JP7223658B2 - 反応生成物製造装置及び反応生成物製造方法 - Google Patents

反応生成物製造装置及び反応生成物製造方法 Download PDF

Info

Publication number
JP7223658B2
JP7223658B2 JP2019136789A JP2019136789A JP7223658B2 JP 7223658 B2 JP7223658 B2 JP 7223658B2 JP 2019136789 A JP2019136789 A JP 2019136789A JP 2019136789 A JP2019136789 A JP 2019136789A JP 7223658 B2 JP7223658 B2 JP 7223658B2
Authority
JP
Japan
Prior art keywords
reaction product
product manufacturing
value
manufacturing apparatus
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019136789A
Other languages
English (en)
Other versions
JP2021020144A (ja
Inventor
貞夫 長谷川
弦 石川
正守 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2019136789A priority Critical patent/JP7223658B2/ja
Publication of JP2021020144A publication Critical patent/JP2021020144A/ja
Application granted granted Critical
Publication of JP7223658B2 publication Critical patent/JP7223658B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、静電噴霧を用いた反応生成物製造装置及び反応生成物製造方法に関する。
産業界の様々な用途及びニーズに合わせて、化合物の種々の物性及び特性を選択的に精密に制御する技術が求められている。例えば、ポリマー粒子、金属ナノ粒子の合成反応にあっては、粒子の大きさの分布を数ナノメートルから数マイクロメートルの特定の範囲に制御すること又は分子量を特定の分布に制御することにより、新たな機能特性を素材に付与しうる。逐次反応による化学物質の合成では、逐次反応過程を特定段階に精密に制御することで特定物質を高収率で獲得することができうる。
実用操作上における合成反応を制御する方法として、反応物質の量又は濃度、反応環境の温度、反応時間等の条件を管理、制御することがある。ごく一般的な反応生成物製造装置として、釜状の反応容器に第1物質の溶液と第2物質の溶液を投入して供給し、両溶液を混合して接触させることで合成反応を進行させることが行われている。この場合、容器外壁にジャケット又は容器内部にコイルを装備し熱媒を通すことで反応液の温度調整が行われている。加えて、反応容器内に配置された攪拌機によって混合することで、反応液の一様性の確保が試みられている。
しかしながら、第1物質と第2物質の2種類の溶液のかたまり(バルク)を容器内に投入して撹拌混合しようとする限り、容器内液の濃度分布や温度分布が生じることは避け難い。加えて、反応遂行に長時間を要することになり、精密な反応制御は困難である。この技術的限界を克服する装置として、静電噴霧を用いた反応生成物製造装置が提案されている(特許文献1)。特許文献1に記載の反応生成物製造装置の模式図を図1に示す。
図1に示す反応生成物製造装置101は、第1の物質R1と第2の物質R2を反応させることで、反応生成物を製造する装置である。反応生成物製造装置101は、第1の物質R1を含む第1の溶液L1の供給源であるシリンジポンプ116と、第1の溶液L1を噴出させるノズル110と、ノズル110の噴出口に対向するようにノズル110から離れた位置に、第2の物質R2を含む第2の溶液L2からなる液相P2を備える。反応生成物製造装置101は、導電性液体である第1の溶液L1及び第2の溶液L2の間に電源123によって電位差を付与することで静電噴霧を起こさせることを特徴とする。
反応生成物製造装置101においては、シリンジポンプ116が一定の流量で供給管112及び分岐配管113を介してノズル110に第1の溶液L1を供給する。次いで、静電噴霧作用によりノズル110の噴出口で発生した微小液滴Dを含む液滴群は、相互に同一の電荷を持つため、反発力により互いに分散して飛翔し、かつ反対電荷を持つ液相P2の界面Bに引っ張られていく。その結果、第1の物質R1を含む第1の溶液L1からなる微小液滴Dは、液相P2の界面Bに衝突して化学反応を起こさせることができる。一つ一つの微小液滴Dは、点とみなせるほどに非常に容量サイズが小さいため、周辺環境の影響を受け難く、かつ液滴内部の一様性が高い。そのため、界面Bに衝突した瞬間にほぼ化学反応を完結させることができる。これによりシャープで精密な反応制御が可能となり、特定物質を効率的に生成しうる。
国際公開第2016/031695号
しかしながら、反応生成物製造装置101の運転中においては、例えば、ノズル110が閉塞する等の静電噴霧の不具合が発生することがある。そのため、ノズル110の閉塞の有無を目視によって確認するためには、反応槽120の側壁面の材質を透明にする等の視認性を確保する措置を講じる必要が生じる。よって、反応槽120の内部の視認性が低く、ノズルの噴霧の状態を目視で確認できない場合にあっては、静電噴霧が正常に行われているかを確認できない。
加えて、反応生成物製造装置101の実用化を考慮すると、ノズル110の数を例えば、数十本以上に増やすことが想定される。しかし、静電噴霧のためのノズルの数が増え、ノズル同士の間隔が狭く密集した配置となった場合、複数のノズルのうち何本のノズルが閉塞しているかを視認等により推認することは、反応槽120の側壁面の材質が透明であっても困難である。
したがって、反応生成物製造装置101にあっては、ノズル110による第1の溶液L1の静電噴霧の状態を適切に把握することに改善の余地があった。
本発明は、静電噴霧を用いた反応生成物製造装置において、ノズルの閉塞等の静電噴霧の状態を容易に把握でき、静電噴霧が正常に行われているノズルの本数を速やかに検出できる反応生成物製造装置を提供する。
上記課題を解決するため、本発明の一態様では、従来の反応生成物製造装置において、下記の第1の監視機構及び下記の第2の監視機構のいずれか一方又は両方を付加することを提案する。
第1の監視機構は、下記電位差△V及び下記電流値Iのうちいずれか一方を設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値を監視する。
電位差△V:液相P2及びノズル間の電位差。
電流値I:電源を介して液相P2及びノズル間を流れる電流の電流値。
第2の監視機構は、下記圧力差△P及び下記流量Qのうちいずれか一方を設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値を監視する。
圧力差△P:ノズルに第1の溶液L1を供給する供給管内の液体の供給圧力Pと、ノズルの噴出口の出口圧力Pとの圧力差。
流量Q:ノズルに第1の溶液L1を供給する供給管内を流れる液体の流量。
ここで、反応生成物製造装置の運転条件の一例として、例えば、下記の(1)~(4)が挙げられる。
(1)電位差△V及び圧力差△Pを設定値とし、電流値Iを電位差△Vに従属的な変数とし、流量Qを圧力差△Pに従属的な変数とする運転条件。
(2)電位差△V及び流量Qを設定値とし、電流値Iを電位差△Vに従属的な変数とし、圧力差△Pを流量Qに従属的な変数とする運転条件。
(3)電流値I及び圧力差△Pを設定値とし、電位差△Vを電流値Iに従属的な変数とし、流量Qを圧力差△Pに従属的な変数とする運転条件。
(4)電流値I及び流量Qを設定値とし、電位差△Vを電流値Iに従属的な変数とし、圧力差△Pを流量Qに従属的な変数とする運転条件。
本発明の一態様において、例えば、上記の(1)を反応生成物製造装置の運転条件として適用できる。この場合、複数のノズルのうちあるノズルの内部が閉塞すると、閉塞したノズルの噴出口と界面Bとの間に流れる電流が弱くなる。そのため、電位差△Vが設定値であることから、装置全体の電気回路における電流値Iが減少する。同時に、あるノズルの内部が閉塞すると、閉塞したノズルの噴出口から噴出される微小液滴Dの量が少なくなり、界面Bに到達する微小液滴Dの総量は少なくなる。そのため、圧力差△Pが設定値であることから、流量Qは減少する。
以上より、電流値Iの減少及び流量Qの減少の少なくとも一方の発生を監視することで、ノズルの閉塞を容易かつ即座に検出できる。加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、電流値Iの減少量及び流量Qの減少量が大きくなる。よって、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
本発明の一態様において、例えば、上記の(2)を反応生成物製造装置の運転条件として適用できる。この場合、複数のノズルのうちあるノズルの内部が閉塞すると、閉塞したノズルの噴出口と界面Bとの間に流れる電流が弱くなる。そのため、電位差△Vが設定値であることから、装置全体の電気回路における電流値Iが減少する。同時に、あるノズルの内部が閉塞すると、噴出口から界面Bに到達する微小液滴Dの量は少なくなる。そのため、流量Qが設定値であることから、閉塞していない他のノズルにその分の液体が流れ、圧力差△Pが増加する。
以上より、電流値Iの減少及び圧力差△Pの増加の少なくとも一方の発生を監視することで、ノズルの閉塞を容易かつ即座に検出できる。加えて、閉塞したノズルの本数に応じて、電流値Iの減少量及び圧力差△Pの増加量が大きくなる。よって、この一態様においても、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
本発明の一態様において、例えば、上記の(3)を反応生成物製造装置の運転条件として適用できる。この場合、複数のノズルのうちあるノズルの内部が閉塞すると、閉塞したノズルの噴出口と界面Bとの間に流れる電流が弱くなる。そのため、電流値Iが設定値であることから、閉塞していない他のノズルに弱くなった分の電流が流れ、電位差△Vが増加する。同時に、あるノズルの内部が閉塞すると、界面Bに到達する微小液滴Dの量は少なくなる。そのため、圧力差△Pが設定値であることから、流量Qは減少する。
以上より、電位差△Vの増加及び流量Qの減少の少なくとも一方の発生を監視することで、ノズルの閉塞を容易かつ即座に検出できる。加えて、閉塞したノズルの本数に応じて、電位差△Vの増加量及び流量Qの減少量が大きくなる。よって、この一態様においても、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
本発明の一態様において、例えば、上記の(4)を反応生成物製造装置の運転条件として適用できる。この場合、複数のノズルのうちあるノズルの内部が閉塞すると、閉塞したノズルの噴出口と界面Bとの間に流れる電流が弱くなる。そのため、電流値Iが設定値であることから、閉塞していない他のノズルに弱くなった分の電流が流れ、電位差△Vが増加する。同時に、あるノズルの内部が閉塞すると、流量Qが設定値であることから、閉塞していない他のノズルにその分の液体が流れ、圧力差△Pが増加する。
以上より、電位差△Vの増加及び圧力差△Pの増加の少なくとも一方の発生を監視することで、ノズルの閉塞を容易かつ即座に検出できる。加えて、閉塞したノズルの本数に応じて、電位差△Vの増加量及び圧力差△Pの増加量が大きくなる。よって、この一態様においても、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
このように、本発明の課題の解決に必要な構成要件は、下記の要件(1)及び下記の要件(2)のいずれか一方又は両方である。
・要件(1):電位差△V及び電流値Iのうちいずれか一方を設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値を監視する。
・要件(2):圧力差△P及び流量Qのうちいずれか一方を設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値を監視する。
請求項1に記載の発明は、上述の構成要件を示したものである。
すなわち、請求項1に記載の発明は、第1の物質を含む第1の溶液を噴出させるノズルと、前記ノズルに前記第1の溶液を供給する供給管と、前記ノズルに対向して配置され、第2の物質を含む第2の溶液からなる液相P2と、前記液相P2の界面と前記ノズルとの間に電場を形成するための電源とを備え、前記ノズルと前記液相P2の間に電位差を与えることで前記ノズルの噴出口から静電噴霧された前記第1の溶液を含む微小液滴を、前記液相P2の界面に到達させて、前記第1の物質と前記第2の物質とを混合せしめて、前記第1の物質と前記第2の物質とを反応させる反応生成物製造装置において、下記の第1の監視機構及び下記の第2の監視機構のいずれか一方又は両方をさらに備える、反応生成物製造装置。
第1の監視機構:下記電位差△V及び下記電流値Iのうちいずれか一方を設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値を監視する監視機構。
電位差△V:前記液相P2及び前記ノズル間の電位差。
電流値I:前記電源を介して前記液相P2及び前記ノズル間を流れる電流の電流値。
