JP7216212B2 - 荷電粒子ビーム装置 - Google Patents

荷電粒子ビーム装置 Download PDF

Info

Publication number
JP7216212B2
JP7216212B2 JP2021538602A JP2021538602A JP7216212B2 JP 7216212 B2 JP7216212 B2 JP 7216212B2 JP 2021538602 A JP2021538602 A JP 2021538602A JP 2021538602 A JP2021538602 A JP 2021538602A JP 7216212 B2 JP7216212 B2 JP 7216212B2
Authority
JP
Japan
Prior art keywords
charged particle
detection
particle beam
sample
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021538602A
Other languages
English (en)
Other versions
JPWO2021024397A1 (ja
Inventor
一樹 池田
ウェン 李
源 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2021024397A1 publication Critical patent/JPWO2021024397A1/ja
Application granted granted Critical
Publication of JP7216212B2 publication Critical patent/JP7216212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/224Luminescent screens or photographic plates for imaging ; Apparatus specially adapted therefor, e.g. cameras, TV-cameras, photographic equipment, exposure control; Optical subsystems specially adapted therefor, e.g. microscopes for observing image on luminescent screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、荷電粒子ビーム装置に関する。
本技術の背景技術として、例えば特許文献1が開示されている。特許文献1には、試料から発生する電子のエネルギーを分離する手段と、複数の検出手段と、複数の検出手段の加算および減算処理する信号処理手段を用い、試料形状の情報と電位の情報を同時に取得し、1次電子の照射条件ごとの2次電子のフィルタリング条件を決定する電子ビーム装置が開示されている。
これにより、照射条件とフィルタリング条件の探索時間を短縮し、最適なコントラストを得ることができる。また、観察時に帯電をリアルタイムモニタリングし、測長値の高精度化と信頼性を向上させている。
特開2014-146526号公報
半導体製造プロセスにおいて、半導体基板(ウェハ)上に形成される回路パターンの微細化が急速に進んでおり、それらのパターンが設計通りに形成されているか否か等を監視するプロセスモニタリングの重要性が益々増加している。例えば、半導体製造プロセスにおける異常や欠陥等の不良の発生を早期に、あるいは事前に検知するために、各製造工程の終了時に、ウェハ上の回路パターン等の計測及び検査が行われる。
上記計測・検査の際、走査型電子ビーム方式を用いた電子顕微鏡装置(SEM)等の計測検査装置及び対応する計測検査方法においては、対象の試料であるウェハに対して電子ビームを走査(スキャン)しながら照射し、これにより発生する二次電子、試料で反射した電子等のエネルギーを検出する。そして、検出したエネルギーに基づく信号処理・画像処理を行うことで画像(計測画像や検査画像)を生成し、当該画像に基づいて試料に対する計測、観察、検査が行われる。
しかしながら、計測検査装置には、単位時間当たりの検査数量であるスループットの向上が要求されている。短時間に二次電子像を生成するためには、電子ビームの照射量を増加させる必要がある。電子ビームの照射量を増加させると、試料が帯電し二次電子像における画像コントラストの低下や、回路パターンのエッジ消失等が発生し、検査精度が低下するおそれがある。
特許文献1では、試料から発生する二次電子を、電子のエネルギーに応じて複数の検出器で分離して検出し、検出した信号に基づく演算を行うことで試料の帯電量の測定が行われる。特許文献1の方法では、試料から発生する二次電子の軌道によって検出器に到達する位置が異なり、帯電の有無によらず複数の検出器で二次電子が検出されるため、帯電量を誤検出する場合がある。一方、帯電量の誤検出を抑制するには限られた軌道の電子のみを検出対象にする必要があるが、信号量が低下するため、検査を行うのに十分な二次電子像を取得できなくなるおそれがある。
そこで、本発明は、スループットの向上と検査精度の維持を両立することが可能な荷電粒子ビーム装置を提供することを目的とする。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
本発明の代表的な実施の形態による荷電粒子ビーム装置は、試料に荷電粒子ビームを照射する荷電粒子照射源と、荷電粒子ビームに対応する検出領域を有し、試料に荷電粒子ビームが照射されることにより試料から発生する二次粒子が検出領域に到達すると到達位置に対応する電気信号を出力する検出器と、検出器から出力される電気信号に基づき、荷電粒子ビームによる試料の帯電量の測定と試料の検査画像の生成とを並行して行う信号処理ブロックと、を備える。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、本発明の代表的な実施の形態によれば、スループットの向上と検査精度の維持を両立することが可能となる。
本発明の実施の形態1に係るマルチビーム走査型電子顕微鏡を含む計測観察検査装置の構成の一例を示すブロック図である。 本発明の実施の形態1に係る検出器の構成の一例を示す図である。 本発明の実施の形態1における二次粒子の到達位置の分布の一例を示す図である。 本発明の実施の形態1に係る信号処理ブロックの構成の一例を示すブロック図である。 本発明の実施の形態1に係る帯電量の測定方法及び検査画像の生成方法の一例を示すフロー図である。 本発明の実施の形態2における二次粒子の到達位置の分布の一例を示す図である。 本発明の実施の形態2に係る帯電量の測定方法の一例を示すフロー図である。 本発明の実施の形態3に係る検出器の構成の一例を示す分解斜視図である。
以下、本発明の実施の形態を、図面を参照しつつ説明する。以下で説明する各実施の形態は、本発明を実現するための一例であり、本発明の技術範囲を限定するものではない。なお、実施例において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は、特に必要な場合を除き省略する。
(実施の形態1)
<計測観察検査装置の構成>
図1は、本発明の実施の形態1に係るマルチビーム走査型電子顕微鏡を含む計測観察検査装置の構成の一例を示すブロック図である。計測観察検査装置1は、マルチビーム走査型電子顕微鏡(荷電粒子ビーム装置)100と、情報処理装置120とを有する。
マルチビーム走査型電子顕微鏡100は、図1に示すように、電子銃(荷電粒子照射源)101、ビームスプリッタ102、偏向器116a、116b、116c、検出器106、検出回路108、帯電量測定・画像生成ブロック111、制御ブロック117等を備えている。これらのうち、検出回路108及び帯電量測定・画像生成ブロック111は、信号処理ブロック115を構成する。
