JP7259716B2 - 車両制御システム及び車両制御方法 - Google Patents

車両制御システム及び車両制御方法 Download PDF

Info

Publication number
JP7259716B2
JP7259716B2 JP2019215639A JP2019215639A JP7259716B2 JP 7259716 B2 JP7259716 B2 JP 7259716B2 JP 2019215639 A JP2019215639 A JP 2019215639A JP 2019215639 A JP2019215639 A JP 2019215639A JP 7259716 B2 JP7259716 B2 JP 7259716B2
Authority
JP
Japan
Prior art keywords
vehicle
area
stop
priority
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215639A
Other languages
English (en)
Other versions
JP2021084556A (ja
Inventor
貴之 岩本
将弘 原田
綾子 清水
彰英 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019215639A priority Critical patent/JP7259716B2/ja
Priority to US17/101,390 priority patent/US11472439B2/en
Priority to CN202011342802.2A priority patent/CN112849159A/zh
Publication of JP2021084556A publication Critical patent/JP2021084556A/ja
Application granted granted Critical
Publication of JP7259716B2 publication Critical patent/JP7259716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/007Emergency override
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/021Means for detecting failure or malfunction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両を制御する車両制御技術に関する。特に、本発明は、車両の自動運転を制御する自動運転制御を含む車両制御技術に関する。
特許文献1は、自動運転車両の制御装置を開示している。制御装置の記憶部は、自動運転車両が駐停車する予定の位置である第1の駐停車予定位置を記憶する。また、制御装置は、撮像部により撮影された撮像画像に基づいて、駐停車不可領域を決定する。制御装置は、第1の駐停車予定位置と駐停車不可領域とに基づいて、第1の駐停車予定位置に自動運転車両を駐停車することが可能であるか否かを判定する。第1の駐停車予定位置に自動運転車両を駐停車することができない場合、制御装置は、自動運転車両が駐停車する予定の位置を第2の駐停車予定位置に変更する。そして、制御装置は、第2の駐停車予定位置までの経路を設定し、その経路に基づいて自動運転車両の移動を制御する。
特許文献2は、自動運転制御装置を開示している。自動運転制御装置は、自動化レベル2の自動運転制御を行う予防安全システムと、自動化レベル3の自動運転制御を行う自動運転システムとを備える。予防安全システムによる自動運転制御が行われているときに当該予防安全システムが故障すると、自動運転制御は、自動運転システムによるものに移行する。逆に、自動運転システムによる自動運転制御が行われているときに当該自動運転システムが故障すると、自動運転制御は、予防安全システムによるものに移行する。
特開2018-122650号公報 特開2017-157067号公報
自動運転中の車両において失陥が発生した場合、車両を停止させる緊急停止制御を実行することが考えられる。その緊急停止制御に、上記の特許文献1に記載されている手法を適用することを考える。
上記の特許文献1に記載されている技術によれば、撮像部により撮影された撮像画像に基づいて駐停車不可領域が決定される。そして、その駐停車不可領域に基づいて、所定の位置に車両を駐停車することが可能であるか否かが判定される。しかしながら、車両において失陥が発生した場合には、撮像画像だけに基づいて、所定の位置に車両を駐停車することが可能であるか否かを判定するだけでは不十分である。何故なら、失陥した機能によっては、車両の運動性能等が制限され、自動運転を狙い通りに行うことが困難になる可能性があるからである。自動運転が狙い通りに行われない場合、車両が所定の位置まで到達することができなくなる、あるいは、所定の位置で停止することができなくなるおそれがある。
本発明の1つの目的は、自動運転の最中に車両の一部の機能が失陥した場合に、車両を適切な位置に停止させることができる技術を提供することにある。
第1の観点は、車両を制御する車両制御システムに関連する。
車両制御システムは、
車両の運転環境を示す運転環境情報が格納される記憶装置と、
運転環境情報に基づいて車両の自動運転を制御する自動運転制御を実行するプロセッサと
を備える。
プロセッサは、更に、自動運転の最中に車両の一部の機能が失陥した場合に車両を停止させる緊急停止制御を実行する。
緊急停止制御において、プロセッサは、
失陥した一部の機能の情報である失陥状態情報を取得し、
失陥状態情報と運転環境情報に基づいて、一部の機能が失陥した車両であっても自動運転によって到達して停止することが可能な目標停車位置を決定し、
車両が目標停車位置に向かって走行して目標停車位置に停止するように自動運転制御を実行する。
第2の観点は、第1の観点に加えて、次の特徴を更に有する。
運転環境情報は、地図情報を含む。
地図情報には、車両において失陥が発生した場合に車両を停止させるエリアの候補である停車候補エリアが登録されている。
プロセッサは、地図情報に登録されている停車候補エリアに含まれるように目標停車位置を決定する。
第3の観点は、第2の観点に加えて、次の特徴を更に有する。
停車候補エリアには優先度が設定されている。
高優先度エリアは、優先度が第1優先度である停車候補エリアである。
低優先度エリアは、優先度が第1優先度よりも低い第2優先度である停車候補エリアである。
高優先度エリアと低優先度エリアの両方が目標停車位置となり得る場合、プロセッサは、高優先度エリアに含まれるように目標停車位置を決定する。
第4の観点は、第3の観点に加えて、次の特徴を更に有する。
高優先度エリアにおける道路曲率は、低優先度エリアにおける道路曲率よりも低い。
第5の観点は、第3の観点に加えて、次の特徴を更に有する。
余裕幅は、車両と同じ方向に走行する他車両が通行可能な道路領域の道路幅と車両の車幅との差である。
高優先度エリアにおける余裕幅は、低優先度エリアにおける余裕幅よりも大きい。