第2の監視機構:下記圧力差△P及び下記流量Qのうちいずれか一方を設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値を監視する監視機構。
圧力差△P:供給管内の液体の供給圧力Pと前記噴出口の出口圧力Pとの圧力差。
流量Q:供給管内を流れる液体の流量。
請求項1に記載の発明によれば、ノズルの閉塞の有無を目視によって確認することが困難なほど反応槽の内部の視認性が低く、ノズルの噴霧状態を確認できない場合であったとしても、静電噴霧が正常に行われているかを容易にかつ即座に検出できる。加えて、反応生成物製造装置のノズルの数を数十本以上に増やした場合であっても、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
請求項2に記載のさらなる発明は、前記噴出口と前記液相P2の間に低誘電率液体からなる液相PLをさらに備える、請求項1に記載の反応生成物製造装置である。
請求項3に記載のさらなる発明は、前記ノズルの噴出口が、前記液相PLに接するか又は前記液相PL中に配置される、請求項2に記載の反応生成物製造装置である。
請求項2又は3に記載の発明によっても、請求項1に記載の発明と同様の効果を得ることができる。
本発明の反応生成物製造装置は、上述の第1の監視機構及び上述の第2の監視機構のいずれか一方又は両方を備える。そのため、第1の監視機構、第2の監視機構によって監視対象とされる値の変動の有無及び変動量を計測値の相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
その結果、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
従来の反応生成物製造装置の構成を示す模式図である。 本発明の適用対象となる反応生成物製造装置の形態例を比較して示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。 一実施形態に係る反応生成物製造装置の構成を示す模式図である。
本明細書において数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
以下、本発明を適用した一実施形態の反応生成物製造装置及び反応生成物製造方法について、図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
<反応槽内の相構成の違い及びノズルの位置の違いによる形態例>
本発明の適用対象となる静電噴霧を用いた反応生成物製造装置には、反応槽内の相構成の違い及びノズルの位置の構成の違いに基づき、例えば、以下に示す3つの形態例がある。
図2は、本発明の適用対象となる反応生成物製造装置の形態例として、反応槽内の相構成及びノズルの位置の構成を比較して示す模式図である。図2中の(2a)~(2c)の各形態例においては、反応物製造装置は、第1の物質R1を含む第1の溶液L1をノズル10から静電噴霧させ、第1の物質R1を含む微小液滴Dを界面Bに到達衝突させて、第1の物質R1と第2の物質R2とを接触混合せしめることで、第1の物質R1と第2の物質R2とを反応させる。
図2中の(2a)に示す形態例においては、反応槽20内には、導電性の液体である第2の溶液L2からなる第2の液相P2(以下、「液相P2」と記す。)と、気相PGとが形成されている。図2中の(2a)に示す形態例においては、ノズル10の噴出口11aは、液相P2と気相PGとの界面Bから上方に離れた位置の気相PGに配置されている。そして、ノズル10は、第1の溶液L1を微小液滴Dとして、気相PG中で噴出させる。
図2中の(2a)に示す形態例においては、噴出口11aの出口圧力Pは、気相PGの圧力Pと等しい。よって、圧力差△Pは、供給管12内の供給圧力Pと気相PGの圧力Pとの圧力差である。
ここで、反応槽20が密閉系ではなく大気開放となっている場合、気相PGの圧力Pは、大気圧Pと等しい。よってこの場合、圧力差△Pは、供給管12内の供給圧力Pと大気圧Pとの圧力差である。
図2中の(2b)に示す形態例においては、反応槽20内には、液相P2と、低誘電率液体LLからなる液相PL(以下、「液相PL」と記す。)とが形成されている。液相PLは、液相P2の上方に液相P2と接し、液相P2と2相分離した状態で形成される。図2中の(2b)に示す形態例においては、ノズル10の噴出口11aは、液相P2と液相PLとの界面Bから上方に離れた位置の液相PLに配置されている。そして、ノズル10は、第1の溶液L1を微小液滴Dとして、液相PL中で噴出させる。
図2中の(2b)に示す形態例においては、噴出口11aの出口圧力Pは、気相PGの圧力Pに噴出口11aが配置される深さにおける液相PLの液深圧△Pが加算された値となる。
ここで、液深圧△Pは、液深と液密度の乗算によって算定され、ノズルの静電噴霧の状況に全く影響されない固定値である。よって、供給管12内の供給圧力Pと気相PGの圧力Pとの圧力差を圧力差△Pとし、圧力差△Pを設定値又は監視の対象とすることで本発明の目的を達成できる。
さらに、反応槽20が密閉系ではなく大気開放となっている場合、気相PGの圧力Pは、大気圧Pと等しい。よってこの場合、圧力差△Pは、供給管12内の供給圧力Pと大気圧Pとの圧力差である。この圧力差△Pを設定値又は監視の対象とすることでも本発明の目的を達成できる。
図2中の(2c)に示す形態例においては、反応槽20内には、液相P2と液相PLと気相PGとがこの順に形成されている。図2中の(2c)に示す形態例においては、ノズル10の噴出口11aは、液相PLから液相P2と反対側に離れた位置の気相PGに配置されている。そして、ノズル10は、第1の溶液L1を微小液滴Dとして、気相PG中で噴出させる。
図2中の(2c)に示す形態例においては、噴出口11aの出口圧力Pは、気相PGの圧力Pと等しい。よって、圧力差△Pは、供給管12内の供給圧力Pと気相PGの圧力Pとの圧力差である。
ここで、反応槽20が密閉系ではなく大気開放となっている場合、気相PGの圧力Pは、大気圧Pと等しい。よってこの場合、圧力差△Pは、供給管12内の供給圧力Pと大気圧Pとの圧力差である。
図2中の(2b)及び(2c)に示す形態例においては、噴出口11aは液相PLの上面に接して配置されてもよい。液相PLの上面は、界面Bと平行であり、界面Bと対向する面である。
低誘電率液体LLは、第1の溶液L1及び第2の溶液L2と相溶しない有機溶剤系を構成できる液体の有機化合物が好ましく、非水溶性の有機溶媒がより好ましい。
そして、低誘電率液体LLの比誘電率は、第1の溶液L1及び第2の溶液L2の比誘電率より低いことが好ましい。低誘電率液体LLの比誘電率は、25以下が好ましく、20以下がより好ましく、15以下がさらに好ましく、10以下が特に好ましく、5以下が最も好ましい。
低誘電率液体LLの具体例としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン等のノルマルパラフィン系炭化水素;イソオクタン、イソデカン、イソドデカン等のイソパラフィン系炭化水素;シクロヘキサン、シクロオクタン、シクロデカン、デカリン等のシクロパラフィン系炭化水素、流動パラフィン、ケロシン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族系溶媒;クロロホルム、四塩化炭素等の塩素系溶媒;パーフルオロカーボン、パーフルオロポリエーテル、ハイドロフルオロエーテル等のフッ素系溶媒;1-ブタノール、1-ペンタノール、1-オクタノール等のアルコール系溶媒;並びにこれらの2種以上を含む混合物が例示される。
市販のイソパラフィン系炭化水素の具体例としては、出光興産株式会社製のIPソルベント1016、IPクリーンLX(登録商標)、丸善石油化学株式会社製のマルカゾールR、エクソンモービル社製のアイソパーH(登録商標)、アイソパーE(登録商標)、アイソパーL(登録商標)等が例示される。
ここで、図2中の(2a)~(2c)の各形態例においては説明の便宜上、第1の監視機構及び第2の監視機構の図示を省略した。以下の各実施形態の説明においては、図2中の(2a)に相当する形態例を一例に説明するが、本発明は、図2中の(2a)に相当する形態例に限定されない。すなわち、本発明は、図2中の(2a)~(2c)に示すいずれの形態例にも適用可能である。
以下、本発明の第1~第12の実施形態について順に説明する。
各実施形態の反応生成物製造装置は、下記の第1の監視機構及び下記の第2の監視機構のいずれか一方又は両方を備える。
第1の監視機構:下記電位差△V及び下記電流値Iのうちいずれか一方を設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値を監視する監視機構。
電位差△V:液相P2及びノズル間の電位差。
電流値I:電源を介して液相P2及びノズル間を流れる電流の電流値。
第2の監視機構:下記圧力差△P及び下記流量Qのうちいずれか一方を設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値を監視する監視機構。
圧力差△P:供給管内の液体の供給圧力Pとノズルの噴出口の出口圧力Pとの圧力差。
流量Q:供給管内を流れる液体の流量。
圧力差△Pは、ノズルが静電噴霧ノズルであることから、液体のノズルへの入口における供給圧力Pとノズルの出口における出口圧力Pの圧力差として定義している。ただし、実用上は大気圧P又は反応槽内の気相PGの圧力Pに対する供給圧力Pの圧力差を圧力差△Pとして扱うこともできる。
表1は、各実施形態の反応生成物製造装置において電位差△V、電流値I、圧力差△P、流量Qの各値が、設定値であるか、監視対象であるか又は設定値及び監視対象のいずれでもないかを表示している。
例えば、表1において第1の実施形態の行で、電位差△V及び圧力差△Pの欄に「設定値」と記載されているが、これは、第1の実施形態において電位差△V及び圧力差△Pが設定値であり、一定の値で制御していることを意味する。また、流量Qの欄に「監視対象」と記載されているが、これは、第1の実施形態において流量Qの値の減少を監視対象としていること意味する。そして、電流値Iの欄に「-」と記載されているが、これは、第1の実施形態において電流値Iの値が監視対象でないことを意味する。
Figure 0007223658000001
<第1の実施形態>
以下、第1の実施形態について、図3を参照して説明する。図3は、第1の実施形態に係る反応生成物製造装置1Aの構成を示す模式図である。
図3に示すように、反応生成物製造装置1Aは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源23と第2の監視機構40を備える。そして、反応生成物製造装置1Aは、第1の監視機構を備えない。
反応生成物製造装置1Aにおいては、気相PG、液相P2が界面Bを境界面として2相分離した状態で重なっている。
液相P2は、複数のノズル10a,10b,10c,10dのそれぞれに対向して配置されている。そして、液相P2は、第2の物質R2を含む第2の溶液L2からなる相である。気相PGには複数のノズル10a,10b,10c,10dが配置されている。
反応生成物製造装置1Aは、第1の物質R1と第2の物質R2とを反応させ、反応生成物を製造する装置である。
第1の物質R1は、第1の溶液L1に溶解している。第2の物質R2は、第2の溶液L2に溶解している。ただし、第1の物質R1の一部は、第1の溶液L1に分散していてもよい。同様に、第2の物質R2の一部は、第2の溶液L2に分散していてもよい。第1の溶液L1及び第2の溶液L2は、互いに相溶であることが好ましい。
供給管12は、複数のノズル10a,10b,10c,10dのそれぞれに第1の溶液L1を供給する。供給管12は、第1の端部が第1の溶液L1の供給源(図示略)と接続され、第2の端部が分岐配管13と接続されている。ここで、分岐配管13は、複数のノズル10a,10b,10c,10dのそれぞれと接続されている。そのため、供給管12は、複数のノズル10a,10b,10c,10dのそれぞれに第1の溶液L1を供給できる。
分岐配管13は、分岐部分13aと分岐部分13dとに分岐した第1の端部と、分岐部分13bと分岐部分13cとに分岐した第2の端部と本体部分13eとを有する。本体部分13eは、分岐配管13の第1の端部と分岐配管13の第2の端部との間の配管部分である。分岐配管13は、分岐部分13aと分岐部分13bと分岐部分13cと分岐部分13dと本体部分13eとを有するとも言える。
分岐配管13は、本体部分13eの部分で供給管12と接続されている。また、分岐部分13aはノズル10aと接続され、分岐部分13bはノズル10bと接続され、分岐部分13cはノズル10cと接続され、分岐部分13dはノズル10dと接続されている。よって、分岐配管13は、供給管12を介して供給される第1の溶液L1を、分岐部分13a,13b,13c,13dのそれぞれを介して、ノズル10a,10b,10c,10dのそれぞれに供給できる。
複数のノズル10a,10b,10c,10dのそれぞれは、第1の物質R1を含む第1の溶液L1を噴出させる。ノズル10a,10b,10c,10dは、第1の溶液L1を静電噴霧可能に構成されたエレクトロスプレーノズルである。
ノズル10aは、分岐部分13aと接続されている。そのため、ノズル10aには供給管12、本体部分13e及び分岐部分13aをこの順に経由して第1の溶液L1が供給される。
ノズル10bは、分岐部分13bと接続されている。そのため、ノズル10bには供給管12、本体部分13e及び分岐部分13bをこの順に経由して第1の溶液L1が供給される。
ノズル10cは、分岐部分13cと接続されている。そのため、ノズル10cには供給管12、本体部分13e及び分岐部分13cをこの順に経由して第1の溶液L1が供給される。