電子銃101及びビームスプリッタ102の下方には、検査対象の試料104が配置されている。試料104は、図示しないステージに載置されている。電子銃101は、ビームスプリッタ102側へ向けて電子ビーム(荷電粒子ビーム)103を照射する。電子銃101は、複数の電子ビームを同時に照射することが可能である。
電子ビーム103は、ビームスプリッタ102を通過した後、偏向器によるビーム制御を受ける。電子ビーム103は、例えば、偏向器116aによる集光、偏向器116bによる走査、偏向器116cによるビーム量の調整(絞り)等の制御を受けた後、試料104に照射される。複数の電子ビーム103は、それぞれ異なる方向に照射される。電子ビーム103が試料104に照射されると、試料104から二次電子等の二次粒子105が発生する。なお、以下では、荷電粒子として電子が用いられる場合を例として説明している。電子は非常に軽い粒子であるので、電子を荷電粒子として用いることにより、ビームの制御が容易になる。ただし、電子以外の粒子を荷電粒子として用いることも可能である。
検出器106は、試料104から発生した二次粒子105を検出する装置である。図2は、本発明の実施の形態1に係る検出器の構成の一例を示す図である。図2には、二次粒子105の入射方向から見た検出器106の構成が示されている。図2に示すように、検出器106は、それぞれの電子ビームに対応する複数の検出領域300(300A-300D)を有する。検出領域300Aは第1の電子ビーム(電子ビームAとも称する)に対応し、検出領域300Bは第2の電子ビーム(電子ビームBとも称する)に対応している。検出領域300Cは第3の電子ビーム(電子ビームCとも称する)に対応し、検出領域300Dは第4の電子ビーム(電子ビームDとも称する)に対応している。それぞれの電子ビームにより発生する二次粒子105は、それぞれに対応する検出領域に到達し検出される。
それぞれの検出領域300(300A-300D)には、複数の検出素子301が二次元状に配列されている。それぞれの検出素子301は、例えば、光電子増倍管、フォトダイオード、フォトトランジスタ等の光-電気変換素子を備えている。電子ビーム103が照射されることにより試料104から発生する二次粒子105が検出領域300に到達すると、二次粒子105が到達した検出素子301は、到達位置に対応する電気信号を出力する。すなわち、それぞれの検出素子301は、入射した二次粒子105を光-電気変換素子によりアナログの電気信号107に変換し、電気信号107を検出回路108へ出力する。
具体的に述べると、それぞれの検出素子301の出力端は、対応する到達位置検出回路1081(図4)の入力端、及び対応する信号強度検出回路1082(図4)の入力端とそれぞれ接続される。検出素子301から出力される電気信号107は、到達位置検出回路1081及び信号強度検出回路1082へそれぞれ出力される。なお、到達位置検出回路1081及び信号強度検出回路1082の構成については、後で詳しく説明する。それぞれの検出素子301は、二次粒子105の到達位置とそれぞれ対応しており、検出素子301から出力される電気信号107は、到達位置と対応付けられる。
検出領域の個数は、特に限定されないが、電子ビーム103の本数と同数又はこれより多いほうが望ましい。また、図2の例では、各検出領域300に9個の検出素子301が二次元状に配列されているが、各検出領域300に含まれる検出素子301の個数は、2個以上あればよい。検出素子301が少なくとも2個あれば、同一の検出領域300における二次粒子105の到達位置の変化を検出することが可能である。なお、検出領域300の範囲は、二次粒子105の拡散範囲に応じて適宜設定されてもよい。
図3は、本発明の実施の形態1における二次粒子の到達位置の分布の一例を示す図である。図3には、1つの検出領域300における二次粒子105の到達位置P100、P101、P102がそれぞれ示されている。到達位置P100は図示で検出領域300の右上の検出素子301の領域に含まれ、到達位置P101は図示で検出領域300の中央の検出素子301の領域に含まれ、到達位置P102は図示で検出領域300の左下の検出素子301の領域に含まれる。これらはあくまで一例であり、二次粒子105は、同一の検出領域300内の他の検出素子301にも入射する。
二次粒子105の入射方向から見た検出器106の形状は、図2等に示す正方形等の四角形に限定されるものではなく、四角形以外の多角形や、円形や楕円等の曲線を含む形状でもよい。また、検出器106の形状は、平面に限定されるものではなく、中心に対し周辺が試料104に向けて湾曲した形状でもよい。また、検出素子301の配列は、図2等に示すような格子状に限定されるものではなく、例えばハニカム構造のように、隣接する検出素子の位置をずらした配列でもよい。
次に、信号処理ブロック115について説明する。図4は、本発明の実施の形態1に係る信号処理ブロックの構成の一例を示すブロック図である。図4には、検出器106、信号処理ブロック115及び情報処理装置120が示されている。信号処理ブロック115は、二次粒子105が検出器106に到達した後の信号処理を行う機能ブロックである。具体的に述べると、信号処理ブロック115は、電気信号107に基づき、電子ビーム103による試料104の帯電量の測定と、試料104の検査画像の生成と、を並行して行う。
ここでいう「並行」とは、試料104の帯電量の測定、及び試料104の検査画像の生成の各処理が、同じタイミングで開始され終了する場合だけでなく、これらの処理が一部の期間のみ並行して実行される場合も含まれる。具体的には、一方の処理の実行中に他方の処理が開始され、その後並行して実行される場合や、これらの処理が並行して実行されているとき、一方の処理が終了し、他方の処理が継続して実行される場合も含まれる。また、「並行」は、複数の処理で共通の処理リソース(例えば回路やプロセッサ)を時分割で分けて処理することも含めてもよく、処理リソースを複数用いて、複数の処理を並列に処理することも含めてもよい。
図4に示すように、信号処理ブロック115は、検出回路108、帯電量測定・画像生成ブロック111を備えている。検出回路108は、電気信号107に基づき二次粒子105の到達位置の検出及び信号強度の検出を行う機能ブロックである。検出回路108は、複数の到達位置検出回路1081と、複数の信号強度検出回路1082とを備えている。なお、図4では、1つの検出領域300に対応する回路構成のみ示されているが、実際にはすべての検出領域300に対応する回路がそれぞれ設けられている。
複数の到達位置検出回路1081は、それぞれの検出素子301に対応して設けられる。それぞれの到達位置検出回路1081の入力端は、対応する検出素子301の出力端と接続されている。すなわち、それぞれの到達位置検出回路1081は、対応する検出素子301と1対1で接続されている。到達位置検出回路1081は、電気信号107が入力されると二次粒子105の到達位置を検出し、対応する到達位置信号109を生成する。生成された到達位置信号109は、後述する帯電量測定・画像生成ブロック111の帯電量測定部1111へ出力される。
到達位置検出回路1081は、例えば電気信号107の電圧(振幅)と閾値電圧とを比較するコンパレータ回路を備えている。電気信号107の電圧が閾値電圧より大きい場合、到達位置検出回路1081は、電気信号107の入力を検知し、デジタル信号である到達位置信号109を生成し出力する。
二次粒子105の到達位置に関する情報は、到達位置信号109に含まれてもよい。また、到達位置検出回路1081と帯電量測定部1111とを接続する配線が、到達位置と対応付けられ、到達位置信号109が入力された配線により、二次粒子105の到達位置が特定されてもよい。
複数の信号強度検出回路1082は、それぞれの検出領域300に対応して設けられる。それぞれの信号強度検出回路1082の入力端は、対応する検出領域300に含まれる複数の検出素子301の出力端とそれぞれ接続されている。それぞれの信号強度検出回路1082は、対応する検出領域300における電気信号107の信号強度を検出し、対応する強度信号110を生成する。生成された強度信号110は、後述する帯電量測定・画像生成ブロック111の画像生成部1112へ出力される。
