JP7213961B2 - 透明導電性フィルムおよび透明導電性フィルムの製造方法 - Google Patents

透明導電性フィルムおよび透明導電性フィルムの製造方法 Download PDF

Info

Publication number
JP7213961B2
JP7213961B2 JP2021517070A JP2021517070A JP7213961B2 JP 7213961 B2 JP7213961 B2 JP 7213961B2 JP 2021517070 A JP2021517070 A JP 2021517070A JP 2021517070 A JP2021517070 A JP 2021517070A JP 7213961 B2 JP7213961 B2 JP 7213961B2
Authority
JP
Japan
Prior art keywords
layer
light
conductive layer
transmitting conductive
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021517070A
Other languages
English (en)
Other versions
JPWO2021187572A1 (ja
Inventor
望 藤野
順平 小笹
健太 森地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of JPWO2021187572A1 publication Critical patent/JPWO2021187572A1/ja
Priority to JP2022177317A priority Critical patent/JP2023017917A/ja
Application granted granted Critical
Publication of JP7213961B2 publication Critical patent/JP7213961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、透明導電性フィルム、および、その透明導電性フィルムの製造方法に関する。
近年、透明導電性フィルムなどの光学フィルムは、タッチパネルなどの光学用途に用いられることが知られている。
このような透明導電性フィルムとして、フィルム基材と、フィルム基材上に形成されたインジウムスズ酸化物の多結晶層とを有する透明導電性フィルムが提案されている(例えば、特許文献1参照。)。
また、このような透明導電性フィルムは、スパッタリングにより、アルゴンガス存在下で、フィルム基材の表面に、インジウムスズ酸化物の非晶質層を配置した後、この非晶質層を加熱し、インジウムスズ酸化物の非晶質層を結晶化させることにより得られる。
特開2014-103067号公報
一方、このような多結晶層(結晶質)を、再度加熱する場合がある。例えば、タッチセンサや光電変換素子などを作成するにあたり必要となる部材を、透明導電性フィルム上に形成する際、加熱工程が必要になる場合がある。より具体的な一例として、例えば、タッチセンサを作成する際、多結晶層上に金属含有ペーストを塗布、加熱してタッチセンサの引き回し配線を形成する工程などが挙げられる。このような場合には、加熱前後において、多結晶層の抵抗値の変化を抑制する(加熱安定性に優れる)ことが要求される。
加熱安定性に優れる多結晶層は、例えば、ガラス基材などの無機基材を適用し、インジウムスズ酸化物層(透明導電層)をスパッタリング形成する際の基材温度を高温(例えば、230℃以上)に設定することで実現することができる。しかし、フィルム基材(高分子フィルム)は、耐熱性に劣り、熱による寸法変形が大きいため、基材温度を高温に設定することはできない(基材温度は、通常、200℃未満、好ましくは、180℃以下に設定される。)このため、特許文献1を含む従来技術では、加熱安定性に十分優れる透明導電性フィルムを実現できていなかった。
本発明は、加熱安定性に優れる透明導電性フィルム、および、その透明導電性フィルムの製造方法を提供することにある。
本発明[1]は、基材層と、光透過性導電層とを順に備え、前記基材層は、樹脂層を含み、前記光透過性導電層は、クリプトン原子および/またはキセノン原子を含む、透明導電性フィルムである。
本発明[2]は、前記光透過性導電層の厚みが、60nm以上100nm以下である、上記[1]に記載の透明導電性フィルムを含んでいる。
本発明[3]は、前記光透過性導電層が、結晶質であり、かつ、35nm以上の粒径を有する結晶粒を含む、上記[1]または[2]に記載の透明導電性フィルムを含んでいる。
本発明[4]は、前記光透過性導電層が、インジウムスズ複合酸化物を含む、上記[1]~[3]のいずれか一項に記載の透明導電性フィルムを含んでいる。
本発明[5]は、前記光透過性導電層が、パターン形状を有する、上記[1]~[4]のいずれか一項に記載の透明導電性フィルムを含んでいる。
本発明[6]は、クリプトンおよび/またはキセノン存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置し、前記基材層は、樹脂層を含むことを特徴とする、透明導電性フィルムの製造方法である。
本発明の透明導電性フィルムの製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置する。
スパッタリング法によって、光透過性導電層を配置する場合には、スパッタリングガスが光透過性導電層に取り込まれる。
この方法では、スパッタリングガスとして、アルゴンに代えて、アルゴンよりも原子量の大きいクリプトン原子および/またはキセノン原子を用いるため、スパッタリングガス(クリプトン原子および/またはキセノン原子)が光透過性導電層に取り込まれることを抑制できる。
これにより、加熱安定性に優れる透明導電性フィルムを製造することができる。
そのため、本発明の透明導電性フィルムは、加熱安定性に優れる。
図1は、本発明の透明導電性フィルムの一実施形態を示す概略図である。 図2は、本発明の透明導電性フィルムの製造方法の一実施形態を示す概略図であり、図2Aは、第1工程において、基材層を準備する工程を示し、図2Bは、第1工程において、基材層の厚み方向一方面に、スパッタリングすることにより、非晶質の光透過性導電層を配置する工程を示し、図2Cは、非晶質の光透過性導電層を加熱して、結晶質の光透過性導電層を形成する工程を示す。 図3は、第1工程において、非晶質の光透過性導電層を配置する時に、導入する酸素ガスの量と、非晶質の光透過性導電層の抵抗値との関係を示すグラフである。 図4は、図1に示す透明導電性フィルムの光透過性導電層をパターン化した態様を示す概略図である。 図5は、透明導電性フィルムの変形例(基材層が、透明基材を備えず、機能層のみからなる場合)を示す概略図である。
1.透明導電性フィルム
透明導電性フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む)を有し、厚み方向と直交する面方向に延び、平坦な上面および平坦な下面を有する。
透明導電性フィルム1は、後述するタッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明などに備えられる一部材であって、透明導電性フィルム1は、それらを製造するための中間部材である。透明導電性フィルム1は、単独で流通し、産業上利用可能なデバイスである。
具体的には、図1に示すように、透明導電性フィルム1は、基材層2と、光透過性導電層3とを、厚み方向一方側に向かって順に備える。透明導電性フィルム1は、より具体的には、基材層2と、基材層2の上面(厚み方向一方面)に配置される光透過性導電層3とを備える。好ましくは、透明導電性フィルム1は、基材層2および光透過性導電層3のみを備える。
透明導電性フィルム1の厚みは、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、150μm以下、さらに好ましくは、100μm以下であり、また、例えば、1μm以上、好ましくは、10μm以上である。
