WO2019026469A1 - 車両制御装置、車両制御方法、車両制御プログラム - Google Patents

車両制御装置、車両制御方法、車両制御プログラム Download PDF

Info

Publication number
WO2019026469A1
WO2019026469A1 PCT/JP2018/023943 JP2018023943W WO2019026469A1 WO 2019026469 A1 WO2019026469 A1 WO 2019026469A1 JP 2018023943 W JP2018023943 W JP 2018023943W WO 2019026469 A1 WO2019026469 A1 WO 2019026469A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
speed
vehicle control
control device
Prior art date
Application number
PCT/JP2018/023943
Other languages
English (en)
French (fr)
Inventor
裕貴 奥原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019533965A priority Critical patent/JP6773911B2/ja
Publication of WO2019026469A1 publication Critical patent/WO2019026469A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a vehicle control program.
  • Level 1 which is a single type, the driver is the driver of the operation, and the system controls either acceleration, steering, or braking.
  • Level 2 system operation is more complex, and the above three controls are simultaneously controlled. This is used under conditions such as under highway conditions where the vehicle does not require much steering or following vehicles.
  • Level 3 the system implements all the three controls described above.
  • the driver plays a role in supplementing the operation at the time of an emergency upon request from the system.
  • level 4 the driver is not involved in the operation because the system performs fully automatic operation.
  • a level 2 equivalent driving support system has been developed, and the realization of a level 3 or later automatic driving system mainly based on the system is also in sight.
  • a section judging means for judging whether or not an execution restricted section in which the execution of automatic driving support is restricted is in the forward traveling direction of the vehicle when the automatic driving support is carried out in the vehicle; When it is determined by the section determination means that the implementation restricted section is ahead in the traveling direction of the vehicle, automatic driving support can be implemented when the state of the vehicle satisfies the predetermined condition.
  • the condition determining means for determining whether or not it is a conditional implementation zone, a vehicle state acquisition means for acquiring the condition of the vehicle, and the implementation limited zone determined to be ahead of the traveling direction of the vehicle Control of the vehicle according to the determination result of the condition determination means for determining whether or not the state of the vehicle satisfies the predetermined condition when it is determined that the section is a section; And a control means for executing an inner, automatic driving support system with a disclosed.
  • the vehicle control apparatus detects a front recognition unit that recognizes the front of the vehicle by an output of a sensor, and a defect detection that detects that the front recognition unit can not recognize the front of the vehicle.
  • Unit a storage unit for storing map information which is information on a road on which the vehicle travels, a position acquisition unit for acquiring information on the position of the vehicle, and the malfunction detection unit detects the malfunction state; And a vehicle control unit that controls the speed of the vehicle based on the position of the vehicle and the map information.
  • a vehicle control method is a vehicle control method implemented in a vehicle control device mounted on a vehicle and including a storage unit that stores map information that is information of a road on which the vehicle travels.
  • a vehicle control program is a vehicle control program executed in a vehicle control device mounted on a vehicle and including a storage unit storing map information which is information of a road on which the vehicle travels.
  • the vehicle control apparatus recognizes the front of the vehicle from the output of a sensor, detects a failure state in which the front of the vehicle can not be recognized, acquires information on the position of the vehicle, and the failure state Detecting the speed of the vehicle based on the position of the vehicle and the map information.
  • the vehicle can be traveled safely even when a failure occurs in the sensor.
  • FIG. 1 is a hardware block diagram of a vehicle 9 on which the vehicle control device 1 is mounted.
  • the vehicle 9 communicates with the vehicle control device 1, the sensor control device 2, the front camera 2A, the rear camera 2B, the display unit 3, the GPS receiver 4, the speed control device 5, the steering control device 6, and And an apparatus 7.
  • the vehicle control device 1, the sensor control device 2, the display unit 3, the GPS receiver 4, the speed control device 5, the steering control device 6, and the communication device 7 are mutually connected by the in-vehicle network 8.
  • the vehicle 9 has two operation modes of an automatic operation mode in which the vehicle control device 1 controls the vehicle 9 and a manual operation mode in which the user controls the vehicle 9.
  • the drive system of the vehicle 9 does not limit the present invention at all, and various drive systems such as an internal combustion engine, a motor, and a combination thereof can be used. Further, the size of the vehicle 9 does not limit the present invention at all, and the vehicle 9 can have any size.
  • the vehicle control device 1 is electronically controlled including a CPU 1A which is a central processing unit, a ROM 1B which is a read-only storage device, a RAM 1C which is a volatile memory such as a DRAM, and a flash memory 1D which is a non-volatile storage unit. It is an apparatus, that is, an ECU (Electronic Control Unit).
  • the CPU 1A realizes a function to be described later by expanding a program stored in the ROM 1B into the RAM 1C and executing the program.
  • the sensor control device 2 provides the photographed images obtained from the front camera 2A and the rear camera 2B to other devices via the in-vehicle network 8.
  • the sensor control device 2 may be connected to another sensor (not shown) such as a millimeter wave radar, and the output of the sensor may be provided to the other device.
  • the front camera 2A is attached to the vehicle 9 so as to capture the front of the vehicle 9.
  • the front camera 2A outputs a photographed image obtained by photographing to the sensor control device 2.
  • an operation of the vehicle control device 1 in a situation where the vehicle control device 1 can not acquire a photographed image of the front camera 2A will be mainly described.
  • the situation where the vehicle control device 1 can not acquire the captured image of the front camera 2A means, for example, a situation where mechanical failure occurs in the front camera 2A and the output of a normal captured image can not be performed, dirt adhesion to the lens of the front camera 2A or There are a situation in which the recognition of the external world such as dew condensation occurs and a situation in which the mounting position and mounting posture of the front camera 2A are shifted and an image of a predetermined area can not be photographed.
  • the rear camera 2B is attached to the vehicle 9 so as to capture the rear of the vehicle 9.
  • the rear camera 2 B outputs a photographed image obtained by photographing to the sensor control device 2.
  • the display unit 3 provides video information to the occupant of the vehicle 9 based on an operation command of the vehicle control device 1.
  • the display unit 3 performs, for example, a display prompting to switch from the automatic driving to the manual driving, and a display prompting attention to deceleration.
  • the GPS receiver 4 receives radio waves from a plurality of satellites constituting the satellite navigation system, and analyzes the signals contained in the radio waves to calculate the position of the vehicle 9, that is, the latitude and longitude.
  • the GPS receiver 4 outputs the calculated latitude and longitude to the in-vehicle network 8.
  • the speed control device 5 is an ECU, and controls the speed of the vehicle 9 based on the operation command of the vehicle control device 1. Specifically, the speed control device 5 controls the number of rotations of the engine of the vehicle 9 and the braking system of the vehicle 9. Further, the operation of the speed control device 5 may include an antilock brake system (ABS), an anti-slip device (ESC: electronic stability control), control of an engine throttle opening degree, and the like.
  • the steering control device 6 is an ECU, and controls the steering wheel of the vehicle 9 based on the operation command of the vehicle control device 1.
  • the communication device 7 acquires traffic congestion information by wireless communication and outputs the traffic congestion information to the vehicle control device 1. That is, the traffic jam information stored in the vehicle control device 1 is updated by the communication device 7 as needed.
  • FIG. 2 is a functional block diagram showing the functions of the vehicle control device 1 as functional blocks.
  • the vehicle control device 1 has a front recognition unit 11A, a rear recognition unit 11B, a defect detection unit 12, a speed control unit 13, a steering control unit 14, a notification unit 15, a route grasping unit 16, and the like as its functions.
  • the automatic operation unit 17, the storage unit 18, and the position acquisition unit 19 are provided.
  • the automatic driving unit 17 includes a front recognition unit 11A, a rear recognition unit 11B, a malfunction detection unit 12, a speed control unit 13, a steering control unit 14, a notification unit 15, a route grasping unit 16, a storage unit 18, and a position acquisition unit 19. Automatic driving of the vehicle 9 is realized using this.
  • the automatic driving unit 17 can continue the automatic driving even when the photographed image can not be obtained from the front recognition unit 11A as described later. The detailed operation of the automatic operation unit 17 will be described later.
  • the front recognition unit 11A acquires a photographed image of the front camera 2A from the sensor control device 2 via the in-vehicle network 8, and recognizes the situation in front of the vehicle 9. For example, the front recognition unit 11A determines the presence or absence of an obstacle in front of the vehicle 9.
