JP7211969B2 - 3d nandに適用するための低誘電率酸化物および低抵抗のopスタック - Google Patents

3d nandに適用するための低誘電率酸化物および低抵抗のopスタック Download PDF

Info

Publication number
JP7211969B2
JP7211969B2 JP2019558555A JP2019558555A JP7211969B2 JP 7211969 B2 JP7211969 B2 JP 7211969B2 JP 2019558555 A JP2019558555 A JP 2019558555A JP 2019558555 A JP2019558555 A JP 2019558555A JP 7211969 B2 JP7211969 B2 JP 7211969B2
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide layer
pecvd chamber
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019558555A
Other languages
English (en)
Other versions
JP2020518136A (ja
Inventor
シンハイ ハン,
カン サブ イム,
チーチュン チアン,
ディーネッシュ パディ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2020518136A publication Critical patent/JP2020518136A/ja
Application granted granted Critical
Publication of JP7211969B2 publication Critical patent/JP7211969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/41Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

[0001]本開示の実施形態は、一般に、メモリ製造プロセスに関し、より具体的には、低誘電率および低抵抗率を有する3Dメモリセルを製造する方法に関する。
[0002]増大する需要により、より低いコストでより小さな形状寸法の大容量で高性能なコンピュータメモリデバイスの必要性が高まり続けている。この目的のために、メモリセルの構成要素が、互いに積み重ねられ、縦型ゲート3Dメモリセルなどの3次元(3D)メモリセルが作られる。そのような技術の1つが、NANDフラッシュメモリであり、これは一般に、メモリカード、USBフラッシュドライブ、ソリッドステートドライブ、およびデータの保存と転送のための他の同様のデバイスに見出される。NANDフラッシュメモリでは、トランジスタで作られたメモリセルが、直列に接続され、垂直層に積み重ねられて、高密度に詰め込まれた大容量メモリデバイスが作られる。一般に、フラッシュドライブは、可動部品を含まないので、通常のハードドライブよりも消費電力が少なく、耐久性がある。そのため、サイズとコストを低減させながら、フラッシュドライブの容量を増やすことに大きな関心が寄せられている。
[0003]フラッシュ技術が進歩して来た間、大容量のデバイスを小型に作製する方法には制約が存在し続けていた。例えば、微視的スケールで結合された異なる材料が、フラッシュメモリデバイスの不均一性をもたらす異なる物理的特性を持っている。多くの縦型3Dメモリセルは、酸化物/ポリシリコン(OP)スタックおよび/または酸化物/窒化物(ON)スタックを、それらの統合特性のために含む。しかし、問題なことに、酸化物材料は、一般に、高い誘電率と抵抗容量(RC)遅延を有し、ポリシリコン材料は、高い抵抗率を有する。
[0004]したがって、低誘電率および低抵抗率を有する、3Dメモリセルなどのメモリ構造を製造する改善された方法が必要である。
[0005]本明細書で説明する実施形態は、一般に、NANDデバイスなどのメモリデバイスの3Dメモリセルの酸化物/ポリシリコン(OP)スタックを製造する方法に関する。一般に、この方法は、酸化物の誘電率を下げ、ポリシリコンの抵抗率を下げるために、PECVDプロセス中に酸化物および/またはポリシリコン材料を前駆体で処理することを含む。一実施形態では、酸化物材料は、オクタメチルシクロテトラシロキサン(OMCTS)前駆体で処理される。別の実施形態では、ゲルマン(GeH)がPECVDプロセスに導入され、ドープされたSiGe(1-x)膜を形成する。さらに別の実施形態では、プラズマ処理プロセスを使用して、OPスタックの層間の界面を窒化する。前駆体とプラズマ処理を単独または任意の組み合わせで使用して、低誘電率の酸化物と低抵抗率のポリシリコンを有するOPスタックを作製することができる。
[0006]一実施形態で、メモリセル製造方法が説明される。この方法は、基板をPECVDチャンバ内に配置することと、オクタメチルシクロテトラシロキサン前駆体をPECVDチャンバに導入して、基板の上に酸化ケイ素層を堆積することと、酸化ケイ素層の上にポリシリコン層を堆積することと、を含む。