2.基材層
基材層2は、透明導電性フィルム1の機械強度を確保するための透明な基材である。
基材層2は、フィルム形状を有する。基材層2は、光透過性導電層3の下面に接触するように、光透過性導電層3の下面全面に、配置されている。
基材層2は、樹脂層としての透明基材4および機能層5を備えている。
具体的には、基材層2は、透明基材4と、機能層5とを、厚み方向一方側に向かって順に備える。具体的には、基材層2は、透明基材4と、透明基材4の厚み方向一方面に配置される機能層5とを備える。
透明基材4は、フィルム形状を有する。
透明基材4は、例えば、高分子フィルムからなる。これにより、透明導電性フィルム1は製造効率に優れる。
また、透明基材4が、高分子フィルムからなると、透明導電性フィルム1の寸法安定性付与などの観点から、透明導電性フィルム1(結晶質の光透過性導電層3)を再加熱する場合があるが、この透明導電性フィルム1は、加熱安定性に優れる。
透明基材4の材料としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリカーボネート樹脂、メラミン樹脂、ポリスチレン樹脂などが挙げられ、好ましくは、オレフィン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、メラミン樹脂が挙げられ、より好ましくは、ポリエステル樹脂、さらに好ましくは、ポリエチレンテレフタレート(PET)が挙げられる。上記材料からなる透明基材4は、耐熱性が低いため、200℃以上の加熱工程(具体的には、後述する第2工程)に適用することができないが、このような透明基材4によれば、平滑性に優れ、加熱安定性を有する透明導電性フィルム1を得ることができる。
透明基材4は、透明性を有している。具体的には、透明基材4の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上である。
透明基材4の厚みは、例えば、1μm以上、好ましくは、10μm以上、好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下、さらに好ましくは、60μm以下である。
機能層5は、透明基材4の厚み方向一方面に配置されている。
機能層5は、フィルム形状を有する。
機能層5としては、例えば、ハードコート層が挙げられる。
このような場合には、基材層2は、透明基材4と、ハードコート層とを、厚み方向一方側に向かって順に備える。
以下の説明では、機能層5がハードコート層である場合について、説明する。
ハードコート層は、透明導電性フィルム1に擦り傷を生じ難くするための擦傷保護層である。
ハードコート層の材料は、例えば、ハードコート組成物である。ハードコート組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。混合物は、例えば、アクリル樹脂、ウレタン樹脂などの樹脂(バインダー樹脂)を含有する。
ハードコート層の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。
なお、透明導電性フィルム1における基材層2の数は、特に限定されず、好ましくは、1である。
3.光透過性導電層
光透過性導電層3は、優れた導電性を発現する透明な層である。
光透過性導電層3は、フィルム形状を有する。光透過性導電層3は、基材層2(ハードコート層)の上面(厚み方向一方面)全面に、基材層2の厚み方向一方面に接触するように、配置されている。
光透過性導電層3の材料としては、例えば、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属および/または半金属を含む金属酸化物が挙げられる。金属酸化物には、必要に応じて、さらに上記群に示された金属原子をドープしていてもよい。
光透過性導電層3としては、具体的には、例えば、インジウムスズ複合酸化物(ITO)、インジウムガリウム複合酸化物(IGO)、インジウム亜鉛複合酸化物(IZO)インジウムガリウム亜鉛複合酸化物(IGZO)などのインジウム含有酸化物、例えば、アンチモンスズ複合酸化物(ATO)などのアンチモン含有酸化物などが挙げられ、好ましくは、インジウム含有酸化物、より好ましくは、インジウムスズ複合酸化物(ITO)が挙げられる。
光透過性導電層3が、インジウムスズ複合酸化物を含むと、比抵抗を低くできる。
光透過性導電層3の材料としてITOを用いる場合、酸化スズの含有割合は、酸化スズおよび酸化インジウムの合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、5質量%以上、さらに好ましくは、8質量%以上、とりわけ好ましくは、9質量%以上であり、また、例えば、20質量%以下、好ましくは、15質量%以下、より好ましくは、12質量%以下である。
酸化スズの含有割合が上記した下限以上であれば、低抵抗化が促進される。酸化スズの含有割合が上記した上限以下であれば、光透過性導電層3は、加熱安定性に優れる。
また、光透過性導電層3は、酸化スズの割合が8質量%以上である領域を含むことができる。光透過性導電層3が酸化スズの割合が8質量%以上である領域を含む場合には、表面抵抗値を小さくすることができる。
例えば、光透過性導電層3は、酸化スズの割合が8質量%以上である領域の一例としての第1領域11と、第1領域11における酸化スズの割合より低い酸化スズの割合である第2領域12とを含む。具体的には、光透過性導電層3は、層状の第1領域11と、第1領域11の厚み方向一方面に配置される層状の第2領域12とを順に含む。なお、第1領域11および第2領域12の境界は、測定装置による観察で確認されず、不明瞭であることが許容される。なお、この光透過性導電層3では、厚み方向一方面から他方面に向かって酸化スズ濃度が次第に高くなる濃度勾配を有してもよい。光透過性導電層3が上記した第1領域11に加え、第2領域12を含む場合には、その領域の比率調整により所望の結晶化速度を得ることができる。
第1領域11における酸化スズの割合は、好ましくは、9質量%以上、より好ましくは、10質量%以上であり、また、20質量%以下である。
光透過性導電層3の厚みにおける第1領域11の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上であり、また、例えば、99%以下、好ましくは、97%以下である。
第1領域11の厚みの割合が上記した下限以上であれば、光透過性導電層3における酸化スズの割合を高くでき、そのため、表面抵抗値を十分に下げることができる。
第2領域12における酸化スズの割合は、例えば、8質量%未満、好ましくは、7質量%以下、より好ましくは、5質量%以下、さらに好ましくは、4質量%以下であり、また、例えば、1質量%以上、好ましくは、2質量%以上、より好ましくは、3質量%以上である。
光透過性導電層3の厚みにおける第2領域12の厚みの割合は、例えば、1%以上、好ましくは、3%以上であり、また、例えば、50%以下、好ましくは、30%以下、より好ましくは、20%以下、さらに好ましくは、10%以下である。
第2領域12における酸化スズの割合に対する、第1領域11における酸化スズの割合の比(第1領域11における酸化スズの割合/第2領域12における酸化スズの割合)は、例えば、1.5以上、好ましくは、2以上、より好ましくは、2.5以上であり、また、例えば、5以下、好ましくは、4以下である。
光透過性導電層3、第1領域11および第2領域12のそれぞれにおける酸化スズ濃度は、X線光電子分光法によって、測定される。または、酸化スズの含有割合は、非晶質の光透過性導電層3をスパッタリングで形成するときに用いられるターゲットの成分(既知)から推測することもできる。
また、光透過性導電層3は、詳しくは後述するが、微量のスパッタリングガス(クリプトン原子および/またはキセノン原子)を含む。
光透過性導電層3におけるスパッタリングガス(クリプトン原子および/またはキセノン原子)の含有量は、例えば、1.0原子%以下、好ましくは、0.5原子%以下、より好ましくは、0.2原子%以下、さらに好ましくは、0.1原子%以下、とりわけ好ましくは、0.1原子%未満である。
