JP7205474B2 - テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法 - Google Patents

テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法 Download PDF

Info

Publication number
JP7205474B2
JP7205474B2 JP2019536435A JP2019536435A JP7205474B2 JP 7205474 B2 JP7205474 B2 JP 7205474B2 JP 2019536435 A JP2019536435 A JP 2019536435A JP 2019536435 A JP2019536435 A JP 2019536435A JP 7205474 B2 JP7205474 B2 JP 7205474B2
Authority
JP
Japan
Prior art keywords
layer
substrate
lattice constant
lattice
template substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019536435A
Other languages
English (en)
Other versions
JPWO2019035274A1 (ja
Inventor
邦彦 田才
博 中島
秀和 川西
克典 簗嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2019035274A1 publication Critical patent/JPWO2019035274A1/ja
Application granted granted Critical
Publication of JP7205474B2 publication Critical patent/JP7205474B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Description

本技術は、例えば窒化ガリウム(GaN)系材料を用いたテンプレート基板およびその製造方法、このテンプレート基板を有する電子デバイスおよびその製造方法、並びに発光デバイスに関する。
窒化ガリウム(GaN)系材料を用いた発光デバイスの開発が活発に行われている。発光デバイスとしては、例えば、半導体レーザ(LD:Laser Diode)および発光ダイオード(LED:Light Emitting Diode)等が挙げられる。このような発光デバイスでは、例えば、テンプレート基板上に、発光層が設けられている(例えば、特許文献1参照)。
特表2010-514192号公報
このテンプレート基板を構成する半導体層の表面の平坦性、欠陥の多さおよび単結晶性等は、発光層の平坦性、欠陥密度および単結晶性等に影響を及ぼす。このようなテンプレート基板を構成する半導体層の結晶品質を向上させることが望まれている。
したがって、結晶品質を向上させることが可能なテンプレート基板およびその製造方法、このテンプレート基板を有する電子デバイスおよびその製造方法、並びに発光デバイスを提供することが望ましい。
本開示の一実施の形態に係る第1のテンプレート基板は、基板と、基板上に設けられた第1バッファ層と、第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、第1層に接して設けられ、第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、第2層に接して第1層に対向して設けられ、第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備えたものであり、式(1)によって表される、第1層の格子定数a1に対する第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である。本開示の一実施の形態に係る第2のテンプレート基板は、基板と、基板上に設けられた第1バッファ層と、第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、第1層に接して設けられ、第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、第2層上に第1層に対向して設けられ、第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層とを備えたものである。
d(%)=|(a3―a1)|/a1×100・・・(1)
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
本技術の一実施の形態に係る第1,第2の電子デバイスは、上記本技術の一実施の形態に係る第1,第2のテンプレート基板上に機能層を備えたものである。
本技術の一実施の形態に係る第1,第2の発光デバイスは、上記本技術の一実施の形態に係る第1,第2のテンプレート基板上に発光層を備えたものである。
本技術の一実施の形態に係る第1,第2のテンプレート基板、第1,第2の電子デバイスおよび第1,第2の発光デバイスでは、格子緩和した第1層上に、インジウム(In)を含まない第2層を介して、第3層が積層されているので、第1層に比べて、第3層の結晶の質が改善される。
本開示の一実施の形態に係る第1のテンプレート基板の製造方法は、基板上に第1バッファ層を形成し、第1バッファ層上に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、式(1)によって表される、第1層の格子定数a1に対する第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である。本開示の一実施の形態に係る第2のテンプレート基板の製造方法は、 基板上に第1バッファ層を形成し、第1バッファ層上に、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を、式(2)を満たす厚みで形成し、第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成する。
d(%)=|(a3―a1)|/a1×100・・・(1)
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
本技術の一実施の形態に係る第1,第2の電子デバイスの製造方法は、上記本技術の一実施の形態に係る第1,第2のテンプレート基板の製造方法を用いてテンプレート基板を製造した後に、このテンプレート基板上に機能層を形成するものである。
本技術の一実施の形態に係る第1,第2のテンプレート基板の製造方法および第1,第2の電子デバイスの製造方法では、格子緩和した第1層上に、インジウム(In)を含まない第2層を形成し、この第2層上に第3層を形成している。このため、第1層に比べて結晶の質が改善された第3層が形成される。