信号強度検出回路1082は、例えばアナログ-デジタルコンバータや複数の加算回路等で構成される。それぞれの信号強度検出回路1082は、対応する検出領域300に含まれるすべての検出素子301から出力される電気信号107の振幅の総和を、信号強度として算出する。そして、信号強度検出回路1082は、算出した信号強度を強度信号110として出力する。
このように、検出回路108では、それぞれの到達位置検出回路1081による二次粒子105の到達位置の検出と、それぞれの信号強度検出回路1082による各検出領域300による電気信号107の信号強度の測定とが並行して行われる。
帯電量測定・画像生成ブロック111は、試料104の帯電量の測定と、検査画像の生成(画像情報の生成)とを並行して行う機能ブロックである。帯電量測定・画像生成ブロック111は、帯電量測定部1111、画像生成部1112を備えている。帯電量測定・画像生成ブロック111は、例えばCPU等のプロセッサを備え、帯電量測定用プロクラムを実行することでプロセッサに帯電量測定部1111が実現され、画像生成用プログラムを実行することでプロセッサに画像生成部1112が実現される。また、帯電量測定部1111、画像生成部1112は、FPGA(Field-Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等で構成されてもよい。
帯電量測定部1111は、それぞれの到達位置検出回路1081から出力される到達位置信号109に基づき、試料104の帯電量の測定を行う。到達位置信号109は、例えば、図示しない記憶装置に格納されてもよい。帯電量測定部1111は、到達位置信号109を用いて二次粒子105の到達位置の変化を検出し、到達位置の変化から試料104の帯電量を測定する。例えば、帯電量測定部1111は、試料104が帯電していないときの到達位置と検出された到達位置とを比較することにより帯電量を測定する。帯電量測定部1111は、測定した帯電量を帯電量情報112として情報処理装置120へ出力する。
画像生成部1112は、それぞれの信号強度検出回路1082から出力される検出領域300ごとの強度信号110に基づき検査画像を生成する。具体的に述べると、画像生成部1112は、後述する情報処理装置120に検査画像を表示させるための画像情報113を検査画像として生成する。画像生成部1112は、生成した画像情報113を情報処理装置120へ出力する。
このように、帯電量測定・画像生成ブロック111では、帯電量測定部1111による帯電量の測定と、画像生成部1112による検査画像の生成とが並行して行われる。
制御ブロック117は、マルチビーム走査型電子顕微鏡100の動作に関わる制御を行う機能ブロックである。制御ブロック117は、例えばマルチビーム走査型電子顕微鏡100の各構成要素の動作の制御や、帯電量の測定及び検査画像の生成時における判定処理等を行う。
制御ブロック117は、例えばCPU等のプロセッサを備え、制御用プロクラムを実行することで実現される。あるいは、制御ブロック117は、FPGAやASIC等で構成されてもよい。なお、制御ブロック117は、全部又は一部が信号処理ブロック115と一体で構成されてもよい。また、制御ブロック117の機能は、全部又は一部が後述する情報処理装置120で実現されてもよい。
情報処理装置120は、試料104の帯電量や検査画像等の表示等を行う装置である。情報処理装置120には、例えばパソコンやタブレット端末等の表示機能を備えた情報処理装置が用いられる。また、情報処理装置120として、表示機能のみを備えた装置が用いられてもよい。
情報処理装置120の表示領域には、図1に示すように、ユーザインタフェース121が表示される。ユーザインタフェース121には、例えば、帯電量測定部1111から出力された帯電量情報112に基づく試料帯電量123、画像生成部1112から出力された画像情報113に基づく検査画像122等が表示される。また、ユーザインタフェース121には、これらの他、マルチビーム走査型電子顕微鏡100の設定内容、動作状況、操作パネル等が表示されてもよい。情報処理装置120は、ハードウェア又はハードウェアで実行されるプログラムを実行することにより動作する。
<帯電量の測定及び検査画像の生成>
次に、帯電量の測定及び検査画像の生成を並行して実施する方法を説明する。図5は、本発明の実施の形態1に係る帯電量の測定方法及び検査画像の生成方法の一例を示すフロー図である。
帯電量の測定及び検査画像の生成には、例えば図5のステップS100-S102、ステップS110-S113、ステップS120-S123、ステップS130の処理が行われる。これらのステップのうち、ステップS110-S113は試料帯電量の算出や表示に関わるステップである。一方、ステップS120-S123は、検査画像の生成や表示に関わるステップである。なお、説明の都合上、帯電量の測定と検査画像の生成とを別々に説明するが、図5に示すように、これらは並行して行われる。
まず、ステップS100では、情報処理装置120の操作パネル等からマルチビーム走査型電子顕微鏡100を操作し、試料104に対する計測条件及び検査領域の設定が行われる。本実施の形態では、例えば、検出器106のいずれか1つの検出領域300に対応する領域が検査領域として設定されるものとする。このように、1つの検出領域300に対応する領域のみが検査領域として設定される場合、シングルビームの電子顕微鏡を用いることが可能である。計測条件には、電子ビーム103の強度、照射時間、走査範囲、走査回数等の各種条件が含まれる。
ステップS101では、ステップS100において設定された各条件に基づき、試料104の検査領域に電子ビーム103が照射される。マルチビーム走査型電子顕微鏡100は、偏向器116b等により電子ビーム103を走査させながら、設定された検査領域に電子ビーム103を照射させる。
ステップS102では、試料104から発生した二次粒子105が、検出器106に到達し捕捉される。試料104が無帯電の状態であれば、二次粒子105の軌道は変化しないため、二次粒子105の到達位置は、対応する検出領域300内の所定の到達位置(例えば図3のP100)となる。
一方、電子ビーム103の照射により試料104が帯電すると、二次粒子105の軌道が変化する。その結果、二次粒子105の到達位置は、帯電量が増加するとともにP101、P102へと変化する。
《帯電量の測定》
ステップS110では、二次粒子105の到達位置の検出が行われる。二次粒子105を補足した検出素子301は、二次粒子105をアナログ信号である電気信号107に変換し、電気信号107を検出回路108へ出力する。検出素子301から出力された電気信号107は、対応する到達位置検出回路1081及び対応する信号強度検出回路1082にそれぞれ入力される。到達位置検出回路1081は、電気信号107の入力により二次粒子105の到達位置を検出し、対応する到達位置信号109を帯電量測定部1111へ出力する。
ステップS111では、到達位置信号109が記憶装置に格納される。電子ビーム103の照射中、記憶装置には複数の到達位置信号109が格納される。
到達位置信号109は、到達位置検出回路1081から出力された時刻、帯電量測定部1111に入力された時刻、又は記憶装置への格納時刻(以下これらを「検出時刻」と総称することがある)と関連付けて記憶装置に格納されてもよい。
ステップS112では、試料104の帯電量の測定が行われる。帯電量測定部1111は、記憶装置に格納された到達位置信号109に基づき二次粒子105の到達位置の変化を検出し、到達位置の変化に基づき試料104の帯電量を算出(測定)する。なお、帯電量測定部1111は、到達位置の時間変化を検出し、到達位置の時間変化に基づき帯電量の測定を行ってもよい。