ノズル10dは、分岐部分13dと接続されている。そのため、ノズル10dには供給管12、本体部分13e及び分岐部分13dをこの順に経由して第1の溶液L1が供給される。
このように、複数のノズル10a,10b,10c,10dのそれぞれは、供給管12及び分岐配管13を介して第1の溶液L1の供給源(図示略)と接続されている。
本発明では、内径が非常に小さいノズルの部分における大きな液流動圧損を計測する機能が必要である。そのためには、ノズルに連なる供給管12及び分岐配管13の流動圧損が相対的に無視できる程度に微小となるよう配管径を大きくしておくことが望ましい。
複数のノズル10a,10b,10c,10dのそれぞれは、液相P2と対向して配置される噴出口11a,11b,11c,11dを有する。噴出口11a,11b,11c,11dは、液相P2と気相PGとの界面Bから上方に離れた位置の気相PGに配置されている。複数のノズル10a,10b,10c,10dのそれぞれによる静電噴霧によって第1の溶液L1からなる微小液滴Dが、噴出口11a,11b,11c,11dのそれぞれから静電噴霧される。
例えば、噴出口11a,11b,11c,11dは、界面Bに対して垂直方向に静電噴霧するように配向されていると好ましい。
噴出口11a,11b,11c,11dと界面Bとの間の各距離は、電場の強度及び静電噴霧によって生成する微小液滴Dの断片化プロセスを考慮して、最適化することが好ましい。
反応生成物製造装置1Aにおいては、複数のノズル10a,10b,10c,10dの材質は、金属、合金等の導電性の材料である。この場合、図3に示すように、複数のノズル10a,10b,10c,10dのそれぞれと電源23の正電位側とを電気的に接続することで、複数のノズル10a,10b,10c,10dそのものを正電極として使用可能である。これにより、複数のノズル10a,10b,10c,10dと電極21(負電極)との間に電位差を付与できる。
ただし、本発明においてノズルの材質は特に限定されない。ノズルの材質は、ガラス、樹脂、セラミック等の絶縁性の材料でもよい。ガラス、樹脂、セラミック等の絶縁性の材料を使用する場合、ノズル内または分岐配管13、供給管12の管内に電極を設ける必要がある。ガラス、樹脂、セラミック等の材料を使用する場合においては、管内に設けられた電極と電源23とを電気的に接続することで、ノズルの先端から流出する液と界面Bとの間に静電噴霧を発生させるための電位差を付与できる。
供給ポンプ14は、供給管12に設けられている。供給ポンプ14は、後述の圧力制御調節計41と制御信号で接続されている。これにより、供給ポンプ14は、圧力差△Pが設定値として一定となるように制御された供給液量で第1の溶液L1を複数のノズル10a,10b,10c,10dに供給できる。
反応槽20は、液相P2を収容する容器である。反応生成物製造装置1Aにおいては、反応槽20が気相PGをさらに収容している。そのため、反応槽20内には液相P2と気相PGとが形成されている。液相P2は、複数のノズル10a,10b,10c,10dに対向して収容され、気相PGは、液相P2の上方で反応槽20内に収容されている。
電極21は、液相P2の界面Bにおける第2の溶液L2と複数のノズル10a,10b,10c,10dの各噴出口における第1の溶液L1との間で電場を形成するための電極である。電極21は液相P2に配置されている。これにより、電極21は液相P2の全体に通電できる。
電極21は、界面Bにおける第2の溶液L2と複数のノズル10a,10b,10c,10dの各噴出口における第1の溶液L1との間に静電場を形成できる形態であれば特に限定されない。液相P2は、導電性の第2の溶液L2を含む。そのため、電極21に負電位が付与されると、液相P2の全体に通電し、液相P2に負電位が付与される。
反応生成物製造装置1Aにおいては、負電位が電極21に付与されているが、他の実施形態例においては電極21に付与される電位は、正電位でもよい。
電極21の形状は特に限定されない。電極21の形状としては、略プレート状、略リング形状、略筒形状、略メッシュ形状、略棒形状、略球形状、略半球形状等が例示される。
電極21が配置される位置は、液相P2内であれば特に限定されない。反応生成物製造装置1Aにおいては、液相P2内の底面付近に配置されている。ただし、他の実施形態例においては、電極21が反応槽20の内壁に配置されてもよく、複数のノズル10a,10b,10c,10dと対向するように配置されてもよい。
反応生成物製造装置1Aにおいては、電極21の数は一つであるが、他の実施形態例においては、ノズルの数に応じて電極の数を複数としてもよい。
電源23は、複数のノズル10a,10b,10c,10dと電極21との間に電位差を付与する。電源23としては高電圧電源が例示される。
反応生成物製造装置1Aにおいては、電源23は定電圧電源である。電源23は、正電位側と負電位側との間に一定の電位差を付与する電源である。これにより、電位差△Vを設定値とすることができる。
反応生成物製造装置1Aにおいては、電源23の正電位側が複数のノズル10a,10b,10c,10dと電気的に接続されている。そして、電源23の負電位側が電極21と電気的に接続されている。そのため、液相P2の全体が電極22を介して通電可能となり、負電位となる。その結果、複数のノズル10a,10b,10c,10dと液相P2の界面Bとの間に電場が形成される。
反応生成物製造装置1Aにおいては、複数のノズル10a,10b,10c,10dに正電位が付与され、電極21に負電位が付与されている。ただし、他の形態例においては、電極21に正電位が付与され、複数のノズル10a,10b,10c,10dに負電位が付与されてもよい。
反応生成物製造装置1Aは、複数のノズル10a,10b,10c,10dと電極21の間に電位差を与え、ノズルの先端液と界面Bの第2の溶液L2との間に電場を形成させることで、複数のノズル10a,10b,10c,10dから第1の溶液L1を微小液滴Dとして静電噴霧させる。反応生成物製造装置1Aは、気相PGと液相P2との界面Bに、複数のノズル10a,10b,10c,10dによる静電噴霧で生じる微小液滴Dを到達させて、第1の物質R1と第2の物質R2とを接触混合せしめて、第1の物質R1と第2の物質R2とを反応させる。その結果、第1の物質R1と第2の物質R2との化学反応が起き、反応生成物が生成する。反応生成物は、液相P2内で生成する。
一つ一つの微小液滴Dは、点とみなせるほどに非常に容量サイズが小さいため、周辺環境の影響を受け難く、かつ液滴内部の一様性が高い。そのため、界面Bに衝突した瞬間にほぼ化学反応を完結させることができる。
ここで、各ノズルの各噴出口における第1の溶液L1と、液相P2の界面Bにおける第2の溶液L2との間に静電場が形成されているため、下記の電気回路αにおいては、静電噴霧によって生じる微小液滴Dが帯電した状態で各ノズル10a,10b,10c,10dから液相P2に向かって界面Bに到達することで、液相P2の界面Bとの間に電流が流れ、電気回路αに電流が流れる。
電気回路α:電源23の正電位側から、複数のノズル10a,10b,10c,10d、液相P2、電極21及び電源23の順に経由して電源23の負電位側に向かって電流が流れる電気回路。
反応生成物製造装置1Aは、第2の監視機構40を備える。そして、反応生成物製造装置1Aは、第1の監視機構を備えない。ただし、反応生成物製造装置1Aは、定電圧電源である電源23を備えるため、電位差△Vが設定値である。そのため、電源23を介して液相P2及びノズル10a,10b,10c,10d間を流れる電流の電流値は、電位差△Vに従属的な変数となる。
電位差△Vは、液相P2及びノズル10a,10b,10c,10d間の電位差である。反応生成物製造装置1Aにおいては、必要に応じて電位差△Vを測定する電圧計を電気回路αに配置してもよい。
第2の監視機構40は、下記圧力差△P及び下記流量Qのうち圧力差△Pを設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値である流量Qの値を監視する。
圧力差△P:供給管12内の液体の供給圧力Pと各噴出口11a,11b,11c,11dの出口圧力Pとの圧力差。
流量Q:供給管12内を流れる液体の流量。
第2の監視機構40は、圧力制御調節計41と流量計42を有する。
圧力制御調節計41は、供給管12内の液体の供給圧力Pと反応槽20内の気相PGの圧力Pとの圧力差を測定する。液体に比べて気体の密度は非常に小さいため、高さによる静圧の差は無視できる。そのため、各ノズルの噴出口も含めて気相PG内のどこの圧力も同一であると見なせる。また、この反応槽20が密閉系ではなく大気開放となっている場合(すなわち、気相PGの圧力Pが大気圧Pと等しい場合)は、単に供給管12内の液圧と大気圧Pとの圧力差を計測することで、圧力制御調節計41はその機能を果たすことができる。
本実施形態例では各ノズルの噴出口は気相PGに配置されているが、他の実施形態例では図2の(2b)のように各ノズルの噴出口が液相PL中に配置されることがある。この場合、各ノズルの噴出口と気相PGの間には液深さによる静圧分の差異が生じることになるが、その差異は固定値であることから、状態変化、相対変化を監視するために圧力差△Pに注目する本発明の目的を達成できる。
圧力制御調節計41は、供給管12内の液体の供給圧力Pと気相PGの圧力との圧力差を測定する。ここで、気相PGの圧力は、ノズル10a,10b,10c,10dの各噴出口11a,11b,11c,11dの出口圧力Pと等しい。よって、圧力制御調節計41は圧力差△Pを測定できる。
圧力制御調節計41は供給ポンプ14と制御信号で接続されている。これにより、圧力制御調節計41は、圧力差△Pを設定値として一定の値に調節し、供給ポンプ14による供給液量を調節できる。
流量計42は、供給管12内を流れる液体の流量を測定する。すなわち、流量計42は流量Qを測定する。
反応生成物製造装置1Aにおいては、供給ポンプ14が圧力差△Pが一定値となるように第1の溶液L1を複数のノズル10a,10b,10c,10dのそれぞれに供給する。そのため、流量計42によって測定される流量Qは、圧力差△Pに従属的な変数となる。
第2の監視機構40は、圧力制御調節計41と流量計42を有するため、圧力差△Pを設定値として一定の値に制御したときに、流量Qの値を監視できる。
ここで、装置の運転中に、例えば、ノズル10aが閉塞した場合を一例に第2の監視機構40について説明する。
ノズル10aの内部が閉塞すると、閉塞したノズル10aの噴出口11aから噴出される微小液滴Dの量が少なくなり、界面Bに到達する微小液滴Dの総量は少なくなる。圧力差△Pが供給ポンプ14によって一定の値に制御されているため、供給管12内の流量Qが減少する。
よって、反応生成物製造装置1Aにおいては、流量Qの減少の発生を監視することで、複数のノズル10a,10b,10c,10dのうち、いずれかのノズルの閉塞を容易かつ即座に検出できる。
加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、流量Qの減少量が大きくなる。例えば、ノズル10aとノズル10bが閉塞した場合には、噴出口11bから静電噴霧されるはずの液体が噴出されなくなり、さらに流量Qが減少する。ここで、例えば、各ノズル10a,10b,10c,10dの各噴出口11a,11b,11c,11dの口径が一定の条件である場合等には、ノズル一本の閉塞による流量Qの減少量は一定の値となる。よって、反応生成物製造装置1Aにおいては、流量Qの減少量の相関関係に基づいて複数のノズル10a,10b,10c,10dのうち何本のノズルが閉塞しているかを推認できる。
次に、上述した反応生成物製造装置1Aを用いる、反応生成物製造方法について説明する。
まず、液相P2と複数のノズル10a,10b,10c,10dとの間に電源23によって電位差を付与する。そして、電位差が付与された複数のノズル10a,10b,10c,10dから第1の物質R1を含む微小液滴Dを気相PGで静電噴霧する。これにより、微小液滴Dは、複数のノズル10a,10b,10c,10dと液相P2との間の電位差による電場勾配に沿って気相PGを通って、液相P2に向かって移動し、気相PGと液相P2との界面Bに到達させられる。液相P2には第2の溶液L2に含まれる第2の物質R2が存在する。そのため、第2の物質R2と微小液滴Dに含まれる第1の物質R1とが反応し、反応生成物が生成する。
反応生成物製造装置1Aを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qの圧力差△Pを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である流量Qを第2の監視機構40によって監視する。
反応生成物の製造中に、第2の監視機構40を用いて、複数のノズル10a,10b,10c,10dのうちいずれかのノズルが閉塞しているか否かを推認する方法を説明する。反応生成物の製造中に、例えば、ノズル10aが閉塞した場合を一例に説明する。
ノズル10aの内部が閉塞すると、圧力差△Pが供給ポンプ14によって一定の値に制御されているため、噴出口11aから静電噴霧によって液相P2の界面Bに到達する微小液滴が少なくなり、その分流量Qが減少する。
よって、反応生成物製造装置1Aにおいては、第2の監視機構40によって流量Qの減少の発生を監視することで、複数のノズル10a,10b,10c,10dのうち、いずれかのノズルの閉塞を容易かつ即座に検出できる。
