JP7205642B2 - 検査装置、検査システムおよび検査方法、ならびに部材の補修方法 - Google Patents

検査装置、検査システムおよび検査方法、ならびに部材の補修方法 Download PDF

Info

Publication number
JP7205642B2
JP7205642B2 JP2021549984A JP2021549984A JP7205642B2 JP 7205642 B2 JP7205642 B2 JP 7205642B2 JP 2021549984 A JP2021549984 A JP 2021549984A JP 2021549984 A JP2021549984 A JP 2021549984A JP 7205642 B2 JP7205642 B2 JP 7205642B2
Authority
JP
Japan
Prior art keywords
inspection
inspected
eddy current
inspection device
moving mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021549984A
Other languages
English (en)
Other versions
JPWO2022024478A1 (ja
Inventor
勇太 徳元
佑司 西澤
匡平 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022024478A1 publication Critical patent/JPWO2022024478A1/ja
Application granted granted Critical
Publication of JP7205642B2 publication Critical patent/JP7205642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/107Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/58Wireless transmission of information between a sensor or probe and a control or evaluation unit

Description

本発明は、配管やタンク等の中空の鋼部材をはじめとする検査対象部材が腐食したり損傷を受けたりすることによって発生する減肉や亀裂等の疵を検出するために用いられる、検査装置、検査システムおよび検査方法、ならびに部材の補修方法に関するものである。
配管やタンク等の中空の鋼部材をはじめとする検査対象部材が腐食したり損傷を受けたりすることにより発生する減肉や亀裂等の疵を検出する検査方法が、種々知られている。そして、検査対象部材の広範囲にわたって検査を行うため、例えば特許文献1~特許文献3には、磁石車輪を用いることで検査対象部材の表面に吸着されながら走行する検査装置が開示されている。特許文献1および特許文献2の検査装置では、超音波を用いた検査方法が採用され、特許文献3では、コイル渦電流を用いた検査方法が採用されている。
特開2013-174531号公報 特開昭62-124458号公報 特開2008-32508号公報
これら特許文献1~3では、図4に示すように、配管などの検査対象部材Tの表面に吸着されながら走行する検査装置80が、ケーブルCを介して、信号処理装置、制御装置、渦流探傷器等の検査装置本体8に有線で接続される構成となっている。検査装置80により検出された疵の信号は、ケーブルCを通じて、検査装置本体8に送信される。
よって、特許文献1~3では、検査装置80が検査対象部材Tの表面を走行可能とはされているものの、検査装置80による検査範囲はケーブルCの長さにより制限されていた。
このうち、特許文献3では、検査対象部材上を移動する渦流センサ部が、ケーブルを介して渦流探傷器に接続され、この渦流探傷器が移動台車に搭載される構成も開示されている。これにより、渦流センサ部の動きに移動台車が追従して、渦流センサ部の検査範囲が制限されにくくなる。しかし、このような構成でも、検査対象部材に沿って移動台車を走行させるための空間を確保できなかったり、検査対象部材に沿って移動台車を走行させる路面の状態が悪かったりする場合には、渦流センサ部の動きに合わせて移動台車を走行させることができない。このような場合には、検査装置による検査範囲はやはりケーブルの長さにより制限されていた。
また、特許文献1~3に開示される検査装置において、ケーブルCを長くして検査範囲を拡大しようとすると、検査装置80にかかるケーブルCの重量が大きくなる。そして、検査装置80を検査対象部材Tの表面に吸着させる磁石車輪の吸着力では、検査装置80にかかるケーブルCの重量を支えきれなくなり、検査装置80が検査対象部材Tから脱落してしまう恐れがある。このような問題を防ぐため、ケーブルCの長さには制限があり、検査装置80による検査範囲を拡大することは難しかった。
そして、配管等の検査対象部材Tは、高所に設けられることが多い。このため、検査対象部材Tの各部位の検査を行う場合には、検査装置80にかかるケーブルCの重量が大きくならないように、検査対象部材Tの全体にわたって足場Sを組み、足場S上で検査を行う必要が生じていた。このため、検査対象部材Tの検査を行うに際して、足場Sの設置に多大な工数を要していた。