上記含有量の下限は、蛍光X線分析装置により、クリプトン原子および/またはキセノン原子の存在を確認できたときに対応する割合であり、少なくとも、0.0001原子%以上である。
また、光透過性導電層3は、結晶質または非晶質である。
光透過性導電層3が、結晶質であれば、比抵抗を小さくできる。
光透過性導電層3の結晶質性は、例えば、透明導電性フィルム1を塩酸(20℃、濃度5質量%)に15分間浸漬し、続いて、水洗および乾燥した後、光透過性導電層3側の表面に対して15mm程度の間の端子間抵抗を測定することにより判断できる。上記浸漬・水洗・乾燥後の透明導電性フィルム1において、15mm間の端子間抵抗が10kΩ以下である場合、光透過性導電層3は結晶質であり、一方、上記抵抗が10kΩを超過する場合、光透過性導電層3は非晶質である。
光透過性導電層3は、透明性を有している。具体的には、光透過性導電層3の全光線透過率(JIS K 7375-2008)は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上である。
光透過性導電層3の厚みは、例えば、10nm以上、好ましくは、20nm以上、より好ましくは、40nm以上、さらに好ましくは、50nm以上、とりわけ好ましくは、60nm以上であり、また、例えば、1000nm以下、好ましくは、300nm未満、より好ましくは、250nm以下、さらに好ましくは、180nm以下、とりわけ好ましくは、150nm未満、特に好ましくは、140nm以下である。
光透過性導電層3の厚みが、上記下限以上であれば、透明導電性フィルム1の加熱安定性をより一層向上させることができる。
また、光透過性導電層3の厚みが、上記上限以下であれば、透明導電性フィルム1の加熱安定性をより一層向上させることができる。
なお、光透過性導電層3の厚みは、例えば、透過型電子顕微鏡を用いて、透明導電性フィルム1の断面を観察することにより測定することができる。
光透過性導電層3の比抵抗は、例えば、5.0×10-4Ω・cm以下、好ましくは、2.5×10-4Ω・cm以下、より好ましくは、2.4×10-4Ω・cm以下、さらに好ましくは、2.2×10-4Ω・cm以下、とりわけ好ましくは、2.0×10-4Ω・cm以下、特に好ましくは、1.8×10-4Ω・cm以下であり、また、例えば、0.1×10-4Ω・cm以上、好ましくは、0.5×10-4Ω・cm以上、より好ましくは、1.0×10-4Ω・cm以上、さらに好ましくは、1.01×10-4Ω・cm以上である。
なお、比抵抗は、JIS K7194に準拠して、4端子法により測定することができる。
光透過性導電層3の表面抵抗値は、例えば、200Ω/□以下、好ましくは、80Ω/□以下、より好ましくは、60Ω/□以下、さらに好ましくは、50Ω/□以下、とりわけ好ましくは、30Ω/□以下、最も好ましくは、20Ω/□以下であり、また、通常、0Ω/□超過、また、1Ω/□以上である。
なお、表面抵抗値は、JIS K7194に準拠して、4端子法により測定することができる。
なお、透明導電性フィルム1における光透過性導電層3の数は、例えば、特に限定されず、好ましくは、1である。具体的には、1つの基材層2に対する光透過性導電層3の数は、好ましくは、1である。
4.透明導電性フィルムの製造方法
次に、透明導電性フィルム1の製造方法、とりわけ、光透過性導電層3が、非晶質である透明導電性フィルム1の製造方法について、図2を参照して、説明する。
透明導電性フィルム1(光透過性導電層3が、非晶質である場合)の製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層3を構成する材料をターゲットとするスパッタリング法によって、基材層2の厚み方向一方面に、非晶質の光透過性導電層3を配置する第1工程を備える。また、この製造方法では、各層を、例えば、ロールトゥロール方式で、順に配置する。
第1工程では、図2Aに示すように、まず、基材層2を準備する。
詳しくは、透明基材4の厚み方向一方面に、ハードコート組成物の希釈液を塗布し、乾燥後、紫外線照射により、ハードコート組成物を硬化させる。これにより、透明基材4の厚み方向一方面に、ハードコート層(機能層5)を形成する。
これにより、基材層2を準備する。
次いで、図2Bに示すように、基材層2の厚み方向一方面に、スパッタリングすることにより、非晶質の光透過性導電層3を配置する。
具体的には、スパッタリング装置において、光透過性導電層3の材料からなるターゲットに、基材層2の厚み方向一方面を対向させながら、クリプトンガスおよび/またはキセノンガス(好ましくは、クリプトンガス単独またはキセノンガス単独)の存在下、ターゲット材料をスパッタリングする。
ターゲットに対する、基材層2とは反対側には、マグネットが配置されている。ターゲット表面上の水平磁場強度は、例えば、10mT以上、好ましくは、60mT以上であり、また、例えば、300mT以下である。マグネットを配置し、ターゲット表面上の水平磁場強度を上記範囲とすることで、光透過性導電層3内の不純物量を低減し、低比抵抗性、および、加熱安定性に優れる光透過性導電層3を製造できる。
スパッタリングにより光透過性導電層3を形成する際の、基材層2の温度は、特に限定されないが、好ましくは、基材層2を冷却する。具体的には、基材層2の温度を、例えば、15℃以下、より好ましくは、10℃以下、さらに好ましくは、5℃以下、とりわけ好ましくは、0℃以下であり、また、例えば、-50℃以上、好ましくは、-30℃、より好ましくは、-20℃以上にする。上記温度以下であれば、スパッタリング時に基材層2を冷却でき、基材層2からのアウトガス(水や有機溶剤)が出にくく、光透過性導電層3内の不純物成分を低減できる。そのため、低比抵抗性、および、加熱安定性に優れる光透過性導電層3を得られる。上記温度以上であれば、基材層2の物性劣化を抑制できる。
スパッタリング装置内におけるクリプトンガスおよび/またはキセノンガスの分圧は、例えば、0.1Pa以上、好ましくは、0.3Pa以上であり、また、例えば、10Pa以下、好ましくは、5Pa以下、より好ましくは、1Pa以下である。
また、ターゲット材料をスパッタリングする際に、クリプトンガスおよび/またはキセノンガス以外に、例えば、酸素などの反応性ガスを存在させることもできる。
図3に示すように、反応性ガスの導入量は、非晶質の光透過性導電層3の表面抵抗によって見積もることができる。詳しくは、非晶質の光透過性導電層3内部に導入される反応性ガスの導入量によって、非晶質の光透過性導電層3の膜質(表面抵抗)が変化するため、目的とする非晶質の光透過性導電層3の表面抵抗に応じて、反応性ガスの導入量を調整することができる。なお、非晶質の光透過性導電層3を加熱して結晶膜の光透過性導電層3を得るためには、図3の領域Xの範囲で反応性ガスの導入量を調整し、非晶質の光透過性導電層3を得るのが良い。
反応性ガスの導入量に限定はないが、反応性ガスが酸素の場合、クリプトンガスおよび/またはキセノンガスと酸素の合計導入量に対する、酸素の導入量の割合は、例えば、0.01流量%以上であり、また、例えば、5質量%未満、好ましくは、4.5質量%未満である。酸素の導入量が上記の範囲内であれば、確実に、図3の領域Xの範囲に設定できる。
具体的には、非晶質の光透過性導電層3の表面抵抗が、例えば、300Ω/□以下、好ましくは、200Ω/□以下、より好ましくは、150Ω/□以下であり、また、例えば、30Ω/□以上、好ましくは、70Ω/□以上となるように、反応性ガスを導入する。
スパッタリング装置内における圧力は、クリプトンガスおよび/またはキセノンガスの分圧、および、反応性ガスの分圧の合計圧力である。
なお、光透過性導電層3の材料としてITOを用いる場合、酸化スズ濃度が互いに異なる第1ターゲットおよび第2ターゲットを、スパッタリング装置において、基材層2の搬送方向に沿って順に配置することもできる。第1ターゲットの材料は、例えば、上記した第1領域11におけるITO(酸化スズ濃度:8質量%以上)である。第2ターゲットの材料は、例えば、上記した第2領域12におけるITO(酸化スズ濃度:8質量%未満)である。