加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、流量Qの減少量が大きくなる。例えば、ノズル10aとノズル10bが閉塞した場合には、噴出口11aに加えて噴出口11bから静電噴霧されるはずの液体も噴出されなくなり、さらに流量Qが減少する。ここで、例えば、各ノズル10a,10b,10c,10dの各噴出口11a,11b,11c,11dの口径が一定の条件である場合等には、ノズル一本の閉塞による流量Qの減少量は一定の値となる。よって、反応生成物製造装置1Aにおいては、流量Qの減少量の相関関係に基づいて複数のノズル10a,10b,10c,10dのうち何本のノズルが閉塞しているかを推認できる。
複数のノズル10a,10b,10c,10dから微小液滴Dを静電噴霧する際には、例えば、複数のノズル10a,10b,10c,10d側の電位を-30~30kVの範囲としてもよく、電極21側の電位も-30~30kVの範囲としてもよい。複数のノズル10a,10b,10c,10d及び電源23間の電位差を、反応生成物に適合するように調整してもよい。
複数のノズル10a,10b,10c,10d及び電源23間の電位差は、例えば、絶対値にて0.3~30kVの範囲とすることができる。反応生成物の安定性等を考慮すると、複数のノズル10a,10b,10c,10d及び電源23間の電位差の絶対値は、2.5kV以上が好ましく、さらに装置の安全性及びコストを考慮すると、10kV以下が好ましい。
複数のノズル10a,10b,10c,10dからの液滴の噴霧量は反応量に適合するように選択してもよい。例えば、反応量を100mLとする場合、第1の溶液L1の送液速度を0.001~0.1mL/min(分)の範囲となるように噴霧量を調整してもよい。
微小液滴Dを界面Bに到達させて反応させる際には、反応槽20の容量、電位差等を考慮して、複数のノズル10a,10b,10c,10dの噴出口11a,11b,11c,11dと界面Bとの間の距離を適宜調整してもよい。前記距離としては、例えば、1cm以上としてもよく、2cm以上としてもよい。そして、前記距離としては、例えば、容量が10Lであるビーカーを反応槽20として使用する場合、20cm以下としてもよい。
(第1の実施形態の作用効果)
以上説明した反応生成物製造装置1Aは第2の監視機構40を備える。そのため、第2の監視機構40によって監視対象とされる流量Qの値の減少及び減少量を、流量Qの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
よって反応生成物製造装置1Aによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第2の実施形態>
以下、第2の実施形態について、図4を参照して説明する。図4は、第2の実施形態に係る反応生成物製造装置1Bの構成を示す模式図である。
以下の第2の実施形態の説明において、第1の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図4に示すように、反応生成物製造装置1Bは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源23と第1の監視機構30と圧力制御調節計41を備える。そして、反応生成物製造装置1Bは、第2の監視機構を備えない。
反応生成物製造装置1Bにおいては、電位差△V及び圧力差△Pを設定値とする。
反応生成物製造装置1Bは、定電圧電源である電源23を備えるため、電位差△Vが設定値となる。電位差△Vは、液相P2及びノズル10a,10b,10c,10d間の電位差である。
反応生成物製造装置1Bは、圧力制御調節計41と供給ポンプ14を備えるため、圧力差△Pが設定値となる。圧力差△Pは、供給管12内の液体の供給圧力Pと各噴出口11a,11b,11c,11dの出口圧力Pとの圧力差である。
第1の監視機構30は、下記電位差△V及び下記電流値Iのうち電位差△Vを設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値である電流値Iを監視する。
電位差△V:液相P2及びノズル10a,10b,10c,10d間の電位差。
電流値I:電源23を介して液相P2及びノズル10a,10b,10c,10d間を流れる電流の電流値。
第1の監視機構30は、電流計31を有する。第1の監視機構30は、電流計31を有するため、電流値Iを監視できる。
電流計31は、電源23及びノズル10a,10b,10c,10dの間に配置されている。電流計31は電流値Iを測定する。電流値Iは、電気回路αにおいて、電源23を介して液相P2及びノズル10a,10b,10c,10d間を流れる電流の電流値である。
電流計31は、電気回路αにおいて電源23及びノズル10a,10b,10c,10dの間に配置されているが、電流計31の配置される位置は、電流値Iを測定できる形態であれば特に限定されない。例えば、他の実施形態例においては、電流計31は、電気回路αにおいて電極21及び電源23の間に配置されてもよい。
反応生成物製造装置1Bを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電位差△Vを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電流値Iを第1の監視機構30によって監視する。
ここで、装置の運転中に、例えば、ノズル10aが閉塞した場合を一例に第1の監視機構30について説明する。
ノズル10aの内部が閉塞すると、噴出口11aから静電噴霧によって液相P2の界面Bに到達する微小液滴が少なくなり、噴出口11aと界面Bとの間に流れる電流が弱くなる。
ここで各ノズル10a,10b,10c,10dは、電気回路αにおいて電源23と界面Bとの間で並列回路の一部を形成しているとみなすことができる。そのため、噴出口11aと界面Bとの間に流れる電流が弱くなると、電位差△Vが設定値であることから、電流計31で測定される電流値Iが減少する。
よって、反応生成物製造装置1Bにおいては、電流値Iの減少の発生を監視することで、複数のノズル10a,10b,10c,10dのうち、いずれかのノズルの閉塞を容易かつ即座に検出できる。
加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、電流値Iの減少量が大きくなる。例えば、ノズル10aとノズル10bが閉塞した場合には、噴出口11a及び界面Bの間の電流に加えて、噴出口11b及び界面Bの間の電流も弱くなる。
例えば、各ノズル10a,10b,10c,10dの電気抵抗値が一定の条件である場合等には、ノズル一本の閉塞による電流値Iの減少量は一定の値となる。よって、反応生成物製造装置1Bにおいては、電流値Iの減少量の相関関係に基づいて複数のノズル10a,10b,10c,10dのうち何本のノズルが閉塞しているかを推認できる。
(第2の実施形態の作用効果)
以上説明した反応生成物製造装置1Bは第1の監視機構30を備える。そのため、第1の監視機構30によって監視対象とされる電流値Iの値の減少及び減少量を、電流値Iの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
よって反応生成物製造装置1Bによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第3の実施形態>
以下、第3の実施形態について、図5を参照して説明する。図5は、第3の実施形態に係る反応生成物製造装置1Cの構成を示す模式図である。
以下の第3の実施形態の説明において、第1の実施形態又は第2の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図5に示すように、反応生成物製造装置1Cは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源23と第1の監視機構30と第2の監視機構40を備える。
反応生成物製造装置1Cにおいては、電位差△V及び圧力差△Pを設定値とする。
反応生成物製造装置1Cは、定電圧電源である電源23を備えるため、電位差△Vが設定値となる。そのため、電流値Iは、電位差△Vに従属的な変数となる。電位差△Vは、液相P2及びノズル10a,10b,10c,10d間の電位差である。
反応生成物製造装置1Cは、圧力制御調節計41と供給ポンプ14を備えるため、圧力差△Pが設定値となる。そのため、流量Qが圧力差△Pに従属的な変数となる。圧力差△Pは、供給管12内の液体の供給圧力Pと各噴出口11a,11b,11c,11dの出口圧力Pとの圧力差である。
反応生成物製造装置1Cを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電位差△Vを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電流値Iを第1の監視機構30によって監視する。
反応生成物製造装置1Cを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qの圧力差△Pを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である流量Qを第2の監視機構40によって監視する。
(第3の実施形態の作用効果)
以上説明した反応生成物製造装置1Cは、第1の監視機構30と第2の監視機構40を備える。そのため、第1の監視機構30によって監視対象とされる電流値Iの値の減少及び減少量を、電流値Iの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
加えて、第2の監視機構40によって監視対象とされる流量Qの値の減少及び減少量を、流量Qの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
このように反応生成物製造装置1Cによれば、電流値Iの減少及び流量Qの減少の両方の発生を監視することで、ノズルの閉塞を容易かつ即座に検出できる。加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、電流値Iの減少量及び流量Qの減少量が大きくなる。よって、複数のノズルのうち何本のノズルが閉塞しているかを推認できる。
したがって、反応生成物製造装置1Cによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数の検出を、第1の監視機構及び第2の監視機構をともに具備することで、より確実に速やかに検知できる。
<第4の実施形態>
以下、第4の実施形態について、図6を参照して説明する。図6は、第4の実施形態に係る反応生成物製造装置1Dの構成を示す模式図である。
以下の第4の実施形態の説明において、第1~第3の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図6に示すように、反応生成物製造装置1Dは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源23と第2の監視機構45を備える。そして、反応生成物製造装置1Dは、第1の監視機構を備えない。
供給ポンプ15は、供給管12に設けられている。供給ポンプ15は、後述の流量制御調節計46と制御信号で接続されている。これにより、供給ポンプ15は、流量Qが設定値として一定となるように制御された液量で第1の溶液L1を複数のノズル10a,10b,10c,10dに供給できる。
反応生成物製造装置1Dにおいては、電位差△Vを設定値とする。そのため、電流値Iは、電位差△Vに従属的な変数となる。電位差△Vは、液相P2及びノズル10a,10b,10c,10d間の電位差である。
第2の監視機構45は、下記圧力差△P及び下記流量Qのうち流量Qを設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値である圧力差△Pを監視する。
圧力差△P:供給管12内の液体の供給圧力Pと各噴出口11a,11b,11c,11dの出口圧力Pとの圧力差。
流量Q:供給管12内を流れる液体の流量。
第2の監視機構45は、流量制御調節計46と圧力計47を有する。
流量制御調節計46は、供給管12内を流れる液体の流量Qを測定する。流量制御調節計46は供給ポンプ15と制御信号で接続されている。これにより、流量制御調節計46は、流量Qを設定値として一定の値に調節し、供給ポンプ15による供給液量を調節できる。
圧力計47は、供給管12内の液体の供給圧力Pと気相PGの圧力との圧力差を測定する。ここで、気相PGの圧力は、ノズル10a,10b,10c,10dの各噴出口11a,11b,11c,11dの出口圧力Pと等しい。よって、圧力計47は圧力差△Pを測定できる。
反応生成物製造装置1Dにおいては、供給ポンプ15によって流量Qが一定値となるように第1の溶液L1を複数のノズル10a,10b,10c,10dのそれぞれに供給する。そのため、圧力計47によって測定される圧力差△Pは、流量Qに従属的な変数となる。
第2の監視機構45は、流量制御調節計46と圧力計47を有するため、流量Qを設定値として一定の値に制御したときに、圧力差△Pの値を監視できる。
ここで、装置の運転中に、例えば、ノズル10aが閉塞した場合を一例に第2の監視機構45について説明する。
ノズル10aの内部が閉塞すると、流量Qが供給ポンプ15によって一定の値に制御されているため、ノズル10b,10c,10d内を流れる液体の流量が相対的に多くなり、ノズル10b,10c,10d内の流動圧損が大きくなり、圧力差△Pが大きくなる。
よって、反応生成物製造装置1Dにおいては、圧力差△Pの増加の発生を監視することで、複数のノズル10a,10b,10c,10dのうち、いずれかのノズルの閉塞を容易かつ即座に検出できる。
