JP7183120B2 - 造形物の製造方法、積層制御装置、プログラム - Google Patents

造形物の製造方法、積層制御装置、プログラム Download PDF

Info

Publication number
JP7183120B2
JP7183120B2 JP2019111314A JP2019111314A JP7183120B2 JP 7183120 B2 JP7183120 B2 JP 7183120B2 JP 2019111314 A JP2019111314 A JP 2019111314A JP 2019111314 A JP2019111314 A JP 2019111314A JP 7183120 B2 JP7183120 B2 JP 7183120B2
Authority
JP
Japan
Prior art keywords
layer
bead
plan
filler material
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019111314A
Other languages
English (en)
Other versions
JP2020203293A (ja
Inventor
正俊 飛田
岳史 山田
伸志 佐藤
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019111314A priority Critical patent/JP7183120B2/ja
Publication of JP2020203293A publication Critical patent/JP2020203293A/ja
Application granted granted Critical
Publication of JP7183120B2 publication Critical patent/JP7183120B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、造形物の製造方法、積層制御装置、プログラムに関する。
近年、3Dプリンタの生産手段としてのニーズが高まっており、特に金属材料での適用については航空機業界等で実用化に向けて研究開発が行われている。金属材料による3Dプリンタは、レーザやアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させて造形物を造形する。
例えば特許文献1には、金型の形状を表現する形状データを生成する工程と、生成された形状データに基づいて、金型を等高線に沿った積層体に分割する工程と、得られた積層体の形状データに基づいて、溶加材を供給する溶接トーチの移動経路を作成する工程とを備える金型の製造方法が記載されている。
また、例えば特許文献2には、アーク溶接ロボットを用いたアーク溶接において、アークトライ点で溶接トーチを上下に振動させる揺動動作を行わせることで、溶接開始点付近に付着したスラグを除去することが記載されている。
特許第3784539号公報 特開2014-213375号公報
ここで、アークを用いて溶加材を溶融および固化してなるビードを複数重ねた積層体を製造する場合、ビードの上に次のビードを重ねる、という手順を繰り返し実行することが要求される。
ただし、既に形成されているビードの上に、次のビードを形成しようとする場合、既に形成されているビードの表面に付着するスラグに起因して、次のビードを形成するためのアークの発生が困難となるだけでなく、仮にアークが発生したとしても、ビードと次のビードとの間にスラグが残る、スラグ巻込みが生じるおそれがあった。なお、このようなスラグ巻込みが生じた場合、得られる積層体の強度が低下する懸念がある。
本発明は、複数のビードを重ねた積層体を含む造形物を製造する場合に、スラグの巻込みを抑制することを目的とする。
かかる目的のもと、本発明は、溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成する第1形成工程と、前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊する破壊工程と、前記溶加材を、第2の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成する第2形成工程と
を有する、造形物の製造方法を提供する。
ここで、前記破壊工程では、前記ビードに対して前記溶加材の先端部を進退させる、ものとしてもよい。
また、前記破壊工程では、前記溶加材に超音波振動を付与する、ものとしてもよい。
また、本発明は、立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する取得工程と、溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊する第1積層工程と、溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊する第2積層工程と、を有する造形物の製造方法を提供する。
また、本発明は、溶加材を供給する溶接トーチと当該溶接トーチを保持するロボット装置とを備え、アークを用いて当該溶加材を溶融および固化してなるビードを複数重ねた積層体を含む造形物を製造する、積層造形装置の動作を制御する積層制御装置であって、前記溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成する指示を出力する第1出力手段と、前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊する指示を出力する第2出力手段と、前記溶加材を、第2の軌道計画に基づいて移動させるとともにアークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成する指示を出力する第3出力手段とを有する積層制御装置を提供する。
ここで、前記第2出力手段は、前記溶加材の先端部を進退させるための指示を出力する、ものとしてもよい。
また、前記第2出力手段は、前記溶加材を超音波振動させるための指示を出力する、ものとしてもよい。
また、本発明は、溶加材を供給する溶接トーチと当該溶接トーチを保持するロボット装置とを備え、アークを用いて当該溶加材を溶融および固化してなるビードを複数重ねた積層体を含む造形物を製造する、積層造形装置の動作を制御する積層制御装置であって、立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する取得手段と、溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊する指示を出力する出力手段と、溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊する指示を出力する他の出力手段とを含む積層制御装置を提供する。
また、本発明は、コンピュータに、溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成するための指示を出力する機能と、前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊するための指示を出力する機能と、前記溶加材を、第2の軌道計画に基づいて移動させるとともにアークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成するための指示を出力する機能とを実現させるプログラムを提供する。
また、本発明は、コンピュータに、立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する機能と、溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊するための指示を出力する機能と、溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊するための指示を出力する機能とを実現させるプログラムを提供する。
本発明によれば、複数のビードを重ねた積層体を含む造形物を製造する場合に、スラグの巻込みを抑制することができる。
本発明の実施の形態における金属積層造形システムの概略構成例を示した図である。 ロボット装置の概略構成を示した斜視図である。 制御装置の機能構成例を示した図である。 計画作成装置のハードウェア構成例を示した図である。 計画作成装置の機能構成例を示した図である。 母材とビードとの関係を説明するための図である。 計画作成装置の動作例を示したフローチャートである。 積層造形装置の動作例を示したフローチャートである。 (a)~(c)は、計画作成装置で用いられる各種データの概念を説明するための図である。 (a)、(b)は、計画作成装置で用いられる各種データの概念を説明するための図(つづき)である。 具体例における積層計画の一例を説明するための図である。 具体例における積層造形物の製造手順を示したフローチャートである。 具体例における製造計画の一例を説明するための図である。 (a)、(b)は、ワイヤの先端部の移動軌跡を説明するための図である。 (a)~(j)は、具体例における積層造形物の製造手順を説明するための図である。 (a)~(c)は、具体例における積層造形物の製造例を示した図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[金属積層造形システム]
