図1は、本発明の実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。図2は、エンジン22やプラネタリギヤ30、モータMG1,MG2、変速機60の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、後輪39ra,39rbが主駆動輪で且つ前輪39fa,39fbが副駆動輪である後輪駆動ベースの4輪駆動車両として構成されている。このハイブリッド自動車20は、図1や図2に示すように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、バッテリ50と、変速機60と、トランスファ120と、油圧ブレーキ装置90と、ハイブリッド用電子制御ユニット(以下、「HVECU」という)70とを備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。このエンジン22は、エンジン用電子制御ユニット(以下、「エンジンECU」という)24により運転制御されている。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されている。このエンジンECU24は、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号が入力ポートから入力されている。エンジンECU24に入力される信号としては、例えば、エンジン22のクランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランクシャフト26のクランク角θcrを挙げることができる。エンジンECU24からは、エンジン22を運転制御するための各種制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信ポートを介して接続されている。エンジンECU24は、クランクポジションセンサ23からのクランク角θcrに基づいてエンジン22の回転数Neを演算している。
プラネタリギヤ30は、シングルピニオンタイプの遊星歯車機構として構成されている。このプラネタリギヤ30は、外歯歯車であるサンギヤ30sと、内歯歯車であるリングギヤ30rと、それぞれサンギヤ30sおよびリングギヤ30rに噛合する複数のピニオンギヤ30pと、複数のピニオンギヤ30pを自転(回転)かつ公転自在に支持するキャリヤ30cとを有する。サンギヤ30sは、モータMG1の回転子に接続されている。リングギヤ30rは、変速機60の入力軸61に接続されている。キャリヤ30cは、ダンパ28を介してエンジン22のクランクシャフト26に接続されている。
モータMG1は、例えば同期発電電動機として構成されている。このモータMG1の回転子は、上述したように、プラネタリギヤ30のサンギヤ30sに接続されている。モータMG2は、例えば同期発電電動機として構成されている。このモータMG2の回転子は、変速機60の入力軸61に接続されている。インバータ41,42は、モータMG1,MG2の駆動に用いられると共に電力ライン54を介してバッテリ50に接続されている。モータMG1,MG2は、モータ用電子制御ユニット(以下、「モータECU」という)40によって、インバータ41,42の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されている。このモータECU40は、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。モータECU40に入力される信号としては、例えば、モータMG1,MG2の回転子の回転位置を検出する回転位置センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2や、モータMG1,MG2の各相に流れる相電流を検出する電流センサからのモータMG1,MG2の各相の相電流Iu1,Iv1,Iu2,Iv2を挙げることができる。モータECU40からは、インバータ41,42の図示しない複数のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。モータECU40は、HVECU70と通信ポートを介して接続されている。モータECU40は、回転位置センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の電気角θe1,θe2や回転数Nm1,Nm2を演算している。
バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、電力ライン54を介してインバータ41,42と接続されている。このバッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52により管理されている。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されている。このバッテリECU52は、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な各種センサからの信号が入力ポートを介して入力されている。バッテリECU52に入力される信号としては、例えば、バッテリ50の出力端子に取り付けられた電流センサ51aからのバッテリ50の電流Ibや、バッテリ50の端子間に取り付けられた電圧センサ51bからのバッテリ50の電圧Vb、バッテリ50に取り付けられた温度センサ51cからのバッテリ50の温度Tbを挙げることができる。バッテリECU52は、HVECU70と通信ポートを介して接続されている。バッテリECU52は、電流センサ51aからのバッテリ50の電流Ibの積算値に基づいてバッテリ50の蓄電割合SOCを演算している。蓄電割合SOCは、バッテリ50の全容量に対するバッテリ50から放電可能な電力の容量の割合である。
変速機60は、4段変速機として構成されている。この変速機60は、入力軸61と、出力軸(駆動軸)62と、プラネタリギヤ63,64と、摩擦係合要素としてのクラッチC1,C2およびブレーキB1,B2と、ワンウェイクラッチF1とを備える。入力軸61は、上述したように、プラネタリギヤ30のリングギヤ30rおよびモータMG2に接続されている。出力軸62は、トランスファ120に接続されている。
プラネタリギヤ63は、シングルピニオンタイプの遊星歯車機構として構成されている。このプラネタリギヤ63は、外歯歯車であるサンギヤ63sと、内歯歯車であるリングギヤ63rと、それぞれサンギヤ63sおよびリングギヤ63rに噛合する複数のピニオンギヤ63pと、複数のピニオンギヤ63pを自転(回転)かつ公転自在に支持するキャリヤ63cとを有する。
プラネタリギヤ64は、シングルピニオンタイプの遊星歯車機構として構成されている。このプラネタリギヤ64は、外歯歯車であるサンギヤ64sと、内歯歯車であるリングギヤ64rと、それぞれサンギヤ64sおよびリングギヤ64rに噛合する複数のピニオンギヤ64pと、複数のピニオンギヤ64pを自転(回転)かつ公転自在に支持するキャリヤ64cとを有する。
プラネタリギヤ63のキャリヤ63cとプラネタリギヤ64のリングギヤ64rとが連結(固定)されている。また、プラネタリギヤ63のリングギヤ63rとプラネタリギヤ64のキャリヤ64cとが連結(固定)されている。したがって、プラネタリギヤ63およびプラネタリギヤ64は、プラネタリギヤ63のサンギヤ63s、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64r、プラネタリギヤ63のリングギヤ63rおよびプラネタリギヤ64のキャリヤ64c、プラネタリギヤ64のサンギヤ64sを4つの回転要素とするいわゆる4要素タイプの機構として機能する。また、プラネタリギヤ63のリングギヤ63rおよびプラネタリギヤ64のキャリヤ64cは、出力軸62に連結(固定)されている。
クラッチC1は、入力軸61と、プラネタリギヤ64のサンギヤ64sと、を互いに接続すると共に両者の接続を解除する。クラッチC2は、入力軸61と、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rと、を互いに接続すると共に両者の接続を解除する。ブレーキB1は、プラネタリギヤ63のサンギヤ63sを静止部材としてのトランスミッションケース29に対して回転不能に固定(接続)すると共にこのサンギヤ63sをトランスミッションケース29に対して回転自在に解放する。ブレーキB2は、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rをトランスミッションケース29に対して回転不能に固定(接続)すると共にこのキャリヤ63cおよびリングギヤ64rをトランスミッションケース29に対して回転自在に解放する。ワンウェイクラッチF1は、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rの一方向の回転を許容すると共に他方向の回転を規制する。
クラッチC1,C2は、それぞれ、油圧駆動の多板クラッチとして構成されている。ブレーキB1,B2は、それぞれ、油圧駆動の多板ブレーキとして構成されている。クラッチC1,C2およびブレーキB1,B2は、油圧制御装置(図示省略)による作動油の給排を受けて動作する。