上記のスパッタリングにより、非晶質の光透過性導電層3が、基材層2の厚み方向一方面に配置される。
なお、非晶質の光透過性導電層3が、上記した第1ターゲットおよび第2ターゲットを用いるスパッタリングにより形成されている場合には、非晶質の光透過性導電層3は、酸化スズ濃度が互いに異なる第1非晶質層および第2非晶質層を、厚み方向一方側に向かって順に備える。第1非晶質層および第2非晶質層のそれぞれの材料は、第1ターゲットおよび第2ターゲットの材料と同一である。具体的には、第1非晶質層のITOにおける酸化スズ濃度は、例えば、8質量%以上である。第2非晶質層のITOにおける酸化スズ濃度は、例えば、8質量%未満である。
非晶質の光透過性導電層3の厚みにおける第1非晶質層の厚みの割合は、例えば、50%超過、好ましくは、70%以上、より好ましくは、80%以上、さらに好ましくは、90%以上であり、また、例えば、99%以下、好ましくは、97%以下である。
光透過性導電層3の厚みにおける第2非晶質層の厚みの割合は、例えば、1%以上、好ましくは、3%以上であり、また、例えば、50%以下、好ましくは、30%以下、より好ましくは、20%以下、さらに好ましくは、10%以下である。
これによって、基材層2および非晶質の光透過性導電層3からなる透明導電性フィルム1(非晶質積層フィルムと称する場合がある。)を得る。
また、光透過性導電層3が、結晶質である透明導電性フィルム1を製造する場合には、上記した第1工程の後に、非晶質の光透過性導電層3を加熱して、結晶質の光透過性導電層3を形成する第2工程を実施する。
つまり、透明導電性フィルム1(光透過性導電層3が、結晶質である場合)の製造方法は、クリプトンおよび/またはキセノン存在下において、光透過性導電層3を構成する材料をターゲットとするスパッタリング法によって、基材層2の厚み方向一方面に、非晶質の光透過性導電層3を配置する第1工程と、非晶質の光透過性導電層3を加熱して、結晶質の光透過性導電層3を形成する第2工程とを備える。
この方法では、上記した第1工程の後に、第2工程を実施する。
第2工程では、非晶質積層フィルムを加熱する。例えば、赤外線ヒータ、オーブンなどの加熱装置によって、非晶質の光透過性導電層3を加熱する。
加熱条件として、加熱温度は、例えば、80℃以上、好ましくは、110℃以上あり、また、例えば、200℃未満、好ましくは、180℃以下、より好ましくは、160℃以下であり、また、加熱時間は、例えば、1分間以上、好ましくは、10分間以上、さらに好ましくは、30分間以上であり、また、例えば、5時間以下、好ましくは、3時間以下である。
これにより、図2Cに示すように、非晶質の光透過性導電層3が結晶化され、結晶質の光透過性導電層3が形成される。
なお、非晶質の光透過性導電層3が、第1非晶質層および第2非晶質層を含む場合には、結晶質の光透過性導電層3は、第1非晶質層および第2非晶質層のそれぞれに対応する第1領域11および第2領域12を含む。
これにより、基材層2と、結晶質の光透過性導電層3とを順に備える透明導電性フィルム1が製造される。
以上より、基材層2と、非晶質または結晶質の光透過性導電層3とを順に備えた透明導電性フィルム1が製造される。
結晶質の光透過性導電層3を備える透明導電性フィルム1において、光透過性導電層3は、例えば、35nm以上、好ましくは、100nm以上、より好ましくは、200nm以上、さらに好ましくは、250nm以上、とりわけ好ましくは、300nm以上、最も好ましくは、400nm以上、さらには、480nm以上、さらには、550nm以上、また、例えば、2000nm以下、好ましくは、1000nm以下、より好ましくは、600nm以下の粒径を有する結晶粒を含む。
上記粒径が、上記範囲内であれば(とりわけ、35nm以上であれば)、光透過性導電層3の比抵抗を低減させることができ、また、透明導電性フィルム1の加熱安定性をより一層向上させることができる。
なお、結晶粒の粒径の測定方法は、後述する実施例において詳述する。
結晶質の光透過性導電層3のキャリア密度に特に限定はないが、例えば、30×1019cm-3以上、好ましくは、70×1019cm-3以上、より好ましくは、90×1019cm-3以上、さらに好ましくは、100×1019cm-3以上であり、また、300×1019cm-3以下、好ましくは、200×1019cm-3以下、より好ましくは、190×1019cm-3以下である。キャリア密度が上記範囲内であれば、低比抵抗に優れる光透過性導電層3が得られる。
結晶質の光透過性導電層3の移動度に特に限定はないが、例えば、15cm/V・s以上、好ましくは、20cm/V・s以上、より好ましくは、25cm/V・s以上、さらに好ましくは、27cm/V・s以上、とりわけ好ましくは、28cm/V・s以上であり、また、50cm/V・s以下、好ましくは、40cm/V・s以下である。移動度が、上記範囲内であれば、低比抵抗に優れる光透過性導電層3が得られる。
なお、キャリア密度、および、移動度は、ホール効果測定装置(例えば、商品名「HL5500PC」,バイオラッド社製)を用いて測定できる。
また、上記したように、この方法において、第1工程では、クリプトンガスおよび/またはキセノンガス存在下で、スパッタリングすることにより、非晶質の光透過性導電層3を配置する。
スパッタリング法によって、非晶質の光透過性導電層3を配置する場合には、スパッタリングガスが非晶質の光透過性導電層3に取り込まれる。
しかし、この方法では、スパッタリングガスとして、通常用いられるアルゴンに代えて、アルゴンよりも原子量の大きいクリプトン原子および/またはキセノン原子を用いるため、スパッタリングガス(クリプトン原子および/またはキセノン原子)が非晶質の光透過性導電層3に取り込まれることを抑制できる。
そして、このような非晶質の光透過性導電層3は、第2工程において、結晶質の光透過性導電層3となる。
そのため、結晶質の光透過性導電層3は、クリプトン原子および/またはキセノン原子を含むものの、上記したように、クリプトン原子および/またはキセノン原子が取り込まれている量は抑制されている。そのため、この透明導電性フィルム1は、加熱安定性に優れる。
また、図4に示すように、透明導電性フィルム1では、光透過性導電層3をパターン化することもできる。つまり、光透過性導電層3は、パターン形状を有する。
光透過性導電層3をパターン化するには、例えば、第1工程の後に、非晶質の光透過性導電層3を、エッチングする。これによって、透明導電性フィルム1は、光透過性導電層3を有するパターン部7と、光透過性導電層3を有していない非パターン部8とを有する。
その後、第2工程において、光透過性導電層3を結晶化させる。
また、第2工程により結晶質の光透過性導電層3を得てから、光透過性導電層3をパターン化することもできる。
そして、この透明導電性フィルム1は、種々の物品に用いられる。物品としては、例えば、タッチセンサ、調光素子(PDLC、PNLCやSPDなどの電圧駆動型調光素子やエレクトロクロミック(EC)などの電流駆動型調光素子)、光電変換素子(有機薄膜太陽電池や色素増感太陽電池に代表される太陽電池素子の電極など)、熱線制御部材(近赤外反射および/または吸収部材や遠赤外反射および/または吸収部材)、アンテナ(光透過性アンテナ)、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明が挙げられる。
物品は、透明導電性フィルム1と、各物品に対応する部材とを備える。
このような物品は、透明導電性フィルム1と、各物品に対応する部材とを固定することにより得られる。
具体的には、透明導電性フィルム1における光透過性導電層3(パターン形状を有する光透過性導電層3を含む)と、各物品に対応する部材とを、固着機能層を介して固定する。
固着機能層としては、例えば、粘着層および接着層が挙げられる。