図1は、本発明の実施の形態における金属積層造形システム1の概略構成例を示した図である。
本実施の形態の金属積層造形システム1は、計画作成装置40と、積層造形装置60とを備える。これらのうち、計画作成装置40は、ビード121を順次積層することによって積層造形物120を形成する計画(以下では、積層計画と称する)に関する、制御プログラム等の作成を行う。また、積層造形装置60は、計画作成装置40が作成した、積層計画に関する制御プログラムに従って動作することで母材110上に積層造形物120を形成し、母材110と積層造形物120とを有する構造体100の製造を行う。そして、積層造形装置60は、ロボット装置10と、溶接トーチ20と、カメラ25と、制御装置30とを備える。この金属積層造形システム1では、計画作成装置40が、積層造形装置60を制御する制御プログラム等を、各種メモリカード等のリムーバブルな記録媒体50に書き込む。そして、積層造形装置60に設けられた制御装置30が、記録媒体50に書き込まれた制御プログラム等を読み出して実行する。
また、金属積層造形システム1に設けられた計画作成装置40には、CAD(Computer Aided Design)装置2が接続されている。このCAD装置2は、コンピュータを用いて、造形物を三次元座標で表した設計を行うとともに、設計によって得られた三次元データ(以下では、「三次元CADデータ」と称する)を保持する機能を有している。なお、ここでは、CAD装置2が金属積層造形システム1の外部に設置されるものとして説明を行うが、金属積層造形システム1の内部にCAD装置2を設けてもかまわない。
では次に、金属積層造形システム1を構成する積層造形装置60および計画作成装置40のそれぞれについて、説明を行う。
(積層造形装置)
本実施の形態で用いた積層造形装置60は、ガスシールドアーク溶接方式を採用したロボット溶接装置を転用したものとなっている。そして、この積層造形装置60は、所謂産業用ロボットで構成されたロボット装置10と、ロボット装置10に取り付けられ、溶接プロセスで用いるワイヤ21の供給等を行う溶接トーチ20と、ロボット装置10に取り付けられ、溶接トーチ20の周辺の画像を撮影するカメラ25と、これらロボット装置10、溶接トーチ20およびカメラ25の動作を制御する制御装置30とを有している。なお、この積層造形装置60は、この他に、シールドガスを供給するガス供給装置やワイヤ21を供給するワイヤ供給装置等をさらに有しているのであるが、ここではその詳細な説明を省略する。
〔積層計画〕
では、積層造形装置60の具体的な構成を説明する前に、上述した積層計画について説明しておく。
本実施の形態の積層計画は、母材110上に、複数のビード121を順次積層することによって積層造形物120を製造する際に、積層造形装置60で用いられる。また、「積層計画」は、ロボット装置10等に対して定められる「軌道計画」と、溶接トーチ20等に対して定められる「溶接計画」とを含んでいる。そして、「積層計画」に関連する制御プログラムは、上述したように、計画作成装置40が作成し、記録媒体50を介して積層造形装置60に設けられた制御装置30に伝達され、制御装置30が実行する。
{軌道計画}
これらのうち、「軌道計画」は、積層造形物120の製造において各ビード121を形成する際に、溶接トーチ20に保持されたワイヤ21の先端部の移動軌跡を定めることを目的として、ロボット装置10等に対して設定される。
{溶接計画}
これに対し、「溶接計画」は、積層造形物120の製造において各ビード121を形成する際に、溶接トーチ20に保持されたワイヤ21の溶接条件(アークのオンオフ、送給速度、溶接電流等)を定めることを目的として、溶接トーチ20等に対して設定される。そして、溶接計画は、上述した軌道計画と連関するようになっている。
〔ロボット装置〕
図2は、積層造形装置60に設けられたロボット装置10の概略構成を示した斜視図である。以下では、図1に加えて図2も参照しつつ、ロボット装置10の構成について説明を行う。
本実施の形態のロボット装置10は、一般的な6つの駆動軸を有する6軸の垂直多関節ロボットであり、軌道計画に基づく制御指令を受けて動作する。ただし、ロボット装置10は垂直多関節ロボットに限られるものではなく、他の構成であってもかまわない。また、ロボット装置10が垂直多関節ロボットを採用する場合であっても、その軸数は、6軸に限定されるものではなく、5軸以下であってもよいし、7軸以上であってもかまわない。
このロボット装置10は、床等の設置対象に固定される基部11と、基部11上で鉛直方向に沿った第1駆動軸S1回りに旋回可能に設けられた旋回部12と、水平方向に沿った第2駆動軸S2を介して一端部が旋回部12と連結され、第2駆動軸S2回りに回転可能な下腕部13とを備えている。また、ロボット装置10は、下腕部13の他端部に第2駆動軸S2と平行な第3駆動軸S3を介して接続された上腕部14と、上腕部14に設けられ、第4駆動軸S4によりアーム軸線回りに回転可能な手首旋回部15とを備えている。さらに、ロボット装置10は、手首旋回部15に第5駆動軸S5を介して接続される手首曲げ部16と、手首曲げ部16の先端に第6駆動軸S6を介して接続される手首回転部17とを備えている。このロボット装置10では、これら下腕部13、上腕部14、手首旋回部15、手首曲げ部16および手首回転部17が、多関節アーム(マニピュレータ)を構成している。
また、多関節アームの最先端軸となる手首回転部17には、所謂エンドエフェクタとして機能することで、溶接トーチ20を保持する保持部18が取り付けられている。また、手首回転部17には、カメラ25が取り付けられている。
〔溶接トーチ〕
溶接トーチ20は、アルゴンガスや炭酸ガス等のシールドガスが供給される略筒状のシールドノズルと、シールドノズルの内部に配置されたコンタクトチップ(ともに図示せず)とを有している。そして、コンタクトチップには、送給されてくるワイヤ21が保持されるようになっている。この溶接トーチ20は、ワイヤ21を送給しつつ、シールドガスを流しながらアークを発生させてワイヤ21を溶融および固化させることで、母材110上に複数のビード121を形成且つ積層し、積層造形物120の形成を行うようになっている。なお、本実施の形態の金属積層造形システム1において、積層造形物120の形成に用いられる、溶加材の一例としてのワイヤ21については、積層造形物120に求められる機能や特性等に応じて、適宜選定することが可能である。そして、ここでは、ワイヤ21自身が電極且つ溶加材となる「溶極式」を例として説明を行うが、「非溶極式」を採用することも可能である。
また、本実施の形態において、溶接トーチ20にワイヤ21を送給する送給ローラ(図示せず)は、正転および逆転が可能に設けられている。このため、送給ローラの回転方向を制御することにより、溶接トーチ20から突出するワイヤ21の先端部の位置を、溶接トーチ20に対して進退させることが可能となっている。
さらに、本実施の形態では、溶接トーチ20に、ワイヤ21を超音波の周波数領域にて微振動させるための振動源(例えば超音波モータ:図示せず)が取り付けられている。
〔カメラ〕
カメラ25は、CCDやCMOS等の撮像デバイスを有しており、この例では、赤外画像を撮影できるようになっている。そして、カメラ25は、ロボット装置10の最先端に位置する手首回転部17に取り付けられており、溶接トーチ20に追従して動くことにより、溶接トーチ20から突出するワイヤ21の先端部の周辺の画像を撮影するようになっている。
〔制御装置〕
図3は、積層造形装置60に設けられた制御装置30の機能構成例を示した図である。以下では、図1に加えて図3も参照しつつ、制御装置30の構成について説明を行う。
積層制御装置の一例としての制御装置30は、受付部301と、全体制御部302と、ロボット制御部303と、溶接制御部304、カメラ制御部305とを有している。
{受付部}
受付部301は、計画作成装置40から、記録媒体50を介して、積層造形装置60を構成するロボット装置10および溶接トーチ20を連動して動作させるための制御プログラム等を含む出力データ(積層計画に対応)の入力を受け付ける。ここで、本実施の形態では、受付部301が、取得手段の一例として機能している。
{全体制御部}
全体制御部302は、受付部301が受け付けた制御プログラムにしたがい、ロボット装置10および溶接トーチ20を連動して動作させるための全体的な制御を行う。なお、本実施の形態では、全体制御部302が、第1出力手段、第2出力手段および第3出力手段と、出力手段および他の出力手段の一例として機能している。
{ロボット制御部}
ロボット制御部303は、全体制御部302による制御のもと、軌道計画にしたがって、ロボット装置10を構成する各部を動作させることにより、保持部18に保持された溶接トーチ20の位置制御および姿勢制御等を行う。
{溶接制御部}
溶接制御部304は、全体制御部302による制御のもと、溶接計画にしたがって、溶接トーチ20に対する給電動作、ワイヤ送給動作およびガス供給動作等に関する制御を行う。また、溶接制御部304は、全体制御部302による制御のもと、溶接トーチ20に保持されたワイヤ21を超音波振動させるための制御も行う。
{カメラ制御部}