図3は、変速機60の各変速段とクラッチC1,C2やブレーキB1,B2、ワンウェイクラッチF1の係合状態との関係を示す作動表である。図4は、プラネタリギヤ30および変速機60の各回転要素の回転数の関係を示す共線図である。
図4中、左側は、プラネタリギヤ30の共線図であり、右側は、変速機60の共線図である。プラネタリギヤ30の共線図において、30s軸は、モータMG1の回転数Nm1であるサンギヤ30sの回転を示し、30c軸は、エンジン22の回転数Neであるキャリヤ30cの回転数を示し、30r軸は、モータMG2の回転数Nm2や入力軸61の回転数であるリングギヤ30rの回転数を示す。
変速機60の共線図において、64s軸は、プラネタリギヤ64のサンギヤ64sの回転数を示し、63r,64c軸は、プラネタリギヤ63のリングギヤ63rおよびプラネタリギヤ64のキャリヤ64cの回転数を示し、63c,64r軸は、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rの回転数を示し、63s軸は、プラネタリギヤ63のサンギヤ63sの回転数を示す。
変速機60は、クラッチC1,C2やブレーキB1,B2、ワンウェイクラッチF1を図3に示すように係合または解放することにより、第1速から第4速までの前進段や後進段が形成される。具体的には、前進第1速は、クラッチC1を係合すると共にクラッチC2およびブレーキB1,B2を解放し、ワンウェイクラッチF1が作動する(プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rの他方向の回転(図4における負回転)を規制する)ことにより形成される。なお、前進第1速で、モータMG2の回生駆動や、燃料噴射を停止したエンジン22のモータMG1によるモータリングにより、変速機60の入力軸61に制動力が出力される際には、ブレーキB2も係合される。
前進第2速は、クラッチC1およびブレーキB1を係合すると共にクラッチC2およびブレーキB2を解放することにより形成される。前進第3速は、クラッチC1およびクラッチC2を係合すると共にブレーキB1,B2を解放することにより形成される。前進第4速は、クラッチC2およびブレーキB1を係合すると共にクラッチC1およびブレーキB2を解放することにより形成される。後進段は、クラッチC1およびブレーキB2を係合すると共にクラッチC2およびブレーキB1を解放することにより形成される。
トランスファ120は、変速機60の出力軸62に出力される駆動力に対する、副駆動輪としての前輪39fa,39fbに伝達する駆動力と、主駆動輪としての後輪39ra,39rbに伝達する駆動力と、の配分である前後駆動力配分を例えば0:100~40:60や50:50の間で連続的に変更可能に構成されている。したがって、ハイブリッド自動車20は、前後駆動力配分が0:100のときには、2輪駆動(2WD)となり、前後駆動力配分が0:100以外のときには、4輪駆動(4WD)となる。即ち、ハイブリッド自動車20は、パートタイム4WDとして構成されている。
図5は、トランスファ120の構成の概略を示す構成図である。図示するように、トランスファ120は、後輪側伝達軸(主回転軸)121と、前輪側伝達軸(副回転軸)122と、クラッチ130と、駆動部140と、伝達機構150とを備える。後輪側伝達軸121は、変速機60の入力軸61(図1参照)に連結されると共にリヤプロペラシャフト37r(図1参照)に連結されている。前輪側伝達軸122は、フロントプロペラシャフト37f(図1参照)に連結されている。
クラッチ130は、多板クラッチとして構成されている。このクラッチ130は、クラッチハブ131と、クラッチドラム132と、複数の摩擦係合プレート133と、ピストン134とを備える。クラッチハブ131は、後輪側伝達軸121に連結されている。クラッチドラム132は、伝達機構150のドライブギヤ151に連結されている。複数の摩擦係合プレート133は、クラッチハブ131の外周面にスプライン嵌合される第1プレート133aと、クラッチドラム132の内周面にスプライン嵌合される第2プレート133bと、が交互に並ぶように配設されている。ピストン134は、複数の摩擦係合プレート133に対して伝達機構150のドライブギヤ151とは反対側に配置されている。このピストン134は、ドライブギヤ151側に移動することにより、複数の摩擦係合プレート133を押圧する。
このクラッチ130は、ピストン134がドライブギヤ151から離間する側に移動して摩擦係合プレート133に当接しない状態では、解放状態となる。また、クラッチ130は、ピストン134がドライブギヤ151に接近する側に移動して摩擦係合プレート133に当接する状態では、ピストン134の移動量により係合力(トルク容量)が調節され、解放状態、スリップ係合状態、完全係合状態のうちの何れかとなる。
