JP7182946B2 - 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ - Google Patents

真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ Download PDF

Info

Publication number
JP7182946B2
JP7182946B2 JP2018151871A JP2018151871A JP7182946B2 JP 7182946 B2 JP7182946 B2 JP 7182946B2 JP 2018151871 A JP2018151871 A JP 2018151871A JP 2018151871 A JP2018151871 A JP 2018151871A JP 7182946 B2 JP7182946 B2 JP 7182946B2
Authority
JP
Japan
Prior art keywords
contact
base material
mass
manufacturing
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151871A
Other languages
English (en)
Other versions
JP2020027741A (ja
Inventor
敦史 山本
遥 佐々木
貴史 草野
直紀 浅利
芳充 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018151871A priority Critical patent/JP7182946B2/ja
Publication of JP2020027741A publication Critical patent/JP2020027741A/ja
Application granted granted Critical
Publication of JP7182946B2 publication Critical patent/JP7182946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

本発明の実施形態は、真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブに関する。
真空遮断器やスイッチギヤ等の開閉器は、接点を備える真空バルブを具備する。真空バルブ用接点材料に要求される性能としては、遮断時に電流を遮断する性能(遮断性能)、通電時に電流を流す性能(通電性能)、電圧印加時に絶縁破壊されにくい性能(耐電圧性能)等が挙げられる。
通電性能および耐電圧性能は、求められる材料特性が相反し、トレードオフの関係を有する。従来から汎用接点として用いられている銅-クロム合金の焼結体からなる接点材料(CuCr接点材料)では、銅の含有量の割合が多いほど導電率が高くなり、硬度および接触抵抗が低下するため通電性能が向上するが、耐電圧性能が低下する。一方、クロムの含有量の割合が多いほど硬度が高くなり耐電圧性能が向上するが、通電性能が低下する。このため、従来のCuCr接点材料では、クロムの含有量を約50質量%に調整することにより、通電性能と耐電圧性能とのバランスを維持している。
特開2006-032036号公報 特開2006-024476号公報 特開平7-249352号公報
しかしながら、開閉器のコンパクト化に伴い、開閉器の熱密度が高まり、接点材料の通電性能の更なる向上が求められている。従来のCuCr接点材料において、通電性能を高めるためにはクロムの含有量を減らす必要があるため、耐電圧性能の低下を抑制しつつ通電性能をさらに向上させることは困難である。
本発明の実施形態が解決しようとする課題は、接点材料の通電性能および耐電圧性能を向上させることである。
実施形態の真空バルブ用接点材料は、銅または銅を主成分とする合金からなる基材と、基材の表面に設けられた微細組織層と、を具備する。微細組織層は、銅を含有するマトリクスと、クロムを含有し、平均粒径が0.1μm以下である粒子と、を有する。微細組織層中のクロムの濃度は、35質量%以上40質量%以下である。微細組織層の厚さは、2mm以下である。
真空バルブ用接点材料の構造例を示す図である。 微細組織の構造例を示す図である。 真空バルブ用接点材料の製造方法例を説明するための図である。 真空バルブ用接点材料の製造方法例を説明するための図である。 真空バルブ用接点材料の製造方法例を説明するための図である。 真空バルブ用接点材料の製造方法の他の例を説明するための図である。 真空バルブ用接点材料の製造方法の他の例を説明するための図である。 真空バルブ用接点材料の製造方法の他の例を説明するための図である。 真空バルブ用接点材料の他の構造例を示す断面図である。 領域111の構造例を示す上面図である。 真空バルブの構造例を示す図である。