本技術の一実施の形態に係る第1,2のテンプレート基板、第1,第2の電子デバイスおよび第1,第2の発光デバイスによれば、第1層と第3層との間に、インジウム(In)を含まない第2層を設け、また、本技術の一実施の形態に係る第1,第2のテンプレート基板の製造方法および第1,第2の電子デバイスの製造方法によれば、第1層上に、インジウム(In)を含まない第2層を形成し、この第2層上に第3層を形成するようにした。これにより、第3層の結晶の質を向上させることが可能となる。第3層は、第1層よりも発光層等に近い位置に配置される。
尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。
本技術の第1の実施の形態に係る発光デバイスの概略構成を表す断面模式図である。 図1に示した第1層の構成の他の例を表す断面模式図である。 図1に示した第1層、第2層および第3層各々の格子定数を表す図である。 図1に示した第1層と第3層との間の格子定数の不整合度と、第3層の単結晶性との関係を表す図である。 図1に示した第1層のインジウム(In)組成と、第2層の厚みの臨界値との関係を表す図である。 図1に示した第2層の構成の他の例を表す断面模式図である。 図1に示した第3層の構成の他の例を表す断面模式図である。 図1に示した発光デバイスの製造工程を表す断面模式図である。 図8Aに続く工程を表す断面模式図である。 図8Bに続く工程を表す断面模式図である。 比較例1に係るテンプレート基板の構成を表す断面模式図である。 比較例2に係るテンプレート基板の構成を表す断面模式図である。 図1に示した第3層の断面プロファイルを表す図である。 図1に示した発光デバイスの変形例の構成を表す断面模式図である。 本技術の第2の実施の形態に係る発光デバイスの概略構成を表す断面模式図である。 図13に示した発光デバイスの他の例を表す平面模式図である。 図1等に示した発光デバイスの他の例を表す断面模式図である。
以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
第1層と第3層との間に、インジウム(In)を含まない第2層を設けた発光デバイス
2.変形例
窒化ガリウム(GaN)系以外の材料により構成された基板を用いる例
3.第2の実施の形態
第1層が臨界膜厚よりも大きい厚みを有するテンプレート基板
〔第1の実施の形態〕
図1は、本技術の第1の実施の形態に係る発光デバイス(発光デバイス1)の模式的な断面構成を表している。この発光デバイス1は、例えば、可視領域の波長の光を出射する半導体レーザまたは発光ダイオード等であり、テンプレート基板10上に発光層20を有している。テンプレート基板10は、基板11、バッファ層12、第1層13、第2層14および第3層15をこの順に有しており、この第3層15上に発光層20が設けられている。
基板11は、例えば窒化ガリウム(GaN)基板であり、その厚みは例えば300μm~500μmである。例えば、窒化ガリウム(GaN)基板のc面が主面として用いられている。
基板11と第1層13との間に設けられたバッファ層12は、第1層13を格子緩和させるためのものである。このバッファ層12は、いわゆる低温バッファ層であり、例えば、400℃~750℃程度の低温で形成された、非単結晶の層である。非単結晶の例としては、例えば、アモルファスおよび多結晶等が挙げられる。バッファ層12は、例えば、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN),窒化アルミニウム(AlN)または窒化アルミニウムガリウムインジウム(AlGaInN)により構成されている。バッファ層12の厚みは、例えば10nm~100nmである。
バッファ層12上の第1層13は、バッファ層12に接して設けられている。この第1層13は、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなる。第1層13のインジウム(In)組成c1(%)は、例えば1%~30%である。バッファ層12上に設けられた第1層13は、窒化ガリウム(GaN)の面内方向(例えばc面)の格子定数よりも大きい面内方向の格子定数a1を有し、格子緩和されている。第1層13は、例えば、完全緩和されている。第1層13の厚みは、例えば100nm~2000nmである。第1層13の厚みを100nm以上、より好ましくは500nm以上にすることにより、100nm未満の厚みを有する場合に比べ、単結晶性に優れ低転位密度の結晶が構成される。
図2は、バッファ層12と第2層14との間に、複数の第1層13A,13Bを有するテンプレート基板10の構成の一例を表している。このように、テンプレート基板10が複数の第1層13A,13Bを有していてもよい。第1層13A,13Bは、例えば互いにインジウム(In)組成c1(%)が異なっている。図2では、2層を積層させた第1層13A,13Bを例示したが、第1層13は3層以上を積層させて構成するようにしてもよい。超格子構造を有する第1層13が設けられていてもよい。第1層13では、インジウム(In)組成c1(%)が厚み方向に連続的に変化していてもよい。バッファ層12から第2層14に向かう方向に沿って、第1層13のインジウム組成c1(%)が徐々に大きくなっていてもよく、あるいは徐々に小さくなっていてもよい。
第1層13上に設けられた第2層14は、AlyGa(1-y)N(0≦y<1)からなり、インジウム(In)を含んでいない。第2層14層を間にして第1層13に対向する第3層15は、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなり、インジウムを含んでいる。本実施の形態では、格子緩和した第1層13上に、第2層14を介して第3層15が積層されている。詳細は後述するが、これにより第1層13に比べて第3層15の結晶の質を向上させることができる。例えば、X線回折におけるωスキャンのピークの半値幅は、第1層13よりも第3層15の方が小さくなっており、第1層13よりも第3層15の方が高い単結晶性を有している。貫通転位密度は、第1層13よりも第3層15の方が小さく、第1層13よりも第3層15の方が、欠陥密度が小さくなっている。第1層13よりも第3層15の方が、表面の凹凸が小さく、高い平坦性を有している。
第2層14は第1層13上にコヒーレントに成長されたものであり、第3層15は第2層14上にコヒーレント成長されたものである。即ち、第2層14は第1層13に、第3層15は第2層14に各々格子整合して積層されている。第2層14の面内方向の格子定数a2は、第1層13の面内方向の格子定数a1と略同じであり、第3層15の面内方向の格子定数a3は、第2層14の面内方向の格子定数a2と略同じである。
図3は、第1層13,第2層14,第3層15各々の面内方向の格子定数a1,a2,a3の一例を表している。このように、格子定数a1,a2,a3は、互いに略同じであり、例えば、互いの不整合度(a1とa2,a2とa3,a1とa3)は0.005%未満である。特に、第1層13の面内方向の格子定数a1に対する第3層15の面内方向の格子定数a3の不整合度d(%)は、0.083%未満であり、好ましくは0.063%未満である。不整合度d(%)は、下記の式(1)によって表される。