カメラ制御部305は、全体制御部302による制御のもと、カメラ25による撮影動作に関する制御を行う。
(計画作成装置)
続いて、計画作成装置40の詳細について説明を行う。
〔ハードウェア構成〕
図4は、本実施の形態における計画作成装置40のハードウェア構成例を示した図である。
本実施の形態の計画作成装置40は、例えば汎用のPC(Personal Computer)等により実現される。なお、具体的な説明は行わなかったが、積層造形装置60に設けられた制御装置30も、以下に説明する計画作成装置40と同様のハードウェア構成を有している。
この計画作成装置40は、OSや各種アプリケーション等のプログラムを読み出して実行するCPU(Central Processing Unit)41と、CPU41が実行するプログラムやプログラムを実行する際に使用するデータ等を記憶するROM(Read Only Memory)42と、プログラムを実行する際に一時的に生成されるデータ等を記憶するRAM(Random Access Memory)43とを備えている。また、計画作成装置40は、各種プログラムや各種データ等を記憶するHDD(Hard Disk Drive)44と、計画作成装置40の外部に設けられたCAD装置2や制御装置30等の機器との間でデータの送受信を行うNIC(Network Interface Card)45と、操作者からの入力を受け付ける入力装置46と、表示画面に画像を表示する表示装置47と、これらを接続するバス48とをさらに備えている。そして、計画作成装置40に設けられたCPU41が実行するプログラムは、予めROM42やHDD44に記憶させておく形態の他、例えばCD-ROM等の記憶媒体に格納してCPU41に提供したり、あるいは、ネットワーク(図示せず)を介してCPU41に提供したりすることも可能である。
〔機能構成〕
図5は、本実施の形態の計画作成装置40の機能構成例を示した図である。
本実施の形態の計画作成装置40は、取得部401と、変換部402と、切断部403と、分割部404と、作成部405と、付加部406と、出力部407とを有している。以下では、図1に加えて図5も参照しつつ、計画作成装置40の構成について説明を行う。
{取得部}
取得部401は、CAD装置2から、積層造形物120のもととなる造形物の三次元CADデータD3d(後述する図9(a)も参照)を取得する。
{変換部}
変換部402は、取得部401から受け取った三次元CADデータD3dを、計画作成装置40での各種データ加工に用いられる内部データDiに変換する。
{切断部}
切断部403は、変換部402から受け取った内部データDiを、複数の層の積層体となるように切断(スライス)することで、層形状データDs(具体的には、1層目の層形状データDs(1)~n層目の層形状データDs(n)を含むn層分のデータ:後述する図9(b)も参照)を作成する。
{分割部}
分割部404は、切断部403から受け取った層形状データDsに対し、層毎に分割点を設定することで、分割済層形状データDd(具体的には、1層目の分割済層形状データDd(1)~n層目の分割済層形状データDd(n)を含むn層分のデータ:後述する図9(c)も参照)を作成する。
{作成部}
作成部405は、分割部404が作成した分割済層形状データDdに基づき、積層造形装置60の制御装置30が積層造形物120を製造する際に実行する、制御プログラムで使用される制御データDcを作成する。
{付加部}
付加部406は、制御装置30が実行する制御プログラムに、分割部404から受け取った分割済層形状データDdと、作成部405から受け取った制御データDcとを付加することで、出力データDoを作成する。
{出力部}
出力部407は、付加部406から受け取った出力データDoを、記録媒体50に書き込むことによって出力する。
[構造体]
ここで、本実施の形態の金属積層造形システム1によって製造される構造体100に関する説明を行っておく。
図6は、構造体100を構成する母材110およびビード121との関係を説明するための図である。なお、図6は、母材110と、母材110の上に最初に形成される1層目のビード121(1)との関係を例示している。以下では、図1に加えて図6も参照しつつ、構造体100の構成について説明を行う。
本実施の形態の構造体100は、積層対象となる母材110と、ワイヤ21を用いて母材上に形成される積層造形物120とを備えている。この例において、母材110は、矩形状(板状)を呈するとともに、その表面が鉛直上方を向くように配置されている。また、この例において、積層造形物120は、円筒状を呈するとともに、母材110の表面に、自身に設けられた開口部が鉛直上方を向くように形成されている。
なお、本実施の形態では、母材110と積層造形物120とを含む構造体100が、最終的な製品となることがある。また、構造体100から母材110を取り除くことで得られた積層造形物120が、最終的な製品となることもある。さらに、いずれの場合においても、積層造形物120に切削加工を含む各種機械加工を施した加工物が、最終的な製品となることがある。
(母材)
母材110は、積層造形物120の土台となるものである。母材110には、所謂溶接プロセスによる積層造形物120の形成が可能な金属材を用いることができる。また、積層造形時の安定性の確保等を考慮すれば、積層造形物120として、図1に示すような板材を使用することが望ましい。
(積層造形物)
積層造形物120は、それぞれがワイヤ21を溶融・固化してなる複数のビード121を、鉛直方向上側に向かって積み重ねた構造を有している。そして、図1に示す積層造形物120では、n層のビード121(具体的は、1層目のビード121(1)~n層目のビード121(n))を積み重ねることによって、積層造形物120が構成されている。
そして、本実施の形態のように、ガスシールドアーク溶接方式を利用した金属積層造形を行う場合、図6に示すように、形成(溶接)直後のビード121(この例では1層目のビード121(1))の表面は、ワイヤ21に含まれる不純物等に起因するスラグ122(この例では1層目のスラグ122(1))によって覆われる。ここで、導電性を有する金属で構成されるビード121に対し、スラグ122は、基本的に、導電性が低い絶縁物(金属酸化物等)で構成される。
このため、積層造形物120の製造において、例えば1層目のビード121(1)の上に2層目のビード121(2)を積層しようとする場合に、1層目のビード121(1)が1層目のスラグ122(1)によって覆われたままであると、2層目のビード121(2)の形成に先立ってワイヤ21にアークを発生させることが、困難となる場合があり得る。
[金属積層造形システムの動作]
続いて、本実施の形態の金属積層造形システム1の動作について説明を行う。
本実施の形態の金属積層造形システム1では、まず、計画作成装置40が、積層造形物120の形成で使用する、制御プログラムおよび各種データを含む出力データDoの作成を行うとともに、作成した出力データDoを記録媒体50に書き込む。続いて、積層造形装置60が、記録媒体50から読み出した出力データDoに含まれる制御プログラムおよび各種データにしたがって動作する。そして、溶接トーチ20(ワイヤ21)を用いた、母材110上へのビード121の形成と、形成したビード121の表面に付着するスラグの破壊(剥離)とを交互に繰り返し実行することにより、複数のビード121を積層してなる積層造形物120の形成を行う。ここで、本実施の形態では、積層造形装置60が、記録媒体50を介して受け取った出力データDoを利用して、ビード121の表面に付着したスラグの破壊(剥離)を実行する。そこで、以下では、最初に計画作成装置40の動作について説明を行い、続いて積層造形装置60の動作について説明を行う。
(計画作成装置の動作)
図7は、計画作成装置40の動作例を示したフローチャートである。なお、ここでは、これから製造しようとする積層造形物120のもととなる造形物に関する三次元CADデータD3dが、既にCAD装置2によって作成されているものとする。
計画作成装置40の動作が開始すると、まず、取得部401が、CAD装置2から三次元CADデータD3dを取得する(ステップ10)。
次に、変換部402が、取得部401から受け取った三次元CADデータD3dを、内部データDiに変換する(ステップ20)。
続いて、切断部403が、変換部402から受け取った内部データDiを用いて、層形状データDsを作成する(ステップ30)。
さらに、分割部404が、切断部403から受け取った層形状データDsを用いて、分割済層形状データDdを作成する(ステップ40)。
また、作成部405が、分割部404が作成した分割済層形状データDdを用いて、制御データDcを作成する(ステップ50)。
また、付加部406が、積層造形装置60の制御装置30が実行する制御プログラムと、分割部404から受け取った分割済層形状データDdと、作成部405から受け取った制御データDcとを用いて、出力データDoを作成する(ステップ60)。
そして、出力部407が、付加部406から受け取った出力データDoを、記録媒体50に書き込むことによって出力する(ステップ70)。
以上により、計画作成装置40の動作が完了する。
(積層造形装置の動作)