以下、実施形態について、図面を参照して説明する。なお、各実施形態において、実質的に同一の構成要素には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、各部の厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。
図1は、実施形態の真空バルブ用接点材料の構造例を示す図である。図1に示す接点材料1は、基材11と、基材11の表面に設けられた微細組織層12と、を具備する。
基材11は、接点材料1の通電性能を担う。基材11は、電極としての機能を有してもよい。また、基材11に通電軸を設けてもよい。基材11は、銅または銅を主成分とする合金からなる。主成分とは、対象内で最も濃度が高い成分である。基材11は、不可避不純物を含んでいてもよい。
銅は、高い導電性を有するため接点材料1の通電性を高めることができる。基材11中の銅濃度は、例えば50質量%以上、80質量%以上、または90質量%以上である。銅からなる基材11としては、例えば無酸素銅が挙げられる。合金としては、例えば銅-ジルコニウム合金や銅-クロム合金等が挙げられる。基材11中のジルコニウムやクロムの濃度は、例えば0.01質量%以上50質量%以下である。基材11の形状は特に限定されないが、例えば棒状である。
微細組織層12は、接点材料1の表面層としての機能を有する。微細組織層12は、銅とクロムとを含有する合金の微細組織を有する。図2は、微細組織の構造例を示す図である。図2に示す微細組織は、主成分として銅を含有するマトリクス121と、マトリクス121中に分散され、主成分としてクロムを含有する複数の粒子122と、を有する。マトリクス121の銅の濃度は、例えば50質量%以上、80質量%以上、または90質量%以上である。粒子122のクロムの濃度は、例えば50質量%以上、80質量%以上、または90質量%以上である。
粒子122の平均粒径は、1μm以下、好ましくは0.1μm以下である。1μmを超える場合、耐電圧性能が低下する。平均粒径の下限は、特に限定されないが、例えば0.01μm以下である。粒子122は、互いに異なる形状を有してもよい。また、粒子122は、微細組織において、異なる向きに延在してもよい。
粒子122の粒径は、粒子122の最長軸の長さにより定義される。さらに、粒子122の平均粒径は、例えば走査型電子顕微鏡(Scanning Electoron Microscope:SEM)により観察された微細組織層12の断面に存在する粒子122の粒径の平均値により定義される。
各元素の濃度は、例えばSEM-EDX(走査電子顕微鏡-エネルギー分散型X線分光法:Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy)等を用いて測定することができる。
微細組織層12における銅の濃度は、50質量%以上80質量%以下が好ましい。50質量%未満の場合、通電性能が著しく低下する。80質量%を超える場合、耐電圧性能が著しく低下する。
クロムは、高い耐弧性を有し、接点材料1の耐電圧性能を担う。微細組織層12におけるクロムの濃度は、20質量%以上50質量%以下が好ましい。通電性能は、クロムの含有量が少ないほど良好であるが、20質量%未満の場合、耐電圧性能が著しく低下する。50質量%を超える場合、通電性能が著しく低下する。また、微細組織層12は、クロムの濃度を例えば35質量%以下と低くする場合であっても高い耐電圧性能を有する。
接点材料1の通電特性は、接点材料1の表面だけでなく内部にも依存するため、内部をより低抵抗にすることにより通電性能を向上させることができる。従来のCuCr接点材料では、表面だけでなく内部にもクロムが含まれているため、通電性能が低い。
通電性能の更なる向上のためには、微細組織層12は薄いことが好ましく、例えば、微細組織層12の厚さを2mm以下にすることが好ましい。通電性能は、定格通電電流による定常状態の温度分布によって評価されるが、微細組織層12の厚さを1mm以下にすることにより、接点接触部の温度上昇を低減することができる。従って、高い耐電圧性能を実現するとともに通電性能の向上を図るには、微細組織層12の厚さは1mm以下とすることがより好ましい。厚さの下限は、特に限定されないが、例えば0.1mm以下である。このように、微細組織層12の好ましい厚さは、接点接触部の温度上昇の観点から明確に規定することができる。
接点材料1の耐電圧性能は、過酷な使用条件下で適用される場合を除き、表面状態に依存し、内部の材料特性は関与しない。従って、基材11の表面に微細組織層12を形成することにより、基材11の高い通電性能と微細組織層12の高い耐電圧性能を両立することができるため、通電性能および耐電圧性能の両方を向上させることができる。