[0007]別の実施形態で、メモリセル製造方法が説明される。この方法は、基板をPECVDチャンバ内に配置することと、基板の上に酸化ケイ素層を堆積することと、ケイ素前駆体とゲルマンをPECVDチャンバに導入して、酸化ケイ素層の上にSiGe(1-x)膜を形成することと、を含む。
[0008]さらに別の実施形態で、メモリデバイスが説明される。メモリデバイスは、基板、基板の上に配置された、約2.5~約3.2の誘電率を有する酸化ケイ素層、および酸化ケイ素層の上に配置されたポリシリコン層を含む。
[0009]本開示の上記の特徴を詳細に理解することができるように、上記で手短に要約された本開示のより詳細な説明が、実施形態を参照することによって得られ、実施形態のいくつかが、添付の図面に示されている。ただし、添付の図面は、本開示の典型的な実施形態のみを示しており、したがって、本開示は他の同等に有効な実施形態を認め得るので、範囲を限定するものと見なされるべきではないことに、留意されたい。
本開示の実施形態によるメモリデバイスの断面図である。 本開示の実施形態による方法を要約する流れ図である。 本開示の実施形態による方法を要約する流れ図である。
[0013]理解を容易にするために、可能な場合には、図面に共通の同一の要素を示すために、同一の参照番号が使用されている。さらに、一実施形態の要素は、本明細書に記載の他の実施形態で利用するために、有利に適合させることができる。
[0014]本明細書で説明する実施形態は、一般に、NANDデバイスなどのメモリデバイスの3Dメモリセルの酸化物/ポリシリコン(OP)スタックを製造する方法に関する。一般に、この方法は、酸化物の誘電率を下げ、ポリシリコンの抵抗率を下げるために、PECVDプロセス中に酸化物および/またはポリシリコン材料を前駆体で処理することを含む。一実施形態では、酸化物材料は、オクタメチルシクロテトラシロキサン(OMCTS)前駆体で処理される。別の実施形態では、ゲルマン(GeH)がPECVDプロセスに導入され、ドープされたSiGe(1-x)膜を形成する。さらに別の実施形態では、プラズマ処理プロセスを使用して、OPスタックの層間の界面を窒化する。前駆体とプラズマ処理を単独または任意の組み合わせで使用して、低誘電率の酸化物と低抵抗率のポリシリコンを有するOPスタックを作製することができる。本開示は、一例としてOPスタックメモリデバイスを想定している。ただし、他のメモリスタックも、本明細書で説明する方法の恩恵を受ける。
[0015]図1は、本開示の実施形態によるメモリデバイス100である。メモリデバイス100は、その上に複数の第1の材料層104および複数の第2の材料層106を備えた基板102を含む。複数の第1の材料層104および複数の第2の材料層106は、メモリスタック108を構成する。OPスタックメモリデバイスの実施形態では、第1の材料層104のそれぞれが、一般に酸化ケイ素層(O層)であり、第2の材料層106のそれぞれが、一般にアモルファスシリコン層であり、これは、アニーリングプロセス後にポリシリコン層(P層)になる。図1は、第1の材料層104の上に堆積された第2の材料層106を示すが、第1の材料層104(O層)が第2の材料層106(P層)の上に堆積されるように、堆積順序を逆にしてもよい。
[0016]メモリデバイス100は、図示のように、3つの第1の材料層104と3つの第2の材料層106を含むが、第1の材料層104と第2の材料層106の数は、製造されるメモリデバイスに応じて、一般に任意の適切な層数である。例えば、メモリデバイスは、多くの場合、8x、16x、24x、およびさらに高いスタック数を含む。
[0017]メモリデバイス100がNANDフラッシュメモリセルである実施形態では、メモリデバイス100は、基板102の第1の表面の両端に配置されたソースおよびドレインを、さらに含む。フラッシュメモリとして使用するため、通常、複数のNANDフラッシュセルは、ソースまたはドレインを共有する隣接セルと直列に接続されており、各セルが、ビットラインとワードラインに接続されている。動作中、各セルは、「0」または「1」などのデータを保存することができる。
[0018]一般に、メモリデバイス100などのメモリデバイスを製造する以下の方法は、比較的低温でケイ素膜を形成するために使用することができるプラズマ化学気相堆積(PECVD)プロセスの一部である。この方法は、カリフォルニア州サンタクララのアプライドマテリアルズ社(Applied Materials,Inc.)から入手可能なPECVDチャンバなどの、任意の適切なPECVDチャンバで実行することができる。
[0019]図2は、メモリデバイス100などのメモリデバイスを製造する方法200を要約する流れ図を示す。方法200は、基板102をPECVDチャンバ内に配置することにより、工程210で開始する。工程220で、OMCTS前駆体をPECVDチャンバに導入することにより、第1の材料層104、すなわち酸化ケイ素層が、基板102の上に堆積される。OMCTS前駆体の化学構造を、構造1として以下に示す。一実施形態では、第1の材料層104は、基板102の上に接触して堆積される。
Figure 0007211969000001