駆動部140は、クラッチ130の駆動に用いられる。この駆動部140は、モータ141と、ねじ機構142とを備える。モータ141は、HVECU70により制御される。ねじ機構142は、ボールねじとして構成されており、モータ141の回転運動を直線運動に変換する。このねじ機構142は、ねじ軸部材144と、ナット部材145と、ねじ軸部材144とナット部材145との間に介在する複数のボール146とを備える。
ねじ軸部材144は、ウォームギヤ143を介してモータ141に連結されている。ウォームギヤ143は、ウォーム143aとウォームホイール143bとを備える歯車対である。ウォーム143aは、モータ141の回転軸と一体に形成されている。ウォームホイール143bは、後輪側伝達軸121と同軸に配置されると共にねじ軸部材144と一体に形成されている。モータ141の回転は、ウォームギヤ143を介してねじ軸部材144に減速されて伝達される。
ナット部材145は、ねじ軸部材144の回転に伴って後輪側伝達軸121の軸方向に移動可能にねじ軸部材144に連結されている。また、ナット部材145は、クラッチ130のピストン134に、後輪側伝達軸121の軸方向に相対移動不能に且つ後輪側伝達軸121周りに相対回転可能に連結されている。
このねじ機構142は、モータ141からねじ軸部材144に伝達された回転運動をナット部材145の直線運動に変換し、この直線運動をピストン134を介して摩擦係合プレート133に伝達する。これにより、クラッチ130の係合力(トルク容量)が調節される。
伝達機構150は、ドライブギヤ151と、ドリブンギヤ152と、チェーン153とを備える。ドライブギヤ151は、上述したように、クラッチ130のクラッチドラム132に連結されている。ドリブンギヤ152は、前輪側伝達軸122に取り付けられている。チェーン153は、ドライブギヤ151とドリブンギヤ152とに掛け渡されている。この伝達機構150は、ドライブギヤ151に伝達される駆動力をチェーン153を介してドリブンギヤ152に伝達する。
このトランスファ120では、クラッチ130が解放状態のときには、後輪側伝達軸121とドライブギヤ151とが遮断される。このとき、トランスファ120は、変速機60の出力軸62に出力される駆動力の全てを後輪39ra,39rbに伝達する。また、トランスファ120では、クラッチ130がスリップ係合状態や完全係合状態のときには、後輪側伝達軸121とドライブギヤ151とが接続される。このとき、トランスファ120は、変速機60の出力軸62に出力される駆動力を後輪39ra,39rbと前輪39fa,39fbとに配分して伝達する。詳細には、クラッチ130がスリップ係合状態のときには、後輪側伝達軸121とドライブギヤ151との回転差動が許容され、差動状態が形成される。また、クラッチ130が完全係合状態のときには、後輪側伝達軸121とドライブギヤ151とが一体に回転し、非差動状態(いわゆるセンターデフロック状態)が形成される。
したがって、トランスファ120は、モータ141の制御によってクラッチ130の係合力(トルク容量)が制御されることにより、上述したように、前後駆動力配分を例えば0:100~40:60や50:50の間で連続的に変更することができ、クラッチ130の係合力が大きいほどリヤ側配分率(主側配分率)Rrを小さくすることができる。ここで、リヤ側配分率Rrは、変速機60の出力軸62からトランスファ120を介してフロントデファレンシャルギヤ38f(前輪39fa,39fb)およびリヤデファレンシャルギヤ38r(後輪39ra,39rb)に伝達する総駆動力に対する後輪39ra,39rbに伝達する駆動力の割合である。トランスファ120は、前後駆動力配分を例えば0:100~40:60や50:50の間で連続的に変更可能に構成されているから、リヤ側配分率Rrは、下限値Rrmin(例えば0.5や0.6)~上限値Rrmax(1.0)の間の値となる。
図1に示すように、油圧ブレーキ装置90は、前輪39fa,39fbや後輪39ra,39rbに取り付けられたブレーキパッド92fa,92fb,92ra,92rbと、ブレーキアクチュエータ94とを備える。ブレーキアクチュエータ94は、ブレーキパッド92fa,92fb,92ra,92rbを駆動する図示しないブレーキホイールシリンダの油圧を調節して前輪39fa,39fbや後輪39ra,39rbに制動力を付与するためのアクチュエータとして構成されている。このブレーキアクチュエータ94は、ブレーキ用電子制御ユニット(以下、「ブレーキECU」という)96により駆動制御されている。