また、特許文献1または特許文献2のように、超音波方式を用いた検査装置によって、検査対象部材の疵を検出する場合には、検査対象部材の表面の粗さの影響を小さくするため、水浸法を採用するのが一般的である。この水浸法による超音波検査では、超音波探触子を局部水浸させて検査対象部材に直接接触させないようにするため、大量の水が使用される。このため、水を供給するホースや、検査部位まで水を供給するポンプが必要となっていた。また、ポンプを使用しない場合は、高所の検査部位まで水を供給できないため、検査範囲が大幅に制限されていた。
上記課題を解決すべく、本発明は、検査対象部材の検査範囲が制限されることなく、検査対象部材の疵を広範囲にわたって安定して効率よく検査することのできる、検査装置、検査システムおよび検査方法、ならびに部材の補修方法を提供することを目的とする。
上記課題を解決するための手段は、以下の通りである。
[1] 検査対象部材の表面に沿って移動可能な移動機構を有する検査装置本体と、前記検査装置本体に設けられ、前記検査対象部材の板厚を測定する測定装置と、前記検査装置本体に設けられ、前記測定装置により測定された前記板厚の情報を無線で外部に送信する送信機と、前記検査装置本体に設けられ、前記移動機構、前記測定装置および前記送信機に電力を供給するバッテリとを備える検査装置。
[2] 前記検査対象部材は磁性体であり、前記測定装置は、前記検査対象部材に静磁場を印加して渦電流を発生させる磁化器と、前記検査対象部材に発生した前記渦電流を測定する渦電流センサと、前記渦電流センサにより測定された前記渦電流の波形の位相を検出する位相検波器とを備える[1]に記載の検査装置。
[3] 前記磁化器は永久磁石である[2]に記載の検査装置。
[4] 前記移動機構は、磁力により前記表面に吸着されながら前記検査対象部材の前記表面に沿って走行する磁石クローラである[2]または[3]に記載の検査装置。
[5] [1]~[4]のいずれかに記載の検査装置と、前記検査装置から無線で送信される前記情報を受信し、該情報に基づいて前記検査対象部材の疵を検知する制御装置とを備える検査システム。
[6] [1]~[4]のいずれかに記載の検査装置から無線で送信された前記情報を、前記検査装置から離れた位置で受信して、該情報に基づいて前記検査対象部材の疵を検知する検査方法。
[7] 前記検査対象部材は中空の鋼部材である[6]に記載の検査方法。
[8] [7]に記載の検査方法によって前記検査対象部材の前記疵を検知し、前記検査対象部材のうち前記疵が検知された部位を補修する部材の補修方法。
本発明の検査装置、検査システムおよび検査方法、ならびに部材の補修方法によれば、検査対象部材の表面に沿って検査装置が移動して検査対象部材の厚さを測定し、測定された厚さの情報が無線で外部に送信される。よって、検査装置により測定された情報を外部に送信するためのケーブルを接続する必要がない。このため、検査装置の検査範囲がケーブルの長さや重さにより制限されることなく、検査対象部材の疵を広範囲にわたって安定して効率よく検査することができる。
また、検査対象部材が磁性体である場合には、測定装置として、磁化器、渦電流センサ、及び位相検波器を備えるとともに、磁化器として永久磁石を使用する。そして、磁化器で検査対象部材に静磁場を印加して渦電流を発生させ、検査対象部材に発生した渦電流を渦電流センサで測定し、測定された渦電流の波形の位相を位相検波器で検出する。これにより、磁化器に電力を供給する必要がなくなり、渦電流の発生のための消費電力を抑えることができるため、検査装置の消費電力を、検査装置本体に内蔵されるバッテリで賄うことができる。
さらに、移動機構として、磁力により検査対象部材の表面に吸着されながら検査対象部材の表面に沿って走行する磁石クローラを用いた場合、検査対象部材の表面が湾曲していても、この表面に倣って磁石クローラが接触する。これにより、接触面積が大きくなり安定した吸着力が得られる。
図1は、本発明の検査装置、検査システム、および検査方法の一例による検査状況を示す模式図である。 図2は、本発明の検査装置の一例を示す断面図である。 図3は、本発明の検査システムの一例の構成を示すブロック図である。 図4は、従来の検査装置の一例による検査状況を示す模式図である。
以下、図面を参照して、本発明の検査装置、検査システムおよび検査方法、ならびに部材の補修方法の一実施形態について具体的に説明する。
図1に示すように、本実施形態の検査装置10、検査システム1および検査方法は、磁性体である鋼管からなる配管(検査対象部材、中空の鋼部材)Tの疵T0(図2参照)を検出するために用いられる。配管Tの疵T0は、配管Tが腐食したり損傷を受けたりすることにより発生する減肉や亀裂等である。また、本実施形態の部材の補修方法は、検出された疵T0を補修するために用いられる。
図2に、本実施形態の検査装置10の断面を模式的に示す。検査装置10の筐体11の側面には、配管Tの表面に沿って移動可能な移動機構12が設けられ、筐体11と移動機構12を含んで検査装置本体が構成されている。また、検査装置10の筐体11には、測定装置13~15、無線送受信機(送信機)16およびバッテリ17が内蔵され又は取り付けられている。バッテリ17は、移動機構12、測定装置13~15および無線送受信機16に電力を供給する。