d(%)=|(a3-a1)|/a1×100・・・(1)
図4は、式(1)で表される不整合度d(%)と、第3層15のX線回折におけるωスキャンのピークの半値幅ωFWHM(a.u.)との関係を表したものである。このように、不整合度dが大きくなるに連れて、半値幅が大きくなる。つまり、第2層14および第3層15を積層する際に格子緩和が生じると、第1層13と第3層15との間の第2層14が効果的に機能せず、第3層15の単結晶性が低下することが示唆される。不整合度d(%)が0.083%未満、好ましくは0.063%未満であれば、例えば第3層15の半値幅ωFWHM(a.u.)は、0.8(a.u.)よりも小さくなり、十分に高い単結晶性を得ることができる。
例えば、第2層14の厚みtを調整することにより、不整合度dを小さくすることが可能であり、第1層13のインジウム(In)組成c1(%)と、GaN(上記のy=0)からなる第2層14の厚みt(nm)とが、以下の式(2)を満たすことが好ましい。第2層14の厚みtは、例えば図1のz方向の大きさを表す。

t(nm)<1018.9×e-50.71×c1・・・(2)
ただし、式(2)中、2.0%<c1<6.0%である。
図5は、式(1)で表される不整合度d(%)が0.063%未満となるときの、第1層13のインジウム(In)組成c1(%)および第2層14の厚みt(nm)の関係を表している。この不整合度d(%)が0.063%未満となるときのc1,tの臨界点を結ぶ直線によって、上記の式(2)が導かれる。式(2)は2.0%<c1<6.0%の範囲内で適用される。c1が6.0%以上では、図5の臨界点を結ぶ直線はより緩やかになる。したがって、第1層13のインジウム(In)組成c1が6.0%以上であるとき、第2層14の厚みtは49nm以下であればよい。
図6は、第1層13と第3層15との間に、複数の第2層14A,14Bを有するテンプレート基板10の構成の一例を表している。このように、テンプレート基板10が複数の第2層14A,14Bを有していてもよい。例えば、第2層14A,14Bの一方は、GaN(上記のy=0)からなり、他方はAlGaN(上記の0<y<1)からなる。図6では、2層を積層させた第2層14A,14Bを例示したが、第2層14は3層以上を積層させて構成するようにしてもよい。超格子構造を有する第2層14が設けられていてもよい。なお、上記式(2)では、GaN(上記のy=0)からなる第2層14の厚みt(nm)について、第1層13のインジウム(In)組成c1(%)との関係を例示したが、第2層14の組成比および積層構造等に応じて式(2)は調整される。
第3層15のインジウム(In)組成c3(%)は、第1層13のインジウム(In)組成c1(%)以下であることが好ましい。即ち、第1層13のAlx2Inx1Ga(1-x1-x2)Nと第3層15のAlz2Inz1Ga(1-z1-z2)Nとが、以下の式(3)を満たすことが好ましい。第1層13に比べて、第3層15のインジウム組成を小さくすることにより、第3層15の表面の平坦性を向上させやすくなる。