ブレーキECU96は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。ブレーキECU96には、ブレーキアクチュエータ94を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。ブレーキECU96に入力される信号としては、例えば、図示しないハンドルの操舵角を検出する操舵角センサ87からの操舵角θsや、前輪39fa,39fbや後輪39ra,39rbに取り付けられた車輪速センサ97fa,97fb,97ra,97rbからの前輪39fa,39fbや後輪39ra,39rbの車輪速Vfa,Vfb,Vra,Vrbを挙げることができる。ブレーキECU96からは、ブレーキアクチュエータ94への駆動制御信号などが出力ポートを介して出力されている。ブレーキECU96は、HVECU70と通信ポートを介して接続されている。
ブレーキECU96は、操舵角センサ87からの操舵角θsや、車輪速センサ97fa,97fb,97ra,97rbからの前輪39fa,39fbや後輪39ra,39rbの車輪速Vfa,Vfb,Vra,Vrbに基づいて、車両が旋回走行するときの車両姿勢を安定させる横滑り抑制制御(VSC:Vehicle Stability Control)などの姿勢安定制御を行なう。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、入出力ポート、通信ポートを備える。HVECU70には、各種センサからの信号が入力ポートを介して入力されている。HVECU70に入力される信号としては、例えば、変速機60の入力軸61の回転数を検出する回転数センサ61aからの入力軸61の回転数Ninや、変速機60の出力軸62の回転数を検出する回転数センサ62aからの出力軸62の回転数Nout、トランスファ120のモータ141の回転子の回転位置を検出する回転位置センサ141aからのモータ141の回転子の回転位置θmtを挙げることができる。また、イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBPも挙げることができる。図示しないハンドルの操舵角を検出する操舵角センサ87からの操舵角θsや、車体速センサ88からの車体速Vも挙げることができる。HVECU70からは、変速機60への制御信号や、トランスファ120への制御信号などが出力ポートを介して出力されている。
HVECU70は、上述したように、エンジンECU24やモータECU40、バッテリECU52、ブレーキECU96と通信ポートを介して接続されている。HVECU70は、回転数センサ61aからの変速機60の入力軸61の回転数Ninを回転数センサ62aからの変速機60の出力軸62の回転数Noutで除して変速機60の変速比Grを演算すると共に演算した変速比Grに基づいて変速機60の変速段Gsを推定している。また、HVECU70は、回転位置センサ141aからのモータ141の回転子の回転位置θmtに基づいて、クラッチ130のピストン134の移動量や、クラッチ130の係合力やトルク容量、リヤ側配分率Rrを推定している。
こうして構成された実施例のハイブリッド自動車20では、HVECU70とエンジンECU24とモータECU40との協調制御により、エンジン22の運転を伴って走行するハイブリッド走行モード(HV走行モード)や、エンジン22の運転を伴わずに走行する電動走行モード(EV走行モード)で走行するように、エンジン22とモータMG1,MG2と変速機60とトランスファ120とが制御される。
エンジン22およびモータMG1,MG2の制御は、基本的には、以下のように行なわれる。HV走行モードでは、HVECU70は、最初に、アクセル開度Accと車体速Vとに基づいて変速機60の出力軸(駆動軸)62に要求される出力軸要求トルクTout*を設定し、設定した出力軸要求トルクTout*と変速機60の変速比Grとに基づいて変速機60の入力軸61に要求される入力軸要求トルクTin*を設定する。続いて、エンジン22の運転を伴って入力軸要求トルクTin*が変速機60の入力軸61に出力されるように、エンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。そして、エンジン22の目標回転数Ne*や目標トルクTe*をエンジンECU24に送信すると共に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。エンジンECU24は、エンジン22が目標回転数Ne*および目標トルクTe*に基づいて運転されるようにエンジン22の吸入空気量制御や燃料噴射制御、点火制御などを行なう。モータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにモータMG1,MG2を駆動制御する(詳細には、インバータ41,42の複数のスイッチング素子のスイッチング制御を行なう)。