固着機能層としては、透明性を有するものであれば特に材料の制限なく使用できる。固着機能層は、好ましくは、樹脂から形成されている。樹脂としては、例えば、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリビニルエーテル樹脂、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン樹脂、エポキシ樹脂、フッ素樹脂、天然ゴム、および、合成ゴムが挙げられる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性などの粘着特性を示し、耐候性および耐熱性等にも優れるという観点から、樹脂として、好ましくは、アクリル樹脂が選択される。
固着機能層(固着機能層を形成する樹脂)には、光透過性導電層3の腐食およびマイグレーション抑制するために、公知の腐食防止剤、および、マイグレーション防止剤(例えば、特開2015-022397号に開示の材料)を添加することもできる。また、固着機能層(固着機能層を形成する樹脂)には、物品の屋外使用時の劣化を抑制するために、公知の紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸系化合物、シュウ酸アニリド系化合物、シアノアクリレート系化合物、および、トリアジン系化合物が挙げられる。
また、透明導電性フィルム1における基材層2と、各物品に対応する部材とを、固着機能層を介して固定することもできる。このような場合には、透明導電性フィルム1において、光透過性導電層3(パターン形状を有する光透過性導電層3を含む)が露出する。そのため、光透過性導電層3の上面にカバー層を配置することもできる。
カバー層は、光透過性導電層3を被覆する層であり、光透過性導電層3の信頼性を向上させ、キズによる機能劣化を抑制できる。
カバー層は、好ましくは、誘電体である。カバー層は、樹脂および無機材料の混合物から形成されている。樹脂としては、固着機能層で例示する樹脂が挙げられる。無機材料としては、後述する中間層の材料で例示する材料が挙げられる。
また、カバー層(樹脂および無機材料の混合物)には、上記した固着機能層と同様の観点から、腐食防止剤、マイグレーション防止剤、および、紫外線吸収剤を添加することもできる。
このような物品(タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材、および、照明)は、本発明の透明導電性フィルム1を備えるため、加熱安定性に優れる。
5.変形例
変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
光透過性導電層3は、酸化スズの割合が8質量%未満である第2領域を含まず、酸化スズの割合が8質量%以上である第1領域11のみを含むこともできる。
上記した説明では、機能層5が、ハードコート層であったが、機能層5として、光学調整層を配置することもできる。
このような場合には、基材層2は、透明基材4と、光学調整層とを、厚み方向一方側に向かって順に備える。
光学調整層は、光透過性導電層3から形成されるパターンの視認を抑制して、透明導電性フィルム1の光学物性(具体的には、屈折率)を調整する層である。
光学調整層の材料は、例えば、光学調整組成物である。光学調整組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。
混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ジルコニアなどの無機の粒子)とを含有する。光学調整層8の厚みは、例えば、0.05μm以上であり、また、例えば、1μm以下である。
また、光学調整層を形成するには、光学調整組成物の希釈液を、透明基材4の厚み方向一方面に塗布し、乾燥後、紫外線照射により、光学調整組成物を硬化させる。
これにより、光学調整層を形成する。
また、機能層5として、剥離機能層を配置することもできる。
このような場合には、基材層2は、透明基材4と、剥離機能層とを、厚み方向一方側に向かって順に備える。
剥離機能層は、光透過性導電層3に対して剥離が容易な層(易剥離層)である。
基材層2が、剥離機能層を備えれば、透明導電性フィルム1から、光透過性導電層3を剥離することができる。剥離された光透過性導電層3は、例えば、タッチセンサを構成する他の部材に転写及び貼り合せすることで用いることができる。
また、機能層5として、易接着層を配置することもできる。
このような場合には、基材層2は、透明基材4と、易接着層とを、厚み方向一方側に向かって順に備える。
易接着層は、透明基材4と易接着層上に形成される層との密着性を担保するための層であり、例えば、透明基材4と光透過性導電層3との密着性を向上することができる。
機能層5は、複層であってもよい。
つまり、基材層2は、機能層5として、ハードコート層、光学調整層、剥離機能層および易接着層からなる群から選択される2つ以上の層を任意に含むことができる。
詳しくは、基材層2は、透明基材4と、易接着層と、ハードコート層と、光学調整層とを厚み方向一方側に向かって順に備えることもでき、また、基材層2は、透明基材4と、剥離機能層と、ハードコート層および/または光学調整層とを厚み方向一方側に向かって順に備えることもできる。
基材層2が、透明基材4と、剥離機能層と、ハードコート層および/または光学調整層とを、厚み方向一方側に向かって順に備える場合には、透明導電性フィルム1から、ハードコート層および/または光学調整層と光透過性導電層3とを備える積層体を剥離することができる。
また、基材層2は、機能層5を備えず、透明基材4のみからなることもできる。
また、基材層2が、透明基材4を備えず、機能層5のみからなることもできる。
このような基材層2を備える透明導電性フィルム1として、例えば、上記した積層体(ハードコート層および/または光学調整層と光透過性導電層3とを備える積層体)が挙げられる。
詳しくは、図5に示すように、透明導電性フィルム1は、基材層2(機能層5)と、光透過性導電層3とを厚み方向一方側に向かって順に備える。
また、基材層2は、ガラスを含む透明基材4と機能層5とからなることもできる。
また、基材層2は、透明基材4の他方面に、アンチブロッキング層(図示せず)を備えることもできる。
このような場合には、基材層2は、アンチブロッキング層と、透明基材4と、機能層5とを、厚み方向一方側に向かって順に備える。
アンチブロッキング層は、透明導電性フィルム1を厚み方向に積層した場合などに、互いに接触する複数の透明導電性フィルム1のそれぞれの表面に耐ブロッキング性を付与する。
アンチブロッキング層は、フィルム形状を有する。
アンチブロッキング層の材料は、例えば、アンチブロッキング組成物である。
アンチブロッキング組成物としては、例えば、特開2016-179686号公報に記載の混合物などが挙げられる。
混合物は、例えば、アクリル樹脂などの樹脂(バインダー樹脂)と、無機および/または有機の粒子(好ましくは、ポリスチレンなどの有機の粒子)とを含有する。
アンチブロッキング層の厚みは、例えば、0.1μm以上であり、また、例えば、10μm以下である。
また、アンチブロッキング層を形成するには、アンチブロッキング組成物の希釈液を、透明基材4の厚み方向他方面に塗布し、乾燥後、紫外線照射により、アンチブロッキング組成物を硬化させる。
これにより、アンチブロッキング層を形成する。
また、アンチブロッキング層と、透明基材4との間に、さらに、易接着層などの機能層5を備えることもできる。
また、基材層2は、透明基材4の一方側に、無機層からなる中間層(図示せず)を備えることもできる。
中間層は、基材層2の表面硬度を向上したり、光透過性導電層3が基材層2から受ける応力を中間地点で緩和する機能を有する。
中間層は、透明基材4、機能層5、および、アンチブロッキング層に対し、透明導電フィルムの厚み方向一方側に対し、任意の位置に備えることができ、複数層備えていても良い。
例えば、基材層2は、透明基材4と、機能層5と、中間層とを、厚み方向一方側に向かって順に備える。また、基材層2は、例えば、中間層と、アンチブロッキング層と、透明基材4と、機能層5とを厚み方向一方側に向かって順に備える。