加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、圧力差△Pの増加量が大きくなる。例えば、ノズル10aとノズル10bが閉塞した場合には、ノズル10c、ノズル10d内を流れる液体の流量が相対的に多くなり、ノズル10c内、ノズル10d内の流動圧損が大きくなり、圧力差△Pが大きくなる。
このように、ノズルの閉塞本数が増加するのにしたがい、圧力差△Pも大きくなる。よって、反応生成物製造装置1Dにおいては、圧力差△Pの増加量の相関関係に基づいて複数のノズル10a,10b,10c,10dのうち何本のノズルが閉塞しているかを推認できる。
反応生成物製造装置1Dを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qのうち流量Qを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である圧力差△Pを第2の監視機構45によって監視する。
(第4の実施形態の作用効果)
以上説明した反応生成物製造装置1Dは第2の監視機構45を備える。そのため、第2の監視機構45によって監視対象とされる圧力差△Pの値の増加及び増加量を、圧力差△Pの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
よって反応生成物製造装置1Dによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第5の実施形態>
以下、第5の実施形態について、図7を参照して説明する。図7は、第5の実施形態に係る反応生成物製造装置1Eの構成を示す模式図である。
以下の第5の実施形態の説明において、第1~第4の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図7に示すように、反応生成物製造装置1Eは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源23と第1の監視機構30と流量制御調節計46を備える。そして、反応生成物製造装置1Eは、第2の監視機構を備えない。
反応生成物製造装置1Eにおいては、電位差△V及び流量Qを設定値とする。
反応生成物製造装置1Eは、定電圧電源である電源23を備えるため、電位差△Vが設定値となる。そのため、電流値Iは電位差△Vに従属的な変数となる。
反応生成物製造装置1Eは、流量制御調節計46と供給ポンプ15を備えるため、流量Qが設定値となる。そのため、圧力差△Pは流量Qに従属的な変数となる。
反応生成物製造装置1Eを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電位差△Vを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電流値Iを第1の監視機構30によって監視する。
(第5の実施形態の作用効果)
以上説明した反応生成物製造装置1Eは第1の監視機構30を備えるため、反応生成物製造装置1Bと同様の作用効果を奏する。
よって反応生成物製造装置1Eによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第6の実施形態>
以下、第6の実施形態について、図8を参照して説明する。図8は、第6の実施形態に係る反応生成物製造装置1Fの構成を示す模式図である。
以下の第6の実施形態の説明において、第1~第5の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図8に示すように、反応生成物製造装置1Fは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源23と第1の監視機構30と第2の監視機構45を備える。
反応生成物製造装置1Fにおいては、電位差△V及び流量Qを設定値とする。
反応生成物製造装置1Fは、定電圧電源である電源23を備えるため、電位差△Vが設定値となる。そのため、電流値Iは電位差△Vに従属的な変数となる。
反応生成物製造装置1Fは、流量制御調節計46と供給ポンプ15を備えるため、流量Qが設定値となる。そのため、圧力差△Pは流量Qに従属的な変数となる。
反応生成物製造装置1Fを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電位差△Vを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電流値Iを第1の監視機構30によって監視する。
反応生成物製造装置1Fを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qのうち流量Qを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である圧力差△Pを第2の監視機構45によって監視する。
(第6の実施形態の作用効果)
以上説明した反応生成物製造装置1Fは、第1の監視機構30を備えるため反応生成物製造装置1Bと同様の作用効果を示す。同時に、反応生成物製造装置1Fは第2の監視機構45をさらに備えるため、反応生成物製造装置1Dと同様の作用効果を示す。
したがって、反応生成物製造装置1Fによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数の検出を、第1の監視機構及び第2の監視機構をともに具備することで、より確実に速やかに検知できる。
<第7の実施形態>
以下、第7の実施形態について、図9を参照して説明する。図9は、第7の実施形態に係る反応生成物製造装置1Gの構成を示す模式図である。
以下の第7の実施形態の説明において、第1~第6の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図9に示すように、反応生成物製造装置1Gは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源24と第2の監視機構40を備える。そして、反応生成物製造装置1Gは、第1の監視機構を備えない。
電源24は、定電流電源である。電源24は、正電位側と負電位側との間に一定の電流が流れるように、電位差を付与する電源である。これにより電流値Iが設定値とされる。
電源24の正電位側は各ノズル10a,10b,10c,10dと電気的に接続されている。電源24の負電位側は電極21と電気的に接続されている。これにより、各ノズル10a,10b,10c,10dと電極21との間に一定の電流を流すように電位差を付与することができる。
ここで、各ノズルの各噴出口における第1の溶液L1と、液相P2の界面Bにおける第2の溶液L2との間に静電場が形成されているため、下記の電気回路βにおいては、静電噴霧によって生じる微小液滴Dが各ノズル10a,10b,10c,10d、から液相P2に向かって界面Bに到達することで、液相P2の界面Bとの間に電流が流れ、電気回路βに電流が流れる。
電気回路β:電源24の正電位側から、複数のノズル10a,10b,10c,10d、液相P2、電極21及び電源24の順に経由して電源24の負電位側に向かって電流が流れる電気回路。
反応生成物製造装置1Gにおいては、電流値I及び圧力差△Pを設定値とする。
反応生成物製造装置1Gは、定電流電源である電源24を備えるため、電流値Iが設定値となる。そのため、電位差△Vは電流値Iに従属的な変数となる。
反応生成物製造装置1Gは、圧力制御調節計41と供給ポンプ14を備えるため、圧力差△Pが設定値となる。そのため、流量Qは圧力差△Pに従属的な変数となる。
反応生成物製造装置1Gを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qの圧力差△Pを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である流量Qを第2の監視機構40によって監視する。
(第7の実施形態の作用効果)
以上説明した反応生成物製造装置1Gは第2の監視機構40を備える。ここで、電流値Iと圧力差△Pは互いに独立の設定値であるから、電流値Iが設定値である場合においても、第2の監視機構40を備える反応生成物製造装置1Aと同様の作用効果を奏する。
よって反応生成物製造装置1Gによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第8の実施形態>
以下、第8の実施形態について、図10を参照して説明する。図10は、第8の実施形態に係る反応生成物製造装置1Hの構成を示す模式図である。
以下の第8の実施形態の説明において、第1~第7の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図10に示すように、反応生成物製造装置1Hは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源24と第1の監視機構35と圧力制御調節計41を備える。そして、反応生成物製造装置1Hは、第2の監視機構を備えない。
反応生成物製造装置1Hにおいては、電流値I及び圧力差△Pを設定値とする。
反応生成物製造装置1Hは、定電流電源である電源24を備えるため、電流値Iが設定値となる。そのため、電位差△Vは電流値Iに従属的な変数となる。
反応生成物製造装置1Hは、圧力制御調節計41と供給ポンプ14を備えるため、圧力差△Pが設定値となる。そのため、流量Qは圧力差△Pに従属的な変数となる。
第1の監視機構35は、下記電位差△V及び下記電流値Iのうち電流値Iを設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値である電位差△Vを監視する。
電位差△V:液相P2及びノズル10a,10b,10c,10d間の電位差。
電流値I:電源24を介して液相P2及びノズル10a,10b,10c,10d間を流れる電流の電流値。
第1の監視機構35は、電圧計36を有するため、電位差△Vを監視できる。
電圧計36は、電位差△Vを測定する。電圧計36は、電源24の正電位側及び負電位側とそれぞれ電気的に接続されている。
電圧計36は、上述の電気回路βにおいて液相P2及びノズル10a,10b,10c,10d間の電位差を測定する。
ここで、装置の運転中に、例えば、ノズル10aが閉塞した場合を一例に第1の監視機構35について説明する。
ノズル10aの内部が閉塞すると、噴出口11aから静電噴霧によって液相P2の界面Bに到達する微小液滴が少なくなり、噴出口11aと界面Bとの間に流れる電流値が弱くなる。ここで、電流値Iが電源24によって一定の値に制御されているため、噴出口11b,11c,11dのそれぞれと界面Bとの間に流れる電流が相対的に多くなる。よって、閉塞の前後において、ノズル10b,10c,10dの抵抗値は一定であるから、電位差△Vが相対的に増加する。
よって、反応生成物製造装置1Hにおいては、電位差△Vの増加の発生を監視することで、複数のノズル10a,10b,10c,10dのうち、いずれかのノズルの閉塞を容易かつ即座に検出できる。
加えて、閉塞したノズルの本数が複数である場合においては、閉塞したノズルの本数に応じて、電位差△Vの増加量が大きくなる。例えば、ノズル10aとノズル10bが閉塞した場合には、噴出口11a及び界面Bの間の電流に加えて、噴出口11b及び界面Bの間の電流も弱くなる。閉塞の前後において、ノズル10c,10dの抵抗値は一定であるから、電位差△Vの相対的な増加量が、ノズル10aの噴出口11aのみが閉塞している場合と比較して大きくなる。
よって、反応生成物製造装置1Hにおいては、電位差△Vの増加量の相関関係に基づいて複数のノズル10a,10b,10c,10dのうち何本のノズルが閉塞しているかを推認できる。
反応生成物製造装置1Hを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電流値Iを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電位差△Vを第1の監視機構35によって監視する。
(第8の実施形態の作用効果)
以上説明した反応生成物製造装置1Hは第1の監視機構35を備える。そのため、第1の監視機構35によって監視対象とされる電位差△Vの増加及び増加量を、電位差△Vの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
よって反応生成物製造装置1Hによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第9の実施形態>
以下、第9の実施形態について、図11を参照して説明する。図11は、第9の実施形態に係る反応生成物製造装置1Jの構成を示す模式図である。
以下の第9の実施形態の説明において、第1~第8の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図11に示すように、反応生成物製造装置1Jは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ14と反応槽20と電極21と電源24と第1の監視機構35と第2の監視機構40を備える。
反応生成物製造装置1Jにおいては、電流値I及び圧力差△Pを設定値とする。
反応生成物製造装置1Jは、定電流電源である電源24を備えるため、電流値Iが設定値となる。そのため、電位差△Vは電流値Iに従属的な変数となる。
反応生成物製造装置1Jは、圧力制御調節計41と供給ポンプ14を備えるため、圧力差△Pが設定値となる。そのため、流量Qは圧力差△Pに従属的な変数となる。
反応生成物製造装置1Jを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電流値Iを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電位差△Vを第1の監視機構35によって監視する。