[0020]構造1に示すように、OMCTS分子は、メチル(CH)基に加えて、酸化ケイ素(Si-O)環状結合を有する化学構造である。従来の堆積された酸化ケイ素層は、約3.9の誘電率を有する。本開示の実施形態によれば、上述のOMCTS前駆体の導入による炭素(C)は、一般に、酸化ケイ素層の誘電率を現在の約3.9の値から約2.5~約3.2に、例えば約2.8~約3.0に低下させる。加えて、堆積された酸化ケイ素層は、Si-O環状構造によって酸化物品質が向上している。
[0021]PECVDプロセスの処理条件を調整することにより、OMCTS前駆体のC-H結合が切断される。例えば、PECVDチャンバへのOMCTS前駆体の導入中にプラズマ密度を約25.56メガヘルツ(MHz)から約27MHzに増加させると、前駆体のC-H結合が切断される。追加的または代替的に、方法300は、約300kHz~約400kHzの、例えば約350kHzの高周波数(RF周波数)で酸化ケイ素層をボンバードして、OMCTS前駆体のC-H結合を切断することを、さらに含む。
[0022]工程230で、第2の材料層106、すなわちポリシリコン層が、第1の材料層104、すなわち酸化ケイ素層の上に堆積される。第2の材料層106は、任意の適切な堆積手段によって堆積させることができる。一般に、アモルファスシリコンが、シラン(SiH)、アルゴン(Ar)、およびヘリウム(He)を含むがこれらに限定されない前駆体、ならびにホスフィン(PH)およびジボラン(B)を含むがこれらに限定されないドーパント前駆体の導入によって堆積される。アモルファスシリコンは、熱アニールなどのアニーリングプロセス後にポリシリコンになる。一実施形態では、第2の材料層106は、第1の材料層104の上に接触して堆積される。
[0023]工程220および230は、任意選択で繰り返されて、任意の数の第1の材料層104および任意の数の第2の材料層106を有するOPスタックを形成する。
[0024]図3は、メモリデバイス100を製造する方法300を要約する流れ図を示す。方法300は、基板102をPECVDチャンバ内に配置することにより、工程310で開始する。工程320で、第1の材料層104、すなわち酸化ケイ素層が、基板102の上に堆積される。酸化ケイ素層は、一般に、方法200の工程220で説明されたプロセスなどの、任意の適切な堆積プロセスによって堆積される。一実施形態では、第1の材料層104は、基板102の上に接触して堆積される。
[0025]工程330で、第2の材料層106、すなわちポリシリコン層が、第1の材料層104の上に堆積される。より具体的には、ポリシリコン層は、シラン(SiH)を含むがこれに限定されない少なくとも1つのケイ素前駆体およびゲルマン(GeH)前駆体を導入して、高移動度と低抵抗率を有する、ドーパントを含むSiGe(1-x)膜を形成することにより、堆積される。適切なドーパントの例は、ホスフィン(PH)である。GeH前駆体は、PECVDプロセス中の任意の適切な時間に導入されてもよい。一実施形態では、プラズマがPECVDチャンバ内で生成される前に、GeHが導入される。
[0026]堆積されたポリシリコンは、同じまたは実質的に同様のキャリア濃度で高い移動度と低い抵抗率を有する。従来の堆積されたn型ポリシリコン(リン(P)がドーピングされている)は、約1×10-3Ω・cmの抵抗率を有し、従来の堆積されたp型ポリシリコンは、約3×10-3Ω・cmの抵抗率を有する。GeH前駆体の導入により、n型ポリシリコン膜の抵抗率は、約0.5×10-3Ω・cmに低下し、p型ポリシリコン膜の抵抗率は、約1.5×10-3Ω・cmに低下する。
[0027]工程320および330は、任意選択で繰り返されて、任意の数の第1の材料層104および任意の数の第2の材料層106を有するOPスタックを形成する。
[0028]追加的または代替的に、本明細書に記載の方法は、第1の材料層104、すなわち酸化ケイ素層と、第2の材料層106、すなわちポリシリコン層との間の界面でのプラズマ処理を含んでもよい。より具体的には、酸化ケイ素層のそれぞれとポリシリコン層のそれぞれとの間の界面が、窒化してOPスタックの層間の密着性を改善するために、プラズマ処理を受けてもよい。例えば、アンモニア(NH)/窒素ガス(N)プラズマが、PECVDチャンバ内で生成されて、酸化ケイ素層とポリシリコン層の間の界面を窒化して、密着性を改善することができる。
[0029]方法200および方法300の工程は、任意の組み合わせで使用することができる。さらなる一実施形態では、第1の材料層104、すなわち酸化ケイ素層は、OMCTS前駆体を導入することにより、基板102の上に堆積され、第2の材料層106は、SiHを含むがこれに限定されない少なくとも1つのケイ素前駆体、およびゲルマン(GeH)前駆体を導入して、ドーパントを含むSiGe(1-x)膜を形成することにより、堆積される。これらの工程が繰り返されて、任意の適切な数の層を有するメモリデバイスが形成される。
[0030]本明細書に記載の方法は、低誘電率の酸化物および低抵抗率のポリシリコンを有する、薄い厚さの改善されたメモリデバイスを提供し、全体的なメモリデバイス形状寸法の継続的な縮小を維持しながら、全体的なデバイス拡張性を改善する。
[0031]上記は、本開示の実施形態に向けられているが、本開示の基本的な範囲から逸脱することなく、本開示の他のさらなる実施形態を考え出すこともでき、本開示の範囲は、以下の特許請求の範囲によって決定される。

