JP7195478B2 - レゾルバの異常検出装置 - Google Patents

レゾルバの異常検出装置 Download PDF

Info

Publication number
JP7195478B2
JP7195478B2 JP2022502633A JP2022502633A JP7195478B2 JP 7195478 B2 JP7195478 B2 JP 7195478B2 JP 2022502633 A JP2022502633 A JP 2022502633A JP 2022502633 A JP2022502633 A JP 2022502633A JP 7195478 B2 JP7195478 B2 JP 7195478B2
Authority
JP
Japan
Prior art keywords
period
output
output signals
windings
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022502633A
Other languages
English (en)
Other versions
JPWO2021171392A1 (ja
Inventor
辰也 森
紘子 池田
俊宏 松永
憲司 池田
建太 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021171392A1 publication Critical patent/JPWO2021171392A1/ja
Application granted granted Critical
Publication of JP7195478B2 publication Critical patent/JP7195478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Description

本願は、レゾルバの異常検出装置に関するものである。
モータの回転角度を検出する角度検出器として、レゾルバが多く用いられている。レゾルバは、堅牢な角度検出器として知られているが、モータ駆動システムの耐故障性の要望からレゾルバにも冗長性が求められるようになっている。
そこで、特許文献1には、第1系統の励磁巻線及び出力巻線、及び第2系統の励磁巻線及び出力巻線が設けられた、2重系のレゾルバが開示されている。
また、特許文献2には、第1及び第2のレゾルバセンサが備えられ、各レゾルバセンサについて、sin相の出力信号の振幅sinωtとcos相の出力信号の振幅cosωtとが、(sinωt)+(cosωt)=1の関係を満たさない場合に、両レゾルバの信号線同士が短絡したと判定する技術が開示されている。
さらに、冗長性を有していないものの、特許文献3には、ブラシレスDCモータのロータ位置に応じた正弦波信号及び余弦波信号を出力する角度検出器において、正弦波信号及び余弦波信号のそれぞれの2乗値の和が、所定範囲に収まるかに基づいて角度検出器の故障を検出する技術が開示されている。
特開2000-18968号公報 特開2005-147791号公報 特開2006-335252号公報
しかしながら、特許文献1、2のような冗長系のレゾルバでは、冗長系を構成する第1系統と第2系統が、電気的に絶縁されていたとしても、磁気的には干渉が生じる。これによって、第1系統と第2系統の一方における出力巻線の出力信号は、第1系統と第2系統の他方における励磁交流電圧に起因する成分が含まれる。例えば、第1系統における出力巻線の出力信号は、第1系統の励磁巻線に印加された励磁交流電圧に起因した成分に加え、第2系統の励磁巻線に印加された励磁交流電圧に起因した成分が含まれる。同様に、第2系統における出力巻線の出力信号においても、第2系統の励磁巻線に印加された励磁交流電圧に起因した成分に加え、第1系統の励磁巻線に印加された励磁交流電圧に起因した成分が含まれる。
特許文献1には、このような第1系統及び第2系統を有するレゾルバにおいて、各系統の異常を判定する技術は開示されていない。また、特許文献3には、冗長系のレゾルバにおいて、各系統の異常を判定する技術は開示されていない。
特許文献2の技術では、第1のレゾルバのsin相及びcos相の出力信号と、第2のレゾルバのsin相及びcos相の出力信号とは、位相が180度異なるように、構成されている。また、第1のレゾルバの励磁コイルに印加される交流電圧の周期と、第2のレゾルバの励磁コイルに印加される交流電圧の周期とは、同じにされている。よって、特許文献2には、第1系統と第2系統との間の磁気干渉の影響について記載されていないが、仮に磁気干渉が生じるとしても、第1のレゾルバのsin相及びcos相の出力信号に含まれる、第1のレゾルバの励磁コイルに起因する成分と、第2のレゾルバの励磁コイルに起因する成分とは逆相になるので、sin相及びcos相の出力信号の振幅のゲインが低下するだけで、(sinωt)+(cosωt)=1の関係は維持される。
従って、特許文献2の技術のように、第1系統の励磁巻線に印加される交流電圧の周期と、第2系統の励磁巻線に印加される交流電圧の周期とが同じであり、第1系統の2つの出力信号と、第2系統の2つの出力信号とが同相又は逆相になる場合は、系統間の磁気干渉が生じても、各系統について、2つの出力信号のそれぞれの2乗値の和に基づいて、異常を判定することができると考えられる。
しかし、第1系統の励磁巻線に印加される交流電圧の周期と、第2系統の励磁巻線に印加される交流電圧の周期とが、異なる場合は、上述したように、第1系統の2つの出力信号に、第2系統の励磁交流電圧に起因した成分が重畳し、第1系統の2つの出力信号の2乗値の和に、第2系統の励磁交流電圧の周期の振動成分が重畳するため、2乗値の和に基づいて、第1系統の異常を精度よく判定することができない。同様に、第2系統の2つの出力信号の2乗値の和に基づいて、第2系統の異常を精度よく判定することができない。
また、冗長性を向上させるために、第1系統と第2系統とを互いに独立して動作させることが可能であり、第1系統の励磁交流電圧と第2系統の励磁交流電圧との同期が必要でなく、第1系統の励磁交流電圧の周期と第2系統の励磁交流電圧の周期とが異なるレゾルバが求められている。
そこで、本願は、第1系統の励磁交流電圧の周期と、第2系統の励磁交流電圧の周期とが異なり、系統間の磁気干渉が生じる場合であっても、少なくとも第1系統の異常を判定することができるレゾルバの異常検出装置を提供することを目的とする。
本願に係るレゾルバの異常検出装置は、
第1系統と第2系統との間で磁気干渉が生じる、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、及び第2系統の2つの出力巻線を有するレゾルバと、
前記第1系統の励磁巻線に第1周期の交流電圧を印加する第1系統の励磁部と、
前記第2系統の励磁巻線に、前記第1周期と異なる第2周期の交流電圧を印加する第2系統の励磁部と、
前記第1系統の2つの出力巻線の出力信号を、前記第1周期の半分以下の周期で検出する第1系統の出力信号検出部と、
前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する第2周期成分低減処理を行う第1系統の低減処理部と、
前記第2周期成分低減処理後の前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する直流抽出処理を行って、第1系統の2つの出力信号の直流値を算出する第1系統の直流抽出処理部と、
前記第1系統の2つの出力信号の直流値が、予め設定された第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を判定する第1系統の異常検出部と、を備え
前記第2周期は、前記第1周期より長く設定され、
前記第1系統の低減処理部は、前記第2周期成分低減処理として、今回の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値と、今回の検出タイミングよりも第1系統低減処理間隔前の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値とを加算し、前記第1系統低減処理間隔は、前記第2周期をTBとして、TB/2+TB×M(Mは、0以上の整数)に設定されているものである。
第1系統に異常がある場合は、第1系統の2つの出力巻線の出力信号の検出値に含まれる第1周期の成分の振動中心値が正常範囲から逸脱する。本願に係るレゾルバの異常検出装置によれば、第1周期と第2周期が異なり、第1系統の2つの出力巻線の出力信号の検出値に、系統間の磁気干渉により、第2系統の第2周期の励磁交流電圧に起因した第2周期の成分が含まれる場合において、第1系統の2つの出力巻線の出力信号の検出値から、第2周期成分低減処理により第2周期の成分を低減することができる。そして、第2周期成分低減処理後の第1系統の2つの出力巻線の出力信号の検出値に対して、第1周期の成分を低減する直流抽出処理を行うことにより、第1系統の2つの出力巻線の出力信号の検出値に含まれる第1周期の成分の振動中心値(直流成分)を算出することができる。よって、第1系統の2つの出力信号の直流値が、第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を精度よく判定することができる。
実施の形態1に係るレゾルバの異常検出装置の概略構成図である。 実施の形態1に係るレゾルバを軸方向に見た側面図である。 実施の形態1に係る、系統間の磁気干渉がないと仮定した場合の、第1系統の検出タイミングを説明するためのタイムチャートである。 実施の形態1に係る制御装置のハードウェア構成図である。 実施の形態1に係る第1系統の第2周期成分低減処理及び直流抽出処理を説明するためのタイムチャートである。 実施の形態1に係る第1系統の低減処理部のブロック図である。 実施の形態1に係る第1系統の異常検出処理を説明するフローチャートである。 実施の形態1に係る第1系統の異常検出処理の別例を説明するフローチャートである。 実施の形態1に係る第2系統の第1周期成分低減処理及び直流抽出処理を説明するためのタイムチャートである。 実施の形態1に係る第2系統の低減処理部のブロック図である。 実施の形態1に係る第2系統の異常検出処理を説明するフローチャートである。 実施の形態1に係る第2系統の異常検出処理の別例を説明するフローチャートである。 実施の形態2に係る第2系統の第1周期成分低減処理及び直流抽出処理を説明するためのタイムチャートである。 実施の形態2に係る第2系統の低減処理部のブロック図である。 実施の形態3に係るレゾルバの異常検出装置の概略構成図である。 実施の形態3に係るレゾルバの模式斜視図である。
1.実施の形態1
実施の形態1に係るレゾルバの異常検出装置について図面を参照して説明する。図1は、本実施の形態に係るレゾルバの異常検出装置の概略構成図である。なお、レゾルバの異常検出装置は、角度検出装置でもある。
1-1.レゾルバ1
レゾルバ1は、第1系統の励磁巻線10A、第1系統の2つの出力巻線111A、112A(第1系統の第1出力巻線111A、第1系統の第2出力巻線112Aとも称す)、第2系統の励磁巻線10B、第2系統の2つの出力巻線111B、112B(第2系統の第1出力巻線111B、第2系統の第2出力巻線112Bとも称す)を有している。第1系統の巻線と第2系統の巻線との間で磁気干渉が生じる。すなわち、第1系統の励磁巻線10Aが発生した磁束による電磁誘導より、第1系統の2つの出力巻線111A、111Aだけでなく、第2系統の2つの出力巻線111B、112Bにも、誘起電圧が生じ、第2系統の励磁巻線10Bが発生した磁束による電磁誘導により、第2系統の2つの出力巻線111B、111Bだけでなく、第1系統の2つの出力巻線111A、112Aにも、誘起電圧が生じる。
図2に示すように、第1系統の励磁巻線10A、第1系統の2つの出力巻線111A、112A、第2系統の励磁巻線10B、及び第2系統の2つの出力巻線111B、112Bは、同じ1つのステータ13に巻装されている。ステータ13の径方向内側にロータ14が配置されている。ロータ14は、外周部に周方向に均等配置された複数の突出部を備えている。突出部の径方向外側への突出高さは、ステータ13及びロータ14間のギャップパーミアンスが、回転に応じて、正弦波状に変化するように形成されている。すなわち、レゾルバ1は、可変リラクタンス(VR)型レゾルバとされている。本実施の形態は、5つの突出部が設けられており、軸倍角は5とされている。よって、ロータが機械角で1回転する毎に、電気角で5回転する。
図3に系統間の磁気干渉がないと仮定した例を示すように、第1系統の励磁巻線10Aに交流電圧VRAが印加されている状態で、ロータが回転すると、ロータの電気角での回転角度(ギャップパーミンアンス)に応じて第1系統の第1出力巻線111Aに誘起される交流電圧V1Aの振幅、及び第1系統の第2出力巻線112Aに誘起される交流電圧V2Aの振幅が正弦波状(又は余弦波状)に変化する。第1系統の第1出力巻線111Aと第1系統の第2出力巻線112Aとは、それらの交流電圧の振幅が相互に電気角で90度異なるように、ステータ13の周方向の位置に巻装されている。同様に、第2系統の第1出力巻線111Bと第2系統の第2出力巻線112Bとは、それらの誘起交流電圧の振幅が相互に電気角で90度異なるように、ステータの周方向の位置に巻装されている。
本実施の形態では、図2に示すように、ステータ13は、周方向に均等配置された12個のティースを備えおり、第1ティースTE1から第6ティースTE6に第1系統の巻線が巻装されており、第7ティースTE7から第12ティースTE12に第2系統の巻線が巻装されている。第1系統の励磁巻線10Aは、第1ティースTE1から第6ティースTE6に分散して巻装されている。第1系統の第1出力巻線111Aと第1系統の第2出力巻線112Aとは、誘起交流電圧の振幅が相互に90度異なるように、第1ティースTE1から第6ティースTE6に分散して巻装されている。同様に、第2系統の励磁巻線10Bは、第7ティースTE7から第12ティースTE12に分散して巻装されている。第2系統の第1出力巻線111Bと第2系統の第2出力巻線112Bは、誘起交流電圧の振幅が相互に90度異なるように、第7ティースTE7から第12ティースTE12に分散して巻装されている。