反応生成物製造装置1Jを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qの圧力差△Pを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である流量Qを第2の監視機構40によって監視する。
(第9の実施形態の作用効果)
反応生成物製造装置1Jは、第1の監視機構35を備えるため、反応生成物製造装置1Hと同様の作用効果を示す。同時に、反応生成物製造装置1Jは第2の監視機構40をさらに備えるため、反応生成物製造装置1Gと同様の作用効果を示す。
したがって、反応生成物製造装置1Jによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数の検出を、第1の監視機構及び第2の監視機構をともに具備することで、より確実に速やかに検知できる。
<第10の実施形態>
以下、第10の実施形態について、図12を参照して説明する。図12は、第10の実施形態に係る反応生成物製造装置1Kの構成を示す模式図である。
以下の第10の実施形態の説明において、第1~第9の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図12に示すように、反応生成物製造装置1Kは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源24と第2の監視機構45を備える。そして、反応生成物製造装置1Kは、第1の監視機構を備えない。
反応生成物製造装置1Kにおいては、電流値I及び流量Qを設定値とする。
反応生成物製造装置1Kは、定電流電源である電源24を備えるため、電流値Iが設定値となる。
反応生成物製造装置1Kは、流量制御調節計46と供給ポンプ15を備えるため、流量Qが設定値となる。
反応生成物製造装置1Kを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qのうち流量Qを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である圧力差△Pを第2の監視機構45によって監視する。
(第10の実施形態の作用効果)
以上説明した反応生成物製造装置1Kは第2の監視機構45を備える。ここで、電流値Iと流量Qは互いに独立の設定値であるから、電流値Iが設定値である場合においても、反応生成物製造装置1Kは、第2の監視機構45を備える反応生成物製造装置1Dと同様の作用効果を奏する。そのため、第2の監視機構45によって監視対象とされる圧力差△Pの値の増加及び増加量を、圧力差△Pの相関関係に基づいて分析して経時変化を監視することで、噴霧状態が適切であるか、正常な静電噴霧が行われているか、異常発生を常時、自動的に検出できる。
よって反応生成物製造装置1Kによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第11の実施形態>
以下、第11の実施形態について、図13を参照して説明する。図13は、第11の実施形態に係る反応生成物製造装置1Lの構成を示す模式図である。
以下の第11の実施形態の説明において、第1~第10の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図13に示すように、反応生成物製造装置1Lは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源24と第1の監視機構35と流量制御調節計46を備える。そして、反応生成物製造装置1Lは、第2の監視機構を備えない。
反応生成物製造装置1Lにおいては、電流値I及び流量Qを設定値とする。
反応生成物製造装置1Lは、定電流電源である電源24を備えるため、電流値Iが設定値となる。そのため、電位差△Vは電流値Iに従属的な変数となる。
反応生成物製造装置1Lは、流量制御調節計46と供給ポンプ15を備えるため、流量Qが設定値となる。そのため、圧力差△Pは流量Qに従属的な変数となる。
反応生成物製造装置1Lを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電流値Iを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電位差△Vを第1の監視機構35によって監視する。
(第11の実施形態の作用効果)
以上説明した反応生成物製造装置1Lは第1の監視機構35を備えるため、反応生成物製造装置1Hと同様の作用効果を奏する。
よって反応生成物製造装置1Lによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数を速やかに検出できる。
<第12の実施形態>
以下、第12の実施形態について、図14を参照して説明する。図14は、第12の実施形態に係る反応生成物製造装置1Mの構成を示す模式図である。
以下の第12の実施形態の説明において、第1~第11の実施形態の構成と同一の構成については、同一の語及び同一の符号を用いてその説明を省略する。
図14に示すように、反応生成物製造装置1Mは、液相P2と気相PGと複数のノズル10a,10b,10c,10dと供給管12と分岐配管13と供給ポンプ15と反応槽20と電極21と電源24と第1の監視機構35と第2の監視機構45を備える。
反応生成物製造装置1Mにおいては、電流値I及び流量Qを設定値とする。
反応生成物製造装置1Mは、定電流電源である電源24を備えるため、電流値Iが設定値となる。そのため、電位差△Vは電流値Iに従属的な変数となる。
反応生成物製造装置1Mは、流量制御調節計46と供給ポンプ15を備えるため、流量Qが設定値となる。そのため、圧力差△Pは流量Qに従属的な変数となる。
反応生成物製造装置1Mを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、電位差△V及び電流値Iのうち電流値Iを設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値である電位差△Vを第1の監視機構35によって監視する。
反応生成物製造装置1Mを用いる、反応生成物の製造方法においては、第1の物質R1と第2の物質R2とを反応させる際に、圧力差△P及び流量Qのうち流量Qを設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値である圧力差△Pを第2の監視機構45によって監視する。
(第12の実施形態の作用効果)
以上説明した反応生成物製造装置1Mは、第1の監視機構35を備えるため、反応生成物製造装置1Lと同様の作用効果を示す。同時に、反応生成物製造装置1Mは第2の監視機構45をさらに備えるため、反応生成物製造装置1Kと同様の作用効果を示す。
したがって、反応生成物製造装置1Mによれば、反応槽の内部の視認性及び静電噴霧のためのノズルの本数にかかわらず、ノズルの閉塞等の静電噴霧の異常状態の発生の有無及び異常状態にあるノズルの本数の検出を、第1の監視機構及び第2の監視機構をともに具備することで、より確実に速やかに検知できる。
<用途>
以上説明した第1~第12の実施形態に係る反応生成物製造装置においては、反応生成物は特に限定されない。反応生成物の具体例としては、金属粒子、繊維粒子、樹脂粒子、有機結晶、半導体粒子、オリゴマー粒子、ポリマー粒子等の粒子;金属ナノ粒子、繊維ナノ粒子、樹脂ナノ粒子、有機ナノ結晶、半導体ナノ粒子、オリゴマーナノ粒子、ポリマーナノ粒子等のナノ粒子が例示される。
第1の溶液L1及び第2の溶液L2は、特に限定されない。第1の溶液L1及び第2の溶液L2の溶媒の具体例は、水、エタノール、N,N-ジメチルホルムアミド(DMF)、アセトン又はこれらの2種以上を含む混合物が例示される。第1の溶液L1及び第2の溶液L2は、水又は水と水溶性の溶媒(例えば、エタノール、DMF、アセトン等)とを含む混合溶液が好ましい。また、第1の溶液L1の溶媒と第2の溶液L2の溶媒は同種であると好ましい。
第1の溶液L1及び第2の溶液L2は、反応生成物に応じて適宜選択できる。
第1の物質R1及び第2の物質R2は特に限定されない。第1の物質R1及び第2の物質R2の具体例としては、セルロース、グアーガム、カラギーナン、アラビアガム、キサンタンガム、キトサン等の天然多糖類もしくはその誘導体(アセチルセルロース等);ポリビニルアルコール、ポリビニルアルコール、ポリアクリルニトリル、ポリアクリル酸、ポリフッ化ビニリデン、ポリエチレンオキシド、ポリエステル;金属塩等:これらの2種類以上を含む混合物が例示される。
第1の物質R1及び第2の物質R2は、反応生成物に応じて適宜選択できる。
第1の物質R1及び第2の物質R2の含有量は、特に限定されない。例えば、2~30質量%とすることができ、5~20質量%としてもよい。
(金属ナノ粒子の分散体の製造)
反応生成物が金属ナノ粒子の分散体である場合について説明する。
反応生成物が金属ナノ粒子である場合、第1の物質R1及び第2の物質R2として金属塩を選択する。金属塩の具体例としては、白金、金、銀、銅、錫、ニッケル、鉄、パラジウム、亜鉛、鉄、コバルト、タングステン、ルテニウム、インジウム、モリブテン等の一種もしくは複合系の塩;錯体化合物等;これらの2種以上を含む混合物が例示される。金属塩としては、硝酸塩、硫酸塩、塩化物等が例示される。
第1の物質R1が金属塩である場合、ノズル10から噴霧される液滴の表面張力を相対的に低くするために、第1の溶液L1がメタノール、エタノール、イソプロピルアルコール等の炭素数1~3の低級アルコール;アセトン、メチルエチルケトン等のケトン類;又はこれらの2種以上を含む混合物を含有していてもよい。また、第1の溶液L1中又は第2の溶液L2中における金属塩の含有量は、金属塩の溶解度、金属ナノ粒子の分散体の使用目的等に対応して適宜調整可能である。例えば、この金属塩の含有量は、0.01~5mol/Lの範囲が好ましい。
反応生成物が金属ナノ粒子である場合、第1の物質R1及び第2の物質R2のうちいずれか一方が還元剤であることが好ましい。還元剤は、特に限定されず、金属イオンに合わせて適宜選択可能である。還元剤の具体例としては、ヒドロキシメタンスルフィン酸、チオグリコール酸、亜硫酸;もしくはこれらのナトリウム塩、カリウム塩、アンモニウム塩等の塩;アスコルビン酸、クエン酸、ハイドロサルファイトナトリウム、チオ尿素、ジチオスレイトール、ヒドラジン類、ホルムアルデヒド類、ホウ素ハイドライド;又はこれらの2種以上を含む混合物が例示される。
金属ナノ粒子の分散体を製造する際、目的に応じて、添加剤を使用してもよい。添加剤としては、高分子樹脂分散剤、顔料、可塑剤、安定剤、酸化防止剤等、これらの2種以上を含む混合物等が例示される。
金属ナノ粒子の分散体の製造において、必要に応じて、各種分離手法によって、添加剤等の任意成分を低減させることができ、金属ナノ粒子の濃縮操作を実行してもよい。添加剤の低減及び副生成物の塩類の除去のための方法としては、遠心分離、限外ろ過、イオン交換樹脂、膜等を用いる方法が例示される。金属ナノ粒子の分散体は、所定の濃度に希釈又は濃縮可能であり、使用用途に応じて濃度を調整してもよい。
(その他の粒子の分散体の製造)
反応生成物が繊維粒子、樹脂粒子、有機結晶、半導体粒子、オリゴマー粒子、ポリマー粒子、繊維ナノ粒子、樹脂ナノ粒子、有機ナノ結晶、半導体ナノ粒子、オリゴマーナノ粒子、ポリマーナノ粒子等のその他の粒子の分散体である場合について説明する。
ラジカル重合にて得られる重合体の分散体を製造する場合、第1の物質R1及び第2の物質R2のうち一方をモノマーとし、第1の物質R1及び第2の物質R2のうち他方を重合開始剤としてもよい。すなわち、第1の物質R1及び第2の物質R2のうち一方を重合体の原料とする。ここで、第2の物質R2は、モノマーでも重合開始剤でもよいが、低誘電率液体LLに溶解可能なものを選択する。
モノマーの具体例としては、アクリル酸、メタクリル酸及びそのエステル類、スチレン類等が例示される。そして、重合開始剤は、2,2’‐アゾビスイソブチロニトリル、1,1’‐アゾビス(シクロヘキサン‐1‐カルボニトリル)等のアゾ系開始剤、ジメチル‐2,2’‐アゾビスイソブチレート等のノンシアン系開始剤等が例示される。
酸化重合にて得られる重合体の分散体を製造する場合、第1の物質R1及び第2の物質R2のうち一方をモノマーとし、第1の物質R1及び第2の物質R2のうち他方を酸化剤とする。この場合、モノマーの具体例としては、ピロール類、チオフェン類等が例示される。そして、酸化剤の具体例としては、過酸化水素、過硫酸等が例示される。
その他の粒子の分散体を製造する場合、第1の物質R1及び第2の物質R2の含有量は、2~30質量%以下の範囲とするとよい。さらに、かかる含有量は、5~20質量%以下の範囲とすると好ましい。
(中和反応又はイオン交換反応を利用する析出物の分散体の製造)
第1の物質R1と第2の物質R2とを中和反応又はイオン交換反応させる場合、反応生成物を析出させて、析出物の分散体を製造できる。この場合、第2の物質R2は、第2の溶液L2に含まれても、低誘電率液体LLに含まれてもよい。ただし、第2の物質R2は第2の溶液L2に含まれていることが好ましい。
以上、本発明のいくつかの実施形態を説明したが、本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。
1A~1H,1J~1M 反応生成物製造装置
10a,10b,10c,10d ノズル
12 供給管
20 反応槽
21 電極
23,24 電源
B 界面
D 微小液滴
LL 低誘電率液体
L1 第1の溶液
L2 第2の溶液
P2 第2の溶液からなる液相
PL 低誘電率液体からなる液相
R1 第1の物質
R2 第2の物質