中間層は、好ましくは、無機誘電体であり、その表面抵抗値が、例えば、1×10Ω/□以上、好ましくは1×10Ω/□以上である。
中間層の材料は、例えば、酸化珪素、酸化チタン、酸化ニオブ、酸化アルミニウム、二酸化ジルコニウム、酸化カルシウムなどの無機酸化物やフッ化マグネシウムなどのフッ化物を含有する組成からなる。なお、無機機能層の組成は、化学両論組成であってもなくてもよい。
一実施形態では、透明導電性フィルム1における光透過性導電層3の好適な数として1を例示しているが、例えば、図示しないが、2であってもよい。この場合には、2つの光透過性導電層3のそれぞれが、基材層2の厚み方向両側のそれぞれに配置される。つまり、この変形例の好適例では、1つの基材層2に対する光透過性導電層3の数は、好ましくは、2である。
以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。また、以下の記載において特に言及がない限り、「部」および「%」は質量基準である。
1.透明導電性フィルムの製造
比較
(第1工程)
透明基材としてのPETフィルムロール(東レ社製、厚み50μm)からなるフィルム基材の一方の面に、アクリル樹脂からなる紫外線硬化性樹脂を塗布し、紫外線照射により硬化させた。これにより、厚みが2μmであるハードコート層を形成した。これにより、基材層を得た。
次いで、基材層を真空スパッタ装置に設置して、到達真空度が0.9×10-4Paとなるよう十分に真空排気し、基材層の脱ガス処理を行った。その後、基材層を成膜ロールに沿うように搬送しながら、スパッタリングガスとして、クリプトン、および、反応性ガスとしての酸素を導入した減圧下(0.4Pa)で、酸化インジウムと酸化スズの焼結体であり、酸化スズ濃度が10質量%であるITOからなる第1ターゲットを、以下の設備、条件にてスパッタリングすることにより、基材層(ハードコート層)の一方面に、厚み150nmの非晶質の光透過性導電層(酸化スズ濃度が10質量%である第1非晶質層)を形成した。なお、酸素導入量は、図3に示す抵抗-酸素曲線の領域X、かつ、非晶質の光透過性導電層の表面抵抗が45Ω/□になるように調整した(クリプトンおよび酸素の合計導入量に対する酸素導入量の割合は、約1.4質量%)。これにより、基材層および非晶質の光透過性導電層からなる非晶質積層フィルムを得た。
(第2工程)
得られた非晶質積層フィルムを、155℃の熱風オーブンで1時間加熱した。これにより、非晶質の光透過性導電層を、結晶質の光透過性導電層とし、基材層および結晶質の光透過性導電層からなる透明導電性フィルムを得た。
<成膜設備・条件>
電源:DC電源
第1ターゲットの水平磁場強度:90mT
成膜気圧:0.4Pa
成膜ロール温度(基材層の温度):-8℃
実施例2、比較例6、比較例1および比較例5
表1の記載に従って、スパッタリングガス、第1領域の厚み、成膜ロール温度、および、非晶質の光透過性導電層の表面抵抗を変更した以外は、比較と同様にして、透明導電性フィルムを得た。
実施例3
比較の真空スパッタ装置に、酸化スズ濃度が3質量%であるITOからなる第2ターゲットをさらに設置し、厚み60nmの第1非晶質層(酸化スズ濃度が10質量%)を形成した後、連続して、第1非晶質層の一方面に、厚み3nmの第2非晶質層(酸化スズ濃度が3質量%)を形成し、また、非晶質の光透過性導電層の表面抵抗が120Ω/□になるように酸素導入量を調整した以外は、比較と同様にして、透明導電性フィルムを得た。
比較および比較例2~比較例4
表1の記載に従って、スパッタリングガス、第1領域と第2領域の厚み、および、非晶質の光透過性導電層の表面抵抗を変更した以外は、実施例3と同様にして、透明導電性フィルムを得た。
2.評価
<厚み測定>
(透明基材およびハードコート層の厚み)
透明基材の厚み、ハードコート層の厚みを、膜厚計(Peacock社製 デジタルダイアルゲージDG-205)を用いて測定した。その結果を表1に示す。
(光透過性導電層の厚み)
FIBマイクロサンプリング法により、各実施例および各比較例の透明導電性フィルムの断面を調製した。次いで、光透過性導電層の断面を、FE-TEM観察し、光透過性導電層(第1領域および第2領域)の厚みを測定した。ここで、実施例3、比較、比較例2、比較例3および比較例4において、第1領域の厚みは、第1領域の厚み方向一方面に、第2領域を配置する前に、第1領域のみ形成した、断面観察用サンプルを作製し、そのサンプルをFE-TEM観察にすることにより測定した。また、第2領域の厚みは、光透過性導電層の厚みから、第1領域の厚みを差し引くことにより算出した。その結果を表1に示す。
なお、装置および測定条件を以下に示す。
FIB装置:Hitachi製 FB2200、 加速電圧: 10kV
FE-TEM装置:JEOL製 JEM-2800、加速電圧: 200kV
<抵抗値の評価>
各実施例および各比較例の透明導電性フィルムについて、光透過性導電層の表面抵抗(R1)および比抵抗(R1´)を、JIS K7194(1994年)に準じて四端子法により測定した。その結果を表1に示す。
<加熱安定性>
各実施例および各比較例の透明導電性フィルムを、さらに、155℃の熱風オーブンで1時間加熱した後、光透過性導電層の表面抵抗(R2)および比抵抗(R2´)を測定した。その結果を表1に示す。
次いで、加熱安定性を、表面抵抗(R1)に対する、表面抵抗(R2)の比(R2/R1)として評価した。
つまり、加熱安定性(R2/R1)とは、結晶質の光透過性導電層を再加熱したときの、抵抗値の変化量を評価したものであり、その値が1に近いほうが、加熱安定性に優れることを示す。その結果を表1に示す。
<外観>
各実施例および各比較例の透明導電性フィルムを、水平な台に静置し、シワやスジの発生状況を確認し、製品の加工、組み込みする上で、実用上の問題(ITOフィルム上に製品に必要な機能の層を形成する際の塗工ムラやタッチパネルにおける外観ムラ)の有無で評価した。
〇:実用上、外観の問題ない水準であった。
×:実用上、外観が問題となる水準であった。
<結晶粒の粒径の測定>
実施例および比較例の透明導電性フィルムを切り出し、ウルトラミクロトームの試料ホルダに固定した。次いで、ITO膜面に対して極鋭角にミクロトームナイフを設置し、切断面がITO膜面と略平行となるように切削して観察試料を得た。この観察試料を、透過型電子顕微鏡を用いて観察した(倍率:50000倍)。TEM観察写真の中、1.5μm□の領域を任意で選定し、この1.5μmの領域で観察される結晶粒の中で、最大である結晶粒を選定した。この最大である結晶粒の粒界上に、任意の2点の測定点を配置し、測定点間の距離を直線距離で求めた。本測定では、この測定点間の距離の中で、測定点間の距離が最大となる測定点間距離を粒径とした。その結果を表1に示す。
<クリプトン原子の同定>
走査型蛍光X線分析装置(リガク社製、ZSX PrimusIV)を用いて、比較7、実施例2、実施例3および比較例8の光透過性導電層内にクリプトン原子を含むことを確認した。具体的には、以下の条件にて、5回繰り返し測定を行って各走査角度の平均値を算出し、X線スペクトルを作成した。作成したX線スペクトルの、28.2°近傍にピークが出ていることを確認することでクリプトン原子の混入を特定した。
<測定条件>
スペクトル:Kr-KA
測定径:30mm
雰囲気:真空
ターゲット:Rh
管電圧:50kV
管電流:60mA
1次フィルタ:Ni40
走査角度(deg):27.0~29.5
ステップ(deg):0.020
速度(Deg/min):0.75
アッテネータ:1/1
スリット:S2
分光結晶:LiF(200)
検出器:SC
PHA:100-300
Figure 0007213961000001
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。
本発明の透明導電性フィルムおよび透明導電性フィルムの製造方法は、タッチセンサ、調光素子、光電変換素子、熱線制御部材、アンテナ、電磁波シールド部材、画像表示装置、ヒータ部材(光透過性ヒータ)、および、照明において、好適に用いられる。
1 透明導電性フィルム
2 基材層
3 光透過性導電性層
4 透明基材