また、本実施形態の検査システム1の全体構成を、図3に示す。検査システム1は、検査装置10と、制御装置20とを備えて構成される。制御装置20は、検査装置10から無線で送信される配管Tの板厚の情報を受信し、この情報に基づいて配管Tの疵T0を検知する。
図2に示すように、検査装置10の移動機構12は、磁力によって配管Tの表面に吸着される磁石クローラにより構成される。この移動機構12は、検査装置10の筐体11の両側に設けられている。ここで、クローラとは、無限軌道とも呼ばれ、弾性部材からなる環状のベルトや、リンクにより環状に繋がれたシューを、駆動輪や誘導輪等の周りに取り付けて回動させるものである。これにより、クローラは、不整形な表面上を走行することが可能である。
本実施形態では、移動機構12として、ゴム等の弾性材料からなる環状のベルトの内側に磁石が内蔵された構造を有する磁石クローラを用いている。そして、磁石クローラの磁力によって検査装置10が配管Tの表面に吸着されながら、磁石クローラが回動することで、検査装置10が配管Tの表面を移動する。
図3に示すように、移動機構12は、駆動輪を動かすモータ12Mと、このモータ12Mの動きを制御する移動制御装置12Cとを含んでいる。
ここで、図1に示すように、配管Tは、複数の鋼管を接続することによって構成され、その接続部には溶接ビードT1やフランジT2が設けられている。配管Tは、サポートT3によって支持されて、地上に固定されている。
そして、配管TのフランジT2は、溶接ビードT1に比べると、配管Tの表面からの突出量が極めて大きい。このため、フランジT2を乗り越えて検査装置10を移動させることが難しい場合がある。そこで、本実施形態の検査装置10、検査システム1および検査方法では、配管TがフランジT2により区切られる範囲毎に、検査作業者が検査装置10を設置して、配管Tの検査を行う。
配管TがフランジT2により区切られる範囲が高所である場合には、この範囲の近傍に足場Sを組んで、配管Tの表面に検査装置10を設置する。そして、地上等に設けられた制御装置20から無線で検査装置10を操縦して、フランジT2に区切られた範囲内で、検査装置10を足場Sから遠い部位まで、配管Tの表面に沿って移動させる。
本実施形態の検査装置10は、検査対象部材である配管Tの板厚を測定する方法として、渦電流方式を採用している。具体的には、図2に示すように、測定装置13~15は、永久磁石からなる磁化器13と、渦電流センサ14と、位相検波器15とを含んで構成されている。磁化器13は、磁性体である配管Tに静磁場を印加して渦電流を発生させる。なお、図2では、磁化器3(永久磁石)が互いに離間した一対の部材で構成されているが、磁化器13の形状は図2に示す形状に限らず、例えば逆U字状の1つの部材で構成されていてもよい。そして、配管Tに発生した渦電流が、渦電流センサ14により測定される。さらに、渦電流センサ14により測定された渦電流の波形が位相検波器15に送信され、この位相検波器15により渦電流の位相を検出することにより、配管Tの板厚を測定する。なお、検査装置10による配管Tの板厚の測定では、少なくとも配管Tの表面の凹凸形状(すなわち厚さの変化)を測定することができればよく、必ずしも配管Tの厚さの絶対値(すなわち数値)を測定する必要はない。
そして、測定装置13~15により測定された配管Tの板厚の情報が、無線送受信機16から、無線で、後述する制御装置20の無線送受信機21に送信される。
制御装置20は、汎用パーソナルコンピュータ(PC)からなる。具体的には、図3に示すように、制御装置20は、無線送受信機21と、CPU(中央演算処理装置)22とを含んで構成されている。無線送受信機21は、検査装置10の無線送受信機16から無線で送信される配管Tの板厚の情報を受信する。CPU22は、無線送受信機21により受信された情報を処理する。
CPU22は、検査作業者の操作等により、または自動的に、制御装置20の無線送受信機21から検査装置10の無線送受信機16に無線で信号を送信する。これにより、CPU22は、検査装置10を制御して、配管Tの表面の全領域を走行させ、配管Tの表面全体にわたって板厚の測定を行い、測定された板厚の情報を無線で制御装置20に送信させる。さらに、CPU22は、検査装置10から送信された配管Tの板厚の情報に基づいて、配管Tの疵T0を検知する。具体的には、CPU22は、板厚の変化量が所定値以上となった場合に、配管Tに疵T0が発生しているものと判断し、配管Tの疵T0が検知された旨を画面表示等で出力して、検査作業者に疵T0が検知されたことを知らせる。制御装置20を構成するPCには、上記各処理を実行するためのソフトウェアが導入されている。なお、制御装置20として、PCに代えて、タブレット端末等の他の情報処理装置を用いてもよい。このように、検査装置10から無線で送信された板厚の情報を、検査装置10から離れた位置に設置される制御装置20により受信して、配管Tにおける疵T0を検知することにより、本実施形態の検査方法が実施される。
そして、上述の検査方法によって配管Tの疵T0を検出し、配管Tのうち疵T0が検出された部分を補修することにより、本実施形態の部材の補修方法が実施される。