EV走行モードでは、HVECU70は、最初に、HV走行モードと同様に、入力軸目標トルクTin*を設定する。続いて、モータMG1のトルク指令Tm1*に値0を設定すると共に、入力軸目標トルクTin*が変速機60の入力軸61に出力されるようにモータMG2のトルク指令Tm2*を設定する。そして、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する。モータECU40によるモータMG1,MG2の駆動制御については上述した。
変速機60の制御は、基本的には、以下のように行なわれる。HVECU70は、最初に、上述したのと同様に、出力軸要求トルクTout*を設定する。続いて、出力軸要求トルクTout*と車体速Vとに基づいて変速機60の目標変速段Gs*を設定する。そして、変速機60の変速段Gsが目標変速段Gs*と一致するときには、変速段Gsを保持し、変速段Gsが目標変速段Gs*と異なるときには、変速段Gsが目標変速段Gs*となるように変速段Gsを変更する。
ここで、変速機60の変速段Gsのコーストダウンシフトは、例えば、以下のように行なわれる。なお、変速機60の変速段Gsのアップシフトやパワーオンダウンシフト(アクセル開度Accの増加によるダウンシフト)については、本発明の中核をなさないことから、詳細な説明を省略する。
変更後の変速段Gsが前進第3速や第2速の場合、最初に、摩擦係合要素としてのクラッチC1,C2およびブレーキB1,B2のうち解放側の摩擦係合要素である解放側要素の油圧を1段低下させると共に係合側の摩擦係合要素である係合側要素のストローク制御を行なう。ストローク制御では、係合側要素のピストンと摩擦係合プレートとの隙間を詰める(ピストンをストロークさせる)ファストフィルと、係合側要素の油圧を比較的低い待機圧で保持する低圧待機とを行なう。続いて、解放側要素の油圧を徐々に低下させると共に係合側要素の油圧を徐々に上昇させて、トルクの伝達を解放側要素から係合側要素に変更する(トルク相)。そして、解放側要素の油圧を徐々に低下させると共に係合側要素の油圧を徐々に上昇させて、変速機60の入力軸61の回転数Ninを変更後の変速段Gsに応じた回転数(以下、「変更後回転数」という)に変更する(イナーシャ相)。入力軸61の回転数Ninが変更後回転数に至ると、係合側要素の油圧を更に上昇させ、変速段Gsの変更を完了する。
また、変更後の変速段Gsが前進第1速の場合、解放側要素の油圧を1段低下させてから徐々に低下させる。すると、プラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rの回転数が低下すると共に入力軸61の回転数Nin(プラネタリギヤ64のサンギヤ64sの回転数)が変更後回転数に向かって変化する(イナーシャ相)。そして、入力軸61の回転数Ninが変更後回転数に至ると共にキャリヤ63cおよびリングギヤ64rの回転数が値0に至り、ワンウェイクラッチF1が係合状態になり、トルクの伝達が解放側要素からワンウェイクラッチF1に切り替わり(トルク相)、変速段Gsの変更が完了する。
トランスファ120の制御は、基本的には、以下のように行なわれる。HVECU70は、アクセル開度Accや車体速V、操舵角θsなどに基づいて目標リヤ側配分率Rr*を設定し、リヤ側配分率Rrが目標リヤ側配分率Rr*となるようにトランスファ120を制御する。
次に、こうして構成された実施例のハイブリッド自動車20の動作について説明する。特に、変速機60の変速段をコーストダウンシフトするときの動作について説明する。図6は、HVECU70により実行される処理ルーチンの一例を示すフローチャートである。このルーチンは、コーストダウン(アクセルオフ且つブレーキオフ)中に変速機60をダウンシフトすると判定したとき(変速段Gsと目標変速段Gs*とが異なったとき)に実行が開始される。
図6の処理ルーチンが実行されると、HVECU70は、最初に、リヤ側配分率Rrや姿勢安定制御フラグFを入力する(ステップS100)。ここで、リヤ側配分率Rrは、HVECU70により演算された値が入力される。姿勢安定制御フラグFは、姿勢安定制御を実行しているときには値1が設定され、姿勢安定制御を実行していないときには値0が設定されるフラグであり、ブレーキECU96により設定された値が通信により入力される。
こうしてデータが入力されると、HVECU70は、入力したリヤ側配分率Rrが上限値Rrmaxに等しいか否かを判定する(ステップS110)。そして、リヤ側配分率Rrが上限値Rrmaxに等しくないときには、姿勢安定制御フラグFの値を調べる(ステップS120)。