図8は、積層造形装置60の動作例を示したフローチャートである。なお、図8に示す手順に従って積層造形装置60が動作を開始する前に、ロボット装置10の周辺のうちの予め定められた位置には、母材110が固定された状態で位置決めされているものとする。
積層造形装置60が動作を開始すると、まず、受付部301が、記録媒体50から読み出された、出力データDoの入力を受け付ける(ステップ110)。
次に、全体制御部302は、ステップ110で受け取った出力データDoに含まれる制御プログラムを、同じくステップ110で受け取った出力データDoに含まれる各種データ(分割済層形状データDdおよび制御データDc)を参照しながら実行する。また、全体制御部302は、変数xを1に設定する(ステップ120)。
続いて、全体制御部302は、x層目(最初は1層目)のビード121(x)を形成するための指示(ビード形成指示)を作成し、ロボット制御部303および溶接制御部304へと出力する(ステップ130)。すると、ロボット装置10および溶接トーチ20は、ビード形成指示に基づいて協働して動作し、対象物すなわち母材110上あるいは母材110に既に形成済となっているx-1層目のビード121(x-1)上に、x層目のビード121(x)の形成を行う。
次いで、全体制御部302は、x層目(最初は1層目)のビード121(x)の表面に付着するx層目(最初は1層目)のスラグ122(x)を破壊するための指示(スラグ破壊指示)を作成し、ロボット制御部303および溶接制御部304へと出力する(ステップ140)。すると、ロボット装置10および溶接トーチ20は、スラグ破壊指示に基づいて協働して動作し、母材110上あるいは母材110に既に形成済となっているビード121(x)の表面に付着している、x層目のスラグ122(x)の破壊を行う。
それから、全体制御部302は、変数xが積層造形物120の総層数nと等しくなったか否かを判断する(ステップ150)。
ステップ150で否定の判断(No)を行った場合、全体制御部302は、変数xをx+1に更新し(ステップ160)、ステップ130に戻って次の層に関する処理を続行する。
一方、ステップ150で肯定の判断(Yes)を行った場合、すなわち、n層のビード121を積層することで、母材110上に対する積層造形物120の形成が完了すると、積層造形装置60の動作が完了する。
[具体例]
では、上述した金属積層造形システム1を用いた構造体100の製造に関し、具体的な例を挙げて説明を行う。なお、ここでは、図1に示したように、矩形状を呈する母材110上に、円筒状を呈する積層造形物120を形成することで、構造体100を製造する場合を例とする。
(各種データ)
最初に、積層造形物120の製造に用いられる、各種データに関する説明を行う。
図9(a)~(c)および図10(a)、(b)は、積層造形物120の製造に際して、計画作成装置40で用いられる各種データの概念を説明するための図である。なお、ここで説明する各種データは、実際には、バイナリ形式やアスキー形式等によって表現されるものであるが、ここでは、理解を助けるために模式的な表記を行っている。そして、図9(a)~(c)では、各データの全体を三次元形状(斜視図)として表記しており、図10(a)、(b)では、各データのうちの1層分のデータを二次元形状(上面図)として表記している。
〔三次元形状データ〕
図9(a)は、三次元CADデータD3dの一例を示している。
図9(a)に示す三次元CADデータD3d(三次元形状データの一例)は、上述したように、CAD装置2が作成し、計画作成装置40の取得部401が取得する。なお、ここには記載していないが、計画作成装置40の変換部402が作成する内部データDiも、表現形式が異なるだけで、表現しようとする形状そのものは、三次元CADデータD3dと同じである。
〔層形状データ〕
図9(b)は、層形状データDsの一例を示している。また、図10(a)は、図9(b)に示す層形状データDsを構成する、1層目の層形状データDs(1)の一例を示している。
図9(b)に示す層形状データDsは、上述したように、計画作成装置40の切断部403が作成する。そして、この例では、層形状データDsが、1層目の層形状データDs(1)~n層目の層形状データDs(n)を含むn層構成となっている。
また、図10(a)に示す1層目の層形状データDs(1)は、もととなる三次元CADデータD3d(内部データDi)が円筒状を呈していることに対応して、円環状を呈するようになっている。
なお、ここでは詳細な説明を行わないが、2層目の層形状データDs(2)~n層目の層形状データDs(n)のそれぞれも、円環状を呈するようになっている。そして、この例では、1層目の層形状データDs(1)~n層目の層形状データDs(n)のそれぞれが、同一形状を呈するものとなっている。
〔分割済層形状データ〕
図9(c)は、分割済層形状データDdの一例を示している。また、図10(b)は、図9(c)に示す分割済層形状データDdを構成する、1層目の分割済層形状データDd(1)の一例を示している。
図9(c)に示す分割済層形状データDd(スライスデータの一例)は、上述したように、計画作成装置40の分割部404が作成する。そして、図10(b)に示す1層目の分割済層形状データDd(1)は、もととなる1層目の層形状データDs(1)が円環状を呈していることに対応して、円環状を呈するようになっている。
また、1層目の分割済層形状データDd(1)では、もととなる1層目の層形状データDs(1)に対し、周上の一箇所に分割点Pd(この例では第1の分割点Pd(1))が設定されている。そして、第1の分割点Pd(1)が設定された1層目の分割済層形状データDd(1)のうち、その一端に隣接する側が始点Ps(この例では第1の始点Ps(1))に設定されており、その他端に隣接する側が終点Pe(この例では第1の終点Pe(1))に設定されている。その結果、この1層目の分割済層形状データDd(1)には、第1の始点Ps(1)から第1の終点Pe(1)に至るまで、第1の分割点Pd(1)を通ることなく、1パス(所謂一筆書き)で表現される形成経路Rf(この例では第1の形成経路Rf(1))が設定される。
なお、ここでは詳細な説明を行わないが、2層目の分割済層形状データDd(2)~n層目の分割済層形状データDd(n)のそれぞれについても、分割点Pd(Pd(2)~Pd(n))、始点Ps(Ps(2)~Ps(n))、終点Pe(Pe(2)~Pe(n))および形成経路Rf(Rf(2)~Rf(n))が設定される。そして、この例では、共通の形状を有する1層目の分割済層形状データDd(1)~n層目の分割済層形状データDd(n)において、分割点Pd、始点Ps、終点Peおよび形成経路Rfのそれぞれは、鉛直上方からみたときに重なるように配置されている。
(具体例における積層計画)
図11は、具体例における積層計画の一例を説明するための図である。
この積層計画は、上述したように、計画作成装置40が作成し、記録媒体50を介して積層造形装置60に設けられた制御装置30に伝達される。
図11に示す「積層計画」は、上述したように、ロボット装置10等に対して設定される「軌道計画」と、溶接トーチ20等に対して設定される「溶接計画」とを含んでいる。これらのうちの「軌道計画」は、形成すべきビード121の「層番号」と、「始点」、「終点」および「経路」とを含んでいる。これに対し、「溶接計画」は、ワイヤ21の「送給速度」と、ワイヤ21に供給する「供給電流」とを含んでいる。なお、ここでは、n=5の場合を例として説明を行う。
例えば1層目のビード121(1)に対応する層番号=1(x=1)の場合、軌道計画における始点は第1の始点Ps(1)に、終点は第1の終点Pe(1)に、経路は第1の形成経路Rf(1)に、それぞれ設定されている。また、溶接計画における送給速度は第1の溶接送給速度Sw(1)に、溶接電流は第1の溶接電流Iw(1)に、それぞれ設定されている。
なお、個々には説明しないが、層番号x(x=2~5)の場合も、軌道計画における始点は第xの始点Ps(x)に、終点は第1の終点Pe(x)に、経路は第xの形成経路Rf(x)に、溶接計画における送給速度は第xの溶接送給速度Sw(x)に、溶接電流は第1の溶接電流Iw(x)に、それぞれ設定されている。また、この例においては、1層目の軌道計画が第1の軌道計画に対応しており、2層目の軌道計画が第2の軌道計画に対応している。
(具体例における積層造形物の製造手順)
図12は、具体例における積層造形物120の製造手順を説明するためのフローチャートである。なお、図12に示すフローチャートは、上述した図8に対応するものであるが、こちらでは、制御装置30側ではなく、制御装置30によって制御されるロボット装置10および溶接トーチ20の動作に着目したものである。このとき、ロボット装置10および溶接トーチ20は、ステップ130(図8参照)に基づくx層目のビード121(x)の形成と、ステップ140(図8参照)に基づくx層目のスラグ122(x)の破壊とを交互に行うこととなる。また、この間、ロボット装置10は軌道計画に、溶接トーチ20は溶接計画に、それぞれしたがって動作することになる。
積層造形装置60が動作を開始すると、ロボット装置10および溶接トーチ20は、1層目の積層計画に基づく1層目のビード形成指示にしたがって動作することにより、母材110上に1層目のビード121(1)を形成して積層する、第1形成工程を実行する(ステップ131)。