Claims (5)

  1. 基材層と、光透過性導電層とを順に備え、
    前記基材層は、樹脂層を含み、
    前記光透過性導電層は、クリプトン原子を含み、かつ、アルゴン原子を含まず、
    前記光透過性導電層におけるクリプトン原子の含有量は、1.0原子%以下であり、
    前記光透過性導電層は、スパッタリング層であり、
    前記光透過性導電層は、走査型蛍光X線分析装置で測定したX線スペクトルにおいて、28.2°近傍にピークを有し、
    前記光透過性導電層が、結晶質であり、かつ、300nm以上の粒径を有する結晶粒を含み、
    前記光透過性導電層の厚みが、50nm以上140nm以下であることを特徴とする、透明導電性フィルム。
  2. 前記光透過性導電層の厚みが、60nm以上100nm以下であることを特徴とする、請求項1に記載の透明導電性フィルム。
  3. 前記光透過性導電層が、インジウムスズ複合酸化物を含むことを特徴とする、請求項1または2に記載の透明導電性フィルム。
  4. 前記光透過性導電層が、パターン形状を有することを特徴とする、請求項1~3のいずれか一項に記載の透明導電性フィルム。
  5. クリプトン存在下、かつ、アルゴン不存在下において、光透過性導電層を構成する材料をターゲットとするスパッタリング法によって、基材層に、光透過性導電層を配置し、
    前記基材層は、樹脂層を含み、
    前記光透過性導電層におけるクリプトン原子の含有量は、1.0原子%以下であり、
    前記光透過性導電層は、走査型蛍光X線分析装置で測定したX線スペクトルにおいて、28.2°近傍にピークを有し、
    前記光透過性導電層が、結晶質であり、かつ、300nm以上の粒径を有する結晶粒を含み、
    前記光透過性導電層の厚みが、50nm以上140nm以下であることを特徴とする、透明導電性フィルムの製造方法。
JP2021517070A 2020-03-19 2021-03-18 透明導電性フィルムおよび透明導電性フィルムの製造方法 Active JP7213961B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022177317A JP2023017917A (ja) 2020-03-19 2022-11-04 透明導電性フィルムおよび透明導電性フィルムの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020049864 2020-03-19
JP2020049864 2020-03-19
PCT/JP2021/011146 WO2021187572A1 (ja) 2020-03-19 2021-03-18 透明導電性フィルムおよび透明導電性フィルムの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022177317A Division JP2023017917A (ja) 2020-03-19 2022-11-04 透明導電性フィルムおよび透明導電性フィルムの製造方法