  • the rear recognition unit 11B acquires a photographed image of the rear camera 2B from the sensor control device 2 via the in-vehicle network 8, and recognizes the situation behind the vehicle 9. For example, the rear recognition unit 11B determines the presence or absence of a following vehicle traveling following the vehicle 9. However, when the distance between the vehicle 9 and the following vehicle is a predetermined distance, for example, 50 meters or more, the rear recognition unit 11B determines that the following vehicle does not exist.
  • the defect detection unit 12 detects a defect related to a captured image of the front camera 2A. That is, the defect detection unit 12 determines that a defect has occurred when the photographed image is not obtained from the front camera 2A or when the photographed image obtained from the front camera 2A is not updated for a predetermined area ratio or more for a predetermined time.
  • the case where the photographed image can not be obtained from the front camera 2A is, for example, when the front camera 2A stops its operation or when the signal line is disconnected.
  • the above-mentioned case of not being updated is, for example, a case where mud etc. adhere to the lens of the front camera 2A or a case where a part of the imaging device provided in the front camera 2A does not function.
  • the speed control unit 13 outputs an operation command to the speed control device 5 via the in-vehicle network 8.
  • the speed control unit 13 also obtains the speed of the vehicle 9 from a speed sensor (not shown) mounted on the vehicle 9. However, the speed control unit 13 may calculate the speed of the vehicle 9 by differentiating the position of the vehicle 9 acquired by the position acquisition unit 19.
  • the steering control unit 14 outputs an operation command to the steering control device 6 via the in-vehicle network 8.
  • the notification unit 15 notifies the user via the display unit 3.
  • the route grasping unit 16 calculates a traveling route from the current location to the destination with reference to map information 18A described later, and stores the calculated traveling route. Do. In the present embodiment, the route grasping unit 16 has already calculated the traveling route, and the route grasping unit 16 stores the traveling route.
  • the storage unit 18 includes a ROM 1C and a flash memory 1D.
  • the storage unit 18 stores map information 18A.
  • the map information 18A includes a position of an obstacle on a road such as a guardrail or a central division, a road shape, the number of lanes, a designated speed indicated by a road sign, a curvature of a curve, a curvature radius of a curve, Information such as is stored.
  • the map information 18A further includes traffic jam information updated by the communication device 7.
  • the traffic congestion information is updated as needed, and is stored in the flash memory 1D.
  • the position acquisition unit 19 acquires position information of the vehicle 9 from the GPS receiver 4 via the in-vehicle network 8.
  • the vehicle control device 1 controls the speed and the steering angle of the vehicle 9 so that the vehicle 9 travels along a preset route.
  • the vehicle control device 1 In the automatic driving mode, the vehicle control device 1 normally stores the photographed images obtained from the front camera 2A and the rear camera 2B, the position of the vehicle 9 acquired from the position acquisition unit 19, and the storage unit 18 in order to control the vehicle 9.
  • the vehicle 9 when the vehicle 9 travels at a low speed on a straight road having a space such as a road shoulder having a space capable of stopping the vehicle 9, the vehicle 9 can stop and switch to the manual operation mode.
  • the vehicle control device 1 travels at a low speed to a position where it can be safely stopped, then stops the vehicle, and switches to the manual operation.
  • the vehicle control device 1 changes the speed of the vehicle 9 according to the condition of the road ahead of the vehicle 9 and the presence or absence of the following vehicle. For example, if the road on which the vehicle 9 travels has a good line of sight, the vehicle control device 1 sets the legal speed or the designated speed to a speed of 20 kilometers per hour if there is no following vehicle, and there is a following vehicle Is the legal speed or a speed obtained by subtracting 10 kilometers per hour from the specified speed. In addition, since rapid changes in speed are not desirable, the vehicle control device 1 starts deceleration from a suitable position before entering a curve, for example, when detecting a curve, if possible, until it enters the curve. Complete the deceleration. The vehicle control device 1 calculates the position to start the deceleration with reference to the map information using a known method.
  • FIG. 3 is a flowchart showing the operation of the automatic operation unit 17.
  • the automatic driving unit 17 first determines in S311 whether or not the malfunction detection unit 12 detects a malfunction of the front camera 2A, that is, it is determined that the front recognition unit 11A is in a malfunction state where the front of the vehicle 9 can not be recognized. Decide whether or not.
  • the automatic driving unit 17 proceeds to S313, and when it is determined that the malfunction is not detected, the automatic operation unit 17 proceeds to S312.
  • the automatic driving unit 17 performs a normal automatic driving process using also the photographed image of the front camera 2A, and ends the process shown in FIG.
  • the automatic driving unit 17 analyzes around the current position of the vehicle 9 acquired from the position acquisition unit 19 in the map information 18A. Specifically, the automatic driving unit 17 detects a stoppable space capable of temporarily stopping the vehicle 9, such as a parking lot, around the current position. In the subsequent S314, the automatic driving unit 17 determines whether or not the vehicle 9 can be immediately stopped, for example, whether or not there is a stoppable space within 10 meters from the current traveling position. The automatic driving unit 17 proceeds to S316 when it is determined that an immediate stop is possible, and proceeds to S315 when it is determined that an immediate stop is not possible. Details of S315 will be described later with reference to FIG. When the process of S315 is completed, the automatic operation unit 17 returns to S313.
  • the automatic driving unit 17 stops the vehicle 9 in the stoppable space.
  • the automatic driving unit 17 performs notification to prompt the display unit 3 to switch to the manual driving mode via the notifying unit 15 in order to switch the operation mode of the vehicle 9 to the manual driving mode.
  • the automatic operation unit 17 may notify the effect that the automatic operation mode is ended in S317 and switch the operation mode to the manual operation mode.
  • FIG. 4 is a flowchart showing details of S315 in FIG. 3, that is, the speed control process.
  • the automatic operation unit 17 calculates the first reference speed and the second reference speed based on the current position and the map information 18A.
  • Both the first reference speed and the second reference speed are speeds at which the vehicle can travel safely ahead of the current position and the traveling direction, which is equal to or less than a designated speed, and the first reference speed is faster than the second reference speed.
  • the speed at which the vehicle can travel safely is calculated based on the radius of curvature of the curve stored in the map information 18A, the bank angle, the traffic volume, traffic congestion information, and the like.
  • the automatic driving unit 17 uses the output of the rear recognition unit 11B to determine whether there is a following vehicle. If it is determined that the following vehicle is present, the automatic driving unit 17 proceeds to S323, and if it is determined that the following vehicle is not present, the processing proceeds to S327.
  • the automatic operation unit 17 sets the target speed to the first reference speed.
  • the automatic operation unit 17 determines whether the current speed is equal to or less than the target speed set in S323. If it is determined that the current speed is equal to or less than the target speed, the process proceeds to S325, and if it is determined that the current speed is faster than the target speed, the process proceeds to S326.
  • the automatic operation unit 17 maintains the current speed and ends the processing shown in FIG.
  • the automatic operation unit 17 instructs the speed control device 5 to change to the target speed via the speed control unit 13, and notifies the display unit 3 of deceleration via the notification unit 15 as shown in FIG. End the process.
  • the automatic operation unit 17 sets the target speed to the second reference speed.
  • the automatic operation unit 17 determines whether the current speed is equal to or less than the target speed set in S327. If it is determined that the current speed is equal to or less than the target speed, the process proceeds to S325, and if it is determined that the current speed is faster than the target speed, the process proceeds to S326.
  • FIG. 5 is a diagram showing an operation example of the vehicle control device 1. Reference numerals 91 to 96 shown in FIG. 5 indicate the positions of the vehicle 9 at different times.
  • FIG. 5 (a) shows the position of the vehicle 9 in the operation example, and
  • FIG. 5 (b) shows the speed of the vehicle 9 in the operation example.
  • the vehicle 9 was traveling at the position 91 and at the speed V0.
  • the automatic driving unit 17 has detected a failure of the front camera 2A (FIG. 3, S311: YES).
  • the automatic driving unit 17 analyzes the map information and determines that the vehicle can not be stopped and executes the speed control (S313, S314: NO, S315).
  • the automatic driving unit 17 determines that there is no following vehicle (S322: NO), and sets the target speed to the second reference speed V2 (S327).
  • the automatic driving unit 17 detects a defect in the front camera 2A, determines that the vehicle can not be stopped and performs speed control, but since the current speed is equal to the target speed, the current speed Is maintained (S328: YES, S325).
  • the automatic driving unit 17 determines that the vehicle can stop on the road shoulder (S314: YES), stops the vehicle 9 at the position indicated by reference numeral 96 (S316), and switches to the manual operation mode. (S317).
  • the transition of the speed of the vehicle 9 will be described with reference to FIG. 5 (b).