Claims (5)

  1. 第1の物質を含む第1の溶液を噴出させるノズルと、
    前記ノズルに前記第1の溶液を供給する供給管と、
    前記ノズルに対向して配置され、第2の物質を含む第2の溶液からなる液相P2と、
    前記液相P2の界面と前記ノズルとの間に電場を形成するための電源とを備え、
    前記ノズルと前記液相P2の間に電位差を与えることで前記ノズルの噴出口から静電噴霧された前記第1の溶液を含む微小液滴を、前記液相P2の界面に到達させて、前記第1の物質と前記第2の物質とを混合せしめて、前記第1の物質と前記第2の物質とを反応させる反応生成物製造装置において、
    下記の第1の監視機構及び下記の第2の監視機構のいずれか一方又は両方をさらに備える、反応生成物製造装置。
    第1の監視機構:下記電位差△V及び下記電流値Iのうちいずれか一方を設定値として一定の値に制御したときに、電位差△V及び電流値Iのうち設定値としていない方の値を監視する監視機構。
    電位差△V:前記液相P2及び前記ノズル間の電位差。
    電流値I:前記電源を介して前記液相P2及び前記ノズル間を流れる電流の電流値。
    第2の監視機構:下記圧力差△P及び下記流量Qのうちいずれか一方を設定値として一定の値に制御したときに、圧力差△P及び流量Qのうち設定値としていない方の値を監視する監視機構。
    圧力差△P:前記供給管内の液体の供給圧力Pと前記噴出口の出口圧力Pとの圧力差。
    流量Q:前記供給管内を流れる液体の流量。
  2. 前記噴出口と前記液相P2の間に低誘電率液体からなる液相PLをさらに備える、請求項1に記載の反応生成物製造装置。
  3. 前記ノズルの噴出口が、前記液相PLに接するか又は前記液相PL中に配置される、請求項2に記載の反応生成物製造装置。
  4. 請求項1~3のいずれか一項に記載の反応生成物製造装置を用いる、反応生成物の製造方法であり、
    前記第1の物質と前記第2の物質とを反応させる際に、電位差△V及び電流値Iのうちいずれか一方を設定値として一定の値に制御しながら、電位差△V及び電流値Iのうち設定値としていない方の値を監視する、反応生成物製造方法。
  5. 請求項1~3のいずれか一項に記載の反応生成物製造装置を用いる、反応生成物の製造方法であり、
    前記第1の物質と前記第2の物質とを反応させる際に、圧力差△P及び流量Qのうちいずれか一方を設定値として一定の値に制御しながら、圧力差△P及び流量Qのうち設定値としていない方の値を監視する、反応生成物製造方法。
JP2019136789A 2019-07-25 2019-07-25 反応生成物製造装置及び反応生成物製造方法 Active JP7223658B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136789A JP7223658B2 (ja) 2019-07-25 2019-07-25 反応生成物製造装置及び反応生成物製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136789A JP7223658B2 (ja) 2019-07-25 2019-07-25 反応生成物製造装置及び反応生成物製造方法