図3ないし図5は、接点材料1の製造方法例を説明するための図である。接点材料1の製造方法例は、図3に示すように基材11と合金材13とを摩擦圧接して微細組織層12を形成する工程(摩擦圧接工程)と、図4に示すように微細組織層12を切断することにより基材11と合金材13とを分離する工程(切断工程)と、図5に示すように基材11の表面に残存する微細組織層12(微細組織層12の残存部)の表面を切削加工する工程(切削加工工程)と、を具備する。
接点材料1の組織を微細化する方法としては、例えば合金材を溶融して急冷する方法(溶融法)や電子ビームやレーザービームにより合金材の表面を急熱急冷する方法(急熱急冷法)等が挙げられる。
溶融法では、焼結法よりも組織を微細化することができるが、溶解面積を小さくする必要があり、非効率的である。また、組織の微細化は、冷却速度に依存するため、微細化のためには多大なコストがかかり経済性が損なわれる。さらに、急熱急冷処理は、量産性が低く、また経済性も悪い。
これに対し、実施形態の接点材料の製造方法では、摩擦圧接を用いてメカニカルに組織を微細化することにより微細組織層12を形成する。これにより、経済性を損なうことなく耐電圧性能および通電性能を向上させることができる。
摩擦圧接工程では、図3に示すように、基材11および合金材13を加圧するとともに基材11および合金材13の少なくとも一方を回転させることにより、基材11および合金材13を摩擦圧接する。基材11および合金材13は、例えば摩擦圧接機を用いて大気雰囲気下で摩擦圧接される。基材11および合金材13を互いに逆方向に回転させることにより基材11および合金材13を摩擦圧接してもよい。摩擦圧接により形成される微細組織層12の厚さは、2mm以上10mm以下が好ましい。微細組織層12の厚さや微細組織は、摩擦圧接の条件を調整することにより制御することができる。
合金材13は、銅とクロムとを含有する焼結体である。クロムは、接点材料1の耐アーク性を担う。合金材13中の銅の濃度は、例えば50質量%以上80質量%以下が好ましい。合金材13中のクロムの濃度は、例えば20質量%以上50質量%以下が好ましい。20質量%未満であると大電流遮断性能が著しく低下する。50質量%を超えると大電流通電特性が著しく低下する。合金材13の形状は特に限定されないが、例えば棒状である。
圧接界面は、300℃以上500℃以下の温度に調整されることが好ましい。圧接界面の温度を調整することにより、微細組織層12中の粒子122の粒径を制御することができる。圧接界面の温度は、例えば摩擦部の表面温度により定義される。
摩擦圧接時の圧接界面の温度が銅の軟化温度である400℃よりも高い場合、摩擦によりクロム相が分断され、粒子122の粒径が小さくなる。これにより、溶解法により製造されるCu-Cr合金材以上のレベルまで耐電圧性能が向上し、仮に微細組織層12中のクロムの濃度が35質量%以上50質量%以下であっても、焼結法により製造され、クロム濃度が50質量%であるCu-Cr合金材以上の耐電圧性能を実現することができる。
400℃より低い場合には、クロム相がマトリクス121に拘束されたまま引き伸ばされるため微細化の度合いは大幅に向上し、急熱急冷法により製造された材料以上の硬度を有し、微細で連結性が高いナノオーダーの微細組織層12を形成することができる。これにより、仮に微細組織層12中のクロム濃度が20質量%以上35質量%以下であっても、焼結法により製造され、クロム濃度が50質量%以上のCu-Cr合金材と同程度の耐電圧性能が得られる。圧接界面は400℃以下、さらには350℃以下の温度に調整することがより好ましい。部分的であっても400℃以下で圧接された部分の組織はナノオーダーレベルの微細組織となる。
圧接界面は、例えば基材11と合金材13との摩擦熱により熱せられる。よって、圧接界面の温度は、例えば、基材11および合金材13に加えられる圧力、基材11または合金材13の回転速度等を調整することにより調整される。摩擦圧接を行う時間は、例えば1秒以上10秒以下が好ましい。基材11および合金材13に加えられる圧力は、例えば100MPa以上300MPa以下が好ましい。基材11または合金材13の回転速度は、例えば1000rpm以上3000rpm以下が好ましい。
切断工程では、図4に示すように、基材11の表面に微細組織層12の一部が残存するように微細組織層12を切断することにより、基材11と合金材13とを分離する。微細組織層12は、例えばダイヤモンドカッター等により切断する。
切削加工工程では、図5に示すように、微細組織層12の残存部を所定の形状に切削加工する。上記残存部と共に基材11も所定の形状に切削加工してもよい。切削加工された残存部の厚さは、2mm以下、さらには1mm以下が好ましい。切断工程における切断位置を調整することにより残存部の厚さを調整してもよい。切削加工により、接点と通電軸を形成してもよい。