帯電量の測定は、電子ビーム103の走査範囲ごとに実行される。すなわち、帯電量測定部1111は、設定された検査領域の全範囲で電子ビーム103が照射された後、帯電量の測定を行う。これにより、電子ビーム103の照射ムラの発生が抑えられ、検査領域における帯電量のムラが抑えられる。
また、帯電量の測定は、電子ビーム103の走査回数ごとに実行される。すなわち、帯電量測定部1111は、電子ビーム103が検査領域の全域を1回走査するごとに帯電量の測定を行う。言い換えれば、複数の走査回数が計測条件として設定されている場合、帯電量測定部1111は、走査回数分の帯電量測定を行う。これにより、短い間隔で電子ビーム103の照射時間を調整しながら帯電量を測定することが可能となる。
なお、必要に応じて、同一の検査領域に対し電子ビーム103を複数回照射した後、帯電量の測定が行われてもよい。これにより、電子ビームの照射時間を自在に変更しながら帯電量の測定を行うことが可能となる。
ステップS113では、帯電量測定部1111は、測定した帯電量を帯電量情報112として情報処理装置120へ出力する。情報処理装置120は、入力された帯電量情報112に基づき、ユーザインタフェース121の所定の領域に試料帯電量123を表示する。なお、ステップS112で測定された帯電量は、例えばユーザからの要求があった場合等、必要に応じて表示されるようにしてもよい。また、測定された帯電量は、記憶装置に格納されてもよい。
《検査画像の生成》
次に、検査画像の生成方法について説明する。ステップS120では、信号強度検出回路1082は、対応する検出領域300内の検出素子301から出力されるすべての電気信号107の電圧(振幅)をデジタル信号に変換する。
信号強度検出回路1082は、デジタル変換されたすべての電気信号107の電圧を加算し、対応する検出領域300内の信号強度を算出する。信号強度検出回路1082は、算出した信号強度を、デジタル信号である強度信号110として画像生成部1112へ出力する。
なお、本実施の形態では、1つの検出領域300に対応する検査領域のみに電子ビーム103が照射される。このため、電子ビーム103が照射されない領域に対応する他の検出領域300の信号強度は、ゼロに近い値又は非常に小さい値となっている。
次に、ステップS121では、画像生成部1112は、信号強度検出回路1082から入力される強度信号110に基づき、電子ビーム103が照射された領域の輝度階調画像を生成する。電子ビーム103による走査を行っている間、画像生成部1112は、複数の輝度階調画像を生成する。
ステップS122において、画像生成部1112は、ステップS121で生成された複数の輝度階調画像を並べることで検査領域の検査画像を生成する。なお、画像生成部1112は、ステップS100で設定された検査領域の検査画像のみを生成してもよいし、検査領域の周辺領域を含めた検査画像を生成してもよい。画像生成部1112は、生成した検査画像をデータ化した画像情報113を生成し、画像情報113を検査画像として情報処理装置120へ出力する。
帯電量の測定と同様に、検査画像の生成は、電子ビーム103の走査範囲ごとに実行されてもよい。また、検査画像の生成は、電子ビーム103の走査回数ごとに実行されてもよい。
ステップS123では、情報処理装置120又は情報処理装置120内部のプログラムは、画像生成部1112から入力される画像情報113に基づき、ユーザインタフェース121の所定の領域に検査画像122を表示する。
ステップS130では、例えば制御ブロック117は、ステップS100において設定された計測条件に基づき、帯電量の測定及び検査画像の生成を終了するか否かを判定する。制御ブロック117は、例えば設定された走査範囲で電子ビーム103が照射されたか、設定された走査回数分、帯電量の測定及び検査画像の生成が行われたか等に基づき判定を行う。
計測条件を満たしていると判断した場合(Yes)、制御ブロック117は、帯電量の測定及び検査画像の生成を終了させる。一方、計測条件を満たしていないと判断した場合(No)、制御ブロック117は、帯電量の測定及び検査画像の生成を継続させる。そして、計測条件を満たすまで、ステップS101-S130の処理が繰り返し実行される。
<本実施の形態による主な効果>
本実施の形態によれば、検出器106から出力される電気信号107に基づき、試料104の帯電量の測定と、試料104の検査画像の生成とが並行して行われる。この構成によれば、検査時間を短縮することができるので、スループットの向上と検査精度の維持を両立することが可能となる。
また、本実施の形態によれば、検出領域300には、複数の検出素子301が2次元状に配列されている。この構成によれば、二次粒子105の到達位置を正確に特定することが可能となる。
また、本実施の形態によれば、信号処理ブロック115は、複数の到達位置検出回路1081と、信号強度検出回路1082と、帯電量測定部1111と、画像生成部1112とを備えている。この構成によれば、機能ブロックごとにハードウェアのみの構成と、ハードウェア及びソフトウェアの構成と、を組み合わせることが可能となる。これにより、信号処理ブロック115を効率的に構成することが可能となる。
(実施の形態2)
次に、実施の形態2について説明する。本実施の形態では、複数の電子ビームを同時に照射した場合における、試料104の広範囲の帯電量(「グローバル帯電量」とも呼ぶ)と、試料104の局所的な帯電量(「ローカル帯電量」)とを測定する方法について説明する。なお、本実施の形態においても、帯電量の測定と検査画像の生成とが並行して行われる。
図6は、本発明の実施の形態2における二次粒子の到達位置の分布の一例を示す図である。図6には、4つの検出領域300A、300B、300C、300Dにおける二次粒子105の到達位置がそれぞれ示されている。到達位置P100A-P102Aは、第1方向の電子ビーム103に対応する検出領域300Aにおける到達位置を示している。到達位置P100B-P102Bは、第2方向の電子ビーム103に対応する検出領域300Bにおける到達位置を示している。到達位置P100C-P102Cは、第3方向の電子ビーム103に対応する検出領域300Cにおける到達位置を示している。到達位置P100D-P102Dは、第4方向の電子ビーム103に対応する検出領域300Dにおける到達位置を示している。
到達位置P100A-P100Dは図示で各検出領域300A-300Dの右上の検出素子301の領域に含まれ、到達位置P101A-P101Dは図示で各検出領域300A-300Dの中央の検出素子301の領域に含まれる。到達位置P102A-P102Cは図示で各検出領域300A-300Cの左下の検出素子301の領域に含まれる。そして、到達位置102Dは、図示で検出領域300Dの中央の検出素子301の領域に含まれる。なお、これらはあくまで一例である。
マルチビーム走査型電子顕微鏡100では、各方向(例えば第1方向-第4方向)における電子ビーム103に対する二次粒子105の到達位置の検出が並行して行われる。このため、試料104全体のグローバル帯電量が二次粒子105の到達位置に与える影響は、各方向の電子ビーム間でほぼ同等である。一方、試料104のローカル帯電量が二次粒子105の到達位置に与える影響は、電子ビームの方向ごとに異なる。このような状況を考慮して、グローバル帯電量及びローカル帯電量の測定が行われる。
図7は、本発明の実施の形態2に係る帯電量の測定方法の一例を示すフロー図である。まず、ステップS200では、図5のステップS100と同様、試料104に対する計測条件及び検査領域の設定が行われる。本実施の形態では、図6の検出領域300A-300Dに対応する領域が検査領域として設定されるものとする。すなわち、ここでは、同時に照射される複数の電子ビーム103により発生する二次粒子105の検出が並行して行われる。
この後のステップS201A-S205A、ステップS201B-S205B、ステップS201C-S205C、ステップS201D-S205Dは並行して実行される。
具体的に述べると、ステップS201A-S205Aは、第1方向の電子ビーム103の照射から検出領域300Aの帯電量の測定までを行うステップである。なお、図7では、第1方向の電子ビームは電子ビームAと表記されている。