x1≧z1・・・(3)
図7は、第2層14上に、複数の第3層15A,15Bを有するテンプレート基板10の構成の一例を表している。このように、テンプレート基板10が複数の第3層15A,15Bを有していてもよい。第3層15A,15Bは、例えば互いにインジウム(In)組成c3(%)が異なっている。図7では、2層を積層させた第3層15A,15Bを例示したが、第3層15は3層以上を積層させて構成するようにしてもよい。超格子構造を有する第3層15が設けられていてもよい。第3層15では、インジウム(In)組成c3(%)が厚み方向に連続的に変化していてもよい。第2層14から発光層20に向かう方向に沿って、第3層15のインジウム組成c2(%)が徐々に大きくなっていてもよく、あるいは徐々に小さくなっていてもよい。
第3層15上の発光層20は、例えば可視領域の波長の光を発生させるものであり、窒化ガリウム(GaN)系材料を含んでいる。発光層20は、例えば窒化ガリウムインジウム(GaInN)を含み、赤色,緑色または青色の光を発生させる。例えば、発生させる光の波長が長くなるにつれて、発光層20のインジウム(In)組成が増加する。例えば、赤色の光を発する発光層20のインジウム組成は約33%程度であり、緑色の光を発する発光層20のインジウム組成は、約23%程度であり、青色の光を発する発光層20のインジウム組成は約16%程度である。
このような発光デバイス1は、例えば、以下のように製造することができる(図8A~8C)。
まず、図8Aに示したように、基板11上にバッファ層12を形成する。具体的には、窒化ガリウム(GaN)からなる基板11上に400℃~750℃の温度で窒化ガリウムインジウム(GaInN)を成長させることによりバッファ層12を形成する。
次に、図8Bに示したように、バッファ層12上に第1層13を形成する。第1層13は、例えば、700℃~900℃の温度で、バッファ層12上にAlx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)を成長させることにより形成する。低温で形成されたバッファ層12上の第1層13では、面内方向の格子定数a1が窒化ガリウム(GaN)よりも大きくなっている。即ち、第1層13は、格子緩和されて形成される。
続いて、図8Cに示したように、この第1層13上に、第1層13に格子整合するようにして第2層14を形成する。第2層14は、例えば800℃~1000℃の温度で、第1層13にコヒーレントにAlyGa(1-y)N(0≦y<1)を成長させることにより形成する。第2層14を形成する際の温度は、第1層13の分解が生じない範囲で、できるだけ高くすることが好ましい。これにより、第1層13の表面に、比較的大きな凹凸が存在していても、第2層14の表面の平坦性は改善され、また、第1層13の結晶欠陥が対消滅しやすくなる。第2層14を形成する際のキャリアガスには水素(H2)を用いることが好ましい。水素を用いて第2層14を形成することにより2次元成長が促進され、上述の結晶欠陥の消滅を助長する。
第2層14を形成した後、第2層14上に、第2層14に格子整合するようにして第3層15を形成する。第3層15は、例えば700℃~900℃の温度で、第2層14にコヒーレントにAlz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)を成長させることにより形成する。この後、第3層15上に発光層20を形成する。バッファ層12、第1層13、第2層14、第3層15および発光層20の形成は、例えば、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法または有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの方法を用いたエピタキシャル結晶成長により行う。このようにして、図1に示した発光デバイス1を完成させる。
(作用・効果)
本実施の形態の発光デバイス1のテンプレート基板10では、格子緩和した第1層13上に、インジウム(In)を含まない第2層14を介して、第3層15が積層されている。これにより、第1層13に比べて、第3層15の結晶品質が改善される。したがって、この第3層15上に配置される発光層20の発光特性を向上させることが可能となる。以下、これについて説明する。
基板上またはテンプレート基板上に設けられた発光層の発光特性は、基板またはテンプレート基板の結晶性および結晶構造等に大きく影響を受ける。基板またはテンプレート基板には、例えば窒化ガリウムが用いられる。この基板上またはテンプレート基板上に、窒化ガリウムインジウム(GaInN)を含む発光層が設けられると、発光層におけるインジウム(In)の組成が大きくなるほど、基板またはテンプレート基板との格子不整合度が大きくなり、発光特性が低下する。基板またはテンプレート基板には、例えば窒化ガリウム(GaN)が用いられる。基板として、窒化ガリウムインジウム基板を用いることが可能であれば、このような不整合の発生を抑えることができる。しかし、窒化ガリウムインジウムを用いた結晶性の高い基板は現在得られていない。このため、比較例1,2に係るテンプレート基板(テンプレート基板101,102)を用いることが考え得る。このテンプレート基板101,102には、格子緩和した、窒化ガリウムインジウム(GaInN)からなる第1層(第1層131,132)が設けられている。
図9は、比較例1に係るテンプレート基板101の模式的な断面構成を表している。このテンプレート基板101は、基板11上に、バッファ層32および第1層131をこの順に有している。バッファ層32では、例えば、窒化ガリウムインジウム(GaInN)からなる層と窒化ガリウム(GaN)からなる層とが交互に複数積層されており、窒化ガリウムインジウム(GaInN)からなる層のインジウム(In)組成が第1層131に近づくにつれて徐々に大きくなっている。このようなバッファ層32を設けることにより、バッファ層32上の第1層131は、窒化ガリウムに対して格子緩和される。したがって、第1層131と第1層131上の発光層との間の格子不整合度を小さくすることができる。
図10は比較例2に係るテンプレート基板102の模式的な断面構成を表している。このテンプレート基板102は、基板11上に、バッファ層12および第1層132をこの順に有している。低温バッファ層であるバッファ層12により、第1層132が窒化ガリウムに対して格子緩和される。この第1層132も、テンプレート基板101の第1層131と同様に、発光層との間の格子不整合度を小さくすることができる。
しかし、格子緩和された第1層131,132の表面には、例えば数nm~数十nm程度の大きさの凹凸があり、第1層131,132の平坦性は低い。また、この第1層131,132のX線回折におけるωスキャンのピークの半値幅は、例えば500asec以上であり、第1層131,132の単結晶性は低い。更に、第1層131,132には高密度の結晶欠陥が存在する。このような結晶の質が低い第1層131,132上に形成された発光層は、例えばピエゾ分極が増大し、発光再結合確率が減少する。即ち、発光層の発光特性が低くなる。