次に、ロボット装置10および溶接トーチ20は、1層目の積層計画に基づく1層目のスラグ破壊指示にしたがって動作することにより、形成済みとなった1層目のビード121(1)の表面に付着した1層目のスラグ122(1)を破壊する、第1破壊工程を実行する(ステップ141)。
続いて、ロボット装置10および溶接トーチ20は、2層目の積層計画に基づく2層目のビード形成指示にしたがって動作することにより、1層目のビード121(1)上に2層目のビード121(2)を形成して積層する、第2形成工程を実行する(ステップ132)。
次に、ロボット装置10および溶接トーチ20は、2層目の積層計画に基づく2層目のスラグ破壊指示にしたがって動作することにより、形成済みとなった2層目のビード121(2)の表面に付着した2層目のスラグ122(2)を破壊する、第2破壊工程を実行する(ステップ142)。
続いて、ロボット装置10および溶接トーチ20は、3層目の積層計画に基づく3層目のビード形成指示にしたがって動作することにより、2層目のビード121(2)上に3層目のビード121(3)を形成して積層する、第3形成工程を実行する(ステップ133)。
次に、ロボット装置10および溶接トーチ20は、3層目の積層計画に基づく3層目のスラグ破壊指示にしたがって動作することにより、形成済みとなった3層目のビード121(3)の表面に付着した3層目のスラグ122(3)を破壊する、第3破壊工程を実行する(ステップ143)。
続いて、ロボット装置10および溶接トーチ20は、4層目の積層計画に基づく4層目のビード形成指示にしたがって動作することにより、3層目のビード121(3)上に4層目のビード121(4)を形成して積層する、第4形成工程を実行する(ステップ134)。
次に、ロボット装置10および溶接トーチ20は、4層目の積層計画に基づく4層目のスラグ破壊指示にしたがって動作することにより、形成済みとなった4層目のビード121(4)の表面に付着した4層目のスラグ122(4)を破壊する、第4破壊工程を実行する(ステップ144)。
続いて、ロボット装置10および溶接トーチ20は、5層目の積層計画に基づく5層目のビード形成指示にしたがって動作することにより、4層目のビード121(4)上に5層目のビード121(5)を形成して積層する、第5形成工程を実行する(ステップ135)。
次に、ロボット装置10および溶接トーチ20は、5層目の積層計画に基づく5層目のスラグ破壊指示にしたがって動作することにより、形成済みとなった5層目のビード121(5)の表面に付着した5層目のスラグ122(5)を破壊する、第5破壊工程を実行する(ステップ145)。
以上により、母材110上に積層造形物120を形成してなる、構造体100が得られる。なお、各工程の詳細については後述する。
ここで、本実施の形態では、ステップ131の第1形成工程およびステップ141第1破壊工程の両者が、第1積層工程に対応しており、ステップ132の第2形成工程およびステップ142の第2破壊工程の両者が、第2積層工程に対応している。そして、このようにみなした場合、図8に示すステップ110が、取得工程に対応していることになる。
このように、本実施の形態では、図11等に示す積層計画に基づいて、各層のビード121の形成とスラグ122の破壊とを交互に実行する。ここで、第x形成工程(x=1~5、ステップ131~ステップ135)では、各層の積層計画をそのまま適用することでビード121の形成を行うのに対し、第x破壊工程(x=1~5、ステップ141~ステップ145)では、各層の積層計画を一部修正することでスラグ122の破壊を行っている。
ここで、各形成工程および各破壊工程では、それぞれの工程を開始する前に、カメラ25による撮影結果に基づいて、それぞれの始点Psに対するワイヤ21の先端部の位置を修正しておくことが望ましい。
なお、以下の説明においては、図11等に示す積層計画に基づき、これら各形成工程および各破壊工程で使用される、積層造形物120の製造計画のことを、単に「製造計画」と呼ぶことにする。ただし、これまでの説明から明らかなように、この製造計画は、予め作成されるものではなく、図11に示す積層計画に基づいて、図12に示す製造手順にて積層造形物120の製造を行った結果として得られるものである。
〔製造計画〕
図13は、具体例における製造計画の一例を説明するための図である。
ここで、図13に示す製造計画は、図12に示す積層造形物120の製造手順で用いられる、積層計画に基づいて得られたものを例示している。したがって、図13に示す製造計画は、図11に示す積層計画に対応している。
図13に示す「製造計画」も、図11に示す積層計画と同じく、「軌道計画」と「溶接計画」とを有している。これらのうちの「軌道計画」については、上述した「積層計画」と同様に、「層番号」、「始点」、「終点」および「経路」を有している。これに対し、「溶接計画」は、「送給速度」および「溶接電流」に加えて、図示しない振動源を用いたワイヤ21の「超音波振動」を有している点が、上述した「積層計画」とは異なる。
では最初に、ステップ131の第1形成工程の製造計画について説明を行う。
第1形成工程の軌道計画では、層番号には1が、始点には第1の始点Ps(1)が、終点には第1の終点Pe(1)が、経路には第1の形成経路Rf(1)が、それぞれ設定される。また、第1形成工程の溶接計画では、送給速度には第1の溶接送給速度Sw(1)が、溶接電流には第1の溶接電流Iw(1)が、超音波振動にはOFF(使用しない)が、それぞれ設定される。
なお、個々についての具体的な説明は行わないが、ステップ132の第2形成工程、ステップ133の第3形成工程、ステップ134の第4形成工程およびステップ135の第5形成工程の軌道計画および溶接計画も、上述したステップ131の第1形成工程と同様である。すなわち、第x形成工程の軌道計画では、層番号にはxが、始点には第xの始点Ps(x)が、終点には第xの終点Pe(x)が、経路には第xの形成経路Rf(x)が、それぞれ設定される。また、第x形成工程の溶接計画では、送給速度には第xの溶接送給速度Sw(x)が、溶接電流には第xの溶接電流Iw(x)が、超音波振動にはOFF(使用しない)が、それぞれ設定される。
続いて、ステップ141の第1破壊工程の製造計画について説明を行う。
第1破壊工程の軌道計画では、層番号には1が、始点には第1の始点Ps(1)が、終点には第1の終点Pe(1)が、経路には第1の形成経路Rf(1)が、それぞれ設定される。すなわち、第1破壊工程の軌道計画は、上述した第1形成工程の軌道計画と同じである。また、第1破壊工程の溶接計画では、送給速度には第1の打撃送給速度±Sk(1)が、溶接電流には-(使用しない)が、超音波振動にはON(使用する)が、それぞれ設定される。このように、第1破壊工程の溶接計画は、上述した第1形成工程の溶接計画とは異なる。ここで、第1の打撃送給速度±Sk(1)における「±」の符号は、送給に伴ってワイヤ21が前後方向に移動する(進退する)ことを意味している。これに対し、上述した第1の溶接送給速度Sw(1)には、このような符号が付されていないことから、送給に伴ってワイヤ21が前方向に移動する(進出する)ことを意味している。
なお、個々についての具体的な説明は行わないが、ステップ142の第2破壊工程、ステップ143の第3破壊工程、ステップ144の第4破壊工程およびステップ145の第5破壊工程の軌道計画および溶接計画も、上述したステップ141の第1破壊工程と同じである。すなわち、第x破壊工程の軌道計画では、層番号にはxが、始点には第xの始点Ps(x)が、終点には第xの終点Pe(x)が、経路には第xの形成経路Rf(x)が、それぞれ設定される。また、第x破壊工程の溶接計画では、送給速度には第xの打撃送給速度±Sk(x)が、溶接電流には-(使用しない)が、超音波振動にはON(使用する)が、それぞれ設定される。
〔ワイヤの先端部の挙動〕
続いて、上述した各形成工程および各破壊工程のそれぞれにおける、ワイヤ21の先端部の挙動について説明を行う。この例の場合、ワイヤ21の先端部は、母材110の被積層面に沿う水平方向に対しては軌道計画に基づいて移動し、また、その垂直方向に対しては溶接計画に基づいて移動する。
図14は、ワイヤ21の先端部の移動軌跡を説明するための図であり、(a)は各形成工程の場合を、(b)は各破壊工程の場合を、それぞれ例示している。なお、以下では、図13および図14を参照しながら説明を行っていく。
{各形成工程}
最初に、図14(a)を参照しつつ、各形成工程でのワイヤ21の挙動について説明を行う。ただし、ここでは、各形成工程の中から、第2形成工程を例として説明を行うこととする。
第2形成工程の場合、ワイヤ21の先端部は、水平方向には、軌道計画に基づき第2の形成経路Rf(2)に沿って移動する。ただし、第2形成工程の溶接計画では、送給速度が第2の溶接送給速度Sw(2)に設定され、且つ、超音波振動がOFF(使用しない)に設定される。そして、第2形成工程では、ワイヤ21に第2の溶接電流Iw(2)が供給されることにより、発生したアークによってワイヤ21が順次溶融し、ビード121(この例では2層目のビード121(2)、図示せず)となっていくことから、ワイヤ21の先端部は、垂直方向にはほとんど移動しない。その結果、第2形成工程の場合、ワイヤ21の先端部は、母材110の被積層面に対し、略平行となる移動軌跡Lwに沿って移動していくこととなる。
なお、詳細については説明を省略するが、他の形成工程(第1形成工程、第3形成工程~第5形成工程)においても、ワイヤ21の先端部は、第2形成工程の場合と同様の挙動(移動軌跡)を示すことになる。