  • the vehicle 9 is traveling at the speed V0, and at the position indicated by reference numeral 92, the vehicle 9 starts to decelerate to the second reference speed V2.
  • the vehicle speed of the vehicle 9 becomes the second reference speed V2 at the position indicated by the reference numeral 93, and the second reference speed V2 is maintained until the position indicated by the reference numeral 95 at which the vehicle stops. Then, since the vehicle 9 starts to stop from the position indicated by reference numeral 95, the vehicle speed decreases toward zero.
  • the target speed is set to the second reference speed V2 because the automatic driving unit 17 determines that the subsequent vehicle does not exist (S322: NO), but the automatic driving unit 17 determines that the subsequent vehicle exists
  • the automatic driving unit 17 sets the target speed to the first reference speed V1 (S322: YES, S323). Since the first reference velocity V1 is faster than the second reference velocity V2, in this case, FIG. (B) shows the speed change as shown by the broken line.
  • the automatic driving unit 17 moderates the speed change to suppress the rapid change of the speed, and improves the safety by reducing the load on the following vehicle.
  • the vehicle control device 1 detects that the front recognition unit 11A that recognizes the situation in front of the vehicle 9 by the output of the front camera 2A and that the front recognition unit 11A can not recognize the front of the vehicle 9
  • the fault detection unit 12 the storage unit 18 storing map information 18A that is information of the road on which the vehicle 9 travels, the position acquisition unit 19 that acquires information on the position of the vehicle 9, and the fault detection unit 12
  • the automatic driving unit 17 controls the speed of the vehicle 9 based on the position of the vehicle 9 and the map information 18A when detected.
  • the vehicle control device 1 enables safe traveling by appropriately controlling the speed of the vehicle 9. In other words, the vehicle control device 1 can safely drive the vehicle 9 even when the front camera 2A has a problem. Further, the vehicle control device 1 can control the vehicle 9 using the map information 18A and the position information even when the front recognition unit 11A can not recognize the situation in front of the vehicle 9. There is no way to feel that.
  • the automatic driving unit 17 that determines the presence or absence of the following vehicle that follows the vehicle 9 is provided.
  • the automatic driving unit 17 makes the deceleration of the speed smaller when there is a following vehicle than when there is no following vehicle (S322: YES, S323 in FIG. 4). It is better to slow the vehicle 9 because information from the front camera 2A can not be obtained, but if there is a following vehicle, a sudden change in speed may cause a collision to the vehicle 9 by the following vehicle or a sudden change to the following vehicle It is not possible to force the steering wheel operation. Therefore, the automatic driving unit 17 can reduce the adverse effect on the following vehicle while securing the safety of the vehicle 9 by reducing the deceleration when the following vehicle is present.
  • the vehicle control device 1 includes the notification unit 15 that notifies the control of the vehicle by the automatic driving unit 17 with the display unit 3 as the output destination.
  • the automatic operation unit 17 detects that the malfunction detection unit 12 detects a malfunction
  • a curve exists in the traveling direction of the vehicle 9 and the current speed of the vehicle is faster than the maximum speed at which the curve can travel (S324 in FIG. NO and S328: NO)
  • notification of the effect of deceleration using the notification unit 15, and deceleration of the vehicle are performed (S326). Therefore, the occupants of the vehicle 9 can take measures to prepare for deceleration, so that it is possible to avoid anxiety or confusion due to the sudden operation of the vehicle 9.
  • the vehicle control device 1 includes the automatic driving unit 17 that calculates the closest stoppable position based on the map information and the position of the vehicle (S313 in FIG. 3).
  • the malfunction detection unit 12 detects a malfunction state
  • the automatic driving unit 17 stops the vehicle at the closest available parking position (S316). Therefore, the vehicle control device 1 can stop the vehicle 9 and switch to the manual operation mode as soon as possible if the failure detection unit 12 detects a failure.
  • the vehicle 9 may further include a three-axis accelerometer, and output the measured three-axis acceleration to the vehicle control device 1.
  • the vehicle control device 1 controls the vehicle 9 so that the output of the three-axis accelerometer does not exceed a predetermined value, in other words, the vehicle occupant does not generate an unpleasant acceleration.
  • the automatic driving unit 17 obtains the output of the 3-axis accelerometer at fine time intervals, and the speed control unit 13 and the steering control unit 14 each time the output of the 3-axis accelerometer does not exceed a predetermined value.
  • An operation command may be output.
  • the automatic driving unit 17 stores in advance the relationship between the operation command to the speed control unit 13 and the steering control unit 14 and the output of the three-axis accelerometer, and based on the relationship, the speed control unit 13 and the steering control unit 14 The operation command may be output to
  • Mode 2 In the first embodiment described above, it is assumed that the vehicle 9 is stopped when switching from the automatic driving mode to the manual driving mode. However, the automatic driving mode may be switched to the manual driving mode without stopping the vehicle 9. In this case, the vehicle control device 1 urges the user to switch to the manual operation mode on condition that the road is straight and there is no signal and there is no branching or merging. When the user's preparation is completed, the mode is switched to the manual operation mode.
  • FIG. 6 is a flowchart showing the operation of the automatic operation unit 17 in the present modification.
  • the same operations as in FIG. 3 in the first embodiment are assigned the same step numbers, and the description thereof is omitted.
  • the automatic driving unit 17 first determines in S311 whether or not the malfunction detection unit 12 detects a malfunction of the front camera 2A. If it is determined that a malfunction is detected, the process proceeds to S313A, and the malfunction is not detected. If it is determined that the process proceeds to S312. In S313A, the automatic driving unit 17 analyzes around the current position of the vehicle 9 acquired from the position acquisition unit 19 in the map information 18A. Specifically, the automatic driving unit 17 analyzes the linearity in a predetermined section from the current position, for example, a section of 100 meters, the presence or absence of a signal, and the presence or absence of a branch or merge on the road currently traveling.
  • the automatic driving unit 17 determines whether switching to the manual driving mode is possible on the road on which the vehicle is currently traveling. Specifically, when it is determined that the predetermined section on the road currently being traveled is a straight line, there is no signal, and there is no branch or merging, the automatic driving unit 17 proceeds to S332, and the predetermined section from the current position If it is determined that the signal is not a straight line, the signal is included, or a branch or merge is present, the process proceeds to step S315.
  • the automatic driving unit 17 displays a message prompting preparation for manual driving, for example, a message "Please hold the steering wheel and put your foot on the pedal" on the display unit 3 via the notification unit 15.
  • the automatic operation unit 17 determines whether preparation for the user's manual operation is completed. If it is determined that the preparation has been completed, the automatic operation unit 17 proceeds to S317 and switches to the manual operation mode. When it is determined that the user's preparation has not been completed, the automatic driving unit 17 proceeds to S315.
  • the automatic driving unit 17 makes an affirmative determination, for example, when the user holds the steering wheel and puts the foot on the accelerator pedal or the brake pedal. A plurality of known methods can be used to determine whether the user holds the steering wheel or not by the automatic driving unit 17.
  • a method using a touch sensor (not shown) provided on the steering wheel or photographing in the vehicle It is possible to employ a method using an image captured by a camera (not shown).
  • a plurality of known methods can be used to determine whether or not the user puts a foot on the pedal by the automatic driver 17.
  • the output of a weighing scale (not shown) for detecting a load applied to the pedal may be used.
  • a method to use or a method to use an image captured by a camera (not shown) for capturing a pedal can be employed.
  • S312, S315, and S317 are the same as those of the first embodiment, and thus the description thereof is omitted.
  • notification may be performed only when the deceleration is larger than a predetermined threshold. In this case, since notification is not performed in the case of moderate deceleration, notification can be performed only when it is important, in other words, when special attention is required.
  • the automatic driving unit 17 may turn on or blink the hazard lamp when the vehicle 9 is decelerated and stopped.
  • the program of the vehicle control device 1 is stored in the ROM 1B, the program may be stored in the flash memory 1D.
  • the vehicle control device 1 may include an input / output interface (not shown), and the program may be read from another device via the input / output interface and a medium that can be used by the vehicle control device 1 when necessary.
  • the medium refers to, for example, a storage medium removable from the input / output interface or a communication medium, that is, a wired, wireless, light or other network, or a carrier wave or digital signal propagating through the network.
  • some or all of the functions implemented by the program may be implemented by a hardware circuit or an FPGA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