第6の観点は、第3の観点に加えて、次の特徴を更に有する。
交差点の周囲の高優先度エリア及び低優先度エリアは、交差点に進入する前に車両が存在するレーンに応じて変化する。
第7の観点は、第1~第6の観点のいずれかに加えて、次の特徴を更に有する。
プロセッサは、失陥状態情報で示される一部の機能が失陥した車両の性能を示す車両性能情報を取得する。
そして、プロセッサは、車両の性能と運転環境情報に基づいて、一部の機能が失陥した車両が自動運転によって到達して停止することが可能な目標停車位置を決定する。
第8の観点は、車両を制御する車両制御方法に関連する。
車両制御方法は、
車両の運転環境を示す運転環境情報に基づいて、車両の自動運転を制御する自動運転制御を実行するステップと、
自動運転の最中に車両の一部の機能が失陥した場合、車両を停止させる緊急停止制御を実行するステップと
を含む。
緊急停止制御を実行するステップは、
失陥した一部の機能の情報である失陥状態情報を取得するステップと、
失陥状態情報と運転環境情報に基づいて、一部の機能が失陥した車両であっても自動運転によって到達して停止することが可能な目標停車位置を決定するステップと、
車両が目標停車位置に向かって走行して目標停車位置に停止するように自動運転制御を実行するステップと
を含む。
第1の観点によれば、自動運転の最中に車両の一部の機能が失陥した場合、車両制御システムは、その失陥した機能に関する失陥状態情報を取得する。車両制御システムは、失陥状態情報で示される機能が失陥した車両であっても自動運転によって到達して停止することが可能な目標停車位置を決定する。そして、車両制御システムは、決定した目標停車位置に向かって車両が走行して停止するように自動運転制御を実行する。これにより、失陥発生時に車両を適切な目標停車位置に停止させることが可能となる。言い換えれば、緊急停止制御を適切に実行することが可能となる。
第2の観点によれば、地図情報に登録されている停車候補エリアを参照することにより目標停車位置が決定される。従って、より適切な目標停車位置が得られる。また、地図情報に登録されている停車候補エリアを参照することにより、目標停車位置の探索範囲を絞り込むことができる。このことは、プロセッサの処理負荷及び処理時間の軽減の観点から好ましい。
第3の観点によれば、優先度の高い目標停車位置に車両を停止させることが可能となる。言い換えれば、緊急停止制御を更に適切に実行することが可能となる。
第4の観点によれば、見通しの良い高優先度エリアに車両が停止するため、停止した車両及び周辺車両の安全性が向上する。
第5の観点によれば、余裕幅の大きい高優先度エリアに車両が停止するため、他車両がより円滑に走行することが可能となる。
第6の観点によれば、交差点の周囲の高優先度エリア及び低優先度エリアは、その交差点に進入する前に車両が存在するレーンに応じて変化する。これにより、失陥発生時の状況に応じて、より精密に目標停車位置を決定することが可能となる。
第7の観点によれば、失陥が発生した車両の性能に基づいて目標停車位置を適切に決定することが可能となる。
第8の観点によれば、第1の観点と同じ効果が得られる。
本発明の第1の実施の形態に係る車両制御システムの概要を説明するための概念図である。 本発明の第1の実施の形態に係る緊急停止制御を説明するための概念図である。 本発明の第1の実施の形態に係る緊急停止制御の一例を説明するための概念図である。 本発明の第1の実施の形態に係る緊急停止制御の他の例を説明するための概念図である。 本発明の第1の実施の形態に係る緊急停止制御の更に他の例を説明するための概念図である。 本発明の第1の実施の形態に係る車両及び車両制御システムの構成例を示すブロック図である。 本発明の第1の実施の形態における運転環境情報の例を示すブロック図である。 本発明の第1の実施の形態に係る緊急停止制御に関連する処理を示すフローチャートである。 本発明の第2の実施の形態における停車候補エリアの一例を説明するための概念図である。 本発明の第2の実施の形態における停車候補エリアの他の例を説明するための概念図である。 本発明の第2の実施の形態における目標停車位置の決定方法を説明するための概念図である。 本発明の第3の実施の形態における高優先度エリアと低優先度エリアの設定の第1の例を説明するための概念図である。 本発明の第3の実施の形態における高優先度エリアと低優先度エリアの設定の第2の例を説明するための概念図である。 本発明の第3の実施の形態における高優先度エリアと低優先度エリアの設定の第3の例を説明するための概念図である。 本発明の第3の実施の形態における高優先度エリアと低優先度エリアの設定の第3の例を説明するための概念図である。
添付図面を参照して、本発明の実施の形態を説明する。
1.第1の実施の形態
1-1.概要
図1は、第1の実施の形態に係る車両制御システム10の概要を説明するための概念図である。車両制御システム10は、車両1を制御する。典型的には、車両制御システム10は、車両1に搭載されている。あるいは、車両制御システム10の少なくとも一部は、車両1の外部の外部装置に配置され、リモートで車両1を制御してもよい。つまり、車両制御システム10は、車両1と外部装置とに分散的に配置されてもよい。
車両1は、自動運転可能な自動運転車両である。ここで、自動運転とは、車両1の操舵、加速、及び減速を、ドライバの操作から独立して自動的に行うことを意味する。車両制御システム10は、車両1の自動運転を制御する「自動運転制御」を実行する。
自動運転制御では、典型的には、目標トラジェクトリTRが用いられる。目標トラジェクトリTRは、車両1が走行する道路内における車両1の目標位置[X(t),Y(t)]及び目標速度[VX(t),VY(t)]を含む。図1に示される例において、X方向は車両1の前方方向であり、Y方向はX方向と直交する平面方向である。但し、座標系(X,Y)は、図1で示された例に限られない。目標位置[X(t),Y(t)]及び目標速度[VX(t),VY(t)]は、時間tの関数である。目標速度[VX(t),VY(t)]は、目標位置[X(t),Y(t)]毎に設定されてもよい。つまり、目標位置[X(t),Y(t)]と目標速度[VX(t),VY(t)]は、互いに関連付けられてもよい。車両制御システム10は、このような目標トラジェクトリTRに車両1が追従するように車両1の走行(操舵、加速、及び減速)を制御することによって、自動運転制御を行う。
次に、自動運転中の車両1において失陥が発生した場合を考える。失陥が発生した場合、その失陥状態によっては自動運転の継続が困難になる可能性がある。そこで、自動運転の最中に車両1の一部の機能が失陥した場合、車両制御システム10は、車両1を停止させる「緊急停止制御」を実行する。
図2は、緊急停止制御を説明するための概念図である。緊急停止制御において車両1を停止させる目標位置は、以下、「目標停車位置PTS」と呼ばれる。車両制御システム10は、目標停車位置PTSを決定(設定)する。そして、車両制御システム10は、車両1が目標停車位置PTSに向かって走行して目標停車位置PTSに停止するように自動運転制御を実行する。ここでの自動運転制御(緊急停止制御)は、少なくとも減速制御を含み、必要に応じて操舵制御を更に含んでいてもよい。典型的には、車両制御システム10は、車両1が現在位置から目標停車位置PTSに向かって走行して目標停車位置PTSに停止するような目標トラジェクトリTR(緊急停止トラジェクトリ)を生成する。そして、車両制御システム10は、生成した目標トラジェクトリTRに車両1が追従するように車両1の走行を制御する。