{各破壊工程}
次に、図14(b)を参照しつつ、各破壊工程でのワイヤ21の挙動について説明を行う。ただし、ここでは、各破壊工程の中から、上記第2形成工程に続く第2破壊工程を例として説明を行う。
第2破壊工程の場合、ワイヤ21の先端部は、水平方向には、軌道計画に基づき第2の形成経路Rf(2)に沿って移動する。また、第2破壊工程の溶接計画では、送給速度が第2の打撃送給速度±Sk(2)に設定され、且つ、超音波振動がON(使用する)に設定される。そして、第2破壊工程では、ワイヤ21に溶接電流が供給されないことによってワイヤ21が溶融しないことから、ワイヤ21の先端部は、垂直方向にも移動することになる。より具体的に説明すると、ワイヤ21の先端部は、母材110に対して進退しながら、この進退よりも高い周波数(この例では超音波)で振動することになる。その結果、第2破壊工程の場合、ワイヤ21の先端部は、母材110の被積層面に対し、低周波となる三角波に高周波となる超音波成分が重畳された移動軌跡Lwに沿って移動していくこととなる。
そして、第2破壊工程では、このようにしてワイヤ21の先端部を進退させることにより、既に形成済みとなっている2層目のビード121(2)の表面を覆う2層目のスラグ122(2)に叩き付ける。これにより、ワイヤ21の先端部が、この2層目のスラグ122(2)を破壊し、2層目のビード121(2)を露出させるようになっている。なお、ここではその詳細な説明を省略するが、このようにして破壊され且つ2層目のビード121(2)の表面から剥がされた2層目のスラグ122(2)の残骸(破片)については、送風や掃き出しを行うことで、2層目のビード121(2)の周縁から排除しておくことが望ましい。
なお、詳細については説明を省略するが、他の破壊工程(第1破壊工程、第3破壊工程~第5破壊工程)においても、ワイヤ21の先端部は、第2破壊工程の場合と同様の挙動を示すことになる。
〔各工程の説明〕
続いて、図12に示す各工程について、さらに具体的な説明を行う。
図15(a)~(j)は、具体例における積層造形物120の製造手順を説明するための図である。また、図16(a)~(c)は、具体例における積層造形物120の製造例を示した図である。
ここで、図15(a)は第1形成工程(ステップ131)に、図15(b)第1破壊工程(ステップ141)に、図15(c)は第2形成工程(ステップ132)に、図15(d)は第2破壊工程(ステップ142)に、それぞれ対応している。また、図15(e)は第3形成工程(ステップ133)に、図15(f)第3破壊工程(ステップ143)に、図15(g)は第4形成工程(ステップ134)に、図15(h)は第4破壊工程(ステップ144)に、それぞれ対応している。さらに、図15(i)は第5形成工程(ステップ135)に、図15(j)第5破壊工程(ステップ145)に、それぞれ対応している。
また、図16(a)は第1破壊工程(ステップ141)終了後且つ第2形成工程(ステップ132)開始前に、図16(b)は第2破壊工程(ステップ142)終了後且つ第3形成工程(ステップ133)開始前に、図16(c)は第5破壊工程(ステップ145)終了後に、それぞれ対応している。
{第1形成工程}
図15(a)に示すように、ステップ131の第1形成工程では、ワイヤ21を、第1の始点Ps(1)から第1の終点Pe(1)に向かい、第1の形成経路Rf(1)に沿って順次移動させていく。また、このとき、ワイヤ21は第1の溶接送給速度Sw(1)で送給されるとともに、ワイヤ21には第1の溶接電流Iw(1)が供給される。ここで、第1形成工程の場合、第1の始点Ps(1)では、ともに導電性を有する母材110とワイヤ21の先端部との間でアークが発生し、ワイヤ21が溶融・固化することに伴って、母材110上には1層目のビード121(1)が形成され始める。そして、ワイヤ21の先端部は、第1の形成経路Rf(1)を、図14(a)に示す移動軌跡Lwに沿って移動していく。その結果、板状を呈する母材110上には、円環状を呈する1層目のビード121(1)が形成される。ただし、このとき、1層目のビード121(1)の表面には、1層目のスラグ122(1)も形成されることになる。
{第1破壊工程}
図15(b)に示すように、ステップ141の第1破壊工程では、上記第1形成工程と同じく、ワイヤ21を、第1の始点Ps(1)から第1の終点Pe(1)に向かい、第1の形成経路Rf(1)に沿って順次移動させていく。また、このとき、ワイヤ21は、第1の打撃送給速度±Sk(1)で送給される一方、溶接電流は供給されない。すると、ワイヤ21の先端部は、図14(b)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する1層目のビード121(1)の表面に付着していた1層目のスラグ122(1)は、ワイヤ21の先端部が突き当てられることによって破壊され、1層目のビード121(1)から剥離される。その結果、母材110上には、図16(a)に示すように、1層目のビード121(1)が、外部に露出した状態で形成されることになる。
{第2形成工程}
図15(c)に示すように、ステップ132の第2形成工程では、ワイヤ21を、第2の始点Ps(2)から第2の終点Pe(2)に向かい、第2の形成経路Rf(2)に沿って順次移動させていく。また、このとき、ワイヤ21は、第2の溶接送給速度Sw(2)で送給されるとともに、ワイヤ21には第2の溶接電流Iw(2)が供給される。ここで、第2形成工程の場合、第2の始点Ps(2)では、ともに導電性を有する1層目のビード121(1)とワイヤ21の先端部との間でアークが発生し、ワイヤ21が溶融・固化することに伴って、1層目のビード121(1)上には2層目のビード121(2)が形成され始める。そして、ワイヤ21の先端部は、第2の形成経路Rf(2)を、図14(a)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する1層目のビード121(1)上には、円環状を呈する2層目のビード121(2)が形成される。ただし、このとき、2層目のビード121(2)の表面には、2層目のスラグ122(2)も形成されることになる。
{第2破壊工程}
図15(d)に示すように、ステップ142の第2破壊工程では、上記第2形成工程と同じく、ワイヤ21を、第2の始点Ps(2)から第2の終点Pe(2)に向かい、第2の形成経路Rf(2)に沿って順次移動させていく。また、このとき、ワイヤ21は、第2の打撃送給速度±Sk(2)で送給される一方、溶接電流は供給されない。すると、ワイヤ21の先端部は、図14(b)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する2層目のビード121(2)の表面に付着していた2層目のスラグ122(2)は、ワイヤ21の先端部が突き当てられることによって破壊され、2層目のビード121(2)から剥離される。これにより、母材110上の1層目のビード121(1)上には、図16(b)に示すように、2層目のビード121(2)が、外部に露出した状態で形成されることになる。
{第3形成工程}
図15(e)に示すように、ステップ133の第3形成工程では、ワイヤ21を、第3の始点Ps(3)から第3の終点Pe(3)に向かい、第3の形成経路Rf(3)に沿って順次移動させていく。また、このとき、ワイヤ21は、第3の溶接送給速度Sw(3)で送給されるとともに、ワイヤ21には第3の溶接電流Iw(3)が供給される。ここで、第3形成工程の場合、第3の始点Ps(3)では、ともに導電性を有する2層目のビード121(2)とワイヤ21の先端部との間でアークが発生し、ワイヤ21が溶融・固化することに伴って、2層目のビード121(2)上には3層目のビード121(3)が形成され始める。そして、ワイヤ21の先端部は、第3の形成経路Rf(3)を、図14(a)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する2層目のビード121(2)上には、円環状を呈する3層目のビード121(3)が形成される。ただし、このとき、3層目のビード121(3)の表面には、3層目のスラグ122(3)も形成されることになる。
{第3破壊工程}
図15(f)に示すように、ステップ143の第3破壊工程では、上記第3形成工程と同じく、ワイヤ21を、第3の始点Ps(3)から第3の終点Pe(3)に向かい、第3の形成経路Rf(3)に沿って順次移動させていく。また、このとき、ワイヤ21は、第3の打撃送給速度±Sk(3)で送給される一方、溶接電流は供給されない。すると、ワイヤ21の先端部は、図14(b)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する3層目のビード121(3)の表面に付着していた3層目のスラグ122(3)は、ワイヤ21の先端部が突き当てられることによって破壊され、3層目のビード121(3)から剥離される。これにより、2層目のビード121(2)上には、3層目のビード121(3)が、外部に露出した状態で形成されることになる。
{第4形成工程}