ステップS201B-S205Bは、第2方向の電子ビーム103の照射から検出領域300Bの帯電量の測定までを行うステップである。なお、図7では、第2方向の電子ビームは電子ビームBと表記されている。
ステップS201C-S205Cは、第3方向の電子ビーム103の照射から検出領域300Cの帯電量の測定までを行うステップである。なお、図7では、第3方向の電子ビームは電子ビームCと表記されている。
ステップS201D-S205Dは、第4方向の電子ビーム103の照射から検出領域300Dの帯電量の測定までを行うステップである。なお、図7では、第4方向の電子ビームは電子ビームDと表記されている。
ステップS201A、S201B、S201C、S201Dでは、ステップS200で設定された計測条件や検査領域等の各種条件に応じて、試料104に第1方向-第4方向の電子ビーム103が同時に照査される。
ステップS202A、S202B、S202C、S202Dでは、電子ビーム103の照射により発生する二次粒子105の検出が並行して行われる。具体的に述べると、ステップS202Aでは、第1方向の電子ビーム103により試料104から発生した二次粒子105が、検出領域300Aの検出素子301に到達し捕捉される。ステップS202Bでは、第2方向の電子ビーム103により試料104から発生した二次粒子105が、検出領域300Bの検出素子301に到達し捕捉される。
ステップS202Cでは、第3方向の電子ビーム103により試料104から発生した二次粒子105が、検出領域300Cの検出素子301に到達し捕捉される。ステップS202Dでは、第4方向の電子ビーム103により試料104から発生した二次粒子105が、検出領域300Dの検出素子301に到達し捕捉される。
測定開始時、試料104は帯電していないので、検出領域300A、300B、300C、300Dにおける二次粒子105のそれぞれの到達位置は、例えば図6のP100A、P100B、P100C、P100Dである。電子ビーム103の照射により試料104が帯電し始めると二次粒子105の軌道が次第に変化し、検出領域300A、300B、300C、300Dにおける二次粒子105のそれぞれの到達位置は、例えば図6のP101A、P101B、P101C、P101Dへと変化する。さらに照射時間が経過すると、検出領域300A、300B、300C、300Dにおける二次粒子105のそれぞれの到達位置は、例えば図6のP102A、P102B、P102C、P102Dへと変化する。
ステップS203A、S203B、S203C、S203Dでは、各検出領域300A、300B、300C、300Dにおける二次粒子105の到達位置の検出が行われる。ステップS203A、S203B、S203C、S203Dにおける各処理は、図5のステップS110と類似している。各検出領域300A、300B、300C、300Dにおいて、二次粒子105を補足した検出素子301は、それぞれに対応する到達位置検出回路1081及び信号強度検出回路1082へ電気信号107を出力する。
各到達位置検出回路1081は、それぞれ対応する検出領域300A、300B、300C、300Dから電気信号107が入力されると、二次粒子105の到達位置を検出し、それぞれ対応する到達位置信号109を帯電量測定部1111へ出力する。
ステップS204A、S204B、S204C、S204Dでは、検出領域300A、300B、300C、300Dにおける到達位置信号109が記憶装置に格納される。ステップS204A、S204B、S204C、S204Dは、図5のステップS111と類似している。
ステップS205A、S205B、S205C、S205Dでは、試料104の帯電量の測定が行われる。帯電量測定部1111は、記憶装置に格納された到達位置信号109に基づき、検出領域300A、300B、300C、300Dごとに二次粒子105の到達位置の変化を検出し、到達位置の変化に基づき各検出領域300A、300B、300C、300Dにおける試料104の帯電量を算出(測定)する。各検出領域300A、300B、300C、300Dにおける帯電量の測定方法は、図5のステップS112と同様である。
ステップS206では、試料104のグローバル帯電量が算出される。帯電量測定部1111は、複数の検出領域300A、300B、300C、300Dにおいて測定された試料104の帯電量を加算平均して試料104の平均帯電量を算出する。このように算出された平均帯電量がグローバル帯電量である。
ステップS207では、各検出領域300A、300B、300C、300Dにおける試料104のローカル帯電量が算出される。帯電量測定部1111は、それぞれの検出領域300A、300B、300C、300Dにおいて測定された試料104の帯電量と、グローバル帯電量との差分を算出し、それぞれの検出領域300A、300B、300C、300Dに対応する試料104のローカル帯電量をそれぞれ算出する。
図6には、第1方法-第4方向に照射される4本の電子ビーム103に対応する検出領域300A、300B、300C、300Dにおいて、二次粒子105の到達位置の変化が例示されている。図6の例では、検出領域300A、300B、300Cにおける二次粒子105の到達位置の変化(P400A→P401A→P402A、P400B→P401B→P402B、P400C→P401C→P402C)の仕方は同様の傾向を示しているが、検出領域300Dにおける二次粒子の到達位置の変化(P400D→P401D→P402D)の仕方はこれらとは異なっている。
よって、電子ビーム103ごとに帯電量を測定した場合、第1方向の電子ビーム103、第2方向の電子ビーム103、第3方向の電子ビーム103が照射された部分の試料104の帯電量はほぼ同等であり、第4方向の電子ビーム103が照射された部分の試料104の帯電量は、これらと異なることが分かる。
したがって、試料104のうち、第1方向の電子ビーム、第2方向の電子ビーム、第3方向の電子ビームが照射された部分は、主にグローバル帯電していると言える。一方、第4方向の電子ビームが照射された部分の試料104は、グローバル帯電にローカル帯電が重畳した状態となっていると言える。
ステップS207の後、帯電量測定部1111は、図5のステップS113と同様に、測定したグローバル帯電量及びローカル帯電量を帯電量情報112として情報処理装置120へ出力し、グローバル帯電量及びローカル帯電量を試料帯電量123として表示させてもよい。また、グローバル帯電量及びローカル帯電量の測定と並行してそれぞれの検査領域における検査画像の生成も行われる。検査画像は、例えば検出領域ごとに生成される。
ステップS208では、図5のステップS130と同様、帯電量の測定及び検査画像の生成を終了するか否かが判定される。所定の計測条件を満たしている場合(Yes)、制御ブロック117は、帯電量の測定及び検査画像の生成を終了させる。一方、計測条件を満たしていない場合(No)、制御ブロック117は、帯電量の測定及び検査画像の生成を継続させる。そして、計測条件を満たすまで、ステップS201A-S205A、S201B-S205B、S201C-S205C、S201D-S205D、S206-S207の処理が繰り返し実行される。
なお、本実施の形態では、各検出領域300A、300B、300C、300Dにおいて測定された帯電量からグローバル帯電量及びローカル帯電量を測定しているが、これに限定されるものではない。実施の形態1に合わせて、図7のステップS206-S207を適宜省略してもよい。
<本実施の形態による主な効果>
本実施の形態によれば、試料104に対し複数の電子ビームを同時に照射される。この構成によれば、複数の検査領域における試料104の帯電量を同時に測定することが可能となる。また、検出領域ごとの検査画像を同時に生成することが可能となる。