Claims (9)

  1. メモリデバイススタックを製造する方法であって、
    基板をPECVDチャンバ内に配置することと、
    オクタメチルシクロテトラシロキサン前駆体を前記PECVDチャンバに導入して、前記基板の上に酸化ケイ素層を堆積させることと、
    300kHzから400kHzの間のRF周波数で前記酸化ケイ素層をボンバードすることと、
    前記酸化ケイ素層の上にポリシリコン層を堆積させることと、
    を含む方法。
  2. 前記酸化ケイ素層の上にポリシリコン層を堆積させることが、
    シランとゲルマンを前記PECVDチャンバに導入して、前記ポリシリコン層を堆積させることを含む、請求項1に記載の方法。
  3. オクタメチルシクロテトラシロキサン前駆体を前記PECVDチャンバに導入して、前記基板の上に前記酸化ケイ素層を堆積させることが、27メガヘルツの周波数で行われる、請求項1に記載の方法。
  4. 前記方法が、前記酸化ケイ素層と前記ポリシリコン層との間の界面をプラズマ処理することを、さらに含み、前記プラズマ処理が、NHまたはNを前記PECVDチャンバに導入することを含む、請求項1に記載の方法。
  5. 前記酸化ケイ素層の上に前記ポリシリコン層を堆積させることが、
    シラン、アルゴン、およびヘリウムからなる群から選択された1つ以上の前駆体、ならびにホスフィンおよびジボランからなる群から選択された1つ以上のドーパント前駆体を、前記PECVDチャンバに導入して、前記酸化ケイ素層の上にアモルファスシリコン層を堆積させることと、
    前記アモルファスシリコン層をアニーリングして、前記ポリシリコン層を形成することと、
    を含む、請求項1に記載の方法。
  6. 前記酸化ケイ素層の上に前記ポリシリコン層を堆積させることが、
    シランからなる群から選択された少なくとも1つのケイ素前駆体およびゲルマンを、前記PECVDチャンバに導入して、SiGe(1-x)膜を形成することを含む、請求項1に記載の方法。
  7. メモリデバイススタックを製造する方法であって、
    基板をPECVDチャンバ内に配置することと、
    前記基板の上に酸化ケイ素層を堆積させることと、
    ケイ素前駆体とゲルマンを前記PECVDチャンバに導入して、前記酸化ケイ素層の上にポリシリコン層を堆積させることと、
    300kHzから400kHzの間のRF周波数で前記酸化ケイ素層をボンバードすることと、
    を含む方法。
  8. 前記基板の上に酸化ケイ素層を堆積させることが、
    OMCTS前駆体を前記PECVDチャンバに導入して、前記酸化ケイ素層を堆積させることを含む、請求項7に記載の方法。
  9. 前記方法が、前記酸化ケイ素層と前記ポリシリコン層との間の界面をプラズマ処理することを、さらに含み、前記プラズマ処理が、NHまたはNを前記PECVDチャンバに導入することを含む、請求項7に記載の方法。
JP2019558555A 2017-04-27 2018-04-20 3d nandに適用するための低誘電率酸化物および低抵抗のopスタック Active JP7211969B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762490725P 2017-04-27 2017-04-27
US62/490,725 2017-04-27
PCT/US2018/028632 WO2018200335A1 (en) 2017-04-27 2018-04-20 Low dielectric constant oxide and low resistance op stack for 3d nand application