図2に示される例では、車両1を路肩に退避させるように目標停車位置PTS及び目標トラジェクトリTRが設定されている。路肩は、地図情報に予め記録されていてもよいし、車両1に搭載されているセンサ(カメラ等)によって検出されてもよい。但し、目標停車位置PTSは、路肩に限定されない。
本実施の形態によれば、目標停車位置PTSを決定するにあたり、車両1のどのような機能が失陥したのかが考慮される。何故なら、失陥した機能によっては、車両1の運動性能やセンサ性能が制限され、自動運転を狙い通りに行うことが困難になる可能性があるからである。自動運転が狙い通りに行われない場合、車両1が目標停車位置PTSまで到達することができなくなる、あるいは、目標停車位置PTSで停止することができなくなるおそれがある。逆に、失陥した機能を考慮することによって、当該機能が失陥した車両1であっても自動運転によって到達して停止することができる適切な目標停車位置PTSを決定することが可能となる。
より詳細には、自動運転の最中に車両の一部の機能が失陥した場合、車両制御システム10は、その失陥した機能を示す「失陥状態情報」を取得する。典型的には、失陥状態情報は、失陥が発生した部品(部位)を示す。ここで、部品とは、車両1に何らかの機能を提供する装置や機器を意味する。部品としては、操舵装置、駆動装置、制動装置、センサ、通信装置、ライト、エアコン、等が例示される。失陥状態情報は、更に、失陥の程度(度合い)を示していてもよい。
車両制御システム10は、失陥状態情報で示される機能が失陥した車両1であっても自動運転によって到達して停止することが可能な目標停車位置PTSを決定する。例えば、車両制御システム10は、失陥状態情報に基づいて、「無効停車エリアAIN」と「有効停車エリアAEF」を設定する。無効停車エリアAINは、失陥状態情報で示される機能が失陥した車両1では到達して停止することができないエリアである。一方、有効停車エリアAEFは、失陥状態情報で示される機能が失陥した車両1であっても到達して停止することができるエリアである。車両制御システム10は、有効停車エリアAEFの中から目標停車位置PTSを決定する。
図3を参照して、目標停車位置PTSの決定の一例を説明する。図3では、車両1の制動装置が失陥した状況を考える。失陥状態情報は、制動装置が失陥したことを示す。制動装置が失陥した場合、バックアップ制動装置が作動するとする。但し、通常時と比較して、減速性能(最大減速度)は低下し、制動距離は長くなる。
仮に制動装置が失陥していなければ、車両1は、目標停車位置PTS0までに十分に減速して、目標停車位置PTS0に停止することができる。しかしながら、制動装置が失陥した状況では、減速性能が低下するため、車両1は目標停車位置PTS0に停止することができない。そこで、車両制御システム10は、制動装置が失陥した車両1であっても停止することができる目標停車位置PTS1を、目標停車位置PTSとして決定する。
図3に示される例では、無効停車エリアAINは、制動装置が失陥した車両1では停止することができないエリアである。一方、有効停車エリアAEFは、制動装置が失陥した車両1であっても停止することができるエリアである。車両制御システム10は、車両1の位置、方位、速度、運動性能(例:最大操舵角、バックアップ制動装置によって実現可能な最大減速度)、等に基づいて、無効停車エリアAINと有効停車エリアAEFを算出する。そして、車両制御システム10は、有効停車エリアAEFの中から目標停車位置PTS(PTS1)を決定する。当然のことながら、有効停車エリアAEFに駐車車両等の障害物が存在する場合には、その障害物を避けるように目標停車位置PTSは決定される。
尚、有効停車エリアAEFは無限遠まで延びている必要はない。例えば、失陥発生から車両1が停止するまでの時間について、最大許容時間があらかじめ設定される。そして、有効停車エリアAEFは、車両1がその最大許容時間以内に到達して停止することができる大きさに設定される。
図4を参照して、目標停車位置PTSの決定の他の例を説明する。図4では、車両1に搭載されているレーダ、特に車両1の左方向の状況を認識する左方向レーダが失陥した状況を考える。失陥状態情報は、左方向レーダが失陥したことを示す。左方向レーダが失陥した場合、左方向の認識性能が通常時よりも低下する。従って、安全確保のため、左側の路肩への退避行動や左方向への車線変更は行わないことが好ましい。
図4に示される例において、車両1の現在の走行車線は車線L1である。仮に左方向レーダが失陥していなければ、車両1が車線L1を左方向に逸脱して目標停車位置PTS0に停止するように自動運転制御を実行することが許される。しかしながら、左方向レーダが失陥した状況では、車両1が車線L1を左方向に逸脱するように自動運転制御を実行することは好ましくない。従って、車両制御システム10は、車両1が安全に停止することができる車線L1内の目標停車位置PTS1を、目標停車位置PTSとして決定する。
図4に示される例では、無効停車エリアAINは、左方向レーダが失陥した車両1では到達することができないエリアである。一方、有効停車エリアAEFは、左方向レーダが失陥した車両1であっても到達して停止することができるエリアである。車両制御システム10は、車線情報、車両1の位置、方位、速度、運動性能(例:最大操舵角、最大減速度)、等に基づいて、無効停車エリアAINと有効停車エリアAEFを算出する。そして、車両制御システム10は、有効停車エリアAEFの中から目標停車位置PTS(PTS1)を決定する。
図5を参照して、目標停車位置PTSの決定の更に他の例を説明する。図5では、車両1に搭載されている通信装置が失陥した状況を考える。失陥状態情報は、通信装置が失陥したことを示す。既出の図3及び図4の場合と異なり、通信装置が失陥しても車両1の運動性能や認識性能は変わらない。従って、通信装置の失陥は考慮されるが、結果として決定される目標停車位置PTSは変わらない(PTS0=PTS1)。
図5に示される例では、無効停車エリアAINは、通信装置が失陥した車両1では到達して停止することができないエリアである。一方、有効停車エリアAEFは、通信装置が失陥した車両1であっても到達して停止することができるエリアである。車両制御システム10は、車両1の位置、方位、速度、運動性能、等に基づいて、無効停車エリアAINと有効停車エリアAEFを算出する。そして、車両制御システム10は、有効停車エリアAEFの中から目標停車位置PTS(PTS1)を決定する。
以上に説明されたように、本実施の形態によれば、自動運転の最中に車両1の一部の機能が失陥した場合、車両制御システム10は、その失陥した機能に関する失陥状態情報を取得する。車両制御システム10は、失陥状態情報で示される機能が失陥した車両1であっても自動運転によって到達して停止することが可能な目標停車位置PTSを決定する。そして、車両制御システム10は、決定した目標停車位置PTSに向かって車両1が走行して停止するように自動運転制御を実行する。これにより、失陥発生時に車両1を適切な目標停車位置PTSに停止させることが可能となる。言い換えれば、緊急停止制御を適切に実行することが可能となる。
