘導加熱装置。
  2. 前記補助板は、前記磁極の端面よりも面積が大きいことを特徴とする請求項1に記載の誘導加熱装置。
  3. 前記補助板は、前記磁極の中心に対向する位置に孔が設けられていることを特徴とする請求項1または2に記載の誘導加熱装置。
  4. 前記補助板は、前記ワークを均一に加熱させる所定方向について長尺な形状であることを特徴とする請求項1~のいずれか1項に記載の誘導加熱装置。
  5. 前記コアは1つであり、一対の前記磁極は前記コアにおける両端部であることを特徴とする請求項1~のいずれか1項に記載の誘導加熱装置。
  6. 前記コアは複数であり、一対の前記磁極は異なる前記コアにおけるそれぞれの一端部であることを特徴とする請求項1~のいずれか1項に記載の誘導加熱装置。
  7. 一対の前記磁極は、前記コアによるループ状の磁束経路の一部で前記ギャップ領域を形成していることを特徴とする請求項1~のいずれか1項に記載の誘導加熱装置。
  8. 前記コイルは、それぞれループ状の前記磁束経路に沿った同一方向に磁束を発生させる向きに巻回されており、それぞれ直列に接続されていることを特徴とする請求項に記載の誘導加熱装置。
JP2019114771A 2019-06-20 2019-06-20 誘導加熱装置 Active JP7268494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114771A JP7268494B2 (ja) 2019-06-20 2019-06-20 誘導加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114771A JP7268494B2 (ja) 2019-06-20 2019-06-20 誘導加熱装置

Publications (2)

Publication Number Publication Date
JP2021002451A JP2021002451A (ja) 2021-01-07
JP7268494B2 true JP7268494B2 (ja) 2023-05-08

Family

ID=73995513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114771A Active JP7268494B2 (ja) 2019-06-20 2019-06-20 誘導加熱装置

Country Status (1)

Country Link
JP (1) JP7268494B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167867A (ja) 1990-06-01 2001-06-22 Galesburg Technology Llc 金属要素加熱用の電磁装置
JP2004303575A (ja) 2003-03-31 2004-10-28 Mitsubishi Electric Corp トランスバース型誘導加熱装置
JP2006037187A (ja) 2004-07-29 2006-02-09 Eto Denki:Kk 金属体加熱方法
JP2006244763A (ja) 2005-03-01 2006-09-14 Tada Denki Kk 磁気加熱装置
JP2006252799A (ja) 2005-03-08 2006-09-21 Tada Denki Kk 磁気加熱装置
JP2007534135A (ja) 2004-04-21 2007-11-22 インダクトヒート インコーポレイテッド 誘導加熱による加工品の多周波熱処理

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552090U (ja) * 1978-06-21 1980-01-08
FR2489645A1 (fr) * 1980-08-27 1982-03-05 Electricite De France Dispositif inducteur a circuit magnetique pour le traitement thermique des fils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167867A (ja) 1990-06-01 2001-06-22 Galesburg Technology Llc 金属要素加熱用の電磁装置
JP2004303575A (ja) 2003-03-31 2004-10-28 Mitsubishi Electric Corp トランスバース型誘導加熱装置
JP2007534135A (ja) 2004-04-21 2007-11-22 インダクトヒート インコーポレイテッド 誘導加熱による加工品の多周波熱処理
JP2006037187A (ja) 2004-07-29 2006-02-09 Eto Denki:Kk 金属体加熱方法
JP2006244763A (ja) 2005-03-01 2006-09-14 Tada Denki Kk 磁気加熱装置
JP2006252799A (ja) 2005-03-08 2006-09-21 Tada Denki Kk 磁気加熱装置

Also Published As

Publication number Publication date
JP2021002451A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4845447B2 (ja) はんだ付け装置およびはんだ付けされた装置の製造方法
JP4917182B2 (ja) 誘導加熱装置の制御装置、誘導加熱システム及び誘導加熱装置の制御方法
JP5751453B2 (ja) 誘導加熱装置
KR20110126374A (ko) 화상형성장치의 정착기에서 사용되는 가열 롤러의 온도를 제어하는 장치
JP7268494B2 (ja) 誘導加熱装置
JP2006500748A (ja) 磁気加熱装置
JP6331900B2 (ja) 金属帯板の誘導加熱装置
JP2007200813A (ja) 誘導加熱装置
JP2008243395A (ja) 高周波誘導加熱装置
US10160058B2 (en) Electric resistance welded pipe welding apparatus
JP2002305074A (ja) 誘導加熱装置
JP7259315B2 (ja) 誘導加熱装置
EP3005830A1 (en) Heater apparatus and controllable heating process
US10708984B2 (en) Heating coil and heat treatment apparatus
KR101631024B1 (ko) 유도 가열 장치
JP2020013635A (ja) 誘導加熱装置
JP2005100935A (ja) パイプ誘導加熱装置
JP6077356B2 (ja) 通電加熱装置
JP5131232B2 (ja) トランスバース方式の誘導加熱装置
CN215298984U (zh) 一种水冷电磁铁
JP6081851B2 (ja) 通電加熱装置
ITGE20100116A1 (it) "metodo ed apparecchiatura per la saldatura di circuiti stampati"
JP2004228068A (ja) 電磁誘導加熱装置
JPS6035985Y2 (ja) 誘導加熱装置
JP2014136237A (ja) 溶接方法と溶接装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7268494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150