センサに不具合が生じた場合でも車両を安全に走行させることができる。 車両制御装置は、センサの出力により車両の前方を認識する前方認識部と、前方認識部が車両の前方を認識できない不具合状態にあることを検出する不具合検出部と 、車両が走行する道路の情報である地図情報を格納する記憶部と、車両の位置に関する情報を取得する位置取得部と、不具合検出部が不具合状態を検出すると、車両の位置および地図情報に基づき車両の速度を制御する車両制御部とを備える。

Description

車両制御装置、車両制御方法、車両制御プログラム
 本発明は、車両制御装置、車両制御方法、および車両制御プログラムに関する。
 現在、自動運転の開発が盛んに行われている。米国運輸省道路交通安全局によれば、自動運転のレベルが以下のように段階的に決められている。単独型であるレベル1においては、ドライバが運転の主体となり、加速、操舵、および制動のいずれかをシステムが制御する。レベル2ではシステム動作がより複合化され、前述の三つの制御を複数同時に制御する。これは、高速道路のような操舵をあまり必要としない条件下や前方車に追従するなどの状況で用いられる。レベル3では前述の三つの制御をすべてシステムが実施する。レベル3ではドライバは、緊急時においてシステムからの要請により運転を補う役目を担う。レベル4では、システムが完全自動運転を行うため、ドライバが運転に関与することはない。近年ではレベル2相当の運転支援システムの開発が行われており、システムが主体となるレベル3以降の自動運転システムの実現も視野に入っている。
 特許文献1には、車両において自動運転支援が実施されている場合に、自動運転支援の実施が制限される実施制限区間が前記車両の進行方向前方にあるか否か判定する区間判定手段と、前記区間判定手段によって前記実施制限区間が前記車両の進行方向前方にあると判定された場合に、該実施制限区間が前記車両の状態が所定の条件を満たす場合において自動運転支援が実施可能となる条件付実施区間であるか否か判定する実施判定手段と、前記車両の状態を取得する車両状態取得手段と、前記車両の進行方向前方にあると判定された前記実施制限区間が前記条件付実施区間であると判定された場合に、前記車両の状態が前記所定の条件を満たすか否かを判定する条件判定手段と、前記条件判定手段の判定結果に従って前記車両の制御または案内を実施する制御実施手段と、を有する自動運転支援システムが開示されている。
特開2016-207064号公報
 特許文献1に記載されている発明では、センサの不具合が考慮されていない。
 本発明の第1の態様による車両制御装置は、センサの出力により車両の前方を認識する前方認識部と、前記前方認識部が前記車両の前方を認識できない不具合状態にあることを検出する不具合検出部と、前記車両が走行する道路の情報である地図情報を格納する記憶部と、前記車両の位置に関する情報を取得する位置取得部と、前記不具合検出部が前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御する車両制御部とを備える。
 本発明の第2の態様による車両制御方法は、車両に搭載され、前記車両が走行する道路の情報である地図情報を格納する記憶部を備える車両制御装置において実行される車両制御方法であって、センサの出力により車両の前方を認識することと、前記車両の前方を認識できない不具合状態を検出することと、前記車両の位置に関する情報を取得することと、前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御することを含む。
 本発明の第3の態様による車両制御プログラムは、車両に搭載され、前記車両が走行する道路の情報である地図情報を格納する記憶部を備える車両制御装置において実行される車両制御プログラムであって、前記車両制御装置に、センサの出力により車両の前方を認識することと、前記車両の前方を認識できない不具合状態を検出することと、前記車両の位置に関する情報を取得することと、前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御することとを実行させる。
 本発明によれば、センサに不具合が生じた場合でも車両を安全に走行させることができる。
車両9のハードウエア構成図 車両制御装置1の機能ブロック図 実施の形態における自動運転部17の動作を表すフローチャート 速度制御処理を示すフローチャート 図5(a)は動作例における車両9の位置を示す図、図5(b)は動作例における車両9の速度を示す図 変形例2における自動運転部17の動作を表すフローチャート
―第1の実施の形態―
 以下、図1~図5を参照して、本発明にかかる車両制御装置の第1の実施の形態を説明する。
 図1は車両制御装置1を搭載する車両9のハードウエア構成図である。車両9は、車両制御装置1と、センサ制御装置2と、前カメラ2Aと、後カメラ2Bと、表示部3と、GPS受信機4と、速度制御装置5と、操舵制御装置6と、通信装置7とを備える。車両制御装置1、センサ制御装置2、表示部3、GPS受信機4、速度制御装置5、操舵制御装置6、および通信装置7は、車載ネットワーク8により相互に接続される。車両9は、車両制御装置1が車両9を制御する自動運転モードと、ユーザが車両9を制御する手動運転モードの2つの動作モードを有する。なお車両9の駆動方式は本発明を何ら限定するものではなく、内燃機関、モータ、およびそれらの組み合わせなど、様々な駆動方式を用いることができる。また車両9のサイズも本発明を何ら限定するものではなく、車両9は任意のサイズをとることができる。
 車両制御装置1は、中央演算装置であるCPU1Aと、読み取り専用の記憶装置であるROM1Bと、DRAMなどの揮発性メモリであるRAM1Cと、不揮発性の記憶部であるフラッシュメモリ1Dとを備える電子制御装置、すなわちECU(Electronic Control Unit)である。CPU1AはROM1Bに格納されたプログラムをRAM1Cに展開して実行することで後述する機能を実現する。
 センサ制御装置2は、前カメラ2Aおよび後カメラ2Bから得られた撮影画像を車載ネットワーク8を介して他の装置に提供する。なおセンサ制御装置2は、ミリ波レーダなどの不図示の他のセンサとも接続され、それらセンサの出力も併せて他の装置に提供してもよい。前カメラ2Aは、車両9の前方を撮影するように車両9に取り付けられる。前カメラ2Aは撮影して得られた撮影画像をセンサ制御装置2に出力する。本実施の形態では、前カメラ2Aの撮影画像を車両制御装置1が取得できない状況における車両制御装置1の動作を主に説明する。前カメラ2Aの撮影画像を車両制御装置1が取得できない状況とはたとえば、前カメラ2Aに機械的な不具合が発生し正常な撮影画像の出力ができない状況、前カメラ2Aのレンズへの汚れ付着や結露などの外界認識の妨げが生じる状況、および前カメラ2Aの取り付け位置や取り付け姿勢がずれてしまい所定領域の画像が撮影できない状況などである。後カメラ2Bは、車両9の後方を撮影するように車両9に取り付けられる。後カメラ2Bは撮影して得られた撮影画像をセンサ制御装置2に出力する。