以下、本実施の形態に係る車両制御システム10について更に詳しく説明する。
1-2.構成例
図6は、本実施の形態に係る車両1及び車両制御システム10の構成例を示すブロック図である。車両1は、センサ群20、走行装置30、通信装置40、ライト50、エアコン60、及び制御装置100を備えている。車両制御システム10は、少なくとも制御装置100を含んでいる。車両制御システム10は、更に、センサ群20、走行装置30、通信装置40、等を含んでいてもよい。
センサ群20は、位置センサ21、認識センサ22、車両状態センサ23、等を含んでいる。位置センサ21は、車両1の位置及び方位(姿勢)を検出する。位置センサ21としては、GPS(Global Positioning System)センサが例示される。認識センサ22は、車両1の周囲の状況を検出する。認識センサ22としては、カメラ、ライダー(LIDAR: Laser Imaging Detection and Ranging)、レーダ、ソナー、等が例示される。車両状態センサ23は、車両1の状態を検出する。車両状態センサ23としては、車速センサ、ヨーレートセンサ、横加速度センサ、操舵角センサ、操舵トルクセンサ、アクセルセンサ、ブレーキセンサ、等が例示される。
走行装置30は、操舵装置31、駆動装置32、及び制動装置33を含んでいる。操舵装置31は、車両1の車輪を転舵する。例えば、操舵装置31は、パワーステアリング(EPS: Electric Power Steering)装置を含んでいる。駆動装置32は、駆動力を発生させる動力源である。駆動装置32としては、エンジン、電動機、インホイールモータ等が例示される。制動装置33は、制動力を発生させる。失陥に備えて、各装置は冗長構成を有していてもよい。冗長構成の場合、メイン装置の失陥時には、バックアップ装置が作動する。
通信装置40は、車両1の外部と通信を行う。例えば、通信装置40は、車両1の外部の管理サーバと通信ネットワークを介して通信を行う。通信装置40は、周囲のインフラとの間でV2I通信(路車間通信)を行ってもよい。通信装置40は、周辺車両との間でV2V通信(車車間通信)を行ってもよい。
ライト50は、車両1の前方を照らす。エアコン60は、車両1の室内温度を調整する。
制御装置100は、車両1を制御する。典型的には、制御装置100は、プロセッサ110及び記憶装置120を備えるマイクロコンピュータである。制御装置100は、ECU(Electronic Control Unit)とも呼ばれる。記憶装置120には、各種情報が格納される。記憶装置120としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)等、が例示される。プロセッサ110は、各種処理を実行する。プロセッサ110がコンピュータプログラムである制御プログラムを実行することにより、制御装置100による各種処理が実現される。制御プログラムは、記憶装置120に格納されている、あるいは、コンピュータ読み取り可能な記録媒体に記録されている。
例えば、制御装置100(プロセッサ110)は、車両1の運転環境を示す運転環境情報200を取得する。運転環境情報200は、記憶装置120に格納される。
図7は、運転環境情報200の例を示すブロック図である。運転環境情報200は、車両位置情報210、周辺状況情報220、車両状態情報230、通信情報240、地図情報250、等を含んでいる。
車両位置情報210は、車両1の位置及び方位(姿勢)を示す情報であり、位置センサ21による検出結果から得られる。
周辺状況情報220は、車両1の周囲の状況を示す情報であり、認識センサ22による検出結果から得られる。典型的には、周辺状況情報220は、車両1の周辺の物体の相対位置及び相対速度を含む。車両1の周辺の物体としては、周辺車両(先行車両、後続車両、等)、歩行者、路側物、白線、等が例示される。
車両状態情報230は、車両1の状態を示す情報であり、車両状態センサ23による検出結果から得られる。車両1の状態としては、車速、ヨーレート、横加速度、操舵角、操舵トルク、等が例示される。
通信情報240は、通信装置40を通して得られる情報である。例えば、通信情報240は、周辺車両情報や道路交通情報を含む。制御装置100は、通信装置40を通して外部と通信を行うことにより、通信情報240を取得する。
地図情報250は、車線配置、道路形状、等を示す。制御装置100は、地図データベースから、必要なエリアの地図情報250を取得する。地図データベースは、車両1に搭載されている所定の記憶装置に格納されていてもよいし、車両1の外部の管理サーバに格納されていてもよい。後者の場合、制御装置100は、通信装置40を介して管理サーバと通信を行い、必要な地図情報250を取得する。
また、制御装置100(プロセッサ110)は、車両1の操舵、加速、及び減速を制御する「車両走行制御」を実行する。制御装置100は、走行装置30の動作を制御することによって車両走行制御を行う。具体的には、制御装置100は、操舵装置31の動作を制御することによって、車両1の操舵(転舵)を制御する。また、制御装置100は、駆動装置32の動作を制御することによって、車両1の加速を制御する。また、制御装置100は、制動装置33の動作を制御することによって、車両1の減速を制御する。
車両走行制御は、自動運転制御を含む。制御装置100(プロセッサ110)は、運転環境情報200に基づいて、自動運転制御を行う。より詳細には、制御装置100は、自動運転中の車両1の走行プランを生成する。走行プランは、現在の走行車線を維持して走行する、車線変更を行う、障害物を回避する、等を含む。更に、制御装置100は、走行プランに従って車両1が走行するために必要な目標トラジェクトリTRを、運転環境情報200に基づいて生成する。そして、制御装置100は、車両1が目標トラジェクトリTRに追従するように車両走行制御を実行する。
更に、制御装置100(プロセッサ110)は、上述の緊急停止制御を実行する。すなわち、自動運転の最中に車両1の一部の機能が失陥した場合、制御装置100は、車両1を停止させるように自動運転制御を実行する。以下、緊急停止制御に関連する処理を更に詳しく説明する。
1-3.緊急停止制御
図8は、本実施の形態に係る緊急停止制御に関連する処理を示すフローチャートである。車両1は自動運転中であり、制御装置100は自動運転制御を実行しているとする。
ステップS100において、制御装置100は、車両1において失陥が発生したか否かを判定する。例えば、制御装置100は、故障診断機能を備えている。制御装置100は、故障診断機能を用いることによって、車両1の各部品が失陥したか否かを判定する。車両1の各部品としては、位置センサ21、認識センサ22、車両状態センサ23、操舵装置31、駆動装置32、制動装置33、通信装置40、ライト50、エアコン60、等が例示される。
他の例として、センサ群20の各センサは、自身の故障診断機能によって失陥発生を検知してもよい。失陥発生を検知したセンサは、エラーコードを制御装置100に送信する。制御装置100は、エラーコードを受け取ることによって、センサの失陥を認識する。あるいは、制御装置100は、センサからの出力信号を一定期間受信しない場合、当該センサが失陥したと判定してもよい。