Publications (2)

Publication Number Publication Date
JPWO2021187572A1 JPWO2021187572A1 (ja) 2021-09-23
JP7213961B2 true JP7213961B2 (ja) 2023-01-27

Family

ID=77771034

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021517070A Active JP7213961B2 (ja) 2020-03-19 2021-03-18 透明導電性フィルムおよび透明導電性フィルムの製造方法
JP2022177317A Pending JP2023017917A (ja) 2020-03-19 2022-11-04 透明導電性フィルムおよび透明導電性フィルムの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022177317A Pending JP2023017917A (ja) 2020-03-19 2022-11-04 透明導電性フィルムおよび透明導電性フィルムの製造方法

Country Status (5)

Country Link
JP (2) JP7213961B2 (ja)
KR (1) KR20220155284A (ja)
CN (1) CN115298761A (ja)
TW (1) TW202229590A (ja)
WO (1) WO2021187572A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334924B2 (ja) 2008-07-30 2013-11-06 京セラ株式会社 分波器、通信用モジュール部品、及び通信装置
JP2014103067A (ja) 2012-11-22 2014-06-05 Nitto Denko Corp 透明導電性フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (ja) * 1992-05-29 1993-12-17 Tonen Corp 透明導電薄膜の製造法
JPH07262829A (ja) * 1994-03-25 1995-10-13 Hitachi Ltd 透明導電膜及びその形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334924B2 (ja) 2008-07-30 2013-11-06 京セラ株式会社 分波器、通信用モジュール部品、及び通信装置
JP2014103067A (ja) 2012-11-22 2014-06-05 Nitto Denko Corp 透明導電性フィルム

Also Published As

Publication number Publication date
KR20220155284A (ko) 2022-11-22
WO2021187572A1 (ja) 2021-09-23
TW202229590A (zh) 2022-08-01
JP2023017917A (ja) 2023-02-07
CN115298761A (zh) 2022-11-04
JPWO2021187572A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
JP7073589B2 (ja) 透明導電層および透明導電性フィルム
JP7213961B2 (ja) 透明導電性フィルムおよび透明導電性フィルムの製造方法
JP7213962B2 (ja) 光透過性導電層および光透過性導電フィルム
CN115298757A (zh) 透光性导电膜和透明导电性薄膜
CN115298765B (zh) 透明导电性薄膜
JP7451505B2 (ja) 透明導電性フィルムの製造方法
WO2021187580A1 (ja) 透明導電性フィルム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220304

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220315

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220726

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20221130

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221206

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230110

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7213961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150