 表示部3は、車両制御装置1の動作指令に基づき車両9の乗員に映像情報を提供する。表示部3はたとえば、自動運転から手動運転への切り替えを促す表示や、減速への注意を促す表示を行う。GPS受信機4は、衛星航法システムを構成する複数の衛星から電波を受信し、その電波に含まれる信号を解析することで車両9の位置、すなわち緯度と経度を算出する。GPS受信機4は算出した緯度と経度を車載ネットワーク8に出力する。
 速度制御装置5はECUであり、車両制御装置1の動作指令に基づき車両9の速度を制御する。具体的には速度制御装置5は、車両9のエンジンの回転数および車両9の制動装置を制御する。さらに速度制御装置5の動作は、アンチロックブレーキシステム(ABS:Antilock Brake System)、横滑り防止装置(ESC:Electronic Stability Control)、およびエンジンスロットル開度の制御等を含んでもよい。操舵制御装置6はECUであり、車両制御装置1の動作指令に基づき車両9のステアリングホイールを制御する。通信装置7は、無線通信により渋滞情報を取得して車両制御装置1に出力する。すなわち車両制御装置1に格納される渋滞情報は、通信装置7により随時更新される。
(車両制御装置)
 図2は車両制御装置1が備える機能を機能ブロックとして表した機能ブロック図である。車両制御装置1は、その機能として前方認識部11Aと、後方認識部11Bと、不具合検出部12と、速度制御部13と、操舵制御部14と、報知部15と、経路把握部16と、自動運転部17、記憶部18と、位置取得部19とを備える。
 自動運転部17は、前方認識部11A、後方認識部11B、不具合検出部12、速度制御部13、操舵制御部14、報知部15、経路把握部16、記憶部18、および位置取得部19を用いて車両9の自動運転を実現する。自動運転部17は、後述するように前方認識部11Aから撮影画像が得られない場合にも自動運転を継続できる。自動運転部17の詳細な動作は後述する。
 前方認識部11Aは、車載ネットワーク8を介してセンサ制御装置2から前カメラ2Aの撮影画像を取得し、車両9の前方の状況を認識する。たとえば前方認識部11Aは、車両9の前方における障害物の有無を判断する。後方認識部11Bは、車載ネットワーク8を介してセンサ制御装置2から後カメラ2Bの撮影画像を取得し、車両9の後方の状況を認識する。たとえば後方認識部11Bは、車両9に後続して走行する後続車両の有無を判断する。ただし後方認識部11Bは、車両9と後続車両との距離が所定の距離、たとえば50メートル以上離れている場合は後続車両は存在しないと判断する。
 不具合検出部12は、前カメラ2Aの撮影画像に関する不具合を検出する。すなわち不具合検出部12は、撮影画像が前カメラ2Aから得られない場合や、前カメラ2Aから得られた撮影画像が所定の面積割合以上所定時間にわたって更新されない場合に不具合が発生したと判断する。撮影画像が前カメラ2Aから得られない場合とはたとえば、前カメラ2Aが動作を停止した場合や信号線が切断された場合である。前述の更新されない場合とはたとえば、前カメラ2Aのレンズに泥などが付着した場合や前カメラ2Aが備える撮像素子の一部が機能しなくなった場合である。
 速度制御部13は、車載ネットワーク8を介して速度制御装置5に動作指令を出力する。また速度制御部13は、車両9に搭載された不図示の速度センサから車両9の速度を取得する。ただし速度制御部13は、位置取得部19が取得する車両9の位置を微分演算することで車両9の速度を算出してもよい。操舵制御部14は、車載ネットワーク8を介して操舵制御装置6に動作指令を出力する。報知部15は、表示部3を介してユーザへの報知を行う。
 経路把握部16は、ユーザが不図示の入力部を用いて目的地を入力すると、後述する地図情報18Aを参照して、現在地から目的地への走行経路を算出し、算出した走行経路を記憶する。本実施の形態では、経路把握部16はすでに走行経路を算出しており、経路把握部16に走行経路が格納されている。記憶部18はROM1C、およびフラッシュメモリ1Dから構成される。記憶部18には地図情報18Aが格納される。地図情報18Aには、ガードレールや中央分離帯などの道路上の障害物の位置、道路形状、車線数、道路標識などにより示される指定速度、カーブの曲率半径、カーブにおける道路の傾きであるいわゆるカントなどの情報が格納される。地図情報18Aにはさらに、通信装置7により更新される渋滞情報が含まれる。この渋滞情報は随時更新されるのでフラッシュメモリ1Dに格納される。位置取得部19は、車載ネットワーク8を介してGPS受信機4から車両9の位置情報を取得する。
(車両制御装置の動作概要)
 車両制御装置1は、あらかじめ設定された経路に沿って車両9が走行するように車両9の速度および操舵角を制御する。車両制御装置1は自動運転モードでは通常、車両9を制御するために、前カメラ2Aおよび後カメラ2Bから得られる撮影画像、位置取得部19から取得する車両9の位置、および記憶部18に格納される地図情報を利用する。車両制御装置1は、前カメラ2Aから撮影画像が得られなくなると、周囲環境の認識能力が低下するため、自動運転を直ちに停止して手動運転モードへの切り替えを試みる。このとき、路肩など車両9を停車可能なスペースを有する直線道路を車両9が低速で走行していた場合には停車して手動運転モードへの切り替えが可能である。しかし路肩のない道路を走行している際やカーブを走行している際には、直ちに停車することができない。そこで車両制御装置1は、そのような際には安全に停車可能な位置まで低速で走行してから車両を停車させ、手動運転への切り替えを行う。
 車両制御装置1は、前カメラ2Aから撮影画像が得られなくなると、車両9の前方の道路の状況、および後続車両の有無により車両9の速度を変化させる。たとえば車両制御装置1は、車両9が走行する道路が見晴らしの良い直線であれば、後続車両が存在しない場合は法定速度または指定速度から時速20キロメートルを減じた速度とし、後続車両が存在する場合は法定速度または指定速度から時速10キロメートルを減じた速度とする。また急激な速度の変化は好ましくないため、車両制御装置1は減速を要する箇所、たとえばカーブを検出するとカーブへの侵入前に適切な位置から減速を開始し、可能であればカーブへの進入までに減速を完了させる。車両制御装置1は減速を開始する位置を既知の手法を用いて地図情報を参照して算出する。
(自動運転部の動作)
 図3は自動運転部17の動作を表すフローチャートである。図3において自動運転部17はまずS311において、不具合検出部12が前カメラ2Aの不具合を検出したか否か、すなわち前方認識部11Aが車両9の前方を認識できない不具合状態にあると判断したか否かを判断する。自動運転部17は、不具合を検出したと判断する場合はS313に進み、不具合を検出していないと判断する場合はS312に進む。S312では自動運転部17は、前カメラ2Aの撮影画像も用いる通常の自動運転処理を行い、図3に示す処理を終了する。