これに対し、本実施の形態のテンプレート基板10は、格子緩和した第1層13上にインジウム(In)を含まない第2層14を介して、第3層15が設けられている。この第1層13、第2層14および第3層15は、互いに格子整合されて形成されている。このテンプレート基板10では、第1層13の表面に比較的大きな凹凸が存在していても、第2層14の表面は平滑に形成されるので、この第2層14上の第3層15の表面の平坦性は高くなる。
図11は、第3層15の表面を、原子間力顕微鏡(Atomic Force Microscope)で測定した断面プロファイルを表している。このように、第3層15の表面には大きな凹凸が存在せず、数モノレイヤーのステップが得られていることが確認できる。
また、テンプレート基板10では、第2層14を形成する際に、第1層13の結晶欠陥の対消滅が促されるので、第3層15は欠陥密度が低く、かつ、高い単結晶性を有する。
このようにテンプレート基板10では、格子緩和した第1層13上に、インジウム(In)を含まない第2層14を介して、第3層15が積層されているので、第1層13に比べて、第3層15の結晶品質が改善される。よって、この第3層15上の発光層20は、欠陥密度が低く、単結晶性が良好な結晶となる。したがって、発光層20の非発光再結合確率は低くなり、発光再結合確率が高くなる。即ち、発光層20の発光特性を向上させることができる。
また、第1層13は格子緩和しているので、第1層13(テンプレート基板10)と発光層20との間の格子不整合度が小さくなる。したがって、発光層20に生成する結晶欠陥が少なくなり、非発光再結合確率が低くなる。更に、発光層20に生じるピエゾ電界が小さくなるので、発光再結合確率が大きくなる。
以上説明したように、本実施の形態では、格子緩和した第1層13と第3層15との間に、インジウム(In)を含まない第2層14を設けるようにした。これにより、第3層15の結晶の質を向上させることが可能となる。このように、発光層20により近い位置に配置される第3層15の結晶の質を向上させることにより、発光層20の発光特性を向上させることができる。
即ち、発光デバイス1の発光特性を向上させることができるため、外部量子効率および光電効率の高い発光デバイス1が実現される。例えば、発光デバイス1が半導体レーザであるとき、格子緩和したテンプレート基板10を用いることにより、光閉じ込めが良好であるとともに、内部ロスが低いレーザ構造を作製することが可能となる。これにより、半導体レーザの光電効率を向上させることができる。
以下、上記第1の実施の形態の変形例および他の実施の形態について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。
〔変形例〕
図12は、上記第1の実施の形態の変形例に係るテンプレート基板(テンプレート基板10A)を有する発光デバイス1の模式的な断面構成を表している。このテンプレート基板10Aの基板11は、サファイア基板またはシリコン(Si)基板等の異種基板により構成されている。この場合にも、上記第1の実施の形態と同等の効果を得ることができる。
例えば、サファイア基板により構成された基板11上には、例えば第2バッファ層16および下地層17を介してバッファ層12が設けられている。サファイア基板は、例えばc面が主面として用いられている。
基板11上に設けられた第2バッファ層16は、例えば低温バッファ層である。第2バッファ層16は、例えば、窒化ガリウム(GaN)または窒化アルミニウム(AlN)等からなる非単結晶の層により構成されている。
第2バッファ層16上に設けられた下地層17は、例えば、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN)または窒素アルミニウムガリウムインジウム(AlGaInN)により構成されている。この下地層17上に、例えば、バッファ層12、第1層13、第2層14、第3層15および発光層20がこの順に設けられている。このように、基板11を異種基板により構成するようにしてもよい。
〔第2の実施の形態〕
図13は、本技術の第2の実施の形態に係る発光デバイス1の断面構成を模式的に表したものである。この発光デバイス1のテンプレート基板(テンプレート基板40)では、基板11上に、臨界膜厚を超える厚みの第1層(第1層43)が設けられており、この第1層43上に、第2層14および第3層15がこの順に配置されている。この点を除き、テンプレート基板40は、テンプレート基板10と同様の構成を有し、その作用および効果も同様である。
第1層43は、例えば窒化ガリウム(GaN)からなる基板11に接して設けられている。この第1層43は、上記テンプレート基板10の第1層13と同様に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、第1層43のインジウム(In)組成c1(%)は、例えば1%~30%である。第1層43の厚みは、臨界膜厚を超えており、例えば500nm~2000nmである。このような臨界膜厚を超える厚みを有する第1層43は、窒化ガリウム(GaN)の面内方向(例えばc面)の格子定数よりも大きい格子定数a1を有し、格子緩和されている。
この第1層43は、第1層13と同様に、複数の層により構成するようにしてもよく(図2)、あるいは、超格子構造を有していてもよい。
図14は、例えばサファイア基板等により構成された基板11を有するテンプレート基板(テンプレート基板40A)の模式的な断面構成を表している。このテンプレート基板40Aは、上記変形例と同様に、基板11、第2バッファ層16および下地層17をこの順に有している。この下地層17上に、臨界膜厚を超える厚みの第1層43を設けるようにしてもよい。
このように、バッファ層(例えば、図1のバッファ層12)を設けることに代えて、第1層43の厚みが臨界膜厚を超えるようにすることで、第1層43を格子緩和するようにしてもよい。この場合にも、上記第1の実施の形態と同等の効果を得ることができる。
以上、実施の形態および変形例を挙げて本技術を説明したが、本技術は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態において例示した発光デバイス1の構成要素、配置および数等は、あくまで一例であり、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。例えば、テンプレート基板10,10A,40,40Aと発光層20との間に、他の層を設けるようにしてもよい。あるいは、発光層20の上層に他の層が配置されていてもよい。
また、図15に示したように、テンプレート基板10(あるいはテンプレート基板10A,40,40A)は、第1層13(または第1層43)、第2層14および第3層15の積層構造上に、更に、第2層14および第3層15をこの順に有していてもよい。
更に、上記第1の実施の形態および変形例では、格子緩和した第1層13を形成するために、バッファ層12を用いる場合について説明したが、バッファ層12に代えて、バッファ層32(図9)を用いて格子緩和した第1層13を形成するようにしてもよい。