複数のティースに巻装された第1系統の励磁巻線10Aは、ティース間で直列に接続されており、直列に接続された第1系統の励磁巻線10Aの2つの端子が、後述する制御装置50(第1系統の励磁部51A)に接続されている。同様に、ティース間で直列に接続された第1系統の第1出力巻線111Aの2つの端子が、後述する制御装置50(第1系統の出力信号検出部52A)に接続されている。ティース間で直列に接続された第1系統の第2出力巻線112Aの2つの端子が、後述する制御装置50(第1系統の出力信号検出部52A)に接続されている。また、複数のティースに巻装された第2系統の励磁巻線10Bの2つの端子が、後述する制御装置50(第2系統の励磁部51B)に接続されている。同様に、ティース間で直列に接続された第2系統の第1出力巻線111Bの2つの端子が、後述する制御装置50(第2系統の出力信号検出部52B)に接続されている。ティース間で直列に接続された第2系統の第2出力巻線112Bの2つの端子が、後述する制御装置50(第2系統の出力信号検出部52B)に接続されている。
なお、突出部の数(軸倍角)及びティース数は、任意の数に設定されてもよい。第1系統の巻線及び第2系統の巻線は、周方向に2つに分割されて配置されてなくてもよく、周方向に分散して配置されてもよい。
1-2.制御装置50
レゾルバの異常検出装置は、制御装置50を備えている。制御装置50は、図1に示すように、第1系統の励磁部51A、第1系統の出力信号検出部52A、第1系統の低減処理部53A、第1系統の角度算出部54A、第1系統の直流抽出処理部55A、第1系統の異常検出部56A、第2系統の励磁部51B、第2系統の出力信号検出部52B、第2系統の低減処理部53B、第2系統の角度算出部54B、第2系統の直流抽出処理部55B、及び第2系統の異常検出部56Bを備えている。制御装置50の各機能は、制御装置50が備えた処理回路により実現される。
具体的には、制御装置50は、図4に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、及び演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92には、第1系統の第1出力巻線111A、第1系統の第2出力巻線112A、第2系統の第1出力巻線111B、第2系統の第2出力巻線112Bが接続されている。入力回路92は、これらの巻線の出力電圧を演算処理装置90に入力するA/D変換器等を備えている。出力回路93には、第1系統の励磁巻線10A及び第2系統の励磁巻線10Bが接続され、これら巻線に交流電圧VRAを印加するためのスイッチング素子等の駆動回路を備えている。スイッチング素子の出力側にローパスフィルタ回路が設けられてもよい。また、出力回路93は、算出した第1角度θ1及び第2角度θ2、並びに第1系統の異常信号ERR1及び第2系統の異常信号ERR2を外部の制御装置94に伝達する通信回路等の信号出力回路を備えている。
そして、制御装置50が備える各制御部51A~56B等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置50の他のハードウェアと協働することにより実現される。なお、各制御部51A~56B等が用いる設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置50の各機能について詳細に説明する。
1-2-1.励磁部
第1系統の励磁部51Aは、第1系統の励磁巻線10Aに第1周期TAの交流電圧VRA(本例では、正弦波の交流電圧VRA)を印加する。第1系統の励磁部51Aは、第1周期TAの交流電圧指令を算出し、交流電圧指令と三角波との比較結果に基づいて、出力回路93に設けられた第1系統の励磁巻線用のスイッチング素子をオンオフするPWM信号(Pulse Width Modulation)を生成する。スイッチング素子がオンされると、電源電圧が第1系統の励磁巻線10A側に印加され、スイッチング素子がオフされると、電源電圧の印加が停止する。
第2系統の励磁部51Bは、第2系統の励磁巻線10Bに第2周期TBの交流電圧VRB(本例では、正弦波の交流電圧VRB)を印加する。第2周期TBは、第1周期TAとは異なる周期に設定されている。本実施の形態では、後述するように、第2周期TBは、第1周期TAの2倍に設定されている(TB=2×TA)。例えば、TA=50μsの場合、TB=100μsに設定される。
第2系統の励磁部51Bは、第2周期TBの交流電圧指令を算出し、交流電圧指令と三角波との比較結果に基づいて、出力回路93に設けられた第2系統の励磁巻線用のスイッチング素子をオンオフするPWM信号を生成する。
1-2-2.第1系統の出力信号検出部
第1系統の出力信号検出部52Aは、第1系統の2つの出力巻線111A、112Aの出力信号V1A、V2Aを予め設定された検出タイミングで周期的に検出する。本実施の形態では、後述するように、検出タイミングは、第1系統の異常判定及び角度算出を考慮して設定される。
1-2-3.第1系統の低減処理部
<系統間の磁気干渉による課題>
図5に第1系統の第1出力巻線の出力信号V1Aの例を示すように、第1系統の2つの出力巻線111A、112Aの出力信号V1A、V2Aには、それぞれ、系統間の磁気干渉により、第2系統の励磁巻線10Bに励磁された第2周期TBの磁束により電磁誘導により誘起された第2周期の成分V1A_TB、V2A_TBが重畳される。図5の上段のグラフに、第1系統の第1出力巻線の出力信号V1Aを示し、中段のグラフに、第1系統の第1出力巻線の出力信号V1Aに含まれる、第1系統の励磁巻線10Aの磁束により電磁誘導により誘起された第1周期の成分V1A_TAを示し、下段のグラフに、第1系統の第1出力巻線の出力信号V1Aに含まれる、第2系統の励磁巻線10Bの磁束により電磁誘導により誘起された第2周期の成分V1A_TBを示す。第1系統の第1出力巻線の出力信号V1Aは、第1周期の成分V1A_TAと第2周期の成分V1A_TBとを合計した信号となる。
<第2周期成分低減処理>
そこで、第1系統の低減処理部53Aは、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sに対して、第2周期の成分を低減する第2周期成分低減処理を行う。
本実施の形態では、以下で説明する原理に基づいて、第2周期成分低減処理を行うように構成されている。図5の下段のグラフに示すように、第1系統の第1出力巻線の出力信号の第2周期の成分V1A_TBは、第2周期の半周期TB/2に第2周期TBの整数倍を加算した周期(例えば、第2周期の半周期TB/2)で、位相が反転し、プラスマイナスの符号が反転する。
そこで、第1系統の低減処理部53Aは、第2周期成分低減処理として、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと、今回の検出タイミングよりも第1系統低減処理間隔ΔT1前の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Sold、V2A_Soldとを加算するように構成されている。第1系統低減処理間隔ΔT1は、次式に示すように設定されている。ここで、Mは0以上の整数である。本実施の形態では、M=0に設定されており、第1系統低減処理間隔ΔT1は、第2周期の半周期TB/2に設定されている。
ΔT1=TB/2+TB×M ・・・(1)
第1系統の低減処理部53Aは、例えば、図6に示すように構成される。第1系統の低減処理部53Aは、第1系統の第1出力巻線の出力信号の検出値V1A_Sを第1系統低減処理間隔ΔT1だけ遅延して出力する第1遅延器53A1を備えており、第1系統の第1出力巻線の出力信号の検出値V1A_Sと、第1遅延器53A1の出力V1A_Soldとを加算して、第2周期成分低減処理後の第1系統の第1出力巻線の出力信号の検出値V1A_Fを算出する。同様に、第1系統の低減処理部53Aは、第1系統の第2出力巻線の出力信号の検出値V2A_Sを第1系統低減処理間隔ΔT1だけ遅延して出力する第2遅延器53A2を備えており、第1系統の第2出力巻線の出力信号の検出値V2A_Sと、第2遅延器53A2の出力V2A_Soldとを加算して、第2周期成分低減処理後の第1系統の第2出力巻線の出力信号の検出値V2A_Fを算出する。
この構成によれば、互いにプラスマイナスの符号が反転している2つの第2周期の成分が加算され、2つの第2周期の成分が互いに打ち消される。よって、加算後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fでは、第2周期の成分が低減される。そして、第2系統の第2周期の成分が低減された第1系統の第1周期の成分を用いて、後述する第1系統の異常判定を精度よく行うことができる。
本実施の形態では、第2周期TBは、次式に示すように、第1周期TAの偶数倍に設定されている。ここで、Nは、1以上の整数である。本実施の形態では、N=1に設定されており、第2周期TBは、第1周期TAの2倍に設定されている。例えば、第1周期TAが50usに設定される場合、第2周期TBは、100usに設定される。
TB=TA×2×N ・・・(2)
この構成によれば、式(2)を式(1)に代入した次式に示すように、第1系統低減処理間隔ΔT1は、第1周期TAの整数倍となる。
ΔT1=TA×(N+2×N×M) ・・・(3)
よって、第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sの内、第1周期TAの整数倍前後の値が加算される。よって、図5に示すように、加算される2つの第1周期の成分は、位相が同じであり、プラスマイナスの符号が同じ同等の値になるため、加算後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fは、それぞれ、検出値に含まれる第1周期の成分V1A_TA、V2A_TAの2倍値に相当する。
V1A_F≒2×V1A_TA
V2A_F≒2×V2A_TA ・・・(4)
本実施の形態では、M=0、N=1に設定されている。よって、第1系統の低減処理部53Aは、今回の検出タイミングで検出した第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと、第1周期TA(第2周期の半周期TB/2)前に検出した第1系統の2つの出力巻線の出力信号の検出値V1A_Sold、V2A_Soldとを加算するように構成されている。
1-2-4.第1系統の異常判定
<異常判定の原理>
第2周期成分低減処理後の第1系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_F(以下、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fとも称す)は、図3に示した系統間の磁気干渉がない場合の第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと同様の挙動になる。よって、第1系統に異常がない場合は、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fは、所定の電圧を中心に第1周期TAで振動し、振幅が回転周期で振動する。このように振動している第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fの瞬時値では、異常の有無を判定し難い。一方、異常がない場合は、振動中心値は所定の正常値になるので、振動中心値が正常値から変動した場合に、異常が発生したと検出できる。
第1周期TAで振動している第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fの振動中心値を算出するためには、サンプリング定理より、第1周期TAの半分以下の周期で出力信号をサンプリングする必要がある。
<異常判定用の検出周期>
そこで、第1系統の出力信号検出部52Aは、第1系統の2つの出力巻線111A、112Aの出力信号V1A、V2Aを、第1周期TAの半分以下の周期に設定された第1系統の異常判定用の検出周期で周期的に検出する。本実施の形態では、図5に示されているように、第1系統の出力信号検出部52Aは、第1系統の励磁巻線10Aに印加される第1周期TAの交流電圧VRAが最大値又は最小値になる第1周期の半周期TA/2毎のタイミングで、第1系統の2つの出力巻線の出力信号V1A_S、V2A_Sを検出する。
<異常判定用の第2周期成分低減処理>
そして、第1系統の低減処理部53Aは、第1系統の2つの出力信号V1A_S、V2A_Sを検出する第1周期の半周期TA/2毎に、第1系統の2つの出力信号の検出値V1A_S、V2A_Sに対して第2周期成分低減処理を行って、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fを算出する。本実施の形態では、第1系統の低減処理部53Aは、異常判定用の検出周期毎(本例では第1周期の半周期TA/2毎)に、今回検出した第1系統の2つの出力信号の検出値V1A_S、V2A_Sに、第1系統低減処理間隔ΔT1前(本例では、第1周期TA前(第1周期TAの整数倍前でもよい)に検出した第1系統の2つの出力信号の検出値V1A_Sold、V2A_Soldを加算して、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fを算出する。
<第1系統の直流抽出処理部>
第1系統の直流抽出処理部55Aは、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fに対して、それぞれ、第1周期TAの成分を低減する直流抽出処理を行って、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCを算出する。