失陥が発生していない場合(ステップS100;No)、今回のサイクルにおける処理は終了する。一方、失陥が発生した場合(ステップS100;Yes)、処理は、ステップS200に進む。
ステップS200において、制御装置100は、失陥した機能を示す失陥状態情報300を取得する。典型的には、失陥状態情報300は、失陥が発生した部品を示す。失陥状態情報300は、更に、失陥の程度(度合い)を示していてもよい。失陥状態情報300は、記憶装置120に格納される。その後、処理はステップS300に進む。
ステップS300において、制御装置100は、運転環境情報200と失陥状態情報300に基づいて、目標停車位置PTSを決定する目標停車位置決定処理を実行する。
より詳細には、ステップS310において、制御装置100は、失陥状態情報300に基づいて、車両性能情報を取得する。車両性能情報は、失陥状態情報300で示される機能が失陥した車両1の性能を示す。ここで、車両1の性能としては、運動性能とセンサ性能が挙げられる。
運動性能は、最大操舵角、最大加速度、及び最大減速度を含む。最大操舵角は、操舵装置31の性能仕様から得られる。最大加速度は、駆動装置32の性能仕様から得られる。最大減速度は、制動装置33の性能仕様から得られる。操舵装置31、駆動装置32、及び制動装置33の失陥は、それぞれ、最大操舵角、最大加速度、及び最大減速度に影響を与える。典型的には、操舵装置31、駆動装置32、及び制動装置33の失陥は、それぞれ、最大操舵角、最大加速度、及び最大減速度を減少させる。
センサ性能は、センサ群20に含まれる各センサの性能である。例えば、センサ性能は、認識センサ22の認識性能を含む。認識性能は、認識センサ22の種類、個数、及びカバーレンジに依存する。認識センサ22の失陥は、認識性能を低下させる。例えば、左方向レーダの失陥は、左方向の認識性能を低下させる(図4参照)。また、夜間におけるライト50の失陥も、認識性能を低下させる。
ステップS320において、制御装置100は、運転環境情報200と車両性能情報に基づいて、有効停車エリアAEFと無効停車エリアAINを設定する(図3、図4、図5参照)。有効停車エリアAEFは、失陥により性能が低下した車両1であっても到達して停止することができるエリアである。無効停車エリアAINは、失陥により性能が低下した車両1では到達して停止することができないエリアである。制御装置100は、車両1の位置、方位、速度、加速度、運動性能、センサ性能、等に基づいて、有効停車エリアAEFと無効停車エリアAINを算出する。車両1の位置及び方位は、車両位置情報210から得られる。車両1の速度や加速度は、車両状態情報230から得られる。車両1の運動性能及びセンサ性能は、車両性能情報から得られる。
尚、有効停車エリアAEFは無限遠まで延びている必要はない。例えば、失陥発生から車両1が停止するまでの時間について、最大許容時間があらかじめ設定される。そして、有効停車エリアAEFは、車両1がその最大許容時間以内に到達して停止することができる大きさに設定される。
ステップS330において、制御装置100は、有効停車エリアAEFの中から目標停車位置PTSを決定する。制御装置100は、有効停車エリアAEFのうち車両1の現在位置から最も近い位置を目標停車位置PTSに設定してもよい。有効停車エリアAEFに駐車車両等の障害物が存在する場合には、その障害物を避けるように目標停車位置PTSは決定される。障害物の位置は、周辺状況情報220から得られる。
制動装置33が失陥した場合の目標停車位置PTSの例は、図3で示された通りである。認識センサ22のうち左方向レーダが失陥した場合の目標停車位置PTSの例は、図4で示された通りである。操舵装置31が失陥した場合、図4と同様に目標停車位置PTSが設定されてもよい。夜間、ライト50のうち左ライトが失陥した場合、図4と同様に目標停車位置PTSが設定されてもよい。通信装置40が失陥した場合の目標停車位置PTSの例は、図5で示された通りである。エアコン60が失陥した場合、図5と同様に目標停車位置PTSが設定されてもよい。
ステップS300において目標停車位置PTSが決定すると、処理は、ステップS400に進む。
ステップS400において、制御装置100は、車両1が目標停車位置PTSに向かって走行して目標停車位置PTSに停止するように自動運転制御を実行する。より詳細には、制御装置100は、車両1が現在位置から目標停車位置PTSに向かって走行して目標停車位置PTSに停止するような目標トラジェクトリTRを生成する(ステップS410)。そして、制御装置100は、生成した目標トラジェクトリTRに車両1が追従するように車両1の走行を制御する(ステップS420)。
1-4.効果
以上に説明されたように、本実施の形態によれば、自動運転の最中に車両1の一部の機能が失陥した場合、制御装置100は、その失陥した機能に関する失陥状態情報300を取得する。制御装置100は、失陥状態情報300で示される機能が失陥した車両1であっても自動運転によって到達して停止することが可能な目標停車位置PTSを決定する。そして、制御装置100は、決定した目標停車位置PTSに向かって車両1が走行して停止するように自動運転制御を実行する。これにより、失陥発生時に車両1を適切な目標停車位置PTSに停止させることが可能となる。言い換えれば、緊急停止制御を適切に実行することが可能となる。
2.第2の実施の形態
第2の実施の形態では、地図情報250に「停車候補エリアAC」があらかじめ登録されている。停車候補エリアACは、車両1において失陥が発生した場合に車両1を停止させるエリアの候補である。緊急停止制御において、制御装置100は、地図情報250を参照して、停車候補エリアACに含まれるように目標停車位置PTSを決定する。
図9及び図10は、停車候補エリアACの例を説明するための概念図である。停車候補エリアACを説明するために、まず、「停車禁止エリアAX」について説明する。停車禁止エリアAXは、車両の駐停車が禁止されているエリアであり、道路交通法等によって定められている。図9に示される例では、停車禁止エリアAXは、横断歩道及びその周辺の所定幅のエリアを含んでいる。図10に示される例では、停車禁止エリアAXは、交差点及びその周辺の所定幅のエリアを含んでいる。その他、消防設備の前のエリア等も停車禁止エリアAXに含まれる。このような停車禁止エリアAXも、地図情報250にあらかじめ登録されていてもよい。
停車候補エリアACは、道路上の停車禁止エリアAX以外のエリアの中から選ばれる。典型的には、停車候補エリアACは、停車禁止エリアAX以外のエリアの一部である。例えば、停車候補エリアACは、停車した車両1の安全確保の観点から選ばれる。図9及び図10に例示されるように、停車候補エリアACは、道路端に比較的近いエリアであってもよい。好適には、停車候補エリアACは、路肩や路側帯を含むように設定される。
図11は、本実施の形態における目標停車位置PTSの決定方法を説明するための概念図である。制御装置100は、地図情報250に登録されている停車候補エリアACに含まれるように目標停車位置PTSを決定する。より詳細には、制御装置100は、停車候補エリアACと有効停車エリアAEFがオーバーラップするエリアの中から目標停車位置PTSを決定(選択)する。