本実施形態の検査装置10、検査システム1および検査方法、ならびに部材の補修方法によれば、配管Tの表面に沿って検査装置10が移動して配管Tの板厚を測定し、検出された板厚の情報が無線で制御装置20に送信される。よって、検査装置10により検出された情報を送信するための通信ケーブルを接続する必要がなく、検査装置10の移動範囲がケーブルの長さや重さにより制限されることがない。特に、配管Tが高所に設けられている場合であっても、検査範囲が通信ケーブルの長さや重さにより制限されることがない。
このように、検査装置10の制御や検出された板厚の情報の送信を行うための通信ケーブル接続が不要となる。よって、検査装置10および検査システム1の取扱性が向上するとともに、配管Tの検査範囲が通信ケーブルの長さや重さにより制限されることがない。また、配管Tの疵T0を広範囲にわたって簡単に効率よく検査することができるので、検査の効率を高めることができる。
また、本実施形態の検査装置10では、渦電流方式を採用している。このため、超音波方式の検査装置で必要となる水供給ホースやポンプが不要となり、検査装置10および検査システム1の取扱性が向上し、検査の効率を高めることができる。特に、検査対象部材に静磁場を印加して渦電流を発生させる磁化器13として、永久磁石を使用しているので、磁化器13が電力を必要としない。
したがって、検査装置10を動作させるには、移動機構12、渦電流センサ14と、位相検波器15および無線送受信機16に電力を供給すればよい。これにより、検査装置10の消費電力が大幅に抑えられて、検査装置10の筐体11に内蔵されるバッテリ17により検査装置10の消費電力を賄うことができる。よって、渦電流を発生させる磁化器として電磁石を使用する場合には必要となることが多い電力供給ケーブルを含め、有線ケーブルによる接続が、本実施形態の検査装置10では不要となり、無線による検査が可能となる。これにより、有線接続される検査装置による検査に比べて、極めて広範囲の検査を行うことができる。
また、本実施形態の検査装置10では、移動機構12として磁石クローラを用いている。このため、表面が湾曲する配管Tに倣って磁石クローラが接触し、接触面積が大きくなるので、従来の磁石車輪等による移動機構に比べて、安定した吸着力が得られる。
よって、配管Tの曲がり部や溶接ビードT1等の段差部などにおいても、検査装置10が脱落せず安定して走行可能である。このため、これらの曲がり部や段差を避けずに検査装置10を走行させることができる。また、移動機構12を構成する磁石クローラのベルトやシューに弾性材料を使用しており、また、この弾性部材の内側に磁石が内蔵されている。これにより、検査装置10の移動、特に方向転換時に、配管Tの表面上を磁石クローラが擦過した場合でも、配管Tの表面自体およびその塗膜等に擦過痕や剥離等の疵をつけることなく走行可能である。このため、検査作業によって配管Tに与える損傷を少なくすることができる。
また、移動機構12として、磁石クローラを用いることにより、吸着方式として真空吸着方式を用いる場合に必要となる真空ポンプが不要となり、消費電力を大幅に抑えることができる。
また、本実施形態の検査装置10、検査システム1および検査方法では、上述のとおり、配管TがフランジT2により区切られる範囲が高所である場合に、足場Sの設置が必要となる場合もある。しかし、従来の磁石車輪を用いた検査装置のように、検査対象部材の全体にわたって足場Sを組む必要はなく、検査対象部材の検査を行うに際して必要となる足場Sの設置工数を大幅に削減できる。
そして、検査装置10から無線で送信された板厚の情報を、検査装置10から離れた位置に設置される制御装置20により受信して、検査結果を制御装置20で常時確認しながら検査を進めることができる。
なお、上記実施形態では、検査装置として、渦電流方式を用いる例について説明したが、本発明はこれに限定されず、超音波方式など他の方式を用いたものであってもよい。検査装置として超音波方式を用いる場合には、小型の水タンクを検査装置内に設ける等の方法をとることで、検査装置に水を供給するホースやポンプを設ける必要がなくなり、検査装置を無線化でき、上記実施形態とほぼ同様の効果が得られる。
また、検査装置として渦電流方式を用いる場合に、磁化器として永久磁石ではなく電磁石を用いてもよい。また、移動機構として、磁石クローラではなく、真空吸着方式や磁石車輪による移動機構を用いてもよい。
また、上記実施形態では、配管Tが腐食したり損傷を受けたりすることにより発生する減肉や亀裂等の疵を検出して補修する例について説明したが、本発明において検査および補修の対象とされる検査対象部材は、これに限定されない。例えば、タンク等の種々の中空の鋼部材や、中空ではない形鋼等の鋼部材、その他の磁性体等からなる種々の検査対象部材について、その表面を構成する部位の厚さの測定や疵の検出等に、幅広く利用可能である。
また、上記実施形態では、検査装置から無線で送信された板厚の変化の情報に基づいて、制御装置が疵の検知を行っていたが、検査装置に内蔵された図示しないマイコン等で疵の検知を行った後、その検知結果を制御装置に無線で送信する構成としてもよい。
1 検査システム
10 検査装置
11 筐体(検査装置本体)
12 磁石クローラ(移動機構)
13 磁化器(測定装置)
14 渦電流センサ(測定装置)
15 位相検波器(測定装置)
16 無線送受信機(送信機)
17 バッテリ
20 制御装置
21 無線送受信機
22 CPU
T 配管(中空の鋼部材、検査対象部材)
T0 疵
T1 溶接ビード
T2 フランジ
T3 サポート
S 足場