本実施の形態では、第1系統の直流抽出処理部55Aは、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fに対して、それぞれ、第1周期TAの間の移動平均処理を行って、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCを算出する。本例では、異常判定用の検出タイミング及び第2周期成分低減処理のタイミングは、第1周期の半周期TA/2毎のタイミングに設定されている。そのため、次式に示すように、第1系統の直流抽出処理部55Aは、今回の検出タイミングで算出された第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fと、第1周期の半周期TA/2前の前回の検出タイミングで算出された第2周期成分低減処理後の第1系統の2つの出力信号V1A_F_old、V2A_F_oldとの平均値を、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCとして算出する。
V1A_DC={V1A_F+V1A_F_old}/2
V2A_DC={V2A_F+V2A_F_old}/2
・・・(5)
式(4)を用いて説明したように、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fは、第1周期の成分V1A_TA、V2A_TAの2倍値に相当する。よって、図9に示した第1周期の成分V1A_TAの挙動からわかるように、今回算出した第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fと、第1周期の半周期TA/2前の前回算出した第2周期成分低減処理後の第1系統の2つの出力信号V1A_F_old、V2A_F_oldとは、位相が反転する。よって、両者の平均値を算出することで、第1周期の成分V1A_TA、V2A_TAの振動中心値を算出することができる。
或いは、第1系統の直流抽出処理部55Aは、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fに対して、第1周期TAの2以上の自然数倍の期間の移動平均処理を行って、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCを算出してもよい。
或いは、第1系統の直流抽出処理部55Aは、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fに対して、第1周期TAの周波数を含む帯域の成分を低減するバンドストップフィルタ処理を行って、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCを算出してもよい。或いは、第1系統の直流抽出処理部55Aは、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fに対して、第1周期TAの周波数よりも小さいカットオフ周波数のローパスフィルタ処理を行って、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCを算出してもよい。
一方、本実施の形態と異なり第2周期成分低減処理が行われず、第1系統の2つの出力信号に第2周期の成分が重畳している場合は、図5に示したように、第2周期の成分T1A_TBは、第1周期の半周期TA/2毎に位相が90度ずれるため、第1系統の2つの出力信号の直流値には、第2周期TBの振動成分が重畳し、第1周期の成分V1A_TA、V2A_TAの振動中心値を精度よく算出することができない。
<第1系統の異常検出部>
第1系統の異常検出部56Aは、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCが、それぞれ、予め設定された第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を判定する。
上述したように、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCは、第1系統の2つの出力信号の検出値V1A_S、V2A_Sに含まれる第1周期の成分V1A_TA、V2A_TAの振動中心値に対応する。
第1系統の正常範囲は、第1周期の成分V1A_TA、V2A_TAの振動中心値の正常値が含まれる、第1系統の下限値MIN1と第1系統の上限値MAX1との間の範囲に設定される。例えば、第1系統の下限値MIN1は、第1周期の成分V1A_TA、V2A_TAの振動中心値の正常値(本例では0)よりも所定値だけ小さい値に予め設定され、第1系統の上限値MAX1は、振動中心値の正常値よりも所定値だけ大きい値に予め設定される。第1系統の正常範囲の設定は、異常と判定したい異常の程度に合わせて調整される。
なお、本実施の形態と異なり、第1系統の2つの出力信号の電圧レンジが、0~5Vであり、振動中心値の正常値が、2.5Vである場合は、第1系統の正常範囲は、2.5Vが含まれる範囲に設定される。
第1系統の異常には、第1系統の各巻線10A、111A、112Aの断線などの異常、制御装置50における第1系統の各巻線の入出力回路の異常、制御装置50の第1系統に係る処理の異常等が含まれる。
図7のフローチャートを用いて、異常判定の処理を説明する。図7のフローチャートの処理は、異常判定用の検出周期毎に、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCが算出された後に実行される。図7では、第1系統の第1出力巻線の出力信号の直流値V1A_DCを用いた異常判定について説明するが、第1系統の第2出力巻線の出力信号の直流値V2A_DCについても同様に行われる。
ステップS01で、第1系統の異常検出部56Aは、第1系統の直流抽出処理部55Aが算出した第1系統の第1出力巻線の出力信号の直流値V1A_DCを取得する。そして、ステップS02で、第1系統の異常検出部56Aは、第1系統の第1出力巻線の出力信号の直流値V1A_DCが、第1系統の下限値MIN1以上であって、第1系統の上限値MAX1以下であるか否かを判定する。すなわち、第1系統の異常検出部56Aは、第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にあるか否かを判定する。
第1系統の異常検出部56Aは、ステップS02で第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にないと判定した場合は、ステップS03に進み、第1系統の異常が発生したと判定する。本実施の形態では、第1系統の異常検出部56Aは、第1系統の異常が発生したと判定した場合に、第1系統の異常信号ERR1を出力する。例えば、第1系統の異常信号ERR1は、第1角度θ1が伝達される外部の制御装置94に伝達される。制御装置50と外部の制御装置94とが一体化される場合は、同じ制御装置内で、第1系統の異常信号ERR1が伝達される。
一方、第1系統の異常検出部56Aは、ステップS02で第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にあると判定した場合は、第1系統の異常が発生していないと判定して、処理を終了する。
<異常判定処理の別例>
図8のフローチャートを用いて、異常判定の処理の別例を説明する。図8のフローチャートの処理は、異常判定用の検出周期毎に、第1系統の2つの出力信号の直流値V1A_DC、V2A_DCが算出された後に実行される。図8では、第1系統の第1出力巻線の出力信号の直流値V1A_DCを用いた異常判定について説明するが、第1系統の第2出力巻線の出力信号の直流値V2A_DCについても同様に行われる。
ステップS11で、第1系統の異常検出部56Aは、第1系統の直流抽出処理部55Aが算出した第1系統の第1出力巻線の出力信号の直流値V1A_DCを取得する。そして、ステップS12で、第1系統の異常検出部56Aは、第1系統の第1出力巻線の出力信号の直流値V1A_DCが、第1系統の下限値MIN1以上であって、第1系統の上限値MAX1以下であるか否かを判定する。すなわち、第1系統の異常検出部56Aは、第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にあるか否かを判定する。
第1系統の異常検出部56Aは、ステップS12で第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にないと判定した場合は、ステップS13に進み、異常判定カウンタT1を1増加させる。その後、ステップS14に進み、第1系統の異常検出部56Aは、異常判定カウンタT1が、予め設定された異常判定回数T1ab以上であるか否か判定する。
第1系統の異常検出部56Aは、ステップS14で異常判定カウンタT1が異常判定回数T1ab以上であると判定した場合は、ステップS15に進み、第1系統の異常が発生したと判定する。そして、第1系統の異常検出部56Aは、第1系統の異常が発生したと判定した場合に、第1系統の異常信号ERR1を出力する。第1系統の異常検出部56Aは、ステップS14で異常判定カウンタT1が異常判定回数T1ab以上でないと判定した場合は、第1系統の異常が発生していないと判定して、処理を終了する。
一方、第1系統の異常検出部56Aは、ステップS12で第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にあると判定した場合は、ステップS16に進み、異常判定カウンタT1を0にリセットした後、処理を終了する。
図8のフローチャートの例では、第1系統の異常検出部56Aは、第1系統の第1出力巻線の出力信号の直流値V1A_DCが第1系統の正常範囲にない場合が、予め設定された異常判定回数T1ab以上、連続して継続した場合に、第1系統に異常が発生していると判定する。
このように、異常判定回数T1abによる判定を行うことで、第1系統の第1出力巻線の出力信号の直流値V1A_DCに生じるノイズ成分により誤判定が生じることを防止できる。また、連続して正常範囲にない場合に異常を判定することで、異常判定の精度を高めることができる。
なお、ステップS16で、第1系統の異常検出部56Aは、異常判定カウンタT1を0にリセットしなくてもよく、異常判定カウンタT1を前回値に保持してもよく、或いは、異常判定カウンタT1を減少させてもよい。
1-2-5.第1系統の角度算出部
第1系統の角度算出部54Aは、次式に示すように、第2周期成分低減処理後の第1系統の第1出力巻線の出力信号V1A_Fと、第1系統の第2出力巻線の出力信号V2A_Fとの比の、アークタンジェント(逆正接関数)を算出することにより、第1角度θ1を算出する。
θ1=tan-1(V1A_F/V2A_F) ・・・(6)
式(4)に示したように、第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fは、それぞれ、検出値に含まれる第1周期の成分V1A_TA、V2A_TAの2倍値に相当する。よって、式(4)を式(6)に代入した次式に示すように、検出値に含まれる第1周期の成分V1A_TA、V2A_TAの比により、精度よく第1角度θ1を算出することができる。
θ1≒tan-1{(2×V1A_TA)/(2×V2A_TA)}
=tan-1(V1A_TA/V2A_TA) ・・・(7)
第2周期成分低減処理後の第1系統の2つの出力信号V1A_F、V2A_Fの算出毎(本例では、第1周期の半周期TA/2毎)に、第1角度θ1が算出されてもよいが、図3に示すように、第1系統の励磁巻線10Aに印加される第1周期TAの交流電圧VRAが最大値又は最小値(図3の例では、最大値)になる算出タイミングで、第1角度θ1が算出される。
1-2-6.第2系統の出力信号検出部
第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bを予め設定された検出タイミングで周期的に検出する。本実施の形態では、後述するように、検出タイミングは、第2系統の異常判定及び角度算出を考慮して設定される。
1-2-7.第2系統の低減処理部
<系統間の磁気干渉による課題>
図9に第2系統の第1出力巻線の出力信号V1Bの例を示すように、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bには、系統間の磁気干渉により、第1系統の励磁巻線10Aに励磁された第1周期TAの磁束により誘起された第1周期の成分が重畳する。図9の上段のグラフに、第2系統の第1出力巻線の出力信号V1Bを示し、中段のグラフに、第2系統の第1出力巻線の出力信号V1Bに含まれる、第2系統の励磁巻線10Bの磁束による電磁誘導により誘起された第2周期の成分V1B_TBを示し、下段のグラフに、第2系統の第1出力巻線の出力信号V1Bに含まれる、第1系統の励磁巻線10Aの磁束による電磁誘導により誘起された第1周期の成分V1B_TAを示す。第2系統の第1出力巻線の出力信号V1Bは、第2周期の成分V1B_TBと第1周期の成分V1B_TAとを合計した信号となる。
<第1周期成分低減処理>
そこで、第2系統の低減処理部53Bは、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sに対して、第1周期の成分を低減する第1周期成分低減処理を行う。
本実施の形態では、以下で説明する原理に基づいて、第2周期成分低減処理を行うように構成されている。図9の下段のグラフに示すように、第2系統の第1出力巻線の出力信号の第1周期の成分V1B_TAは、その周期が第1周期TAであるから、第1周期TA毎に同じ値となる。
そこで、第2系統の低減処理部53Bは、第1周期成分低減処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sと、今回の検出タイミングよりも第2系統低減処理間隔ΔT2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Sold、V2B_Soldとの差を算出する減算処理を行うように構成されている。第2系統低減処理間隔ΔT2は、次式に示すように、第1周期TAの整数倍に設定されている。ここで、Pは、1以上の整数である。本実施の形態では、P=1に設定されており、第2系統低減処理間隔ΔT2は、第1周期TAに設定されている。