図15(g)に示すように、ステップ134の第4形成工程では、ワイヤ21を、第4の始点Ps(4)から第4の終点Pe(4)に向かい、第4の形成経路Rf(4)に沿って順次移動させていく。また、このとき、ワイヤ21は、第4の溶接送給速度Sw(4)で送給されるとともに、ワイヤ21には第4の溶接電流Iw(4)が供給される。ここで、第4形成工程の場合、第4の始点Ps(4)では、ともに導電性を有する3層目のビード121(3)とワイヤ21の先端部との間でアークが発生し、ワイヤ21が溶融・固化することに伴って、3層目のビード121(3)上には4層目のビード121(4)が形成され始める。そして、ワイヤ21の先端部は、第4の形成経路Rf(4)を、図14(a)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する3層目のビード121(3)上には、円環状を呈する4層目のビード121(4)が形成される。ただし、このとき、4層目のビード121(4)の表面には、4層目のスラグ122(4)も形成されることになる。
{第4破壊工程}
図15(h)に示すように、ステップ144の第4破壊工程では、上記第4形成工程と同じく、ワイヤ21を、第4の始点Ps(4)から第4の終点Pe(4)に向かい、第4の形成経路Rf(4)に沿って順次移動させていく。また、このとき、ワイヤ21は、第4の打撃送給速度±Sk(4)で送給される一方、溶接電流は供給されない。すると、ワイヤ21の先端部は、図14(b)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する4層目のビード121(4)の表面に付着していた4層目のスラグ122(4)は、ワイヤ21の先端部が突き当てられることによって破壊され、4層目のビード121(4)から剥離される。これにより、3層目のビード121(3)上には、4層目のビード121(4)が、外部に露出した状態で形成されることになる。
{第5形成工程}
図15(i)に示すように、ステップ135の第5形成工程では、ワイヤ21を、第5の始点Ps(5)から第5の終点Pe(5)に向かい、第5の形成経路Rf(5)に沿って順次移動させていく。また、このとき、ワイヤ21は、第5の溶接送給速度Sw(5)で送給されるとともに、ワイヤ21には第5の溶接電流Iw(5)が供給される。ここで、第5形成工程の場合、第5の始点Ps(5)では、ともに導電性を有する4層目のビード121(4)とワイヤ21の先端部との間でアークが発生し、ワイヤ21が溶融・固化することに伴って、4層目のビード121(4)上には5層目のビード121(5)が形成され始める。そして、ワイヤ21の先端部は、第5の形成経路Rf(5)を、図14(a)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する4層目のビード121(4)上には、円環状を呈する5層目のビード121(5)が形成される。ただし、このとき、5層目のビード121(5)の表面には、5層目のスラグ122(5)も形成されることになる。
{第5破壊工程}
図15(j)に示すように、ステップ145の第5破壊工程では、上記第5形成工程と同じく、ワイヤ21を、第5の始点Ps(5)から第5の終点Pe(5)に向かい、第5の形成経路Rf(5)に沿って順次移動させていく。また、このとき、ワイヤ21は、第5の打撃送給速度±Sk(5)で送給される一方、溶接電流は供給されない。すると、ワイヤ21の先端部は、図14(b)に示す移動軌跡Lwに沿って移動していく。その結果、円環状を呈する5層目のビード121(5)の表面に付着していた5層目のスラグ122(5)は、ワイヤ21の先端部が突き当てられることによって破壊され、5層目のビード121(5)から剥離される。これにより、4層目のビード121(4)上の5層目のビード121(5)上には、図16(c)に示すように、5層目のビード121(5)が、外部に露出した状態で形成されることになる。また、これにより、母材110上には、1層目のビード121(1)~5層目のビード121(5)を積層してなる積層造形物120が形成された、構造体100が得られることになる。
そして、得られた構造体100における積層造形物120では、隣接するビード間でのスラグの巻込みが生じ難くなることから、その機械的な強度の低下を抑制することができる。
[その他]
なお、本実施の形態では、積層造形物120において最後の層となるn層目のビード121(具体例の場合は5層目のビード121(5))についても、スラグ122(n)の破壊を行っていたが、これに限られるものではない。例えば、積層造形物120における最後の層については、n層目のビード121(n)を形成した状態で、積層造形装置60を用いた作業を終了するようにしてもよい。
また、上述した具体例の説明では、各破壊工程において、ワイヤ21に溶接電流を供給しないようにしていたが、これに限られるものではない。例えば、各破壊工程において、アークが発生しない程度の電圧をワイヤ21に印加し、ワイヤ21に通電が生じるか否かを検知することで、ワイヤ21が対象物(母材110やビード121)に接触したか否かを判断するようにしてもかまわない。
また、上述した具体例の説明では、各形成工程において、ワイヤ21に超音波振動を付与しないようにしていたが、これに限られるものではない。例えば、各形成工程において、ワイヤ21に超音波振動を付与するようにしてもかまわない。この場合は、得られるビード121において結晶粒の微細化を図ることが可能となる。
また、上述した具体例の説明では、各破壊工程において、ワイヤ21を物理的に進退させるとともにワイヤ21に超音波振動させるようにしていたが、これに限られるもののではなく、少なくとも一方を行わせればよい。
また、上述した具体例の説明では、各形成工程において、溶接電流の制御を行うようにしていたが、これに限られるものではなく、溶接電圧の制御を行うようにしてもかまわない。
1…金属積層造形システム、2…CAD装置、10…ロボット装置、20…溶接トーチ、21…ワイヤ、25…カメラ、30…制御装置、40…計画作成装置、50…記録媒体、60…積層造形装置、100…構造体、110…母材、120…積層造形物、121(x)…x層目のビード、122(x)…x層目のスラグ

Claims (8)

  1. 溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成する第1形成工程と、
    前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに超音波振動を付与し、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊する破壊工程と、
    前記溶加材を、第2の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成する第2形成工程と
    を有する造形物の製造方法。
  2. 前記破壊工程では、前記ビードに対して前記溶加材の先端部を進退させるとともに前記超音波振動を付与することを特徴とする請求項1記載の造形物の製造方法。
  3. 立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する取得工程と、
    溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに超音波振動を付与し、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊する第1積層工程と、
    溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに前記超音波振動を付与し、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊する第2積層工程と
    を有する造形物の製造方法。
  4. 溶加材を供給する溶接トーチと当該溶接トーチを保持するロボット装置とを備え、アークを用いて当該溶加材を溶融および固化してなるビードを複数重ねた積層体を含む造形物を製造する、積層造形装置の動作を制御する積層制御装置であって、
    前記溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成する指示を出力する第1出力手段と、
    前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに超音波振動させ、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊する指示を出力する第2出力手段と、
    前記溶加材を、第2の軌道計画に基づいて移動させるとともにアークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成する指示を出力する第3出力手段と
    を有する積層制御装置。
  5. 前記第2出力手段は、前記溶加材の先端部を進退させるとともに超音波振動させるための指示を出力することを特徴とする請求項記載の積層制御装置。
  6. 溶加材を供給する溶接トーチと当該溶接トーチを保持するロボット装置とを備え、アークを用いて当該溶加材を溶融および固化してなるビードを複数重ねた積層体を含む造形物を製造する、積層造形装置の動作を制御する積層制御装置であって、
    立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する取得手段と、
    溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに超音波振動させ、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊する指示を出力する出力手段と、
    溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに前記超音波振動させ、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊する指示を出力する他の出力手段と
    を含む積層制御装置。
  7. コンピュータに、
    溶加材を、第1の軌道計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にビードを形成するための指示を出力する機能と、
    前記溶加材を、前記第1の軌道計画に基づいて移動させるとともに超音波振動させ、前記ビードに突き当てることで、当該ビードの表面に付着するスラグを破壊するための指示を出力する機能と、
    前記溶加材を、第2の軌道計画に基づいて移動させるとともにアークを用いて溶融および固化させることで、前記ビードの上に次のビードを形成するための指示を出力する機能と
    を実現させるプログラム。
  8. コンピュータに、
    立体的な造形物の形状を示す三次元形状データを複数の層に分割して得たスライスデータの各層に対し、始点および終点と当該始点から当該終点に至る経路とを対応付けてなる軌道計画を取得する機能と、
    溶加材を、前記軌道計画のうちのx(xは1以上の整数)層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、対象物の上にx層目のビードを形成し、且つ、当該溶加材を、当該x層目の計画に基づいて移動させるとともに超音波振動させ、当該ビードに突き当てることで、x層目のビードの表面に付着するx層目のスラグを破壊するための指示を出力する機能と、
    溶加材を、前記軌道計画のうちのx+1層目の計画に基づいて移動させるとともに、アークを用いて溶融および固化させることで、x層目のビードの上にx+1層目のビードを形成し、且つ、当該溶加材を、当該x+1層目の計画に基づいて移動させるとともに前記超音波振動させ、当該ビードに突き当てることで、x+1層目のビードの表面に付着するx+1層目のスラグを破壊するための指示を出力する機能と
    を実現させるプログラム。
JP2019111314A 2019-06-14 2019-06-14 造形物の製造方法、積層制御装置、プログラム Active JP7183120B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111314A JP7183120B2 (ja) 2019-06-14 2019-06-14 造形物の製造方法、積層制御装置、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111314A JP7183120B2 (ja) 2019-06-14 2019-06-14 造形物の製造方法、積層制御装置、プログラム

Publications (2)

Publication Number Publication Date
JP2020203293A JP2020203293A (ja) 2020-12-24
JP7183120B2 true JP7183120B2 (ja) 2022-12-05

Family

ID=73836757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111314A Active JP7183120B2 (ja) 2019-06-14 2019-06-14 造形物の製造方法、積層制御装置、プログラム

Country Status (1)

Country Link
JP (1) JP7183120B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473508B2 (ja) 2021-08-20 2024-04-23 株式会社神戸製鋼所 造形物の評価方法及び造形物の製造方法
KR102477652B1 (ko) * 2021-08-25 2022-12-14 창원대학교 산학협력단 아크 플라즈마 기반의 금속 연속 적층 제조방법 및 그것에 의해 제조된 금속 연속 적층물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784539B2 (ja) 1998-07-01 2006-06-14 本田技研工業株式会社 金型の製造方法
JP2014213375A (ja) 2013-04-30 2014-11-17 株式会社ダイヘン アーク溶接装置
US20170320277A1 (en) 2014-11-04 2017-11-09 Nanfang Additive Manufacturing Technology Co., Ltd. Electric melting method for forming metal components
JP2019084553A (ja) 2017-11-06 2019-06-06 三菱重工コンプレッサ株式会社 金属積層造形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188577A (ja) * 1982-04-30 1983-11-04 Mitsubishi Heavy Ind Ltd サブマ−ジア−ク溶接装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784539B2 (ja) 1998-07-01 2006-06-14 本田技研工業株式会社 金型の製造方法
JP2014213375A (ja) 2013-04-30 2014-11-17 株式会社ダイヘン アーク溶接装置
US20170320277A1 (en) 2014-11-04 2017-11-09 Nanfang Additive Manufacturing Technology Co., Ltd. Electric melting method for forming metal components
JP2019084553A (ja) 2017-11-06 2019-06-06 三菱重工コンプレッサ株式会社 金属積層造形方法

Also Published As

Publication number Publication date
JP2020203293A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6738789B2 (ja) 積層造形物の設計方法、製造方法、及び製造装置、並びにプログラム
JP7183120B2 (ja) 造形物の製造方法、積層制御装置、プログラム
US9987707B2 (en) 3D print apparatus and method utilizing friction stir welding
JP6892371B2 (ja) 積層造形物の製造方法及び製造装置
WO2018147296A1 (ja) 積層制御装置、積層制御方法及びプログラム
JP6073297B2 (ja) 金属の高速クラッディングのためのシステムおよび方法
JP6737762B2 (ja) 造形物の製造方法及び製造装置
WO2019220867A1 (ja) 積層造形物の製造方法及び製造装置、並びにプログラム
CN111770806B (zh) 层叠造型物的造型方法、层叠造型物的制造装置、以及记录介质
JP7323281B2 (ja) 付加的製造のための方法及びシステム
JP4089755B2 (ja) タンデムアーク溶接装置
JP7203686B2 (ja) 造形物の製造方法
JP7341783B2 (ja) 積層造形物の製造システム、積層造形物の製造方法
JP6802773B2 (ja) 積層造形物の製造方法及び積層造形物
JP7193423B2 (ja) 積層造形物の製造方法
JP7197437B2 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
WO2019176759A1 (ja) 造形物の製造方法及び造形物
JP7123738B2 (ja) 積層造形物の製造方法及び積層造形物
JP7028737B2 (ja) 造形物の製造方法、製造装置及び造形物
JPWO2020079796A1 (ja) 表示システム、付加製造装置および進捗表示方法
JP7438625B2 (ja) 円周溶接方法
TW202237351A (zh) 產生用於織動動作之信號之裝置、控制裝置及方法
JP7189110B2 (ja) 積層造形物の製造方法及び積層造形物
JP7160768B2 (ja) 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
JP2021126673A (ja) 積層造形物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7183120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150