 S313では自動運転部17は、地図情報18Aにおける位置取得部19から取得する車両9の現在位置周辺の解析を行う。具体的には自動運転部17は現在位置の周辺で、駐車場などの車両9を一時的に停車できる停車可能スペースを検出する。続くS314では自動運転部17は、車両9の即座の停車が可能であるか否か、たとえば現在の走行位置から10メートル以内に停車可能スペースが存在するか否かを判断する。自動運転部17は、即座の停車が可能と判断する場合はS316に進み、即座の停止ができないと判断する場合はS315に進む。S315の詳細は次の図4を参照して後に説明する。自動運転部17はS315の処理が完了するとS313に戻る。S316では自動運転部17は、車両9を停車可能スペースに停車する。続くS317では自動運転部17は、車両9の動作モードを手動運転モードに切り替えるべく、報知部15を介して表示部3に手動運転モードへの切り替えを促す報知を行う。ただし自動運転部17は、S317において自動運転モードを終了する旨の報知を行い、動作モードを手動運転モードに切り替えてもよい。
 図4は、図3におけるS315の詳細、すなわち速度制御処理を示すフローチャートである。図4ではまず自動運転部17は、S321において、現在位置および地図情報18Aに基づき第1基準速度および第2基準速度を算出する。第1基準速度および第2基準速度はいずれも、現在位置および進行方向の前方を安全に走行できる速度であり、指定速度以下であり、第1基準速度の方が第2基準速度よりも速い。安全に走行できる速度は、地図情報18Aに格納されるカーブの曲率半径、バンク角、交通量、および渋滞の情報などに基づき算出される。たとえば道路が直線であっても前方に渋滞が発生している場合は、安全に走行できる速度は低く算出される。続くS322では自動運転部17は、後方認識部11Bの出力を用いて後続車両が存在するか否かを判断する。自動運転部17は後続車両が存在すると判断する場合はS323に進み、後続車両が存在しないと判断する場合はS327に進む。
 S323では自動運転部17は、目標速度を第1基準速度に設定する。続くS324では自動運転部17は、現在の速度がS323において設定した目標速度以下であるか否かを判断する。現在の速度が目標速度以下であると判断する場合はS325に進み、現在の速度が目標速度よりも速いと判断する場合はS326に進む。S325では自動運転部17は、現在の速度を維持して図4に示す処理を終了する。S326では自動運転部17は、速度制御部13を介して速度制御装置5に目標速度への変更を指示するとともに、報知部15を介して表示部3に減速する旨の報知を行い図4の処理を終了する。
 S322において否定判定されると実行されるS327では自動運転部17は、目標速度を第2基準速度に設定する。続くS328では自動運転部17は、現在の速度がS327において設定した目標速度以下であるか否かを判断する。現在の速度が目標速度以下であると判断する場合はS325に進み、現在の速度が目標速度よりも速いと判断する場合はS326に進む。
(動作例)
 図5は、車両制御装置1の動作例を示す図である。図5に示す符号91~96は、異なる時刻における車両9の位置を示している。図5(a)は動作例における車両9の位置を示す図、図5(b)は動作例における車両9の速度を示す図である。
 まず図5(a)を参照して車両9の動きを説明する。車両9が符号91の位置を速度V0で走行中していた。その直後に車両9が符号92で示す位置において、自動運転部17は前カメラ2Aの不具合を検出した(図3、S311:YES)。自動運転部17は地図情報を解析し停車が不可能と判断して速度制御を実行する(S313,S314:NO、S315)。自動運転部17は速度制御処理において、後続車両が存在しないと判断し(S322:NO)、目標速度を第2基準速度V2に設定する(S327)。
 そして現在の速度V0が第2基準速度V2よりも速いので減速を開始する(S328:NO,S326)。そして車両9の減速は符号93で示す位置まで続き、符号93で示す位置では車両9の車速は第2基準速度V2となった。符号93および符号94で示す位置では自動運転部17は、前カメラ2Aの不具合を検出し、停車が不可能と判断し、速度制御を行うが、現在の速度が目標速度に等しいので現在の速度を維持する(S328:YES,S325)。符号95に示す位置では自動運転部17は、路肩への停車が可能と判断し(S314:YES)、符号96に示す位置に車両9を停車させ(S316)、手動運転モードへの切り替えを行う(S317)。
 次に図5(b)を参照して車両9の速度の遷移を説明する。符号91で示す位置において車両9は速度V0で走行しており、符号92で示す位置において車両9は第2基準速度V2への減速を開始した。符号93に示す位置において車両9の車速は第2基準速度V2になり、停車を開始する符号95に示す位置までは第2基準速度V2を保つ。そして車両9は符号95で示す位置から停車を開始するので、速度ゼロに向かって車速が減少する。
 以上説明した動作例では、自動運転部17は後続車両が存在しない(S322:NO)と判断したので目標速度が第2基準速度V2に設定されたが、自動運転部17が後続車両が存在すると判断した場合は以下のように変化する。すなわち自動運転部17は、後続車両が存在すると判断すると、目標速度を第1基準速度V1に設定する(S322:YES、S323)。第1基準速度V1は、第2基準速度V2よりも速いので、この場合は図5
(b)に破線で示すような速度変化を示す。このように自動運転部17は、後続車両が存在する場合は速度変化を緩やかにして速度の急激な変化を抑え、後続車両の負担を軽減することで安全性を向上させる。
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)車両制御装置1は、前カメラ2Aの出力により車両9の前方の状況を認識する前方認識部11Aと、前方認識部11Aが車両9の前方を認識できない不具合状態にあることを検出する不具合検出部12と、車両9が走行する道路の情報である地図情報18Aを格納する記憶部18と、車両9の位置に関する情報を取得する位置取得部19と、不具合検出部12が不具合状態を検出すると、車両9の位置および地図情報18Aに基づき車両9の速度を制御する自動運転部17とを備える。そのため車両制御装置1は、前カメラ2Aの故障などにより前方認識部11Aが車両9の前方の状況を認識できない場合でも、車両9の速度を適切に制御することで安全な走行が可能とする。換言すると車両制御装置1は、前カメラ2Aに不具合が生じた場合でも車両9を安全に走行させることができる。また車両制御装置1は、前方認識部11Aが車両9の前方の状況を認識できない場合でも、地図情報18Aと位置情報を用いて車両9を制御できるので、車両9の乗員に前カメラ2Aの不具合などを感じさせることがない。