ΔT2=TA×P ・・・(8)
第2系統の低減処理部53Bは、例えば、図10に示すように構成される。第2系統の低減処理部53Bは、第2系統の第1出力巻線の出力信号の検出値V1B_Sを第2系統低減処理間隔ΔT2だけ遅延して出力する第1遅延器53B1を備えており、第2系統の第1出力巻線の出力信号の検出値V1B_Sから第1遅延器53B1の出力V1B_Soldを減算して、第1周期成分低減処理後の第2系統の第1出力巻線の出力信号の検出値V1B_Fを算出する。同様に、第2系統の低減処理部53Bは、第2系統の第2出力巻線の出力信号の検出値V2B_Sを第2系統低減処理間隔ΔT2だけ遅延して出力する第2遅延器53B2を備えており、第2系統の第2出力巻線の出力信号の検出値V2B_Sから第2遅延器53B2の出力V2B_Soldを減算して、第1周期成分低減処理後の第2系統の第2出力巻線の出力信号の検出値V2B_Fを算出する。
この構成によれば、互いにプラスマイナスの符号が同じ同等の値となっている2つの第1周期の成分が減算処理され、2つの第1周期の成分が互いに打ち消される。よって、減算処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fでは、第1周期の成分が低減される。そして、第1系統の第1周期の成分が低減された第2系統の第2周期の成分を用いて、後述する第2系統の異常判定を精度よく行うことができる。
前述したように、本実施の形態では、第2周期TBは、次式に示すように、第1周期TAの偶数倍に設定されている。ここで、Nは、1以上の整数である。本実施の形態では、N=1に設定されており、第2周期TBは、第1周期TAの2倍値に設定されている。
TB=TA×2×N ・・・(9)
また、第2系統低減処理間隔ΔT2は、次式に示すように設定されている。ここで、Lは、0以上の整数である。本実施の形態では、L=0に設定されており、第2系統低減処理間隔ΔT2は、第2周期の半周期TB/2に設定されている。
ΔT2=TB/2+TB×L ・・・(10)
この場合でも、式(9)を式(10)に代入すると、第2系統低減処理間隔ΔT2は、次式のように、式(8)と同様に、第1周期TAの整数倍になる。よって、上述したように、第1周期成分低減処理(減算処理)により、第1周期の成分を低減することができる。
ΔT2=TA×N×(1+2×L) ・・・(11)
また、第2系統低減処理間隔ΔT2を、式(10)のように設定することにより、減算処理により減算される2つの第2周期の成分は、図9に示すように、位相が反転し、プラスマイナスの符号が反転する。よって、減算処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fは、それぞれ、検出値に含まれる第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。
V1B_F≒2×V1B_TB
V2B_F≒2×V2B_TB ・・・(12)
本実施の形態では、L=0、N=1、P=1に設定されている。よって、第2系統の低減処理部53Bは、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sから、第2周期の半周期TB/2(第1周期TA)前に検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Sold、V2B_Soldを減算するように構成されている。
1-2-8.第2系統の異常判定
<異常判定の原理>
第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_F(以下、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fとも称す)は、図3に示した系統間の磁気干渉がない場合の第1系統の2つの出力巻線の出力信号の検出値V1A_S、V2A_Sと同様の挙動になる。よって、第2系統に異常がない場合は、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fは、所定の電圧を中心に第2周期TBで振動し、振幅が回転周期で振動する。このように振動している第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fの瞬時値では、異常の有無を判定し難い。一方、異常がない場合は、振動中心値は所定の正常値になるので、振動中心値が正常値から変動した場合に、異常が発生したと検出できる。
第2周期TBで振動している第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fの振動中心値を算出するためには、サンプリング定理より、第2周期TBの半分以下の周期で出力信号をサンプリングする必要がある。
<異常判定用の検出周期>
そこで、第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bを、第2周期TBの半分以下の周期に設定された第2系統の異常判定用の検出周期で周期的に検出する。本実施の形態では、図9に示されているように、第2系統の出力信号検出部52Bは、第2系統の励磁巻線10Bに印加される第2周期TBの交流電圧VRBが最大値又は最小値になる第2周期の半周期TB/2毎のタイミングで、第2系統の2つの出力巻線の出力信号V1B_S、V2B_Sを検出する。
<異常判定用の第1周期成分低減処理>
そして、第1系統の低減処理部53Bは、第2系統の2つの出力信号V1B_S、V2B_Sを検出する第2周期の半周期TB/2毎に、第2系統の2つの出力信号の検出値V1B_S、V2B_Sに対して第1周期成分低減処理を行って、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fを算出する。本実施の形態では、第2系統の低減処理部53Bは、異常判定用の検出周期毎(本例では第2周期の半周期TB/2毎)に、今回検出した第2系統の2つの出力信号の検出値V1B_S、V2A_Sから、第2系統低減処理間隔ΔT2前(本例では、第2周期TB前(第1周期TAの整数倍前でもよい)に検出した第2系統の2つの出力信号の検出値V1B_Sold、V2B_Soldを減算して、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fを算出する。
<第2系統の直流抽出処理部>
第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、それぞれ、第2周期TBの成分を低減する直流抽出処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出する。
本実施の形態では、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、それぞれ、第2周期TBの間の移動平均処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出する。本例では、異常判定用の検出タイミング及び第1周期成分低減処理のタイミングは、第2周期の半周期TB/2毎のタイミングに設定されている。そのため、次式に示すように、第2系統の直流抽出処理部55Bは、今回の検出タイミングで算出された第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fと、第2周期の半周期TB/2前の前回の検出タイミングで算出された第1周期成分低減処理後の第2系統の2つの出力信号V1B_F_old、V2B_F_oldとの平均値を、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCとして算出する。
V1B_DC={V1B_F+V1B_F_old}/2
V2B_DC={V2B_F+V2B_F_old}/2
・・・(13)
式(12)を用いて説明したように、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fは、第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。よって、図9に示した第2周期の成分V1B_TBの挙動からわかるように、今回算出した第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fと、第2周期の半周期TB/2前の前回算出した第1周期成分低減処理後の第2系統の2つの出力信号V1B_F_old、V2B_F_oldとは、位相が反転する。よって、両者の平均値を算出することで、第2周期の成分V1B_TB、V2B_TBの振動中心値を算出することができる。
或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの2以上の自然数倍の期間の移動平均処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。
或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの周波数を含む帯域の成分を低減するバンドストップフィルタ処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの周波数よりも小さいカットオフ周波数のローパスフィルタ処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。
一方、本実施の形態と異なり第1周期成分低減処理が行われず、第2系統の2つの出力信号に第1周期の成分が重畳している場合は、図9に示したように、第1周期の成分T1B_TAは、第2周期の半周期TB/2毎に同じ値になるため、第2系統の2つの出力信号の直流値には、第1周期TAの成分がオフセット的に重畳する。オフセット値は、第2周期TBと第1周期TAとの位相差により変動するため、第2周期の成分V1B_TB、V2B_TBの振動中心値を精度よく算出することができない。
<第2系統の異常検出部>
第2系統の異常検出部56Bは、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCが、それぞれ、予め設定された第2系統の正常範囲にあるか否かに基づいて、第2系統の異常を判定する。
上述したように、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCは、第2系統の2つの出力信号の検出値V1B_S、V2B_Sに含まれる第2周期の成分V1B_TB、V2B_TBの振動中心値に対応する。
第2系統の正常範囲は、第2周期の成分V1B_TB、V2B_TBの振動中心値の正常値が含まれる、第2系統の下限値MIN2と第2系統の上限値MAX2との間の範囲に設定される。例えば、第2系統の下限値MIN2は、第2周期の成分V1B_TB、V2B_TBの振動中心値の正常値(本例では0)よりも所定値だけ小さい値に予め設定され、第2系統の上限値MAX2は、振動中心値の正常値よりも所定値だけ大きい値に予め設定される。第2系統の正常範囲の設定は、異常と判定したい異常の程度に合わせて調整される。
なお、本実施の形態と異なり、第2系統の2つの出力信号の電圧レンジが、0~5Vであり、振動中心値の正常値が、2.5Vである場合は、第2系統の正常範囲は、2.5Vが含まれる範囲に設定される。
第2系統の異常には、第2系統の各巻線10B、111B、112Bの断線などの異常、制御装置50における第2系統の各巻線の入出力回路の異常、制御装置50の第2系統に係る処理の異常等が含まれる。
図11のフローチャートを用いて、異常判定の処理を説明する。図11のフローチャートの処理は、異常判定用の検出周期毎に、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCが算出された後に実行される。図11では、第2系統の第1出力巻線の出力信号の直流値V1B_DCを用いた異常判定について説明するが、第2系統の第2出力巻線の出力信号の直流値V2B_DCについても同様に行われる。
ステップS31で、第2系統の異常検出部56Bは、第2系統の直流抽出処理部55Bが算出した第2系統の第1出力巻線の出力信号の直流値V1B_DCを取得する。そして、ステップS32で、第2系統の異常検出部56Bは、第2系統の第1出力巻線の出力信号の直流値V1B_DCが、第2系統の下限値MIN2以上であって、第2系統の上限値MAX2以下であるか否かを判定する。すなわち、第2系統の異常検出部56Bは、第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にあるか否かを判定する。
第2系統の異常検出部56Bは、ステップS32で第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にないと判定した場合は、ステップS33に進み、第2系統の異常が発生したと判定する。本実施の形態では、第2系統の異常検出部56Bは、第2系統の異常が発生したと判定した場合に、第2系統の異常信号ERR2を出力する。例えば、第2系統の異常信号ERR2は、第2角度θ2が伝達される外部の制御装置94に伝達される。制御装置50と外部の制御装置94とが一体化される場合は、同じ制御装置内で、第2系統の異常信号ERR2が伝達される。
一方、第2系統の異常検出部56Bは、ステップS32で第3系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にあると判定した場合は、第2系統の異常が発生していないと判定して、処理を終了する。
<異常判定処理の別例>
図12のフローチャートを用いて、異常判定の処理の別例を説明する。図12のフローチャートの処理は、異常判定用の検出周期毎に、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCが算出された後に実行される。図12では、第2系統の第1出力巻線の出力信号の直流値V1B_DCを用いた異常判定について説明するが、第2系統の第2出力巻線の出力信号の直流値V2B_DCについても同様に行われる。