図11に示される例では、2つの停車候補エリアAC1、AC2が示されている。停車候補エリアAC1は、無効停車エリアAINに含まれており、有効停車エリアAEFとオーバーラップしていない。一方、停車候補エリアAC2は、有効停車エリアAEFとオーバーラップしている。目標停車位置PTSは、停車候補エリアAC2と有効停車エリアAEFがオーバーラップするエリアに含まれる。
例えば、制御装置100は、有効停車エリアAEFを算出し、その後、有効停車エリアAEFとオーバーラップする停車候補エリアAC2を地図情報250から読み出す。あるいは、制御装置100は、地図情報250から停車候補エリアAC1、AC2を読みだし、その後、停車候補エリアAC1、AC2の中で有効停車エリアAEFを算出してもよい。
本実施の形態によれば、地図情報250に登録されている停車候補エリアACを参照することにより、目標停車位置PTSが決定される。従って、より適切な目標停車位置PTSが得られる。例えば、目標停車位置PTSが停車禁止エリアAXに含まれることが防止される。また、地図情報250に登録されている停車候補エリアACを参照することにより、目標停車位置PTSの探索範囲を絞り込むことができる。このことは、制御装置100(プロセッサ110)の処理負荷及び処理時間の軽減の観点から好ましい。
3.第3の実施の形態
第3の実施の形態では、停車候補エリアACに優先度が設定される。つまり、停車候補エリアACは、優先度と関連付けられて、地図情報250に登録されている。緊急停止制御において、制御装置100は、なるべく優先度の高い停車候補エリアACに含まれるように目標停車位置PTSを決定する。
説明のため、優先度の異なる2種類の停車候補エリアACを考える。「高優先度エリアACH」は、優先度が第1優先度である停車候補エリアACである。「低優先度エリアACL」は、優先度が第1優先度よりも低い第2優先度である停車候補エリアACである。高優先度エリアACHと低優先度エリアACLの両方が目標停車位置PTS(有効停車エリアAEF)となり得る場合、制御装置100は、高優先度エリアACHに含まれるように目標停車位置PTSを決定する。これにより、優先度の高い目標停車位置PTSに車両1を停止させることが可能となる。言い換えれば、緊急停止制御を更に適切に実行することが可能となる。
以下、本実施の形態における高優先度エリアACHと低優先度エリアACLの設定の様々な例を説明する。
3-1.第1の例
図12は、高優先度エリアACHと低優先度エリアACLの設定の第1の例を示している。第1の例では、優先度は、道路構造の観点から設定される。具体的には、直線区間は高優先度エリアACHに設定され、カーブ区間は低優先度エリアACLに設定される。一般化すれば、高優先度エリアACHにおける道路曲率は、低優先度エリアACLにおける道路曲率よりも低い。見通しの良い高優先度エリアACHに車両1が停止するため、停止した車両1及び周辺車両の安全性が向上する。
同様に、道路勾配に基づいて高優先度エリアACHと低優先度エリアACLが設定されてもよい。高優先度エリアACHにおける道路勾配は、低優先度エリアACLにおける道路勾配よりも低い。
3-2.第2の例
図13は、高優先度エリアACHと低優先度エリアACLの設定の他の例を示している。第2の例では、優先度は、車両1が停止したときのトラフィックの円滑さの観点から設定される。例えば、図13に示されるようにゼブラゾーンに隣接するエリアに車両1が停止したとき、車両1と同じ方向に走行する他車両2は、余裕を持って車両1を避けることができる。従って、ある程度の幅のゼブラゾーンに隣接するエリアが高優先度エリアACHに設定される。
一般化すると、余裕幅WMは、車両1と同じ方向に走行する他車両2が通行可能な道路領域の道路幅W2と、車両1の車幅W1との差である(WM=W2-W1)。余裕幅WMが大きいほど、優先度は高くなる。すなわち、高優先度エリアACHにおける余裕幅WMは、低優先度エリアACLにおける余裕幅WMよりも大きい。例えば、余裕幅WMが閾値Wth以上であるエリアが高優先度エリアACHに設定され、余裕幅WMが閾値Wth未満であるエリアが低優先度エリアACLに設定される。
道路幅W2は、地図情報250から得られる。車両1の車幅W1は、例えば、所定値であると仮定される。その仮定の下で、優先度が設定され、地図情報250に登録される。
あるいは、車両1の実際の車幅W1を示す車幅情報が用意されてもよい。その場合、制御装置100は、地図情報250と車幅情報に基づいて、優先度(高優先度エリアACH、低優先度エリアACL)を可変的に設定する。例えば、地図情報250には、車幅W1が所定値であると仮定したときの優先度が基準優先度として登録される。制御装置100は、車幅情報で示される実際の車幅W1に応じて、優先度を基準優先度から増減させる。例えば、トラック等の大型車両に対する高優先度エリアACHは、普通車両に対する高優先度エリアACHよりも狭くなる。
第2の例によれば、余裕幅WMの大きい高優先度エリアACHに車両1が停止するため、他車両2がより円滑に走行することが可能となる。
3-3.第3の例
第3の例では、交差点の手前で失陥が発生する場合を考える。多くの場合、交差点の手前には様々な種類のレーンが存在する。様々な種類のレーンとしては、直進レーン、左折レーン、直進/左折レーン、及び右折レーンが例示される。車両1がどのレーンに存在するかに応じて、車両1が進むべき方向は変わる。従って、交差点の周囲の高優先度エリアACH及び低優先度エリアACLは、その交差点に進入する前に車両1が存在するレーンに応じて動的に変化する。
例えば、図14は、車両1が交差点の手前の右折レーンに存在する場合を示している。この場合、高優先度エリアACHは、右折先のレーン内に設けられる。
他の例として、図15は、車両1が交差点の手前の直進/左折レーンに存在する場合を示している。この場合、高優先度エリアACHは、直進方向のレーン及び左折先のレーンの中に設けられる。
制御装置100は、車両位置情報210と地図情報250に基づいて、車両1がどのレーンに存在するかを認識することができる。また、地図情報250には、各停車候補エリアACの優先度のデフォルト値が登録されている。制御装置100は、車両1が存在するレーンに応じて、各停車候補エリアACの優先度をデフォルト値から増減させる。
このように、第3の例によれば、交差点の周囲の高優先度エリアACH及び低優先度エリアACLは、その交差点に進入する前に車両1が存在するレーンに応じて動的に変化する。これにより、失陥発生時の状況に応じて、より精密に目標停車位置PTSを決定することが可能となる。
1 車両
10 車両制御システム
20 センサ群
30 走行装置
40 通信装置
50 ライト
60 エアコン
100 制御装置
110 プロセッサ
120 記憶装置
200 運転環境情報
210 車両位置情報
220 周辺状況情報
230 車両状態情報
240 通信情報
250 地図情報
300 失陥状態情報
AC 停車候補エリア
ACH 高優先度エリア
ACL 低優先度エリア
AX 停車禁止エリア
AEF 有効停車エリア
AIN 無効停車エリア
PTS 目標停車位置
TR 目標トラジェクトリ