ステップS120で姿勢安定制御フラグFが値0のときには、HVECU70は、姿勢安定制御を実行していないと判断し、変速機60の変速段Gsのコーストダウンシフトにおけるイナーシャ相が開始する前に、配分率増加制御を実行する(ステップS130)。ここで、配分率増加制御は、リヤ側配分率Rrが大きくなるようにクラッチ130の係合力を制御する制御である。この場合、リヤ側配分率Rrが1.0となる(2WDになる)ようにクラッチ130を制御するものとしてもよいし、リヤ側配分率Rrが1.0未満の範囲内で現在値よりも大きくなるようにクラッチ130を制御するものとしてもよい。このように配分率増加制御を実行することにより、変速機60の変速段Gsをコーストダウンシフトするときに、そのコーストダウンシフトに起因する変速機60の出力軸62のトルク脈動がクラッチ130や前輪側伝達軸122などを介して前輪39fa,39fbに与える影響が小さくなり、変速ショックを抑制することができる。しかも、イナーシャ相が開始する前に配分率増加制御を実行することにより、イナーシャ相が開始した後に配分率増加制御を実行するものに比して、変速ショックをより抑制することができる。
特に、変速機60の変速段Gsのコーストダウンシフトとして前進第1速に変更する場合、変速段Gsを前進第2速や第3速に変更する場合に比して、変速ショックが大きくなりやすい。これは、変速段Gsの前進第2速や第3速への変更が、係合側要素(係合側の摩擦係合要素)の油圧を徐々に上昇させながら行なわれるのに対し、前進第1速への変更が、変速機60のプラネタリギヤ63のキャリヤ63cおよびプラネタリギヤ64のリングギヤ64rの回転数が変化して値0に至ったときにワンウェイクラッチF1が非係合状態から係合状態になることにより行なわれるためである。したがって、上述の配分率増加制御を実行することの意義がより大きい。
そして、HVECU70は、変速機60の変速段Gsのダウンシフトが完了するのを待って(ステップS140)、配分率戻し制御を実行して(ステップS150)、本ルーチンを終了する。配分率戻し制御は、リヤ側配分率Rrが配分率増加制御を実行する前の値に戻るようにクラッチ130の係合力を制御する制御である。これにより、配分率増加制御を実行する前のリヤ側配分率Rrで走行を継続することができる。
ステップS110でリヤ側配分率Rrが上限値Rrmaxに等しいときには、配分率増加制御を実行することができないため、ステップS120~S150の処理を実行することなく、本ルーチンを終了する。
ステップS120で姿勢安定制御フラグFが値1のときには、姿勢安定制御を実行していると判断し、ステップS130~S150の処理を実行することなく、本ルーチンを終了する。即ち、変速機60の変速段Gsをコーストダウンシフトするときに、姿勢安定制御を実行している場合には、配分率増加制御を実行しないのである。これにより、変速機60の変速段Gsをコーストダウンシフトするときでも、車両姿勢を安定させることができる。
図7は、変速機60の変速段Gsをコーストダウンシフトするときの様子の一例を示す説明図である。図示するように、変速機60の目標変速段Gs*が変更されると(時刻t11)、解放側要素の油圧を低下させると共に、リヤ側配分率Rrを増加させる配分率増加制御を実行する。そして、変速機60の入力軸61の回転数Ninが上昇して変更後の変速段Gsに応じた回転数に至り(時刻t12~t13)、コーストダウンシフトが完了すると(時刻t14)、リヤ側配分率Rrを配分率増加制御を実行する前の値に戻す配分率増加制御を実行する。
以上説明した実施例のハイブリッド自動車20では、変速機60の変速段Gsをコーストダウンシフトするときには、変速段Gsをコーストダウンシフトする前に比してリヤ側配分率Rrが大きくなるようにクラッチ130の係合力を制御する配分率増加制御を実行する。これにより、変速機60の変速段Gsをコーストダウンシフトするときに、そのコーストダウンシフトに起因する変速機60の出力軸62のトルク脈動がクラッチ130や前輪側伝達軸122などを介して前輪39fa,39fbに与える影響が小さくなり、変速ショックを抑制することができる。
実施例のハイブリッド自動車20では、変速機60の変速段Gsをコーストダウンシフトするときには、配分率増加制御を実行するものとした。しかし、変速機60の変速段Gsのコーストダウンシフトとして、前進第1速に変更する場合(ワンウェイクラッチF1が非係合状態から係合状態に切り替わる場合)には、配分率増加制御を実行し、前進第2速や第3速に変更する場合には、配分率増加制御を実行しないものとしてもよい。