ステップS41で、第2系統の異常検出部56Bは、第2系統の直流抽出処理部55Bが算出した第2系統の第1出力巻線の出力信号の直流値V1B_DCを取得する。そして、ステップS42で、第2系統の異常検出部56Bは、第2系統の第1出力巻線の出力信号の直流値V1B_DCが、第2系統の下限値MIN2以上であって、第2系統の上限値MAX2以下であるか否かを判定する。すなわち、第2系統の異常検出部56Bは、第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にあるか否かを判定する。
第2系統の異常検出部56Bは、ステップS42で第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にないと判定した場合は、ステップS43に進み、異常判定カウンタT2を1増加させる。その後、ステップS44に進み、第2系統の異常検出部56Bは、異常判定カウンタT2が、予め設定された異常判定回数T2ab以上であるか否か判定する。
第2系統の異常検出部56Bは、ステップS44で異常判定カウンタT2が異常判定回数T2ab以上であると判定した場合は、ステップS45に進み、第2系統の異常が発生したと判定する。そして、第2系統の異常検出部56Bは、第2系統の異常が発生したと判定した場合に、第2系統の異常信号ERR2を出力する。第2系統の異常検出部56Bは、ステップS44で異常判定カウンタT2が異常判定回数T2ab以上でないと判定した場合は、第2系統の異常が発生していないと判定して、処理を終了する。
一方、第2系統の異常検出部56Bは、ステップS42で第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にあると判定した場合は、ステップS46に進み、異常判定カウンタT2を0にリセットした後、処理を終了する。
図12のフローチャートの例では、第2系統の異常検出部56Bは、第2系統の第1出力巻線の出力信号の直流値V1B_DCが第2系統の正常範囲にない場合が、予め設定された異常判定回数T2ab以上、連続して継続した場合に、第2系統に異常が発生していると判定する。
このように、異常判定回数T2abによる判定を行うことで、第2系統の第1出力巻線の出力信号の直流値V1B_DCに生じるノイズ成分により誤判定が生じることを防止できる。また、連続して正常範囲にない場合に異常を判定することで、異常判定の精度を高めることができる。
なお、ステップS46で、第2系統の異常検出部56Bは、異常判定カウンタT2を0にリセットしなくてもよく、異常判定カウンタT2を前回値に保持してもよく、或いは、異常判定カウンタT2を減少させてもよい。
1-2-9.第2系統の角度算出部
第2系統の角度算出部54Bは、次式に示すように、第1周期成分低減処理後の第2系統の第1出力巻線の出力信号V1B_Fと、第2系統の第2出力巻線の出力信号V2B_Fとの比の、アークタンジェント(逆正接関数)を算出することにより、第2角度θ2を算出する。
θ2=tan-1(V1B_F/V2B_F) ・・・(14)
式(12)に示したように、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fは、それぞれ、検出値に含まれる第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。よって、式(12)を式(14)に代入した次式に示すように、検出値に含まれる第2周期の成分V1B_TB、V2B_TBの比により、精度よく第2角度θ2を算出することができる。
θ2≒tan-1{(2×V1B_TB)/(2×V2B_TB)}
=tan-1(V1B_TB/V2B_TB) ・・・(15)
第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fの算出毎(本例では、第2周期の半周期TB/2毎)に、第2角度θ2が算出されてもよいが、第2系統の励磁巻線10Bに印加される第2周期TBの交流電圧VRBが最大値又は最小値(例えば、最大値)になる算出タイミングで、第2角度θ2が算出される。
なお、第1周期TA、第2周期TB、第1系統の検出タイミング、第2系統の検出タイミング、第1系統低減処理間隔ΔT1、及び第2系統低減処理間隔ΔT2等の設定値を、第1系統と第2系統との間で所定の関係になるように予め設定するだけでよく、第1系統の処理と第2系統の処理とは、互いに独立して行うことができ、第1系統と第2系統との間でリアルタイムに同期制御を行う必要がない。
2.実施の形態2
次に、実施の形態2に係るレゾルバの異常検出装置について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る角度検出装置の基本的な構成は実施の形態1と同様であるが、制御装置50の第2系統の出力信号検出部52B、第2系統の低減処理部53B、及び第2系統の直流抽出処理部55Bの構成が、実施の形態1と異なる。
第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bを予め設定された検出タイミングで周期的に検出する。本実施の形態でも、後述するように、検出タイミングは、第2系統の異常判定及び角度算出を考慮して設定される。
<系統間の磁気干渉による課題>
図13に第2系統の第1出力巻線の出力信号V1Bの例を示すように、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bには、系統間の磁気干渉により、第1系統の励磁巻線10Aに励磁された第1周期TAの磁束により電磁誘導で誘起された第1周期の成分が重畳する。図13の上段のグラフに、第2系統の第1出力巻線の出力信号V1Bを示し、中段のグラフに、第2系統の第1出力巻線の出力信号V1Bに含まれる、第2系統の励磁巻線10Bの磁束により電磁誘導で誘起された第2周期の成分V1B_TBを示し、下段のグラフに、第2系統の第1出力巻線の出力信号V1Bに含まれる、第1系統の励磁巻線10Aの磁束により誘起された第1周期の成分V1B_TAを示す。第2系統の第1出力巻線の出力信号V1Bは、第2周期の成分V1B_TBと第1周期の成分V1B_TAとを合計した信号となる。
<第1周期成分低減処理>
本実施の形態でも、第2系統の低減処理部53Bは、第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sに対して、第1周期の成分を低減する第1周期成分低減処理を行う。
本実施の形態では、実施の形態1と異なり、以下で説明する原理に基づいて、第1周期成分低減処理を行うように構成されている。図13の下段のグラフに示すように、第2系統の第1出力巻線の出力信号の第1周期の成分V1B_TAは、第1周期の半周期TA/2に第1周期TAの整数倍を加算した周期(例えば、第1周期の半周期TA/2)で、位相が反転し、プラスマイナスの符号が反転する。
そこで、第2系統の低減処理部53Bは、第1周期成分低減処理として、今回の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_S、V2B_Sと、今回の検出タイミングよりも第2系統低減処理間隔ΔT2前の検出タイミングで検出した第2系統の2つの出力巻線の出力信号の検出値V1B_Sold、V2B_Soldとを加算するように構成されている。第2系統低減処理間隔ΔT2は、次式に示すように、第1周期の半周期TA/2に第1周期TAの整数倍を加算した間隔に設定されている。ここで、Xは、0以上の整数である。本実施の形態では、X=0に設定されており、第2系統低減処理間隔ΔT2は、第1周期の半周期TA/2に設定されている。
ΔT2=TA/2+TA×X ・・・(16)
この構成によれば、互いにプラスマイナスの符号が反転している2つの第1周期の成分が加算され、2つの第1周期の成分が互いに打ち消される。よって、加算後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fでは、第1周期の成分が低減される。そして、第1系統の第1周期の成分が低減された第2系統の第2周期の成分を用いて、後述する第2系統の異常判定を精度よく行うことができる。
本実施の形態では、第2系統の出力信号検出部52Bは、図13に示すように、第2系統の励磁巻線10Bに印加される第2周期TBの交流電圧VRBが最大値又は最小値になる基準タイミングTM0に対して前後対称になる2つのタイミングTM1、TM2で、周期的に第2系統の2つの出力巻線の出力信号V1B、V2Bを検出する。
また、前後対称になる2つのタイミングの間隔が、第2系統低減処理間隔ΔT2に設定されている。よって、次式に示すように、基準タイミングTM0に対する前後2つのタイミングTM1、TM2の間隔ΔTM12は、第2系統低減処理間隔ΔT2の半分に設定される。
ΔTM12=ΔT2/2 ・・・(17)
そして、第2系統の低減処理部53Bは、前後対称になる2つのタイミングTM1、TM2で検出した第2系統の2つの出力巻線の出力信号の検出値を互いに加算して、第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値V1A_F、V2A_Fを算出する。
この構成によれば、2つのタイミングで検出した第2系統の2つの出力巻線の出力信号の検出値に含まれる第2周期の成分は、図13に示すように、互いに位相が同じであり、プラスマイナスの符号が同じ同等の値になる。また、2つのタイミングTM1、TM2の間隔は、第2系統低減処理間隔ΔT2に設定されているので、2つのタイミングTM1、TM2で検出した第2系統の2つの出力巻線の出力信号の検出値に含まれる第1周期の成分は、互いに位相が反転し、プラスマイナスの符号が反転する。よって、これらの加算後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fは、それぞれ、検出値に含まれる第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。
V1B_F≒2×V1B_TB
V2B_F≒2×V2B_TB ・・・(18)
第2系統の低減処理部53Bは、例えば、図14に示すように構成される。第2系統の低減処理部53Bは、第2系統の第1出力巻線の出力信号の検出値V1B_Sを第2系統低減処理間隔ΔT2だけ遅延して出力する第1遅延器53B1を備えており、基準タイミングTM0に対して後のタイミングTM2で、第2系統の第1出力巻線の出力信号の検出値V1B_Sと第1遅延器53B1の出力V1B_Soldとを加算して、第1周期成分低減処理後の第2系統の第1出力巻線の出力信号の検出値V1B_Fを算出する。同様に、第2系統の低減処理部53Bは、第2系統の第2出力巻線の出力信号の検出値V2B_Sを第2系統低減処理間隔ΔT2だけ遅延して出力する第2遅延器53B2を備えており、基準タイミングTM0に対して後のタイミングTM2で、第2系統の第2出力巻線の出力信号の検出値V2B_Sと第2遅延器53B2の出力V2B_Soldとを加算して、第1周期成分低減処理後の第2系統の第2出力巻線の出力信号の検出値V2B_Fを算出する。
本実施の形態では、次式に示すように、第2周期TBは、第1周期TAの2倍に設定されている。また、第2系統低減処理間隔ΔT2は、第1周期の半周期TA/2に設定されている。よって、基準タイミングTM0に対する前後2つのタイミングの間隔ΔTM12は、第1周期の4分の1のTA/4に設定されている。
TB=TA×2
ΔT2=TA/2
ΔTM12=TA/4 ・・・(19)
また、第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線の出力信号V1B、V2Bを、第2周期の4分の1の周期TB/4毎に検出し、各検出タイミングは、第2周期TBの交流電圧VRBが最大値又は最小値になる基準タイミングTM0に対して前後対称になるように設定されている。
<第2系統の異常判定>
第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線111B、112Bの出力信号V1B、V2Bを、第2周期TBの半分以下の周期に設定された第2系統の異常判定用の検出周期で周期的に検出する。本実施の形態では、図13に示されているように、第2系統の出力信号検出部52Bは、第2周期TBの4分の1の周期毎のタイミング(TM1、TM2)で、第2系統の2つの出力巻線の出力信号V1B_S、V2B_Sを検出する。
そして、第2系統の低減処理部53Bは、第2周期の半周期TB/2毎の2つのタイミングの後のタイミングTM2で、上記のように、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fを算出する。
第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、それぞれ、第2周期TBの成分を低減する直流抽出処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出する。
本実施の形態では、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、それぞれ、第2周期TBの間の移動平均処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出する。次式に示すように、第2系統の直流抽出処理部55Bは、今回の後のタイミングTM2で算出された第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fと、第2周期の半周期TB/2前の前回の後のタイミングTM2で算出された第1周期成分低減処理後の第2系統の2つの出力信号V1B_F_old、V2B_F_oldとの平均値を、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCとして算出する。
V1B_DC={V1B_F+V1B_F_old}/2
V2B_DC={V2B_F+V2B_F_old}/2
・・・(20)