Claims (6)

  1. 車両を制御する車両制御システムであって、
    前記車両の運転環境を示す運転環境情報が格納される記憶装置と、
    前記運転環境情報に基づいて前記車両の自動運転を制御する自動運転制御を実行するプロセッサと
    を備え、
    前記プロセッサは、更に、前記自動運転の最中に前記車両の一部の機能が失陥した場合に前記車両を停止させる緊急停止制御を実行し、
    前記緊急停止制御において、前記プロセッサは、
    失陥した前記一部の機能の情報である失陥状態情報を取得し、
    前記失陥状態情報と前記運転環境情報に基づいて、前記一部の機能が失陥した前記車両であっても前記自動運転によって到達して停止することが可能な目標停車位置を決定し、
    前記車両が前記目標停車位置に向かって走行して前記目標停車位置に停止するように前記自動運転制御を実行し、
    前記運転環境情報は、地図情報を含み、
    前記地図情報には、前記車両において失陥が発生した場合に前記車両を停止させるエリアの候補である停車候補エリアが登録されており、
    前記停車候補エリアには優先度が設定されており、
    高優先度エリアは、前記優先度が第1優先度である前記停車候補エリアであり、
    低優先度エリアは、前記優先度が前記第1優先度よりも低い第2優先度である前記停車候補エリアであり、
    前記高優先度エリアにおける道路勾配は、前記低優先度エリアにおける道路勾配よりも低く、
    前記プロセッサは、前記地図情報に登録されている前記停車候補エリアに含まれるように前記目標停車位置を決定し、
    前記高優先度エリアと前記低優先度エリアの両方が前記目標停車位置となり得る場合、前記プロセッサは、前記高優先度エリアに含まれるように前記目標停車位置を決定する
    車両制御システム。
  2. 請求項に記載の車両制御システムであって、
    前記高優先度エリアにおける道路曲率は、前記低優先度エリアにおける道路曲率よりも低い
    車両制御システム。
  3. 請求項に記載の車両制御システムであって、
    余裕幅は、前記車両と同じ方向に走行する他車両が通行可能な道路領域の道路幅と前記車両の車幅との差であり、
    前記高優先度エリアにおける前記余裕幅は、前記低優先度エリアにおける前記余裕幅よりも大きい
    車両制御システム。
  4. 請求項に記載の車両制御システムであって、
    交差点の周囲の前記高優先度エリア及び前記低優先度エリアは、前記交差点に進入する前に前記車両が存在するレーンに応じて変化する
    車両制御システム。
  5. 請求項1乃至のいずれか一項に記載の車両制御システムであって、
    前記プロセッサは、
    前記失陥状態情報で示される前記一部の機能が失陥した前記車両の性能を示す車両性能情報を取得し、
    前記車両の前記性能と前記運転環境情報に基づいて、前記一部の機能が失陥した前記車両が前記自動運転によって到達して停止することが可能な前記目標停車位置を決定する
    車両制御システム。
  6. 車両を制御する車両制御方法であって、
    前記車両の運転環境を示す運転環境情報に基づいて、前記車両の自動運転を制御する自動運転制御を実行するステップと、
    前記自動運転の最中に前記車両の一部の機能が失陥した場合、前記車両を停止させる緊急停止制御を実行するステップと
    を含み、
    前記緊急停止制御を実行するステップは、
    失陥した前記一部の機能の情報である失陥状態情報を取得するステップと、
    前記失陥状態情報と前記運転環境情報に基づいて、前記一部の機能が失陥した前記車両であっても前記自動運転によって到達して停止することが可能な目標停車位置を決定するステップと、
    前記車両が前記目標停車位置に向かって走行して前記目標停車位置に停止するように前記自動運転制御を実行するステップと
    を含み、
    前記運転環境情報は、地図情報を含み、
    前記地図情報には、前記車両において失陥が発生した場合に前記車両を停止させるエリアの候補である停車候補エリアが登録されており、
    前記停車候補エリアには優先度が設定されており、
    高優先度エリアは、前記優先度が第1優先度である前記停車候補エリアであり、
    低優先度エリアは、前記優先度が前記第1優先度よりも低い第2優先度である前記停車候補エリアであり、
    前記高優先度エリアにおける道路勾配は、前記低優先度エリアにおける道路勾配よりも低く、
    前記目標停車位置を決定するステップは、
    前記地図情報に登録されている前記停車候補エリアに含まれるように前記目標停車位置を決定することと、
    前記高優先度エリアと前記低優先度エリアの両方が前記目標停車位置となり得る場合、前記高優先度エリアに含まれるように前記目標停車位置を決定することと
    を含む
    車両制御方法。
JP2019215639A 2019-11-28 2019-11-28 車両制御システム及び車両制御方法 Active JP7259716B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019215639A JP7259716B2 (ja) 2019-11-28 2019-11-28 車両制御システム及び車両制御方法
US17/101,390 US11472439B2 (en) 2019-11-28 2020-11-23 Vehicle control system and vehicle control method
CN202011342802.2A CN112849159A (zh) 2019-11-28 2020-11-25 车辆控制系统以及车辆控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215639A JP7259716B2 (ja) 2019-11-28 2019-11-28 車両制御システム及び車両制御方法