実施例のハイブリッド自動車20では、変速機60の変速段Gsをコーストダウンシフトするときには、イナーシャ相が開始する前に配分率増加制御を実行するものとした。しかし、これに限定されるものではなく、変速機60の変速段Gsのコーストダウンシフトの開始から終了までの間に配分率増加制御を実行するものであればよい。
実施例のハイブリッド自動車20では、姿勢安定制御の実行中に変速機60の変速段Gsをコーストダウンシフトするときには、配分率増加制御を実行しないものとした。しかし、変速機60の変速段Gsをコーストダウンシフトするときには、姿勢安定制御の実行中であるか否かに拘わらずに、配分率増加制御を実行するものとしてもよい。
実施例のハイブリッド自動車20では、モータMG2は、変速機60の入力軸61に直接に接続されるものとした。しかし、モータMG2は、変速機60の入力軸61に減速機を介して接続されるものとしてもよい。また、モータMG2は、変速機60の出力軸62に直接に接続されるものとしてもよい。さらに、モータMG2は、変速機60の出力軸62に減速機を介して接続されるものとしてもよい。
実施例のハイブリッド自動車20では、トランスファ120の駆動部140は、モータ141と、モータ141の回転運動を直線運動に変換してクラッチ130のピストン134を駆動する(ピストン134の軸方向に移動させる)ねじ機構142と、を有するものとした。しかし、駆動部140は、ねじ機構142に代えて、モータ141の回転運動を直線運動に変換するカム機構を有するものとしてもよい。また、駆動部140は、モータ141やねじ機構142に代えて、油圧によりピストン134を駆動する油圧制御装置を有するものとしてもよい。
実施例のハイブリッド自動車20では、変速機60として、ワンウェイクラッチF1を有する変速機が用いられるものとした。しかし、変速機60として、ワンウェイクラッチを有さない変速機が用いられるものとしてもよい。
実施例のハイブリッド自動車20では、変速機60として、4段変速機が用いられるものとした。しかし、変速機60として、3段変速機や5段変速機、6段変速機などが用いられるものとしてもよい。
実施例のハイブリッド自動車20では、蓄電装置として、バッテリ50が用いられるものとした。しかし、蓄電装置として、キャパシタが用いられるものとしてもよい。
実施例のハイブリッド自動車20では、エンジンECU24とモータECU40とバッテリECU52とブレーキECU96とHVECU70とを備えるものとした。しかし、これらのうちの少なくとも2つは、単一の電子制御ユニットとして構成されるものとしてもよい。
実施例のハイブリッド自動車20では、トランスファ120に変速機60の出力軸62が接続され、変速機60の入力軸61にプラネタリギヤ30のリングギヤ30rおよびモータMG2が接続され、プラネタリギヤ30のサンギヤ30sおよびキャリヤ30cにモータMG1およびエンジン22がそれぞれ接続されるものとした。しかし、図8の変形例のハイブリッド自動車220に示すように、トランスファ120に変速機60の出力軸62が接続され、変速機60の入力軸61にモータMGが接続され、モータMGにクラッチ229を介してエンジン22が接続されるものとしてもよい。また、図9の変形例の電気自動車320に示すように、エンジンを備えずに、トランスファ120に変速機60の出力軸62が接続され、変速機60の入力軸61にモータMGが接続されるものとしてもよい。さらに、図10の自動車420に示すように、モータを備えずに、トランスファ120に変速機60の出力軸62が接続され、変速機60の入力軸61にエンジン22が接続されるものとしてもよい。
実施例や変形例のハイブリッド自動車20,220や電気自動車320、自動車420は、パートタイム4輪駆動(4WD)として構成されるものとした。しかし、これらは、フルタイム4WDとして構成されるものとしてもよい。
実施例や変形例のハイブリッド自動車20,220や電気自動車320は、後輪39ra,39rbが主駆動輪で且つ前輪39fa,39fbが副駆動輪である後輪駆動ベースの4輪駆動車両として構成されるものとした。しかし、ハイブリッド自動車20は、前輪39fa,39fbが主駆動輪で且つ後輪39ra,39rbが副駆動輪である前輪駆動ベースの4輪駆動車両として構成されるものとしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22とプラネタリギヤ30とモータMG1,MG2とが「駆動源」に相当し、変速機60が「変速機」に相当し、トランスファ120が「駆動力配分装置」に相当し、HVECU70が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。