式(18)を用いて説明したように、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fは、第2周期の成分V1B_TB、V2B_TBの2倍値に相当する。よって、図13に示した第2周期の成分V1B_TBの挙動からわかるように、今回の後のタイミングTM2で算出した第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fと、第2周期の半周期TB/2前の前回の後のタイミングTM2で算出した第1周期成分低減処理後の第2系統の2つの出力信号V1B_F_old、V2B_F_oldとは、位相が反転する。よって、両者の平均値を算出することで、第2周期の成分V1B_TB、V2B_TBの振動中心値を算出することができる。
或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの2以上の自然数倍の期間の移動平均処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。
或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの周波数を含む帯域の成分を低減するバンドストップフィルタ処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。或いは、第2系統の直流抽出処理部55Bは、第1周期成分低減処理後の第2系統の2つの出力信号V1B_F、V2B_Fに対して、第2周期TBの周波数よりも小さいカットオフ周波数のローパスフィルタ処理を行って、第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを算出してもよい。
一方、本実施の形態と異なり第1周期成分低減処理が行われず、第2系統の2つの出力信号に第1周期の成分が重畳している場合は、図13に示したように、第1周期の成分T1B_TAは、第2周期の半周期TB/2毎に同じ値になるため、第2系統の2つの出力信号の直流値には、第1周期TAの成分がオフセット的に重畳し、第2周期の成分V1B_TB、V2B_TBの振動中心値を精度よく算出することができない。
3.実施の形態3
次に、実施の形態3に係るレゾルバの異常検出装置について説明する。上記の実施の形態1又は2と同様の構成部分は説明を省略する。本実施の形態に係るレゾルバの異常検出装置の基本的な構成は実施の形態1と同様であるが、レゾルバ1の構成が、実施の形態1又は2と異なる。図15は、本実施の形態に係る角度検出装置の概略構成図である。
実施の形態1と同様に、レゾルバ1は、第1系統の励磁巻線10A、第1系統の2つの出力巻線111A、112A、第2系統の励磁巻線10B、第2系統の2つの出力巻線111B、112Bを有している。また、第1系統の巻線と第2系統の巻線との間で磁気干渉が生じる。
しかし、本実施の形態では、実施の形態1、2と異なり、図16にレゾルバ1の模式図を示すように、第1系統の励磁巻線10A及び第1系統の2つの出力巻線111A、112Aは、第1系統のステータ13Aに巻装され、第2系統の励磁巻線10B及び第2系統の2つの出力巻線111B、112Bは、第2系統のステータ13Bに巻装されている。第1系統のステータ13Aと第2系統のステータ13Bとは、互いに軸方向に隣接して配置され、第1系統の巻線と第2系統の巻線との間で磁気干渉が生じる。なお、図16において、第1系統のステータ13Aのティース及び巻線、第2系統のステータ13Bのティース及び巻線は、図示を省略している。
第1系統のステータ13A及び第2系統のステータ13Bは同軸上に、軸方向に隣接して配置され、第1系統のステータ13A及び第2系統のステータ13Bの径方向内側には、一体的に形成されたロータ14が配置されている。ロータ14は、外周部に周方向に均等配置された複数の突出部を備えている。本実施の形態では、第1系統のステータ13Aの径方向内側に位置するロータの部分と、第2系統のステータ13Bの径方向内側に位置するロータの部分とは、同じ突出部の形状を有している。なお、第1系統のステータ13Aの径方向内側のロータの部分と、第2系統のステータ13Bの径方向内側のロータの部分とは、突出部の形状及び数が異なっていてもよく、一体回転するように連結された別体であってもよい。
第1系統のステータ13Aは、周方向に均等配置された複数のティースを備えている。第1系統の第1出力巻線111Aと第1系統の第2出力巻線112Aとは、それらの誘起交流電圧の振幅が相互に電気角で90度異なるように、第1系統のステータ13Aの各ティースに分散して巻装されている。第1系統の励磁巻線10Aは、第1系統のステータ13Aの各ティースに分散して巻装されている。第2系統のステータ13Bは、周方向に均等配置された複数のティースを備えている。第2系統の第1出力巻線111Bと第2系統の第2出力巻線112Bとは、それらの誘起交流電圧の振幅が相互に電気角で90度異なるように、第2系統のステータ13Bの各ティースに分散して巻装されている。第2系統の励磁巻線10Bは、第2系統のステータ13Bの各ティースに分散して巻装されている。なお、第1系統のステータ13Aのティース数と、第2系統のステータ13Bのティース数とは、同じ数であってもよく、異なる数であってもよい。
このようなレゾルバ1の構成であっても、実施の形態1又は2の制御装置50と同様の処理を行うことにより、系統間の磁気干渉が生じても、第1角度θ1及び第2角度θ2、並びに第1系統の2つの出力信号の直流値V1A_DC、V2A_DC及び第2系統の2つの出力信号の直流値V1B_DC、V2B_DCを精度よく検出できる。
4.その他の実施の形態
最後に、本願のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)第1系統と第2系統とが入れ替えられてもよい。すなわち、上記の各実施の形態の第1系統が第2系統とされ、上記の各実施の形態の第2系統が第1系統とされてもよい。
(2)上記の各実施の形態では、第1系統の低減処理部53Aは、第1系統の2つの出力巻線の出力信号の検出値に含まれる第2周期の成分を低減する第2周期成分低減処理として、今回の検出値と第1系統低減処理間隔ΔT1前の検出値との加算処理を行い、第2系統の低減処理部53Bは、第2系統の2つの出力巻線の出力信号の検出値に含まれる第1周期の成分を低減する第1周期成分低減処理として、今回の検出値と第2系統低減処理間隔ΔT2前の検出値との減算処理又は加算処理を行う場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1系統の低減処理部53Aは、第2周期成分低減処理として、第2周期の成分を低減するハイパスフィルタ処理又はバンドストップフィルタ処理等の帯域低減フィルタ処理を行うように構成されてもよい。第2系統の低減処理部53Bは、第1周期成分低減処理として、第1周期の成分を低減するローパスフィルタ処理又はバンドストップフィルタ処理等の帯域低減フィルタ処理を行うように構成されてもよい。
(3)上記の各実施の形態では、第1系統の処理部51A~56A及び第2系統の処理部51B~56Bは、1つの制御装置50に備えられている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1系統の処理部51A~56Aが第1系統の制御装置に備えられ、第2系統の処理部51B~56Bが第2系統の制御装置に備えられてもよく、第1系統及び第2系統の各処理部51A~56Bが、複数の制御装置に分散して備えられてもよい。
(4)上記の各実施の形態では、第1系統の出力信号検出部52Aは、第1系統の2つの出力巻線の出力信号V1A、V2Aを、励磁交流電圧VRAが最大値になる第1周期TA毎に検出する場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第1系統の出力信号検出部52Aは、第1系統の2つの出力巻線の出力信号V1A、V2Aを、励磁交流電圧VRAが最小値になる第1周期TA毎に検出してもよく、上述したように、交流電圧VRAが最大値及び最小値以外になる第1周期TA毎に検出してもよい。或いは、第1系統の出力信号検出部52Aは、励磁交流電圧VRAが最大値又は最小値になる第1周期の半周期TA/2毎に検出してもよい。或いは、第1系統の出力信号検出部52Aは、第1系統の2つの出力巻線の出力信号V1A、V2Aを、第1周期TA及び第1周期の半周期TA/2と異なる周期(例えば、第1系統低減処理間隔ΔT1を1以上の整数で除算した周期)毎に検出してもよい。これらの場合も、第1系統の低減処理部53Aの第1遅延器53A1及び第2遅延器53A2は、入力信号を第1系統低減処理間隔ΔT1だけ遅延して出力する。
(5)上記の実施の形態1では、第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線の出力信号V1B、V2Bを、励磁交流電圧VRBが最大値又は最小値になる第2周期の半周期TB/2毎に検出する場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2系統の出力信号検出部52Bは、上述したように、励磁交流電圧VRBが最大値及び最小値以外になる第2周期の半周期TB/2毎に検出してもよい。或いは、第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線の出力信号V1B、V2Bを、第2周期の半周期TB/2と異なる周期(例えば、第2系統低減処理間隔ΔT2を1以上の整数で除算した周期)毎に検出してもよい。この場合も、第2系統の低減処理部53Bの第1遅延器53B1及び第2遅延器53B2は、入力信号を第2系統低減処理間隔ΔT2だけ遅延して出力する。
(6)上記の実施の形態2では、第2系統の出力信号検出部52Bは、第2系統の2つの出力巻線の出力信号V1B、V2Bを、第2周期の4分の1周期TB/4毎に検出し、各検出タイミングは、第2周期TBの交流電圧VRBが最大値又は最小値になる基準タイミングTM0に対して前後対称になるように設定されている場合を例に説明した。しかし、本願の実施の形態はこれに限定されない。すなわち、第2系統の出力信号検出部52Bは、励磁交流電圧VRBが最大値になる基準タイミングTM0に対して前後対称になる2つのタイミングで、周期的に第2系統の2つの出力巻線の出力信号V1B、V2Bを検出してもよく、或いは、第2系統の出力信号検出部52Bは、励磁交流電圧VRBが最小値になる基準タイミングTM0に対して前後対称になる2つのタイミングで、周期的に第2系統の2つの出力巻線の出力信号V1B、V2Bを検出してもよい。また、前後対称になる2つのタイミングの間隔は、第2系統低減処理間隔ΔT2に設定されていれば、第2周期の4分の1TB/4以外の間隔に設定されていてもよい。これらの場合も、第2系統の低減処理部53Bの第1遅延器53B1及び第2遅延器53B2は、入力信号を第2系統低減処理間隔ΔT2だけ遅延して出力し、第2系統の低減処理部53Bは、基準タイミングTM0に対して後のタイミングTM2で、加算処理を行い、加算後の第2系統の2つの出力巻線の出力信号の検出値V1B_F、V2B_Fを算出すればよい。
(7)2組の3相巻線及びインバータが設けられるモータの角度検出装置として、本願に係る角度検出装置が用いられるとよい。このような2重系のモータは、例えば、電動パワーステアリング装置に備えられる。第1組の3相巻線及びインバータの制御系に、本願の角度検出装置の第1系統の構成が割り当てられ、第1角度θ1が用いられる。第2組の3相巻線及びインバータの制御系に、本願の角度検出装置の第2系統の構成が割り当てられ、第2角度θ2が用いられる。そして、角度検出装置の第1系統の異常が検出された場合は、第1組の3相巻線及びインバータの制御が停止され、角度検出装置の第2系統の異常が検出された場合は、第2組の3相巻線及びインバータの制御が停止される。本願の角度検出装置では、第1系統と第2系統とを同期させる必要がないため、第1組の3相巻線及びインバータ、及び角度検出装置の第1系統を、第1の制御装置(CPU)で制御し、第2組の3相巻線及びインバータ、及び角度検出装置の第2系統を、第2の制御装置(CPU)で制御するように構成できる。よって、角度検出装置を含めてシステムを冗長化させ、信頼性を向上させることができる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を直流し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 レゾルバ、10A 第1系統の励磁巻線、10B 第2系統の励磁巻線、111A、112A 第1系統の2つの出力巻線、111B、112B 第2系統の2つの出力巻線、51A 第1系統の励磁部、52A 第1系統の出力信号検出部、53A 第1系統の低減処理部、54A 第1系統の角度算出部、55A 第1系統の直流抽出処理部、56A 第1系統の異常検出部、51B 第2系統の励磁部、52B 第2系統の出力信号検出部、53B 第2系統の低減処理部、54B 第2系統の角度算出部、55B 第2系統の直流抽出処理部、56B 第2系統の異常検出部、TA 第1周期、TB 第2周期、ΔT1 第1系統低減処理間隔、ΔT2 第2系統低減処理間隔、V1A_S、V2A_S 第1系統の2つの出力信号の検出値、V1A_F、V2A_F 第2周期成分低減処理後の第1系統の2つの出力信号の検出値、V1A_DC、V2A_DC 第1系統の2つの出力信号の直流値、V1A_TA、V2A_TA 第1系統の2つの出力巻線の出力信号に含まれる第1周期の成分、V1A_TB、V2A_TB 第1系統の2つの出力巻線の出力信号に含まれる第2周期の成分、V1B_S、V2B_S 第2系統の2つの出力信号の検出値、V1B_F、V2B_F 第1周期成分低減処理後の第2系統の2つの出力信号の検出値、V1B_DC、V2B_DC 第2系統の2つの出力信号の直流値、V1B_TA、V2B_TA 第2系統の2つの出力巻線の出力信号に含まれる第1周期の成分、V1B_TB、V2B_TB 第2系統の2つの出力巻線の出力信号に含まれる第2周期の成分