Publications (2)

Publication Number Publication Date
JP2021084556A JP2021084556A (ja) 2021-06-03
JP7259716B2 true JP7259716B2 (ja) 2023-04-18

Family

ID=75996529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215639A Active JP7259716B2 (ja) 2019-11-28 2019-11-28 車両制御システム及び車両制御方法

Country Status (3)

Country Link
US (1) US11472439B2 (ja)
JP (1) JP7259716B2 (ja)
CN (1) CN112849159A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220148371A (ko) * 2021-04-28 2022-11-07 현대자동차주식회사 차량 정차 제어 시스템 및 방법
US20230030815A1 (en) * 2021-07-29 2023-02-02 Argo AI, LLC Complementary control system for an autonomous vehicle
JP7258094B2 (ja) * 2021-09-16 2023-04-14 三菱電機株式会社 目標経路生成装置および目標経路生成方法
US20230115240A1 (en) * 2021-10-13 2023-04-13 Arriver Software Llc Advanced driver-assistance systems feature activation control using digital map and on-board sensing to confirm safe vehicle operation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544697A (ja) 2010-10-05 2013-12-19 グーグル・インク 自律走行車両の診断と修理
JP2017157067A (ja) 2016-03-03 2017-09-07 三菱電機株式会社 自動運転制御装置
WO2018103937A1 (de) 2016-12-05 2018-06-14 Robert Bosch Gmbh Nothaltepunkt eines kraftfahrzeugs
JP2019008540A (ja) 2017-06-23 2019-01-17 株式会社デンソー 電子制御装置
WO2019026469A1 (ja) 2017-07-31 2019-02-07 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法、車両制御プログラム
JP2019137321A (ja) 2018-02-14 2019-08-22 日立オートモティブシステムズ株式会社 運転制御装置
JP2022516614A (ja) 2018-12-26 2022-03-01 ズークス インコーポレイテッド 衝突回避システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203983A (ja) * 2009-03-04 2010-09-16 Denso Corp ナビゲーションシステム
DE102012008090A1 (de) * 2012-04-21 2013-10-24 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Nothalt eines Kraftfahrzeugs
JP6064946B2 (ja) 2014-05-30 2017-01-25 株式会社デンソー 退避走行支援装置
JP6511930B2 (ja) 2015-04-16 2019-05-15 株式会社デンソー 退避走行支援装置
US9896096B2 (en) * 2016-04-11 2018-02-20 David E. Newman Systems and methods for hazard mitigation
JP6910806B2 (ja) 2017-01-30 2021-07-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 自動運転車両の制御装置、制御方法及びプログラム
JP6426232B1 (ja) 2017-05-22 2018-11-21 本田技研工業株式会社 自動走行制御装置
US10569784B2 (en) * 2017-09-28 2020-02-25 Waymo Llc Detecting and responding to propulsion and steering system errors for autonomous vehicles
AT520887A1 (de) * 2018-01-18 2019-08-15 Tgw Logistics Group Gmbh Verfahren und Kommissioniersystem mit verbessertem Betrieb autonomer Förderfahrzeuge
US20210200243A1 (en) * 2018-09-06 2021-07-01 The Trustees Of Indiana University Caravanning autonomous vehicles
JP7193289B2 (ja) * 2018-09-28 2022-12-20 日立Astemo株式会社 車載電子制御システム
JP7147504B2 (ja) 2018-11-20 2022-10-05 トヨタ自動車株式会社 車両の制御装置及び乗客輸送システム
JP7111606B2 (ja) * 2018-12-19 2022-08-02 日立Astemo株式会社 電子制御装置および車載システム
WO2020142721A1 (en) * 2019-01-03 2020-07-09 Edge Case Research, Inc. Methods and systems for improving permissiveness while ensuring the safety of an autonomous vehicle
US11204609B1 (en) * 2019-06-25 2021-12-21 Amazon Technologies, Inc. Active braking system for an autonomous mobile device
US11904875B2 (en) * 2019-10-08 2024-02-20 GM Global Technology Operations LLC Adaptive prognostics systems and methods for vehicles
US20210107498A1 (en) * 2019-10-09 2021-04-15 Baidu Usa Llc Safe transition from autonomous-to-manual driving mode with assistance of autonomous driving system
US11310269B2 (en) * 2019-10-15 2022-04-19 Baidu Usa Llc Methods to detect spoofing attacks on automated driving systems
JP7230777B2 (ja) 2019-11-11 2023-03-01 トヨタ自動車株式会社 車両制御システム
US11370419B2 (en) * 2019-11-13 2022-06-28 Robert Bosch Gmbh Use of driver assistance collision mitigation systems with autonomous driving systems
EP3902205B1 (de) * 2020-04-21 2023-06-14 TTTech Auto AG Echtzeitcomputersystem und verfahren zur steuerung einer anlage oder eines fahrzeuges

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544697A (ja) 2010-10-05 2013-12-19 グーグル・インク 自律走行車両の診断と修理
JP2017157067A (ja) 2016-03-03 2017-09-07 三菱電機株式会社 自動運転制御装置
WO2018103937A1 (de) 2016-12-05 2018-06-14 Robert Bosch Gmbh Nothaltepunkt eines kraftfahrzeugs
JP2019008540A (ja) 2017-06-23 2019-01-17 株式会社デンソー 電子制御装置
WO2019026469A1 (ja) 2017-07-31 2019-02-07 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法、車両制御プログラム
JP2019137321A (ja) 2018-02-14 2019-08-22 日立オートモティブシステムズ株式会社 運転制御装置
JP2022516614A (ja) 2018-12-26 2022-03-01 ズークス インコーポレイテッド 衝突回避システム

Also Published As

Publication number Publication date
US20210163039A1 (en) 2021-06-03
US11472439B2 (en) 2022-10-18
CN112849159A (zh) 2021-05-28
JP2021084556A (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7259716B2 (ja) 車両制御システム及び車両制御方法
JP6308233B2 (ja) 車両制御装置及び車両制御方法
US20200189618A1 (en) Vehicle and control device and control method of the vehicle
CN108349489B (zh) 车辆行驶控制装置
JP6947849B2 (ja) 車両制御装置
US20200231159A1 (en) Control system of vehicle, control method of the same, and non-transitory computer-readable storage medium
CN110036426B (zh) 控制装置和控制方法
JP7337155B2 (ja) 自律走行車のフォールバック動作を実装するためのシステム
US11613254B2 (en) Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations
JP7207256B2 (ja) 車両制御システム
JP7156238B2 (ja) 車両制御システム
JP2021033614A (ja) 自動運転システム
US11753035B2 (en) Vehicle control system
JP6765357B2 (ja) 走行制御装置、走行制御方法およびプログラム
JP6637474B2 (ja) 走行制御装置、走行制御方法、および車両
JP7435787B2 (ja) 経路確認装置および経路確認方法
CN114763135A (zh) 一种车辆行驶控制方法、装置、电子设备及存储介质
JP2019043431A (ja) 走行制御装置、走行制御方法およびプログラム
GB2599309A (en) Vehicle control system and method
JP7138132B2 (ja) 制御装置及び車両
CN112660155B (zh) 车辆控制系统
JP7496944B1 (ja) 移動体制御装置、移動体制御システム、制御移動体、及び、移動体制御方法
JP6998412B2 (ja) 走行制御装置、車両、走行制御方法及びプログラム
JP2023146642A (ja) 車両制御システム、車両制御方法、及び車両制御プログラム
CN116039624A (zh) 一种aeb主目标选取方法及系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R151 Written notification of patent or utility model registration

Ref document number: 7259716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151