更に、上記実施の形態等では、テンプレート基板10,10A,40,40A上に発光層20を有する発光デバイス1を例に挙げて説明したが、本技術は、テンプレート基板10,10A,40,40A上に、発光層以外の機能層を有する電子デバイスにも適用可能である。
なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。
なお、本技術は、以下のような構成も可能である。
(1)
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
テンプレート基板。
d(%)=|(a3―a1)|/a1×100・・・(1)
(2)
前記第2層の厚みtは、式(2)を満たす
前記(1)に記載のテンプレート基板。
t(nm)<1018.9×e-50.71×c1・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
(3)
前記第3層の表面は、前記第1層の表面よりも高い平坦性を有する
前記(1)または(2)に記載のテンプレート基板。
(4)
X線回析におけるωスキャンのピークの半値幅は、前記第1層よりも前記第3層の方が小さくなっている
前記(1)ないし(3)のうちのいずれか1つに記載のテンプレート基板。
(5)
第1バッファ層は、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN),窒化アルミニウム(AlN)または窒化アルミニウムガリウムインジウム(AlGaInN)からなる
前記(1)ないし(4)のうちのいずれか1つに記載のテンプレート基板。
(6)
前記基板は、窒化ガリウム(GaN)基板により構成されている
前記(1)ないし(5)のうちのいずれか1つに記載のテンプレート基板。
(7)
前記基板は、サファイア基板またはシリコン(Si)基板により構成されており、
前記基板と前記第1バッファ層との間に、第2バッファ層および下地層をさらに有し、
前記第2バッファ層、前記下地層、および前記第1バッファ層は前記基板側からこの順に積層されている
前記(1)ないし(6)のうちのいずれか1つに記載のテンプレート基板。
(8)
前記第2バッファ層は、窒化ガリウム(GaN)または窒化アルミニウム(AlN)からなり、
前記下地層は、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN)または窒化アルミニウムガリウムインジウム(AlGaInN)からなる
前記(7)に記載のテンプレート基板。
(9)
前記第1層は、臨界膜厚よりも大きい厚みを有する
前記(1)ないし(8)のうちいずれか1つに記載のテンプレート基板。
(10)
式(3)を満たす
前記(1)ないし(9)のうちいずれか1つに記載のテンプレート基板。
x1≧z1・・・(3)
(11)
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
を備えたテンプレート基板。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
(12)
テンプレート基板および前記テンプレート基板上の機能層を備え、
前記テンプレート基板は、
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
電子デバイス。
d(%)=|(a3―a1)|/a1×100・・・(1)
(13)
テンプレート基板および前記テンプレート基板上の機能層を備え、
前記テンプレート基板は、
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
を備えた電子デバイス。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
(14)
テンプレート基板および前記テンプレート基板上の発光層を備え、
前記テンプレート基板は、
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
発光デバイス。
d(%)=|(a3―a1)|/a1×100・・・(1)
(15)
テンプレート基板および前記テンプレート基板上の発光層を備え、
前記テンプレート基板は、
基板と、
前記基板上に設けられた第1バッファ層と、
前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
を備えた発光デバイス。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
(16)
基板上に第1バッファ層を形成し、
前記第1バッファ層上に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、
前記第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
テンプレート基板の製造方法。
d(%)=|(a3―a1)|/a1×100・・・(1)
(17)
前記第2層を、水素(H)をキャリアガスに用いた結晶成長により形成する
前記(16)に記載のテンプレート基板の製造方法。
(18)
前記第1層を形成する際の温度よりも高い温度で、前記第2層を形成する
前記(16)または(17)に記載のテンプレート基板の製造方法。
(19)
基板上に第1バッファ層を形成し、
前記第1バッファ層上に、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を、式(2)を満たす厚みで形成し、
前記第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成する
テンプレート基板の製造方法。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
(20)
テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
前記テンプレート基板は、
基板上に第1バッファ層を形成し、
前記第1バッファ層上に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、
前記第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
テンプレート基板の製造方法。
d(%)=|(a3―a1)|/a1×100・・・(1)
(21)
テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
前記テンプレート基板は、
基板上に第1バッファ層を形成し、
前記第1バッファ層上に、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を、式(2)を満たす厚みで形成し、
前記第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成する
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
テンプレート基板の製造方法。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。