(2)車両9に後続する後続車両の存在の有無を判断する自動運転部17を備える。自動運転部17は速度の制御において、後続車両が存在する場合は後続車両が存在しない場合よりも速度の減速度を小さくする(図4のS322:YES、S323)。車両9は前カメラ2Aからの情報が得られないので速度を遅くした方がよいが、後続車両が存在する場合は急激な速度変化は後続車両による車両9への追突や、後続車両への急なハンドル操作を強いる可能性があり好ましくない。そのため自動運転部17は、後続車両が存在する場合は減速度を小さくすることで車両9の安全を確保しつつ後続車両への悪影響を低減することができる。
(3)車両制御装置1は表示部3を出力先とし、自動運転部17による車両の制御に関する報知を行う報知部15を備える。自動運転部17は不具合検出部12が不具合状態を検出すると、車両9の進行方向にカーブが存在しカーブを走行可能な最高速度よりも車両の現在の速度が速い場合に(図4のS324:NOおよびS328:NO)、報知部15を用いた減速する旨の報知および車両の減速を行う(S326)。そのため車両9の乗員は減速に備えた対応をとることができるので、車両9による突然の動作による不安や混乱を避けることができる。
(4)車両制御装置1は、地図情報および車両の位置に基づき最も近い停車可能位置を算出する(図3のS313)自動運転部17を備える。自動運転部17は不具合検出部12が不具合状態を検出すると、最も近い駐車可能位置に車両を停車させる(S316)。そのため、車両制御装置1は不具合検出部12により不具合が検出されると、可能であれば即座に車両9を停車させて手動運転モードへ切り替えることができる。
(変形例1)
 車両9はさらに3軸加速度計を備え、測定した3軸の加速度を車両制御装置1に出力してもよい。この場合に車両制御装置1は、3軸加速度計の出力が所定の値を超えないように、換言すると車両9の乗員が不快に感じる加速度が生じないように車両9を制御する。この場合に自動運転部17は、細かい時間間隔で3軸加速度計の出力を取得してその都度3軸加速度計の出力が所定の値を超えないように速度制御部13および操舵制御部14に動作指令を出力してもよい。また自動運転部17は、速度制御部13および操舵制御部14への動作指令と3軸加速度計の出力の関係をあらかじめ記憶しておき、それらの関係に基づき速度制御部13および操舵制御部14に動作指令を出力してもよい。
(変形例2)
 上述した第1の実施の形態では、自動運転モードから手動運転モードへの切り替えに車両9の停車を前提とした。しかし車両9を停車させずに自動運転モードから手動運転モードへの切り替えを行ってもよい。この場合に車両制御装置1は、道路が直線であり信号がなく分岐や合流がないことを条件に、ユーザに手動運転モードへの切り替えを促す。そしてユーザの準備が完了すると手動運転モードへ切り替える。
 図6は、本変形例における自動運転部17の動作を表すフローチャートである。図6では第1の実施の形態における図3と同一の動作には同一のステップ番号を付して説明を省略する。
 図6では自動運転部17はまずS311において不具合検出部12が前カメラ2Aの不具合を検出したか否かを判断し、不具合を検出したと判断する場合はS313Aに進み、不具合を検出していないと判断する場合はS312に進む。S313Aでは自動運転部17は、地図情報18Aにおける位置取得部19から取得する車両9の現在位置周辺の解析を行う。具体的には自動運転部17は現在走行している道路について、現在位置から所定の区間、たとえば100メートルの区間における直線性、信号の有無、分岐や合流の有無を解析する。続くS331では自動運転部17は、現在走行している道路において手動運転モードへの切り替えが可能であるか否かを判断する。具体的には自動運転部17は、現在走行している道路において所定の区間が直線であり、信号がなく、かつ分岐や合流がないと判断する場合はS332に進み、現在位置から所定の区間において直線ではない、信号を有する、分岐または合流がある、のいずれかであると判断する場合はS315に進む。
 S332では自動運転部17は、手動運転の準備を促す表示、たとえば「ハンドルを握りペダルに足をのせてください」という旨のメッセージを報知部15を介して表示部3に表示する。続くS333では自動運転部17は、ユーザの手動運転の準備が完了したか否かを判断する。自動運転部17は、準備が完了したと判断する場合はS317に進んで手動運転モードへの切り替える。自動運転部17は、ユーザの準備が完了していないと判断する場合はS315に進む。なおS333において自動運転部17は、たとえばユーザがステアリングホイールを握っており、アクセルペダルまたはブレーキペダルに足をのせている場合に肯定判断を行う。自動運転部17による、ユーザがステアリングホイールを握っているか否かの判断には既知の複数の方法を用いることができ、たとえばステアリングホイールに備えられる不図示のタッチセンサを用いる方法や、車内を撮影する不図示のカメラが撮影した映像を用いる方法が採用できる。自動運転部17による、ユーザがペダルに足をのせているか否かの判断には既知の複数の方法を用いることができ、たとえばペダルに付加された荷重を検出する不図示の重量計の出力を用いる方法や、ペダルを撮影する不図示のカメラが撮影した映像を用いる方法が採用できる。
 S312、S315、S317の動作は第1の実施の形態と同様なので説明を省略する。
(変形例3)
 図4のS326では常に報知が行われるとしたが、減速度が所定の閾値よりも大きい場合のみ報知を行ってもよい。この場合は緩やかな減速の場合には報知が行われないので、重要な、換言すると特に注意を要する場合のみ報知を行うことができる。
(変形例4)
 自動運転部17は、車両9を減速および停車させる際にハザードランプを点灯または点滅させてもよい。
 車両制御装置1のプログラムはROM1Bに格納されるとしたが、プログラムはフラッシュメモリ1Dに格納されていてもよい。また、車両制御装置1が不図示の入出力インタフェースを備え、必要なときに入出力インタフェースと車両制御装置1が利用可能な媒体を介して、他の装置からプログラムが読み込まれてもよい。ここで媒体とは、たとえば入出力インタフェースに着脱可能な記憶媒体、または通信媒体、すなわち有線、無線、光などのネットワーク、または当該ネットワークを伝搬する搬送波やディジタル信号、を指す。また、プログラムにより実現される機能の一部または全部がハードウエア回路やFPGAにより実現されてもよい。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1…車両制御装置
2…センサ制御装置
2A…前カメラ
2B…後カメラ
9…車両
11A…前方認識部
11B…後方認識部
12…不具合検出部
13…速度制御部
14…操舵制御部
15…報知部
16…経路把握部
17…自動運転部
18…記憶部
18A…地図情報
19…位置取得部