Claims (6)

  1. 磁性体である検査対象部材の表面に沿って磁力により前記表面に吸着されながら走行する移動機構を有する検査装置本体と、
    前記検査装置本体に設けられ、前記検査対象部材の板厚を測定する測定装置と、
    前記検査装置本体に設けられ、前記測定装置により測定された前記板厚の情報を無線で外部に送信する送信機と、
    前記検査装置本体に設けられ、前記移動機構、前記測定装置および前記送信機に電力を供給するバッテリと
    を備え、
    前記測定装置は、前記検査対象部材に静磁場を印加して渦電流を発生させる永久磁石からなる磁化器と、前記検査対象部材に発生した前記渦電流を測定する渦電流センサと、前記渦電流センサにより測定された前記渦電流の波形の位相を検出する位相検波器とを備え、
    前記移動機構が前記検査対象部材の表面に沿って移動するときに前記磁化器および前記渦電流センサが前記検査対象部材から一定の距離だけ離れた状態に保たれながら前記渦電流の波形の位相の変化を検出可能となるように、前記移動機構が前記検査対象部材に接している状態で、前記検査装置本体の筐体の底面は前記検査対象部材に対して隙間をあけて位置しており、前記筐体の底面上に前記磁化器と前記渦電流センサとが設けられている検査装置。
  2. 前記移動機構は、磁石クローラである請求項1に記載の検査装置。
  3. 請求項1または2に記載の検査装置と、
    前記検査装置から無線で送信される前記情報を受信し、該情報に基づいて前記検査対象部材の疵を検知する制御装置と
    を備える検査システム。
  4. 請求項1または2に記載の検査装置から無線で送信された前記情報を、前記検査装置から離れた位置で受信して、該情報に基づいて前記検査対象部材の疵を検知する検査方法。
  5. 前記検査対象部材は中空の鋼部材である請求項4に記載の検査方法。
  6. 請求項5に記載の検査方法によって前記検査対象部材の前記疵を検知し、
    前記検査対象部材のうち前記疵が検知された部位を補修する部材の補修方法。
JP2021549984A 2020-07-31 2021-04-20 検査装置、検査システムおよび検査方法、ならびに部材の補修方法 Active JP7205642B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020129888 2020-07-31
JP2020129888 2020-07-31
PCT/JP2021/016093 WO2022024478A1 (ja) 2020-07-31 2021-04-20 検査装置、検査システムおよび検査方法、ならびに部材の補修方法