Publications (2)

Publication Number Publication Date
JP2021020144A JP2021020144A (ja) 2021-02-18
JP7223658B2 true JP7223658B2 (ja) 2023-02-16

Family

ID=74574531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136789A Active JP7223658B2 (ja) 2019-07-25 2019-07-25 反応生成物製造装置及び反応生成物製造方法

Country Status (1)

Country Link
JP (1) JP7223658B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012669A (ja) 2000-06-28 2002-01-15 Amedix:Kk 微粒高分子ゲルの製造方法
WO2004074172A1 (ja) 2003-02-19 2004-09-02 Riken 固定化方法、固定化装置および微小構造体製造方法
JP2015083294A (ja) 2013-09-19 2015-04-30 ダイキン工業株式会社 成膜装置
WO2016031695A1 (ja) 2014-08-28 2016-03-03 国立研究開発法人産業技術総合研究所 分散体の製造方法及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012669A (ja) 2000-06-28 2002-01-15 Amedix:Kk 微粒高分子ゲルの製造方法
WO2004074172A1 (ja) 2003-02-19 2004-09-02 Riken 固定化方法、固定化装置および微小構造体製造方法
JP2015083294A (ja) 2013-09-19 2015-04-30 ダイキン工業株式会社 成膜装置
WO2016031695A1 (ja) 2014-08-28 2016-03-03 国立研究開発法人産業技術総合研究所 分散体の製造方法及び製造装置

Also Published As

Publication number Publication date
JP2021020144A (ja) 2021-02-18

Similar Documents

Publication Publication Date Title
Neumann et al. Liquid metal direct write and 3D printing: a review
JP5892708B2 (ja) エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法
JP6213888B2 (ja) 分散体の製造方法及び製造装置
EP2162290A1 (en) Continuous ink jet printing of encapsulated droplets
JP7223658B2 (ja) 反応生成物製造装置及び反応生成物製造方法
JP6842085B2 (ja) 分散体の製造方法
Plog et al. Electrostatic charging and deflection of droplets for drop-on-demand 3D printing within confinements
IL294169A (en) Ink containing fine metal particles
Johns et al. Ink-jet printing of high-molecular-weight polymers in oil-in-water emulsions
JPWO2017014108A1 (ja) 金属ナノ粒子分散液の製造装置及び製造方法並びに金属ナノ粒子担持体の製造方法、金属ナノ粒子、金属ナノ粒子分散液、金属ナノ粒子担持体
EP2160293B1 (en) A method of continuous ink jet printing
Li et al. Ink bridge control in the electrohydrodynamic printing with a coaxial nozzle
JP2021045730A (ja) 反応生成物製造装置及び反応生成物製造方法
JP2021020146A (ja) 反応生成物製造装置及び反応生成物製造方法
JP7288687B2 (ja) 反応生成物製造装置、反応生成物製造方法
JP2021020139A (ja) 反応生成物製造装置及び反応生成物製造方法
JP2009269220A (ja) 液滴吐出装置
JP2021049492A (ja) 反応生成物製造装置及び反応生成物製造方法
WO2006047453A2 (en) Process for high throughput electrohydrodynamic spraying of fluids
US20240009647A1 (en) Methods and apparatus for inducing reactions using electrostatics
TWI554345B (zh) 噴印用貴金屬觸媒墨水之製造方法及其貴金屬觸媒墨水
US11548277B2 (en) Printer with gas extraction of printing fluid from printing nozzle
Lefky et al. Ultra near-field electrohydrodynamic cone-jet breakup of self-reducing silver inks
Kovalchuk et al. Effect of moderate DC electric field on formation of surfactant-laden drops
CN111790916B (zh) 芯-壳纳米颗粒形式的铬金属混合物的制备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7223658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150