(22)
テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
前記テンプレート基板は、
基板と、
前記基板と第1層との間に、前記第1層に接するバッファ層と、
Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、
前記第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
電子デバイスの製造方法。
d(%)=|(a3―a1)|/a1×100・・・(1)
(23)
テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
前記テンプレート基板は、
基板と、
前記基板と第1層との間に、前記第1層に接するバッファ層と、
Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
前記第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を形成し、
前記第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
前記第2層の厚みtは、式(2)を満たす
電子デバイスの製造方法。
t(nm)<1018.9×e -50.71×c1 ・・・(2)
ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
本出願は、日本国特許庁において2017年8月14日に出願された日本特許出願番号第2017-156416号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (21)

  1. 基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
    前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
    式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
    テンプレート基板。
    d(%)=|(a3―a1)|/a1×100・・・(1)
  2. 前記第2層の厚みtは、式(2)を満たす
    請求項1に記載のテンプレート基板。
    t(nm)<1018.9×e-50.71×c1・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
  3. 前記第3層の表面は、前記第1層の表面よりも高い平坦性を有する
    請求項1に記載のテンプレート基板。
  4. X線回析におけるωスキャンのピークの半値幅は、前記第1層よりも前記第3層の方が小さくなっている
    請求項1に記載のテンプレート基板。
  5. 第1バッファ層は、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN),窒化アルミニウム(AlN)または窒化アルミニウムガリウムインジウム(AlGaInN)からなる
    請求項1に記載のテンプレート基板。
  6. 前記基板は、窒化ガリウム(GaN)基板により構成されている
    請求項1に記載のテンプレート基板。
  7. 前記基板は、サファイア基板またはシリコン(Si)基板により構成されており、
    前記基板と前記第1バッファ層との間に、第2バッファ層および下地層をさらに有し、
    前記第2バッファ層、前記下地層、および前記第1バッファ層は前記基板側からこの順に積層されている
    請求項1に記載のテンプレート基板。
  8. 前記第2バッファ層は、窒化ガリウム(GaN)または窒化アルミニウム(AlN)からなり、
    前記下地層は、窒化ガリウム(GaN),窒化ガリウムインジウム(GaInN),窒化ガリウムアルミニウム(AlGaN)または窒化アルミニウムガリウムインジウム(AlGaInN)からなる
    請求項7に記載のテンプレート基板。
  9. 前記第1層は、臨界膜厚よりも大きい厚みを有する
    請求項1に記載のテンプレート基板。
  10. 式(3)を満たす
    請求項1に記載のテンプレート基板。
    x1≧z1・・・(3)
  11. 基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
    前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
    を備えたテンプレート基板。
    t(nm)<1018.9×e -50.71×c1 ・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
  12. テンプレート基板および前記テンプレート基板上の機能層を備え、
    前記テンプレート基板は、
    基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
    前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
    式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
    電子デバイス。
    d(%)=|(a3―a1)|/a1×100・・・(1)
  13. テンプレート基板および前記テンプレート基板上の機能層を備え、
    前記テンプレート基板は、
    基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
    前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
    を備えた電子デバイス。
    t(nm)<1018.9×e -50.71×c1 ・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
  14. テンプレート基板および前記テンプレート基板上の発光層を備え、
    前記テンプレート基板は、
    基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAlGa(1-y)N(0≦y<1)からなる第2層と、
    前記第2層に接して前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)からなる第3層とを備え
    式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
    発光デバイス。
    d(%)=|(a3―a1)|/a1×100・・・(1)
  15. テンプレート基板および前記テンプレート基板上の発光層を備え、
    前記テンプレート基板は、
    基板と、
    前記基板上に設けられた第1バッファ層と、
    前記第1バッファ層に接して設けられ、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和した前記第1層と、
    前記第1層に接して設けられ、前記第1層に格子整合して積層されたAl Ga (1-y) N(0≦y<1)からなると共に、式(2)を満たす厚みを有する第2層と、
    前記第2層上に前記第1層に対向して設けられ、前記第2層に格子整合するとともに、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)からなる第3層と
    を備えた発光デバイス。
    t(nm)<1018.9×e -50.71×c1 ・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
  16. 基板上に第1バッファ層を形成し、
    前記第1バッファ層上に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
    前記第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、
    前記第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
    式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
    テンプレート基板の製造方法。
    d(%)=|(a3―a1)|/a1×100・・・(1)
  17. 前記第2層を、水素(H)をキャリアガスに用いた結晶成長により形成する
    請求項16に記載のテンプレート基板の製造方法。
  18. 前記第1層を形成する際の温度よりも高い温度で、前記第2層を形成する
    請求項16に記載のテンプレート基板の製造方法。
  19. 基板上に第1バッファ層を形成し、
    前記第1バッファ層上に、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
    前記第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を、式(2)を満たす厚みで形成し、
    前記第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成する
    テンプレート基板の製造方法。
    t(nm)<1018.9×e -50.71×c1 ・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
  20. テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
    前記テンプレート基板は、
    基板上に第1バッファ層を形成し、
    前記第1バッファ層上に、Alx2Inx1Ga(1-x1-x2)N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
    前記第1層上に、AlGa(1-y)N(0≦y<1)をコヒーレント成長させた第2層を形成し、
    前記第2層上に、Alz2Inz1Ga(1-z1-z2)N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成し、
    式(1)によって表される、前記第1層の格子定数a1に対する前記第3層の面内方向の格子定数a3の不整合度d(%)は、0.083%未満である
    電子デバイスの製造方法。
    d(%)=|(a3―a1)|/a1×100・・・(1)
  21. テンプレート基板を形成した後に、前記テンプレート基板上に機能層を形成し、
    前記テンプレート基板は、
    基板上に第1バッファ層を形成し、
    前記第1バッファ層上に、Al x2 In x1 Ga (1-x1-x2) N(0<x1<1,0≦x2<1)からなり、かつ、GaNの面内方向の格子定数よりも大きい面内方向の格子定数a1を有して格子緩和された第1層を形成し、
    前記第1層上に、Al Ga (1-y) N(0≦y<1)をコヒーレント成長させた第2層を、式(2)を満たす厚みで形成し、
    前記第2層上に、Al z2 In z1 Ga (1-z1-z2) N(0<z1<1,0≦z2<1)をコヒーレント成長させた第3層を形成する
    電子デバイスの製造方法。
    t(nm)<1018.9×e -50.71×c1 ・・・(2)
    ただし、式(2)中のc1は前記第1層のインジウムの含有量(%)であり、2.0%<c1<6.0%の範囲にある。
JP2019536435A 2017-08-14 2018-06-19 テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法 Active JP7205474B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017156416 2017-08-14
JP2017156416 2017-08-14
PCT/JP2018/023254 WO2019035274A1 (ja) 2017-08-14 2018-06-19 テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2019035274A1 JPWO2019035274A1 (ja) 2020-10-01
JP7205474B2 true JP7205474B2 (ja) 2023-01-17