Claims (6)

  1.  センサの出力により車両の前方を認識する前方認識部と、
     前記前方認識部が前記車両の前方を認識できない不具合状態にあることを検出する不具合検出部と、
     前記車両が走行する道路の情報である地図情報を格納する記憶部と、
     前記車両の位置に関する情報を取得する位置取得部と、
     前記不具合検出部が前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御する車両制御部とを備える車両制御装置。
  2.  請求項1に記載の車両制御装置において、
     前記車両に後続する後続車両の存在の有無を判断する後続判断部をさらに備え、
     前記車両制御部は前記速度の制御において、前記後続車両が存在する場合は前記後続車両が存在しない場合よりも前記速度の減速度を小さくする車両制御装置。
  3.  請求項1に記載の車両制御装置において、
     前記車両制御部による前記車両の制御に関する報知を行う報知部をさらに備え、
     前記車両制御部は前記不具合検出部が前記不具合状態を検出すると、前記車両の進行方向にカーブが存在し前記カーブを走行可能な最高速度よりも前記車両の現在の速度が速い場合に、前記報知部を用いた減速する旨の報知および前記車両の減速を行う車両制御装置。
  4.  請求項1に記載の車両制御装置において、
     前記地図情報および前記車両の位置に基づき最も近い停車可能位置を算出する停車位置算出部をさらに備え、
     前記車両制御部は前記不具合検出部が前記不具合状態を検出すると、前記最も近い駐車可能位置に前記車両を停車させる車両制御装置。
  5.  車両に搭載され、前記車両が走行する道路の情報である地図情報を格納する記憶部を備える車両制御装置において実行される車両制御方法であって、
     センサの出力により車両の前方を認識することと、
     前記車両の前方を認識できない不具合状態を検出することと、
     前記車両の位置に関する情報を取得することと、
     前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御することを含む車両制御方法。
  6.  車両に搭載され、前記車両が走行する道路の情報である地図情報を格納する記憶部を備える車両制御装置において実行される車両制御プログラムであって、前記車両制御装置に、
     センサの出力により車両の前方を認識することと、
     前記車両の前方を認識できない不具合状態を検出することと、
     前記車両の位置に関する情報を取得することと、
     前記不具合状態を検出すると、前記車両の位置および前記地図情報に基づき前記車両の速度を制御することとを実行させるための車両制御プログラム。
     
PCT/JP2018/023943 2017-07-31 2018-06-25 車両制御装置、車両制御方法、車両制御プログラム WO2019026469A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019533965A JP6773911B2 (ja) 2017-07-31 2018-06-25 車両制御装置、車両制御方法、車両制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148171 2017-07-31
JP2017-148171 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026469A1 true WO2019026469A1 (ja) 2019-02-07

Family

ID=65233718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023943 WO2019026469A1 (ja) 2017-07-31 2018-06-25 車両制御装置、車両制御方法、車両制御プログラム

Country Status (2)

Country Link
JP (1) JP6773911B2 (ja)
WO (1) WO2019026469A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033464A1 (ja) * 2019-08-19 2021-02-25 株式会社デンソー 運転制御装置及び車両行動提案装置
JP2021084556A (ja) * 2019-11-28 2021-06-03 トヨタ自動車株式会社 車両制御システム及び車両制御方法
JP2021091265A (ja) * 2019-12-09 2021-06-17 本田技研工業株式会社 車両制御システム
CN114084153A (zh) * 2020-08-24 2022-02-25 丰田自动车株式会社 物体检测装置、物体检测方法以及物体检测用计算机程序
WO2022158262A1 (ja) * 2021-01-22 2022-07-28 株式会社小糸製作所 センサシステム、車両の制御方法および車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309955A (ja) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd 前方道路対応制御装置
WO2015068249A1 (ja) * 2013-11-08 2015-05-14 株式会社日立製作所 自律走行車両、及び自律走行システム
JP2016088180A (ja) * 2014-10-31 2016-05-23 富士重工業株式会社 車両の走行制御装置
JP2016137835A (ja) * 2015-01-28 2016-08-04 本田技研工業株式会社 車両用走行制御装置
JP6355780B1 (ja) * 2017-03-08 2018-07-11 三菱電機株式会社 車両退避装置および車両退避方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728823B2 (ja) * 1996-09-03 2005-12-21 日産自動車株式会社 車両用走行制御装置
JP6442993B2 (ja) * 2014-11-07 2018-12-26 アイシン・エィ・ダブリュ株式会社 自動運転支援システム、自動運転支援方法及びコンピュータプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005309955A (ja) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd 前方道路対応制御装置
WO2015068249A1 (ja) * 2013-11-08 2015-05-14 株式会社日立製作所 自律走行車両、及び自律走行システム
JP2016088180A (ja) * 2014-10-31 2016-05-23 富士重工業株式会社 車両の走行制御装置
JP2016137835A (ja) * 2015-01-28 2016-08-04 本田技研工業株式会社 車両用走行制御装置
JP6355780B1 (ja) * 2017-03-08 2018-07-11 三菱電機株式会社 車両退避装置および車両退避方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136047B2 (ja) 2019-08-19 2022-09-13 株式会社デンソー 運転制御装置及び車両行動提案装置
JP2021030768A (ja) * 2019-08-19 2021-03-01 株式会社デンソー 運転制御装置及び車両行動提案装置
WO2021033464A1 (ja) * 2019-08-19 2021-02-25 株式会社デンソー 運転制御装置及び車両行動提案装置
JP2021084556A (ja) * 2019-11-28 2021-06-03 トヨタ自動車株式会社 車両制御システム及び車両制御方法
JP7259716B2 (ja) 2019-11-28 2023-04-18 トヨタ自動車株式会社 車両制御システム及び車両制御方法
US11472439B2 (en) 2019-11-28 2022-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle control system and vehicle control method
JP2021091265A (ja) * 2019-12-09 2021-06-17 本田技研工業株式会社 車両制御システム
JP7129964B2 (ja) 2019-12-09 2022-09-02 本田技研工業株式会社 車両制御システム
US11597320B2 (en) 2019-12-09 2023-03-07 Honda Motor Co., Ltd. Vehicle control system
CN113022473A (zh) * 2019-12-09 2021-06-25 本田技研工业株式会社 车辆控制系统
CN113022473B (zh) * 2019-12-09 2024-04-09 本田技研工业株式会社 车辆控制系统
CN114084153A (zh) * 2020-08-24 2022-02-25 丰田自动车株式会社 物体检测装置、物体检测方法以及物体检测用计算机程序
WO2022158262A1 (ja) * 2021-01-22 2022-07-28 株式会社小糸製作所 センサシステム、車両の制御方法および車両

Also Published As

Publication number Publication date
JPWO2019026469A1 (ja) 2019-12-12
JP6773911B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
US9902398B2 (en) Driving control device
KR101989102B1 (ko) 차량용 운전 보조 장치 및 그 제어 방법
US10137907B2 (en) Startup suggestion device and startup suggestion method
JP6460008B2 (ja) 自動運転装置
US11970158B2 (en) Driving assistance system, driving assistance device, and driving assistance method for avoidance of an obstacle in a traveling lane
JP6773911B2 (ja) 車両制御装置、車両制御方法、車両制御プログラム
JP5900448B2 (ja) 運転支援装置
CN114026008B (zh) 车辆的控制系统、车辆的控制方法以及存储介质
JP2016090274A (ja) 警報装置、警報システム及び携帯端末
KR20190018053A (ko) 차량 제어 장치 및 차량 제어 방법
US11873007B2 (en) Information processing apparatus, information processing method, and program
US11964668B2 (en) Vehicle travel control method and travel control device
JP7431546B2 (ja) 車両制御装置
US10909848B2 (en) Driving assistance device
JP3890996B2 (ja) 運転支援装置
JP2018132533A (ja) 警報装置、警報システム及び携帯端末
JP2021505458A (ja) 保護されていないターンの早期物体検出
JP2022060078A (ja) 運転支援装置
JP4225190B2 (ja) 車両運転支援装置
JP2021170165A (ja) 車両の走行制御装置
JP5892038B2 (ja) 運転支援装置
CN112937565B (zh) 自动驾驶车辆用信息提示装置
JP2010039603A (ja) 車両の走行安全装置
JP2017121851A (ja) 車両の走行制御装置
JP2017151704A (ja) 自動運転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841874

Country of ref document: EP

Kind code of ref document: A1