Publications (2)

Publication Number Publication Date
JP2020518136A JP2020518136A (ja) 2020-06-18
JP7211969B2 true JP7211969B2 (ja) 2023-01-24

Family

ID=63916830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558555A Active JP7211969B2 (ja) 2017-04-27 2018-04-20 3d nandに適用するための低誘電率酸化物および低抵抗のopスタック

Country Status (5)

Country Link
US (2) US10553427B2 (ja)
JP (1) JP7211969B2 (ja)
KR (1) KR102578078B1 (ja)
CN (1) CN110235248B (ja)
WO (1) WO2018200335A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210327891A1 (en) * 2020-04-16 2021-10-21 Applied Materials, Inc. Stack for 3d-nand memory cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266143A (ja) 2006-03-27 2007-10-11 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2008124111A (ja) 2006-11-09 2008-05-29 Nissin Electric Co Ltd プラズマcvd法によるシリコン系薄膜の形成方法
JP2009539265A (ja) 2006-05-30 2009-11-12 アプライド マテリアルズ インコーポレイテッド ギャップ充填と共形のフィルムの適用のために低k膜を堆積させ硬化する方法
JP2010504648A (ja) 2006-09-20 2010-02-12 アプライド マテリアルズ インコーポレイテッド 低k誘電膜の二層キャッピング
CN102339846A (zh) 2010-07-19 2012-02-01 旺宏电子股份有限公司 具有可调整栅极电阻值的晶体管的半导体存储器元件
JP2016539514A (ja) 2013-11-04 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 酸化物−ケイ素スタックのための付着性の改善