Publications (2)

Publication Number Publication Date
JPWO2022024478A1 JPWO2022024478A1 (ja) 2022-02-03
JP7205642B2 true JP7205642B2 (ja) 2023-01-17

Family

ID=80037999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021549984A Active JP7205642B2 (ja) 2020-07-31 2021-04-20 検査装置、検査システムおよび検査方法、ならびに部材の補修方法

Country Status (6)

Country Link
EP (1) EP4160138A4 (ja)
JP (1) JP7205642B2 (ja)
KR (1) KR20230023797A (ja)
CN (1) CN116134287A (ja)
BR (1) BR112023000876A2 (ja)
WO (1) WO2022024478A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013371A (ja) 2002-06-05 2004-01-15 Mitec Corp コイン識別装置
JP2004168088A (ja) 2002-11-18 2004-06-17 Hitachi Ltd 水中構造物の点検装置および点検方法
JP2008032575A (ja) 2006-07-29 2008-02-14 Nippon Hihakai Kensa Kk 渦電流測定用プローブ及びそれを用いた探傷装置
CN103267476A (zh) 2013-05-22 2013-08-28 东北石油大学 一种检测铁基封闭容器附着层缺陷的装置
JP2015531477A (ja) 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 導電性材料の異常を検出するための微分センサ、検査システム、及びその方法
JP2017026354A (ja) 2015-07-16 2017-02-02 住友化学株式会社 欠陥測定方法、欠陥測定装置、および検査プローブ
JP2017512975A (ja) 2013-11-30 2017-05-25 サウジ アラビアン オイル カンパニー モジュール式移動検査ビークル
CN111398411A (zh) 2020-04-28 2020-07-10 秦皇岛市盛通无损检测有限责任公司 一种磁粉自动检测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731166B2 (ja) 1985-11-26 1995-04-10 株式会社東芝 超音波探傷装置
JP2639264B2 (ja) * 1991-12-13 1997-08-06 日本鋼管株式会社 鋼体の探傷装置
JP2008032508A (ja) 2006-07-28 2008-02-14 Jfe Steel Kk 配管検査装置および配管検査方法
JP5649599B2 (ja) 2012-02-27 2015-01-07 三菱重工業株式会社 超音波検査装置及びその検査方法
US11097796B2 (en) * 2018-11-29 2021-08-24 Saudi Arabian Oil Company Articulated magnet-bearing legs for UAV landing on curved surfaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013371A (ja) 2002-06-05 2004-01-15 Mitec Corp コイン識別装置
JP2004168088A (ja) 2002-11-18 2004-06-17 Hitachi Ltd 水中構造物の点検装置および点検方法
JP2008032575A (ja) 2006-07-29 2008-02-14 Nippon Hihakai Kensa Kk 渦電流測定用プローブ及びそれを用いた探傷装置
JP2015531477A (ja) 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 導電性材料の異常を検出するための微分センサ、検査システム、及びその方法
CN103267476A (zh) 2013-05-22 2013-08-28 东北石油大学 一种检测铁基封闭容器附着层缺陷的装置
JP2017512975A (ja) 2013-11-30 2017-05-25 サウジ アラビアン オイル カンパニー モジュール式移動検査ビークル
JP2017026354A (ja) 2015-07-16 2017-02-02 住友化学株式会社 欠陥測定方法、欠陥測定装置、および検査プローブ
CN111398411A (zh) 2020-04-28 2020-07-10 秦皇岛市盛通无损检测有限责任公司 一种磁粉自动检测系统