図6ないし図8は、接点材料1およびその製造方法の他の例を説明するための図である。本製造方法では、上記製造方法と基材11よりも小さい径を有する棒状の合金材を用いた通電軸14を微細組織層12とともに形成する点が異なる。通電軸14に用いられる合金材には、基材11に適用可能な材料を用いることができる。その他の部分については、上記製造方法の説明を適宜援用する。
摩擦圧接工程では、図6に示すように、基材11と合金材13とを摩擦圧接して微細組織層12を形成するとともに、摩擦圧接面の反対面において基材11と通電軸14に用いられる合金材とを回転軸を合わせて圧接する。切断工程では、図7に示すように、微細組織層12を切断することにより基材11と合金材13とを分離する。切削加工工程では、図8に示すように、微細組織層12の残存部の表面を切削加工する。上記製造方法では、径が小さい合金材を用いて通電軸を形成することにより、切削加工工程における切削量を低減することができる。
接点材料は、スリットを有していてもよい。図9は、接点材料の他の構造例を示す断面図である。図9に示す接点材料は、基材11と、微細組織層12と、通電軸14と、接続子15と、中空部16と、スリット171と、スリット172と、を具備する。
図10は、基材11の構造例を示す上面図である。基材11は、領域111と、領域112と、を有する。領域111は、中空部16を包囲する外周部が接続子15に接合され、接続子15を介して領域112に接続される。
スリット171は、領域111に設けられる。スリット171は、接点接触面に沿って延在し、かつ接触面に交差する方向に延在する。なお、図9では、スリット171が接触面に対して垂直な方向に延在しているが、これに限定されず、接触面に対して鋭角に延在していてもよい。なお、スリット171の数は、特に限定されない。
スリット172は、接点接触面に沿って延在する。このとき、スリット172の中心が、中空部16の底面に位置し、スリット171で区分された領域111の一部は領域113として残存する。領域113は、スリット171の同一の円周方向(時計回りまたは反時計回り)に延在する。図10では、中心軸Oを基準に対称に位置する領域111の一部が領域113に相当する。なお、スリット172の数は、特に限定されない。
スリット171、172は通常幅が狭いため、開閉機構の加圧力でこのスリットが閉じないようにするには、スリット部の剛性が十分であることが必要である。よって、基材11にCrやZrを含有するCu合金等を用いることが好ましい。
上記接点材料を真空バルブの接点に用いる場合、固定軸または可動軸から流入する電流は、通電軸14→領域111→領域113→中空部16の外周部を流れ、外周部をほぼ半周した位置で接続子15を経由して領域112および微細組織層12に至る。この外周部に流れる電流により磁界が発生し、アークとの相互作用をもたらす。接点材料にスリットを形成することにより、接点間に発生するアーク放電を制御することができる。これにより、接点の破壊を抑制することができ、耐電圧性能や遮断性能の低下を抑制することができる。
図11は、真空バルブの接点の構造例を示す図である。図11に示す真空バルブの接点は、基材11として基材11aと、微細組織層12として微細組織層12aと、を有する接点材料1aと、基材11として基材11bと、微細組織層12として微細組織層12bと、を有する接点材料1bと、12bと、通電軸14として通電軸14a、14bと、を具備する。接点材料1a、1bとしては、図1または図9に示す接点材料を用いることができる。
筒状の真空絶縁容器22の両端開口面には、固定側の封着金具23a、および可動側の封着金具23bが、それぞれろう付けによって設けられている。固定側の封着金具23aには、固定側の通電軸14aが貫通固定されている。
固定側の通電軸14aの下端部には、固定側の基材11aがろう材によって固着されている。また、固定側の基材11aの下面には、微細組織層12aが設けられている。なお、固定側の基材11aは、固定側の通電軸14aにかしめ等によって圧着接続されてもよい。
固定側の接点材料1aに対向して接離自在に、可動側の接点材料1bが設けられている。微細組織層12aは、可動側の基材11bの上面に設けられている。可動側の基材11bは、ろう材によって、可動側の通電軸14bの上端部に固着されている。なお、可動側の基材11bは、可動側の通電軸14bにかしめ等によって圧着接続されてもよい。
可動側の通電軸14bは、可動側の封着金具23bの中央開口部を移動自在に貫通する。可動側の通電軸14bと可動側の封着金具23bの開口部との間には、伸縮自在のベローズ28がろう付けによって設けられている。
固定側の接点材料1aおよび可動側の接点材料1bを包囲する筒状のアークシールド29の外周には、支持部材30がろう付けされている。支持部材30は、真空絶縁容器22の内面から突き出た突出部22aに固定されている。
真空バルブ21がこのような構成を有することによって、真空絶縁容器22内を真空に保ちながら、可動側の接点材料1bが固定側の接点材料1aと接離することができる。