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH276406A (fr) * 1943-03-30 1951-07-15 Works Corning Glass Procédé de polymérisation d'octaméthylcyclotétrasiloxane.
JPH03218073A (ja) * 1990-01-23 1991-09-25 Seiko Epson Corp 薄膜半導体装置及びその製造方法
JPH04261067A (ja) * 1991-01-28 1992-09-17 Tonen Corp 太陽電池の製造方法
KR100226366B1 (ko) * 1995-08-23 1999-10-15 아끼구사 나오유끼 플라즈마장치 및 플라즈마 처리방법
JPH09120957A (ja) * 1995-08-23 1997-05-06 Fujitsu Ltd プラズマ装置及びプラズマ処理方法
US6074919A (en) * 1999-01-20 2000-06-13 Advanced Micro Devices, Inc. Method of forming an ultrathin gate dielectric
JP3545364B2 (ja) * 2000-12-19 2004-07-21 キヤノン販売株式会社 半導体装置及びその製造方法
US6897163B2 (en) * 2003-01-31 2005-05-24 Applied Materials, Inc. Method for depositing a low dielectric constant film
US8007332B2 (en) * 2004-03-15 2011-08-30 Sharp Laboratories Of America, Inc. Fabrication of a semiconductor nanoparticle embedded insulating film electroluminescence device
US7037855B2 (en) * 2004-08-31 2006-05-02 Asm Japan K.K. Method of forming fluorine-doped low-dielectric-constant insulating film
KR100728962B1 (ko) 2004-11-08 2007-06-15 주식회사 하이닉스반도체 지르코늄산화막을 갖는 반도체소자의 캐패시터 및 그 제조방법
US7259111B2 (en) 2005-01-19 2007-08-21 Applied Materials, Inc. Interface engineering to improve adhesion between low k stacks
US7355236B2 (en) * 2005-12-22 2008-04-08 Taiwan Semiconductor Manufacturing Co., Ltd. Non-volatile floating gate memory cells with polysilicon storage dots and fabrication methods thereof
FR2919213B1 (fr) * 2007-07-23 2009-08-28 Commissariat Energie Atomique Procede de soudure de deux elements entre eux au moyen d'un materiau de brasure
EP2674513B1 (en) * 2009-05-13 2018-11-14 SiO2 Medical Products, Inc. Vessel coating and inspection
JP2011061007A (ja) * 2009-09-10 2011-03-24 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法及び基板処理装置
US20120142172A1 (en) 2010-03-25 2012-06-07 Keith Fox Pecvd deposition of smooth polysilicon films
US20110272024A1 (en) * 2010-04-13 2011-11-10 Applied Materials, Inc. MULTI-LAYER SiN FOR FUNCTIONAL AND OPTICAL GRADED ARC LAYERS ON CRYSTALLINE SOLAR CELLS
US8076250B1 (en) * 2010-10-06 2011-12-13 Applied Materials, Inc. PECVD oxide-nitride and oxide-silicon stacks for 3D memory application
US20130032897A1 (en) * 2011-08-02 2013-02-07 International Business Machines Corporation Mosfet gate electrode employing arsenic-doped silicon-germanium alloy layer
US9117668B2 (en) * 2012-05-23 2015-08-25 Novellus Systems, Inc. PECVD deposition of smooth silicon films
US9484297B2 (en) * 2015-03-13 2016-11-01 Globalfoundries Inc. Semiconductor device having non-magnetic single core inductor and method of producing the same
CN105513960B (zh) * 2016-01-27 2019-01-11 武汉华星光电技术有限公司 氧化硅薄膜的沉积方法及低温多晶硅tft基板的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266143A (ja) 2006-03-27 2007-10-11 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JP2009539265A (ja) 2006-05-30 2009-11-12 アプライド マテリアルズ インコーポレイテッド ギャップ充填と共形のフィルムの適用のために低k膜を堆積させ硬化する方法
JP2010504648A (ja) 2006-09-20 2010-02-12 アプライド マテリアルズ インコーポレイテッド 低k誘電膜の二層キャッピング
JP2008124111A (ja) 2006-11-09 2008-05-29 Nissin Electric Co Ltd プラズマcvd法によるシリコン系薄膜の形成方法
CN102339846A (zh) 2010-07-19 2012-02-01 旺宏电子股份有限公司 具有可调整栅极电阻值的晶体管的半导体存储器元件
JP2016539514A (ja) 2013-11-04 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 酸化物−ケイ素スタックのための付着性の改善

Also Published As

Publication number Publication date
US20200126784A1 (en) 2020-04-23
WO2018200335A1 (en) 2018-11-01
US20180315592A1 (en) 2018-11-01
KR20190135472A (ko) 2019-12-06
CN110235248A (zh) 2019-09-13
CN110235248B (zh) 2024-03-26
US10553427B2 (en) 2020-02-04
JP2020518136A (ja) 2020-06-18
KR102578078B1 (ko) 2023-09-12

Similar Documents

Publication Publication Date Title
US8993453B1 (en) Method of fabricating a nonvolatile charge trap memory device
US10424594B2 (en) Methods of forming a thin film and methods of fabricating a semiconductor device including using the same
JP2008523640A5 (ja)
WO2008147388A1 (en) Single-wafer process for fabricating nonvolatile charge trap memory device
US11817320B2 (en) CVD based oxide-metal multi structure for 3D NAND memory devices
JP5642282B2 (ja) 半導体素子の製造方法
JP7191023B2 (ja) 下位構造材料に直接rf曝露しない共形の気密性誘電体封入のためのsibn膜
JP7211969B2 (ja) 3d nandに適用するための低誘電率酸化物および低抵抗のopスタック
US9721851B2 (en) Silicon-germanium fin formation
US8378424B2 (en) Semiconductor structure having test and transistor structures
CN111540667A (zh) 涉及在衬底材料上形成锗原子层的方法、设备和系统
US20070148927A1 (en) Isolation structure of semiconductor device and method for forming the same
US10593543B2 (en) Method of depositing doped amorphous silicon films with enhanced defect control, reduced substrate sensitivity to in-film defects and bubble-free film growth
US20080308905A1 (en) Semi-conductor device, and method of making the same
TW440928B (en) Method for forming a silicon conductive layer by CVD
TW202245010A (zh) 沉積非晶矽蝕刻保護襯墊之製程
TW202316632A (zh) 形成具有降低電阻的記憶體裝置的方法
WO2023224816A1 (en) Direct word line contact and methods of manufacture for 3d memory
US20120282783A1 (en) Method for fabricating high-k dielectric layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7211969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150