Also Published As

Publication number Publication date
EP4160138A1 (en) 2023-04-05
WO2022024478A1 (ja) 2022-02-03
JPWO2022024478A1 (ja) 2022-02-03
BR112023000876A2 (pt) 2023-02-07
KR20230023797A (ko) 2023-02-17
EP4160138A4 (en) 2023-11-15
CN116134287A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
KR101843890B1 (ko) 강구조물 및 용접부 결함 진단장치
KR101716717B1 (ko) 전자기 초음파 탐촉자를 이용한 저유탱크 용접부 결함 검사용 로봇
CA3005499A1 (en) Pipeline inspection robot
JP6538326B2 (ja) レール検査装置およびレール検査方法
JP5650224B2 (ja) 車両をあらゆる方向に走行させるための転動要素及び該転動要素を備える車両
JP2007285772A (ja) 配管検査方法及びこれに用いる配管検査装置
US11796506B2 (en) Robotic magnetic flux leakage inspection system for cable stays and related methods
WO2020065659A1 (en) Spherical robot for internal inspection of pipelines
US20230003687A1 (en) Systems, methods and apparatus for in-service tank inspections
JP2015194491A (ja) 金属板用自走式検査装置および金属板用自走式検査方法、ならびに検査システム
CN112533845A (zh) 用于检测带式输送机的部件的机器人装置和方法
JP7205642B2 (ja) 検査装置、検査システムおよび検査方法、ならびに部材の補修方法
WO2013073584A1 (ja) トレッド厚さ測定方法
JP2008249508A (ja) コンベアレールの摩耗検査装置
RU66547U1 (ru) Устройство для ультразвукового контроля труб и средства ультразвукового контроля для использования в этом устройстве
KR102013918B1 (ko) 이동검사장치 및 이를 포함하는 라이너플레이트 검사 시스템
JP2004125752A (ja) 測定装置および測定方法
Ding et al. Non-contacted permanent magnetic absorbed wall-climbing robot for ultrasonic weld inspection of spherical tank
JP2008032508A (ja) 配管検査装置および配管検査方法
KR20210058519A (ko) 초음파 c-스캔장비를 이용한 배관결함 검사장치
TWI752635B (zh) 移動式檢查裝置、移動式檢查方法以及鋼材的製造方法
KR102341795B1 (ko) 파이프의 내부 라이닝 검사장치
Yuan et al. Development of an inspection robot for long‐distance transmission pipeline on‐site overhaul
KR20190123893A (ko) 관주형 송전탑의 용접부 잔류응력 측정장치
KR102072189B1 (ko) 강재 용접부위 손상 검출장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150