真空バルブ21は、例えば真空遮断器やスイッチギヤ等の開閉器に適用することができる。通電性能および耐電圧性能を向上させた接点材料1a、1bを開閉器に用いることにより、開閉器の特性を向上させることができる。
(実施例1~15、比較例1~5)
棒状の無酸素銅からなる基材と、基材と同径の棒状のCuCr合金材と、をそれぞれ準備した。CuCr合金材としては、焼結法により形成し、Cr粉末とCu粉末の配合比を変えることにより、Cr濃度を20~50質量%の範囲で異ならせた複数のCuCr合金材を準備した。
基材とCuCr合金材とを所定の条件で摩擦圧接して、基材とCuCr合金材との間に厚さ2mm以上の微細組織層を形成した。微細組織層としては、Cu-20質量%Cr、Cu-25質量%Cr、Cu-35質量%Cr、Cu-40質量%Cr、Cu-50質量%Crの5種類の微細組織層を形成した。圧接界面の温度は、実施例1~5では500℃、実施例6~10では400℃、実施例11~15では300℃となるように調整した。摩擦圧接によって側面にはみ出した部材を切削除去した後微細組織層を切断し、切削加工することによって基材の表面に500μmの厚さの微細組織層を有する接点材料を作製した。比較のため焼結法で同組成のCuCr合金接点材料を作製した。また、微細組織層の厚さを1mm以上とした接点材料についても併せて作製した。それぞれの微細組織層中の粒子の平均粒径を測定したところ0.1μm以下であった。なお、圧接界面の温度は、摩擦部の表面温度である。
作製した接点材料を用いた接点を真空バルブに組み込み、以下のように耐電圧性能を評価した。接点間のギャップを絶縁破壊が必ず極間で起こるような短い間隔に設定した上で、無負荷にて開閉を1000回行った後に極間にインパルス電圧を印加して絶縁破壊電圧を測定した。なお、耐電圧性能は、比較として焼結法で作製したCu-50質量%Cr接点の絶縁破壊電圧を基準値(1.0)とし、基準値に対する絶縁破壊電圧の相対比により評価した。結果を表1に示す。また、絶縁破壊電圧は、絶縁破壊を複数回繰り返すことによりほぼ一定の値となるため、ほぼ一定となったときの平均値により定義した。
Figure 0007182946000001
表1に示すように、いずれの組成においても絶縁破壊電圧は、微細組織層を有する接点材料の方が焼結法により作製された接点材料を上回っており、実施形態の接点材料の耐電圧性能が従来のCuCr接点材料の耐電圧性能よりも優れていることがわかる。また、実施例1~5から平均界面温度が500℃の場合、CuCr合金材のCr濃度が40質量%以上にすることにより50質量%Crと同等以上の耐電圧性能を実現できることがわかる。また、平均界面温度を400℃に制御した実施例6~10、300℃とした実施例11~15では微細組織層の組成がCu-20質量%Crでも焼結法で作製したCu-50質量%Crと同等以上の絶縁破壊電圧を示しており、高電圧領域での使用が可能となる。
(実施例16~19、比較例6)
微細組織層の厚さを異ならせた複数の接点材料を真空バルブに組み込み、通電性能を評価した。通電性能は、閉極状態の真空バルブに定格遮断電流を3秒間通電した後に開極動作を行い、この際開極に要する溶着力を測定することにより評価した。真空バルブに組み込む接点材料には、棒状の無酸素銅からなる基材の表面に厚さ0.5~2mmのCu-35質量%Cr微細組織層を有する接点材料と、比較のために焼結法で製造したCu-35質量%Cr接点材料を用いた。それぞれの微細組織層中の粒子の平均粒径を測定したところ0.1μm以下であった。結果を表2に示す。
Figure 0007182946000002
表2に示すように、焼結法で製造した接点材料の溶着力が1000Nであり、開極に非常に大きな力を要するが、厚さ2mm以下の微細組織層を形成する場合、溶着力が小さく、通電性能が優れていることがわかる。さらに、微細組織層の厚さを1mm以下にすることにより、溶着力をほぼ0にすることができる。よって、低駆動力の機構を用いる場合等、高い通電性能が要求される場合には、微細組織層は1mm以下とすることが好ましい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示され、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…接点材料、1a…接点材料、1b…接点材料、11…基材、11a…基材、11b…基材、12…微細組織層、12a…微細組織層、12b…微細組織層、13…合金材、14…通電軸、14a…通電軸、14b…通電軸、15…接続子、16…中空部、21…真空バルブ、22…真空絶縁容器、22a…突出部、23a…封着金具、23b…封着金具、28…ベローズ、29…アークシールド、30…支持部材、111…領域、112…領域、113…領域、121…マトリクス、122…粒子、171…スリット、172…スリット。