Family

ID=65362333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536435A Active JP7205474B2 (ja) 2017-08-14 2018-06-19 テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法

Country Status (3)

Country Link
US (1) US20210135050A1 (ja)
JP (1) JP7205474B2 (ja)
WO (1) WO2019035274A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177503A1 (en) * 2021-02-22 2022-08-25 Igss-Gan Pte Ltd Semiconductor apparatus and method for fabricating thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153130A1 (ja) 2007-06-15 2008-12-18 Rohm Co., Ltd. 窒化物半導体発光素子及び窒化物半導体の製造方法
JP2011119374A (ja) 2009-12-02 2011-06-16 Sharp Corp 窒化物半導体素子及びその製造方法、並びに、半導体装置
JP2016530700A (ja) 2013-06-11 2016-09-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 窒化物系化合物半導体素子を製造する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332713A (ja) * 2002-02-04 2006-12-07 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子
TWI271877B (en) * 2002-06-04 2007-01-21 Nitride Semiconductors Co Ltd Gallium nitride compound semiconductor device and manufacturing method
KR20140133085A (ko) * 2013-05-09 2014-11-19 엘지이노텍 주식회사 반도체 소자 및 그의 제조 방법
JP5983684B2 (ja) * 2014-07-02 2016-09-06 ウシオ電機株式会社 Led素子
US9246311B1 (en) * 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153130A1 (ja) 2007-06-15 2008-12-18 Rohm Co., Ltd. 窒化物半導体発光素子及び窒化物半導体の製造方法
JP2011119374A (ja) 2009-12-02 2011-06-16 Sharp Corp 窒化物半導体素子及びその製造方法、並びに、半導体装置
JP2016530700A (ja) 2013-06-11 2016-09-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 窒化物系化合物半導体素子を製造する方法

Also Published As

Publication number Publication date
US20210135050A1 (en) 2021-05-06
WO2019035274A1 (ja) 2019-02-21
JPWO2019035274A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US9793432B2 (en) Light emitting devices and methods of manufacturing the same
JP4538476B2 (ja) 半導体構造の形成方法
JP5306254B2 (ja) 半導体発光素子
JP2010010678A (ja) 量子ドットデバイスおよびその製造方法
JP2013014450A (ja) 窒化物半導体エピタキシャル基板及び窒化物半導体デバイス
JP5401145B2 (ja) Iii族窒化物積層体の製造方法
JP2008103665A (ja) 窒化物半導体デバイス及びその製造方法
JP3545197B2 (ja) 半導体素子およびその製造方法
JP3561536B2 (ja) 半導体発光素子
JP2009129941A (ja) 発光デバイス
JPH05206513A (ja) 半導体発光素子
JP3976723B2 (ja) 半導体素子およびその製造方法
JP6486401B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP7205474B2 (ja) テンプレート基板、電子デバイス,発光デバイス,テンプレート基板の製造方法および電子デバイスの製造方法
JP5881560B2 (ja) 半導体発光装置及びその製造方法
JP2004014587A (ja) 窒化物系化合物半導体エピタキシャルウエハ及び発光素子
JP2006066787A (ja) サファイア基板とそれを用いた発光装置
JP6290321B2 (ja) 窒化物半導体エピタキシャル基板の製造方法、及び窒化物半導体デバイスの製造方法
JP4897285B2 (ja) 半導体装置用基材およびその製造方法
JP2007161525A (ja) 半導体装置用基材およびその製造方法
JP2001308464A (ja) 窒化物半導体素子、窒化物半導体結晶の作製方法および窒化物半導体基板
JP7388357B2 (ja) 発光デバイス
JP6001124B2 (ja) 窒化物半導体エピタキシャル基板の製造方法、及び窒化物半導体デバイスの製造方法
JP7388354B2 (ja) 発光デバイス
JP6115092B2 (ja) 半導体発光装置及び半導体発光装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151