Claims (15)

  1. 第1系統と第2系統との間で磁気干渉が生じる、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、及び第2系統の2つの出力巻線を有するレゾルバと、
    前記第1系統の励磁巻線に第1周期の交流電圧を印加する第1系統の励磁部と、
    前記第2系統の励磁巻線に、前記第1周期と異なる第2周期の交流電圧を印加する第2系統の励磁部と、
    前記第1系統の2つの出力巻線の出力信号を、前記第1周期の半分以下の周期で検出する第1系統の出力信号検出部と、
    前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する第2周期成分低減処理を行う第1系統の低減処理部と、
    前記第2周期成分低減処理後の前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する直流抽出処理を行って、第1系統の2つの出力信号の直流値を算出する第1系統の直流抽出処理部と、
    前記第1系統の2つの出力信号の直流値が、予め設定された第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を判定する第1系統の異常検出部と、を備え
    前記第2周期は、前記第1周期より長く設定され、
    前記第1系統の低減処理部は、前記第2周期成分低減処理として、今回の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値と、今回の検出タイミングよりも第1系統低減処理間隔前の検出タイミングで検出した前記第1系統の2つの出力巻線の出力信号の検出値とを加算し、前記第1系統低減処理間隔は、前記第2周期をTBとして、TB/2+TB×M(Mは、0以上の整数)に設定されているレゾルバの異常検出装置。
  2. 前記第2周期は、前記第1周期をTAとして、TA×2×N(Nは、1以上の整数)に設定されている請求項に記載のレゾルバの異常検出装置。
  3. 第1系統と第2系統との間で磁気干渉が生じる、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、及び第2系統の2つの出力巻線を有するレゾルバと、
    前記第1系統の励磁巻線に第1周期の交流電圧を印加する第1系統の励磁部と、
    前記第2系統の励磁巻線に、前記第1周期と異なる第2周期の交流電圧を印加する第2系統の励磁部と、
    前記第1系統の2つの出力巻線の出力信号を、前記第1周期の半分以下の周期で検出する第1系統の出力信号検出部と、
    前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する第2周期成分低減処理を行う第1系統の低減処理部と、
    前記第2周期成分低減処理後の前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する直流抽出処理を行って、第1系統の2つの出力信号の直流値を算出する第1系統の直流抽出処理部と、
    前記第1系統の2つの出力信号の直流値が、予め設定された第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を判定する第1系統の異常検出部と、
    前記第2系統の2つの出力巻線の出力信号を前記第2周期の半分以下の周期で検出する第2系統の出力信号検出部と、
    前記第2系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する第1周期成分低減処理を行う第2系統の低減処理部と、
    前記第1周期成分低減処理後の前記第2系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する直流抽出処理を行って、第2系統の2つの出力信号の直流値を算出する第2系統の直流抽出処理部と、
    前記第2系統の2つの出力信号の直流値が、予め設定された第2系統の正常範囲にあるか否かに基づいて、第2系統の異常を判定する第2系統の異常検出部と、を備え、
    前記第2系統の低減処理部は、前記第1周期成分低減処理として、今回の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値と今回の検出タイミングよりも第2系統低減処理間隔前の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値との差を算出する減算処理を行い、前記第2系統低減処理間隔は、前記第1周期をTAとして、TA×P(Pは、1以上の整数)に設定されているレゾルバの異常検出装置。
  4. 前記第2周期は、前記第1周期をTAとして、TA×2×N(Nは、1以上の整数)に設定され、
    前記第2系統低減処理間隔は、前記第2周期をTBとして、TB/2+TB×L(は、0以上の整数)に設定されている請求項に記載のレゾルバの異常検出装置。
  5. 第1系統と第2系統との間で磁気干渉が生じる、第1系統の励磁巻線、第1系統の2つの出力巻線、第2系統の励磁巻線、及び第2系統の2つの出力巻線を有するレゾルバと、
    前記第1系統の励磁巻線に第1周期の交流電圧を印加する第1系統の励磁部と、
    前記第2系統の励磁巻線に、前記第1周期と異なる第2周期の交流電圧を印加する第2系統の励磁部と、
    前記第1系統の2つの出力巻線の出力信号を、前記第1周期の半分以下の周期で検出する第1系統の出力信号検出部と、
    前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する第2周期成分低減処理を行う第1系統の低減処理部と、
    前記第2周期成分低減処理後の前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する直流抽出処理を行って、第1系統の2つの出力信号の直流値を算出する第1系統の直流抽出処理部と、
    前記第1系統の2つの出力信号の直流値が、予め設定された第1系統の正常範囲にあるか否かに基づいて、第1系統の異常を判定する第1系統の異常検出部と、
    前記第2系統の2つの出力巻線の出力信号を前記第2周期の半分以下の周期で検出する第2系統の出力信号検出部と、
    前記第2系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の成分を低減する第1周期成分低減処理を行う第2系統の低減処理部と、
    前記第1周期成分低減処理後の前記第2系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の成分を低減する直流抽出処理を行って、第2系統の2つの出力信号の直流値を算出する第2系統の直流抽出処理部と、
    前記第2系統の2つの出力信号の直流値が、予め設定された第2系統の正常範囲にあるか否かに基づいて、第2系統の異常を判定する第2系統の異常検出部と、を備え、
    前記第2系統の低減処理部は、前記第1周期成分低減処理として、今回の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号と今回の検出タイミングよりも第2系統低減処理間隔前の検出タイミングで検出した前記第2系統の2つの出力巻線の出力信号とを加算し、
    前記第2系統低減処理間隔は、前記第1周期をTAとして、TA/2+TA×X(Xは、0以上の整数)に設定されているレゾルバの異常検出装置。
  6. 前記第2系統の出力信号検出部は、前記第2系統の励磁巻線に印加される前記第2周期の交流電圧が最大値又は最小値になる基準タイミングに対して前後対称になる2つのタイミングで、周期的に前記第2系統の2つの出力巻線の出力信号を検出し、
    前記2つのタイミングの間隔は、前記第2系統低減処理間隔に設定され、
    前記第2系統の低減処理部は、前記2つのタイミングの後のタイミングで、前記2つのタイミングで検出した前記第2系統の2つの出力巻線の出力信号の検出値を互いに加算する請求項に記載のレゾルバの異常検出装置。
  7. 前記第2系統の出力信号検出部は、前記第2周期の4分の1の周期毎の検出タイミングで、前記第2系統の2つの出力巻線の出力信号を検出し、
    前記第2系統の直流抽出処理部は、今回の前記後のタイミングで算出された前記第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値と、前回の前記後のタイミングで算出された前記第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値との平均値を、前記第2系統の2つの出力信号の直流値として算出する請求項に記載のレゾルバの異常検出装置。
  8. 前記第1系統の異常検出部は、前記第1系統の2つの出力信号の直流値が前記第1系統の正常範囲にない場合が、予め設定された異常判定回数以上、連続して継続した場合に、前記第1系統に異常が発生していると判定する請求項1から7のいずれか一項に記載のレゾルバの異常検出装置。
  9. 前記第1系統の直流抽出処理部は、前記第2周期成分低減処理後の前記第1系統の2つの出力巻線の出力信号の検出値に対して、前記第1周期の自然数倍の期間の移動平均処理を行って、前記第1系統の2つの出力信号の直流値を算出する請求項1から8のいずれか一項に記載のレゾルバの異常検出装置。
  10. 前記第1系統の出力信号検出部は、前記第1系統の励磁巻線に印加される前記第1周期の交流電圧が最大値又は最小値になる前記第1周期の半周期毎の検出タイミングで、前記第1系統の2つの出力巻線の出力信号を検出し、
    前記第1系統の直流抽出処理部は、今回の検出タイミングで算出された前記第2周期成分低減処理後の第1系統の2つの出力巻線の出力信号の検出値と、前回の検出タイミングで算出された前記第2周期成分低減処理後の第1系統の2つの出力巻線の出力信号の検出値との平均値を、前記第1系統の2つの出力信号の直流値として算出する請求項1からのいずれか一項に記載のレゾルバの異常検出装置。
  11. 前記第2系統の異常検出部は、前記第2系統の2つの出力信号の直流値が前記第2系統の正常範囲にない場合が、予め設定された異常判定回数以上、連続して継続した場合に、第2系統に異常が発生していると判定する請求項3から7のいずれか一項に記載のレゾルバの異常検出装置。
  12. 前記第2系統の直流抽出処理部は、前記第1周期成分低減処理後の前記第2系統の2つの出力巻線の出力信号の検出値に対して、前記第2周期の自然数倍の期間の移動平均処理を行って、前記第2系統の2つの出力信号の直流値を算出する請求項3から7、及び11のいずれか一項に記載のレゾルバの異常検出装置。
  13. 前記第2系統の出力信号検出部は、前記第2系統の励磁巻線に印加される前記第2周期の交流電圧が最大値又は最小値になる前記第2周期の半周期毎の検出タイミングで、前記第2系統の2つの出力巻線の出力信号を検出し、
    前記第2系統の直流抽出処理部は、今回の検出タイミングで算出された前記第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値と、前回の検出タイミングで算出された前記第1周期成分低減処理後の第2系統の2つの出力巻線の出力信号の検出値との平均値を、前記第2系統の2つの出力信号の直流値として算出する請求項3から7、11、及び12のいずれか一項に記載のレゾルバの異常検出装置。
  14. 前記第1系統の励磁巻線、前記第1系統の2つの出力巻線、前記第2系統の励磁巻線、及び前記第2系統の2つの出力巻線は、同じ1つのステータに巻装されている請求項1から13のいずれか一項に記載のレゾルバの異常検出装置。
  15. 前記第1系統の励磁巻線及び前記第1系統の2つの出力巻線は第1系統のステータに巻装され、前記第2系統の励磁巻線及び前記第2系統の2つの出力巻線は、前記第1系統のステータと軸方向に隣接する第2系統のステータに巻装されている請求項1から13のいずれか一項に記載のレゾルバの異常検出装置。
JP2022502633A 2020-02-26 2020-02-26 レゾルバの異常検出装置 Active JP7195478B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007583 WO2021171392A1 (ja) 2020-02-26 2020-02-26 レゾルバの異常検出装置