Claims (7)

  1. 銅または銅を主成分とする合金からなる基材と、銅とクロムとを含有する合金材と、を摩擦圧接することにより、銅を含有するマトリクスと、クロムを含有する平均粒径0.1μm以下の粒子と、を有する厚さ2mm以上の微細組織層を前記基材と前記合金材との間に形成する工程と、
    前記微細組織層の一部が前記基材の表面に残存するように前記微細組織層を切断することにより前記基材と前記合金材とを分離する工程と、
    前記微細組織層の残存部の表面を切削加工する工程と、
    を具備する、真空バルブ用接点材料の製造方法。
  2. 前記基材と前記合金材との圧接界面の温度を300℃以上400℃以下の温度に調整しながら前記基材と前記合金材とを摩擦圧接する、請求項1に記載の製造方法。
  3. 前記合金材中の前記クロムの濃度は、20質量%以上50質量%以下である、請求項1または請求項2に記載の製造方法。
  4. 前記クロムの濃度は、20質量%以上35質量%以下である、請求項3に記載の製造方法。
  5. 切削加工された前記残存部の厚さは、1mm以下である、請求項1ないし請求項4のいずれか一項に記載の製造方法。
  6. 前記残存部の表面とともに前記基材を切削加工する、請求項1ないし請求項5のいずれか一項に記載の製造方法。
  7. 切削加工された前記基材は、スリットを有する、請求項1ないし請求項6のいずれか一項に記載の製造方法。
JP2018151871A 2018-08-10 2018-08-10 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ Active JP7182946B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151871A JP7182946B2 (ja) 2018-08-10 2018-08-10 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151871A JP7182946B2 (ja) 2018-08-10 2018-08-10 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ

Publications (2)

Publication Number Publication Date
JP2020027741A JP2020027741A (ja) 2020-02-20
JP7182946B2 true JP7182946B2 (ja) 2022-12-05

Family

ID=69620299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151871A Active JP7182946B2 (ja) 2018-08-10 2018-08-10 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ

Country Status (1)

Country Link
JP (1) JP7182946B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331698A (ja) 2002-05-08 2003-11-21 Hitachi Ltd 真空遮断器用電極およびその製造方法
JP2006024476A (ja) 2004-07-08 2006-01-26 Toshiba Corp 真空バルブ用接点材料の製造方法
JP2006032036A (ja) 2004-07-14 2006-02-02 Toshiba Corp 真空バルブ用接点材料
JP2009129856A (ja) 2007-11-27 2009-06-11 Toshiba Corp 真空バルブ用接点材料およびその製造方法
JP2009158216A (ja) 2007-12-26 2009-07-16 Japan Ae Power Systems Corp 真空遮断器の電極接点部材及びその製造方法
JP2010277962A (ja) 2009-06-01 2010-12-09 Japan Ae Power Systems Corp 真空遮断器の電極接点部材並びに真空遮断器用電極接点部材の製造方法
JP2012004076A (ja) 2010-06-21 2012-01-05 Toshiba Corp 真空バルブ用接点およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249352A (ja) * 1994-03-08 1995-09-26 Toshiba Corp 真空遮断器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331698A (ja) 2002-05-08 2003-11-21 Hitachi Ltd 真空遮断器用電極およびその製造方法
JP2006024476A (ja) 2004-07-08 2006-01-26 Toshiba Corp 真空バルブ用接点材料の製造方法
JP2006032036A (ja) 2004-07-14 2006-02-02 Toshiba Corp 真空バルブ用接点材料
JP2009129856A (ja) 2007-11-27 2009-06-11 Toshiba Corp 真空バルブ用接点材料およびその製造方法
JP2009158216A (ja) 2007-12-26 2009-07-16 Japan Ae Power Systems Corp 真空遮断器の電極接点部材及びその製造方法
JP2010277962A (ja) 2009-06-01 2010-12-09 Japan Ae Power Systems Corp 真空遮断器の電極接点部材並びに真空遮断器用電極接点部材の製造方法
JP2012004076A (ja) 2010-06-21 2012-01-05 Toshiba Corp 真空バルブ用接点およびその製造方法

Also Published As

Publication number Publication date
JP2020027741A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2011162398A1 (ja) 真空遮断器用電極材料の製造方法、真空遮断器用電極材料及び真空遮断器用電極
US20020144977A1 (en) Electrode of a vacuum valve, a producing method thereof, a vacuum valve, a vacuum circuit-breaker and a contact point of the electrode
TW200941530A (en) Electrical contact for vacuum valve
JP4455066B2 (ja) 電気接点部材とその製法及びそれを用いた真空バルブ並びに真空遮断器
JP2007018835A (ja) 真空遮断器用電気接点およびその製法
JP6323578B1 (ja) 電極材料の製造方法及び電極材料
WO2015060022A1 (ja) 真空バルブ用電気接点およびその製造方法
US20080199716A1 (en) Multiple Component Electrical Contact
JPH1173830A (ja) 真空バルブ
JP7182946B2 (ja) 真空バルブ用接点材料、真空バルブ用接点材料の製造方法、および真空バルブ
JP6669327B1 (ja) 電気接点、電気接点を備えた真空バルブ
JP2000235825A (ja) 真空遮断器用電極部材及びその製造方法
JP2011108380A (ja) 真空バルブ用電気接点およびそれを用いた真空遮断器
JP2003147407A (ja) 電気接点部材とその製造法及びそれを用いた真空バルブ並びに真空遮断器
US6346683B1 (en) Vacuum interrupter and vacuum switch thereof
JP5506873B2 (ja) 接点材料およびその製造方法
JP4515696B2 (ja) 真空遮断器用接点材料
JP2006032036A (ja) 真空バルブ用接点材料
JP6398530B2 (ja) 電極材料の製造方法
EP4276864A1 (en) Vacuum interrupter
US20220172915A1 (en) Medium voltage vacuum interrupter contact with improved arc breaking performance and associated vacuum interrupter
JP2004273342A (ja) 真空バルブ用接点材料及び真空バルブ
JP2001307602A (ja) 真空バルブ用接点材料およびその製造方法
JPS63266720A (ja) 真空開閉器用接点
JP2004076141A (ja) 真空遮断器に用いる真空バルブ及び電気接点の製法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7182946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150