また、本実施の形態によれば、各検出領域で測定された帯電量から試料104のグローバル帯電量及びローカル帯電量がそれぞれ測定される。この構成によれば、各検出領域において測定された帯電量と、グローバル帯電量との差分が明確となり、帯電量の偏りを容易に検出することが可能となる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態では、検出器の構成がこれまでの実施の形態とは異なる。具体的には、検出器に到達した二次粒子105が蛍光に変換され、蛍光が電気信号に変換される。
図8は、本発明の実施の形態3に係る検出器の構成の一例を示す分解斜視図である。図8に示すように、本実施の形態の検出器106は、シンチレータ層1061、ライトガイド層1062、蛍光検出層1063を備えている。図8では、シンチレータ層1061、ライトガイド層1062、蛍光検出層1063が、互いに分離された状態で示されている。
シンチレータ層1061には、後述する検出領域400を覆うように、複数のシンチレータ1061aが二次元状に配列されている。具体的に述べると、複数のシンチレータ1061aは、図1に示すように蛍光検出層1063の全面を覆うように配列されてもよいし、検出領域400のみ、あるいは検出領域400と検出領域400の周辺とを含めた領域のみを覆うように配列されてもよい。それぞれのシンチレータ1061aは、試料104から到達する二次粒子105を蛍光に変換し、蛍光をライトガイド層1062側へ出力する。
ライトガイド層1062には、後述する検出領域400を覆うように、複数のライトガイド1062aが二次元状に配列されている。具体的に述べると、複数のライトガイド1062aは、図1に示すように蛍光検出層1063の全面を覆うように配列されてもよいし、検出領域400のみ、あるいは検出領域400と検出領域400の周辺とを含めた領域のみを覆うように配列されてもよい。複数のライトガイド1062aは、複数のシンチレータ1061aのそれぞれの1対1で対応していることが望ましいが、これに限定されるものではない。
蛍光検出層1063は、ライトガイド層1062により導光された蛍光を電気信号に変換する機能ブロックである。蛍光検出層1063は、検出領域400を有し、検出領域400において蛍光が電気信号に変換される。具体的に述べると、検出領域400には、複数の蛍光検出素子1063aが2次元状に配列される。蛍光検出素子1063aは、ライトガイド層1062により導光された蛍光を電気信号に変換する。蛍光検出素子1063aは、電気信号を図1等に示す信号処理ブロック115へ出力する。
なお、図8には、4個の検出領域400(400A、400B、400C、400D)が示されている。検出領域400A、400B、400C、400Dは、例えば、第1方向-第4方向の電子ビーム103とそれぞれ対応して設けられる。蛍光検出層1063における検出領域400の個数は、4個より多くてもよいし、4個より少なくてもよい。
マルチビーム走査型電子顕微鏡100では、各方向(例えば第1-第4方向)に照射される電子ビーム103間の距離(すなわち、試料104における検査領域間の距離)によって、二次粒子105が到達する領域と、二次粒子105がほとんど到達しない領域とがある。
例えば、それぞれの電子ビーム103による試料104の検査領域が1μm四方の領域とし、検査領域間の距離が100μmとする。この場合、各検査領域から発生する二次粒子を1つの検出器106で捕捉すると、二次粒子105が到達する領域は検出器の受光面の0.1%未満の領域に集中し、残り99.9%以上の領域には二次粒子105はほとんど到達しない。
実施の形態1-2では、検出器106の全域に検出素子301が二次元状に配置されていた。また、検出素子301と1対1で対応する到達位置検出回路1081が設けられていたため、回路規模やコストが増大する要因となっていた。
そこで、本実施の形態では、図8に示すように、二次粒子105が到達する領域を考慮して互いに離れた位置の狭い領域に各検出領域400A、400B、400C、400Dが設けられている。
したがって、蛍光検出層1063は、二次粒子105が到達する領域に蛍光検出素子1063aを密に配置した各検出領域400A、400B、400C、400Dと、二次粒子105がほとんど到達しない、蛍光検出素子1063aが疎または無の領域410とを有する。
これに対し、シンチレータ層1061及びライトガイド層1062は、図8に示すように、シンチレータ1061a及びライトガイド1062aが主面の全域が密に細分化されるようにそれぞれ配列された構成でもよい。このため、シンチレータ層1061とライトガイド層1062と蛍光検出層1063とを組み合わせる際、高精度な位置合わせを行う必要はない。なぜなら、シンチレータ層1061及びライトガイド層1062では、主面の全域が細分化されているため、任意の位置において蛍光検出素子1063aと対応付けることが可能だからである。
なお、本実施の形態においても、二次粒子105の入射方向から見た各層の形状は、図8の例に限定されるものではない。具体的に述べると、実施の形態1で述べたように、各層の形状は、平面に限定されるものではなく、中心に対し周辺が試料104に向けて湾曲した形状でもよい。また、シンチレータ1601a、ライトガイド1062a、蛍光検出素子1603aの配列は、図8に示すような格子状に限定されるものではなく、隣接する素子等の位置をずらした配列でもよい。
なお、蛍光検出素子1063aが疎または無の領域410には、スペーサにより蛍光検出素子1063aを設置可能な空間が形成されてもよい。また、これとは反対に、蛍光検出素子1063aが疎または無の領域410では、蛍光検出素子1063aを設置可能な空間が樹脂等で充填されてもよい。
<本実施の形態による主な効果>
本実施の形態によれば、検出器106には、シンチレータ層1061、ライトガイド層1062、蛍光検出層1063が設けられている。この構成によれば、蛍光を介して二次粒子105を電気信号107へ変換することが可能となる。また、この構成によれば、ライトガイド1062aにより蛍光を効率的に蛍光検出層1063へ導光することが可能となる。また、この構成によれば、二次粒子105が蛍光検出層1063に直接当たらないので、蛍光検出素子1063aを保護することが可能となる。
また、本実施の形態によれば、検出領域400を覆うようにシンチレータ1061a及びライトガイド1062aが配列されている。この構成によれば、シンチレータ1061aから出力される蛍光を効率的に検出領域400へ導光することが可能となる。
また、本実施の形態によれば、シンチレータ1061aは、蛍光検出層1063の全面を覆うように配列され、ライトガイド1062aは、蛍光検出層1063の全面を覆うように配列されている。この構成によれば、シンチレータ層1061及びライトガイド層1062の構成が複雑になるのを防ぐことが可能となる。
また、本実施の形態によれば、蛍光検出層1063には、蛍光検出素子1063aが密に配列された検出領域400A、400B、400C、400Dと、蛍光検出素子1063aが疎または無の領域410とが設けられている。この構成によれば、二次粒子105がほとんど捕捉しない不要な蛍光検出素子1063a、及び到達位置検出回路1081の個数を削減することが可能となる。これにより、コストを削減することも可能となる。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。
また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる場合がある。
100…マルチビーム走査型電子顕微鏡(荷電粒子ビーム装置)、101…電子銃(荷電粒子照射源)、104…試料、105…二次粒子、106…検出器、107…電気信号、109…到達位置信号、110…強度信号、115…信号処理ブロック、300、400…検出領域、301…検出素子、1061…シンチレータ層、1061a…シンチレータ、1062…ライトガイド層、1062a…ライトガイド、1063…蛍光検出層、1063a…蛍光検出素子、1081…到達位置検出回路、1082…信号強度検出回路、1111…帯電量測定部、1112…画像生成部