Publications (2)

Publication Number Publication Date
JPWO2021171392A1 JPWO2021171392A1 (ja) 2021-09-02
JP7195478B2 true JP7195478B2 (ja) 2022-12-23

Family

ID=77490789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022502633A Active JP7195478B2 (ja) 2020-02-26 2020-02-26 レゾルバの異常検出装置

Country Status (5)

Country Link
US (1) US20230112554A1 (ja)
EP (1) EP4113068B1 (ja)
JP (1) JP7195478B2 (ja)
CN (1) CN115104005A (ja)
WO (1) WO2021171392A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343253A (ja) 2000-06-01 2001-12-14 Toyota Motor Corp レゾルバの異常検出方法
JP4157930B2 (ja) 1998-07-06 2008-10-01 多摩川精機株式会社 複重系レゾルバ
JP2009210281A (ja) 2008-02-29 2009-09-17 Toyota Motor Corp 冗長型回転角検出装置
JP4438386B2 (ja) 2003-11-13 2010-03-24 トヨタ自動車株式会社 トルク検出装置
JP4729458B2 (ja) 2006-08-31 2011-07-20 トヨタ自動車株式会社 回転角検出装置
JP6005409B2 (ja) 2012-06-14 2016-10-12 日本航空電子工業株式会社 冗長型レゾルバ装置
JP6918142B2 (ja) 2017-12-21 2021-08-11 三菱電機株式会社 冗長型レゾルバ、およびそれを用いた回転角度検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335252A (ja) 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
DE102014211235A1 (de) * 2014-06-12 2015-12-31 Robert Bosch Gmbh Vorrichtung zum Betreiben eines Resolvers, Resolvereinrichtung und Verfahren zum Betreiben einer Resolvereinrichtung
KR101664567B1 (ko) * 2014-10-20 2016-10-10 현대자동차주식회사 레졸버의 위치 정보 오차를 보상하기 위한 장치 및 방법
US10326390B2 (en) * 2017-07-24 2019-06-18 GM Global Technology Operations LLC Systems and methods for operating motors with a single motor position signal
JP7343269B2 (ja) * 2018-10-24 2023-09-12 株式会社Subaru モータの制御装置および制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157930B2 (ja) 1998-07-06 2008-10-01 多摩川精機株式会社 複重系レゾルバ
JP2001343253A (ja) 2000-06-01 2001-12-14 Toyota Motor Corp レゾルバの異常検出方法
JP4438386B2 (ja) 2003-11-13 2010-03-24 トヨタ自動車株式会社 トルク検出装置
JP4729458B2 (ja) 2006-08-31 2011-07-20 トヨタ自動車株式会社 回転角検出装置
JP2009210281A (ja) 2008-02-29 2009-09-17 Toyota Motor Corp 冗長型回転角検出装置
JP6005409B2 (ja) 2012-06-14 2016-10-12 日本航空電子工業株式会社 冗長型レゾルバ装置
JP6918142B2 (ja) 2017-12-21 2021-08-11 三菱電機株式会社 冗長型レゾルバ、およびそれを用いた回転角度検出装置

Also Published As

Publication number Publication date
EP4113068A1 (en) 2023-01-04
US20230112554A1 (en) 2023-04-13
CN115104005A (zh) 2022-09-23
JPWO2021171392A1 (ja) 2021-09-02
WO2021171392A1 (ja) 2021-09-02
EP4113068B1 (en) 2024-04-24
EP4113068A4 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
US6191550B1 (en) Method and apparatus for detecting abnormality in rotation sensor
US7076395B2 (en) Angle detection apparatus and torque detection apparatus
JP2002350182A (ja) 位置検出装置および異常検出装置
JP6833077B2 (ja) 多群多相回転電機の制御装置および多群多相回転電機の駆動装置
JP7026827B2 (ja) 角度検出装置
JP2003235285A (ja) 三相ブラシレスdcモータの回転方向検出装置
JP7195478B2 (ja) レゾルバの異常検出装置
JP7229418B2 (ja) レゾルバの異常検出装置
US20150176965A1 (en) Angle detection apparatus, motor driving control apparatus and angle detection method
JP7209877B2 (ja) 角度検出装置
JP4037392B2 (ja) 異常検出装置
JP4991992B2 (ja) レゾルバ
JP2017195659A (ja) 電子制御装置及びモータ制御装置
JP6652075B2 (ja) 回転角度検出装置
JP5573758B2 (ja) 位置検出装置
JP7186846B1 (ja) 角度検出装置及び交流回転機の制御システム
JP2008289361A (ja) モータ駆動装置
JP3100841B2 (ja) 回転位置検出装置及びその方法
JP2023139639A (ja) 絶対角度位置検出方法及び装置
JP2022052320A (ja) 絶対角度位置検出方法及び装置
CN118318145A (zh) 信号生成装置以及电梯
JPH0449890B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221213

R151 Written notification of patent or utility model registration

Ref document number: 7195478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151