Claims (11)

  1. 試料に荷電粒子ビームを照射する荷電粒子照射源と、
    前記荷電粒子ビームに対応する検出領域を有し、前記試料に前記荷電粒子ビームが照射されることにより前記試料から発生する二次粒子が前記検出領域に到達すると到達位置に対応する電気信号を出力する検出器と、
    前記検出器から出力される前記電気信号に基づき、前記荷電粒子ビームによる前記試料の帯電量の測定と前記試料の検査画像の生成とを並行して行う信号処理ブロックと、
    を備え、
    前記検出領域には、複数の検出素子が2次元状に配列されており、
    前記信号処理ブロックは、
    それぞれの前記検出素子に対応して設けられ、前記二次粒子の到達位置を検出し、対応する到達位置信号を生成する複数の到達位置検出回路と、
    前記検出領域に対応して設けられ、対応する前記検出領域における前記電気信号の信号強度を検出し、対応する強度信号を生成する信号強度検出回路と、
    前記到達位置信号に基づき、前記試料の帯電量を測定する帯電量測定部と、
    前記強度信号に基づき、前記検査画像を生成する画像生成部と、
    を備えている、
    荷電粒子ビーム装置。
  2. 試料に荷電粒子ビームを照射する荷電粒子照射源と、
    前記荷電粒子ビームに対応する検出領域を有し、前記試料に前記荷電粒子ビームが照射されることにより前記試料から発生する二次粒子が前記検出領域に到達すると到達位置に対応する電気信号を出力する検出器と、
    前記検出器から出力される前記電気信号に基づき、前記荷電粒子ビームによる前記試料の帯電量の測定と前記試料の検査画像の生成とを並行して行う信号処理ブロックと、
    を備え、
    前記荷電粒子照射源は、複数の前記荷電粒子ビームを同時に照射し、
    前記検出器は、それぞれの前記荷電粒子ビームに対応する複数の前記検出領域を有し、
    記信号処理ブロックは、前記試料の帯電量の測定と、前記検出領域ごとの前記検査画像の生成と、を並行して行い、
    前記信号処理ブロックは、複数の前記検出領域において測定された前記試料の帯電量を加算平均して前記試料のグローバル帯電量を測定し、それぞれの前記検出領域において測定された前記試料の帯電量と前記グローバル帯電量との差分を算出し、それぞれの前記検出領域に対応する前記試料のローカル帯電量をそれぞれ測定する、
    荷電粒子ビーム装置。
  3. 請求項1に記載の荷電粒子ビーム装置において、
    前記荷電粒子照射源は、複数の前記荷電粒子ビームを同時に照射し、
    前記検出器は、それぞれの前記荷電粒子ビームに対応する複数の前記検出領域を有する、
    荷電粒子ビーム装置。
  4. 請求項に記載の荷電粒子ビーム装置において、
    前記信号処理ブロックは、前記試料の帯電量の測定と、前記検出領域ごとの前記検査画像の生成と、を並行して行う、
    荷電粒子ビーム装置。
  5. 請求項1または2に記載の荷電粒子ビーム装置において、
    前記検出器は、
    二次粒子が到達すると蛍光を出力するシンチレータ層と、
    前記検出領域を有し、前記検出領域において前記蛍光を前記電気信号に変換する蛍光検出層と、
    前記蛍光を前記蛍光検出層へ導光するライトガイド層と、
    を備える、
    荷電粒子ビーム装置。
  6. 請求項に記載の荷電粒子ビーム装置において、
    前記検出領域には、複数の蛍光検出素子が2次元状に配列され、
    前記シンチレータ層には、前記検出領域を覆うように、二次粒子を前記蛍光に変換する複数のシンチレータが配列され、
    前記ライトガイド層には、前記検出領域を覆うように、前記蛍光を前記蛍光検出層に導光する複数のライトガイドが配列されている、
    荷電粒子ビーム装置。
  7. 請求項に記載の荷電粒子ビーム装置において、
    複数の前記シンチレータは、前記蛍光検出層の全面を覆うように配列され、
    複数の前記ライトガイドは、前記蛍光検出層の全面を覆うように配列されている、
    荷電粒子ビーム装置。
  8. 請求項1または2に記載の荷電粒子ビーム装置において、
    前記荷電粒子ビームを走査させる偏向器を備え、
    前記偏向器は、前記検出領域に対応する前記試料の検査領域に対し前記荷電粒子ビームを走査させる、
    荷電粒子ビーム装置。
  9. 請求項記載の荷電粒子ビーム装置において、
    前記信号処理ブロックは、前記荷電粒子ビームの走査範囲ごとに前記試料の帯電量の測定を行う、
    荷電粒子ビーム装置。
  10. 請求項に記載の荷電粒子ビーム装置において、
    前記信号処理ブロックは、前記荷電粒子ビームの走査回数ごとに前記試料の帯電量の測定を行う、
    荷電粒子ビーム装置。
  11. 請求項1または2に記載の荷電粒子ビーム装置において、
    前記荷電粒子ビームは、電子ビームである、
    荷電粒子ビーム装置。
JP2021538602A 2019-08-07 2019-08-07 荷電粒子ビーム装置 Active JP7216212B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031055 WO2021024397A1 (ja) 2019-08-07 2019-08-07 荷電粒子ビーム装置

Publications (2)

Publication Number Publication Date
JPWO2021024397A1 JPWO2021024397A1 (ja) 2021-02-11
JP7216212B2 true JP7216212B2 (ja) 2023-01-31

Family

ID=74502863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021538602A Active JP7216212B2 (ja) 2019-08-07 2019-08-07 荷電粒子ビーム装置

Country Status (5)

Country Link
US (1) US20220270847A1 (ja)
JP (1) JP7216212B2 (ja)
DE (1) DE112019007535T5 (ja)
TW (1) TWI745002B (ja)
WO (1) WO2021024397A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075120A (ja) 2008-10-28 2009-04-09 Toshiba Corp 基板検査方法および基板検査装置
JP2014146526A (ja) 2013-01-30 2014-08-14 Hitachi High-Technologies Corp 電子ビーム装置、及び電子ビーム観察方法
JP2017162590A (ja) 2016-03-08 2017-09-14 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823073B2 (ja) * 2002-06-21 2006-09-20 株式会社日立ハイテクノロジーズ 電子線を用いた検査方法及び検査装置
JP2004363085A (ja) * 2003-05-09 2004-12-24 Ebara Corp 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
JP5227512B2 (ja) * 2006-12-27 2013-07-03 株式会社日立ハイテクノロジーズ 電子線応用装置
JP5695917B2 (ja) * 2011-01-26 2015-04-08 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US8704176B2 (en) * 2011-08-10 2014-04-22 Fei Company Charged particle microscope providing depth-resolved imagery
WO2016017561A1 (ja) * 2014-07-31 2016-02-04 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
JP6416544B2 (ja) * 2014-08-27 2018-10-31 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置
WO2016121073A1 (ja) * 2015-01-30 2016-08-04 株式会社 日立ハイテクノロジーズ パターンマッチング装置、及びパターンマッチングのためのコンピュータプログラム
JP2016178037A (ja) * 2015-03-20 2016-10-06 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置及び荷電粒子ビーム装置を用いた画像の生成方法並びに画像処理装置
WO2017056171A1 (ja) * 2015-09-29 2017-04-06 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
DE102016205941B4 (de) * 2016-04-08 2020-11-05 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Analysieren eines Defekts einer fotolithographischen Maske oder eines Wafers
JP6741858B2 (ja) * 2017-03-24 2020-08-19 株式会社日立ハイテク 荷電粒子線装置
US11264201B2 (en) * 2018-06-12 2022-03-01 Hitachi High-Tech Corporation Charged particle beam device
JP7128667B2 (ja) * 2018-06-12 2022-08-31 株式会社日立ハイテク 荷電粒子ビーム制御装置
WO2021156976A1 (ja) * 2020-02-05 2021-08-12 株式会社日立ハイテク 計測システム、および荷電粒子線装置のパラメータ設定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075120A (ja) 2008-10-28 2009-04-09 Toshiba Corp 基板検査方法および基板検査装置
JP2014146526A (ja) 2013-01-30 2014-08-14 Hitachi High-Technologies Corp 電子ビーム装置、及び電子ビーム観察方法
JP2017162590A (ja) 2016-03-08 2017-09-14 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法

Also Published As

Publication number Publication date
TWI745002B (zh) 2021-11-01
US20220270847A1 (en) 2022-08-25
WO2021024397A1 (ja) 2021-02-11
TW202107502A (zh) 2021-02-16
DE112019007535T5 (de) 2022-03-31
JPWO2021024397A1 (ja) 2021-02-11

Similar Documents

Publication Publication Date Title
KR102468155B1 (ko) 하전 입자 검출 방법 및 장치
US9488596B2 (en) Defect inspection method and device for same
KR101411119B1 (ko) 하전 입자 빔 현미경
US8779359B2 (en) Defect review apparatus and defect review method
US8552373B2 (en) Charged particle beam device and sample observation method
JP5683227B2 (ja) 電子ビーム描画装置、およびそれを用いた物品の製造方法
WO2020009011A1 (ja) 光測距装置
US10373797B2 (en) Charged particle beam device and image forming method using same
JPWO2016158421A1 (ja) 光量検出装置、それを用いた免疫分析装置および荷電粒子線装置
US20050285034A1 (en) Method and apparatus for measuring three-dimensional shape of specimen by using SEM
JPH09320505A (ja) 電子線式検査方法及びその装置並びに半導体の製造方法及びその製造ライン
RU2562126C2 (ru) Система литографии, датчик, элемент преобразователя и способ изготовления
JP5174844B2 (ja) 回路パターン検査装置およびその検査方法
JP3906866B2 (ja) 荷電粒子ビーム検査装置
JP7216212B2 (ja) 荷電粒子ビーム装置
EP3633361B1 (en) Method of generating elemental map and surface analyzer
US11501949B2 (en) Wafer inspection based on electron beam induced current
JP2017130334A (ja) 荷電粒子ビーム装置及び荷電粒子ビーム装置の画像形成方法
US11842881B2 (en) Measurement device and signal processing method
US20150303030A1 (en) Semiconductor inspection device, and inspection method using charged particle beam
JP2005183881A (ja) 荷電粒子ビームを用いた半導体ウェハ試料の検査方法および装置
JP2009088026A (ja) 半導体ウェハの表面検査装置、及び半導体ウェハの表面検査方法
WO2024017717A1 (en) Enhanced edge detection using detector incidence locations
JP2023158960A (ja) 荷電粒子ビーム装置、およびプロセッサシステム
TW202349433A (zh) 檢查裝置、檢查元件及檢查方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7216212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150