JP7177359B2 - light emitting device - Google Patents

light emitting device Download PDF

Info

Publication number
JP7177359B2
JP7177359B2 JP2020113908A JP2020113908A JP7177359B2 JP 7177359 B2 JP7177359 B2 JP 7177359B2 JP 2020113908 A JP2020113908 A JP 2020113908A JP 2020113908 A JP2020113908 A JP 2020113908A JP 7177359 B2 JP7177359 B2 JP 7177359B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
emitting element
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020113908A
Other languages
Japanese (ja)
Other versions
JP2020174196A (en
Inventor
忠雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2020174196A publication Critical patent/JP2020174196A/en
Application granted granted Critical
Publication of JP7177359B2 publication Critical patent/JP7177359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光装置に関する。 The present invention relates to light emitting devices.

発光素子を封止する透明樹脂の上面に反射樹脂を設け、発光素子からの光を透明樹脂の側面から外部に照射する発光装置が知られている(例えば特許文献1)。このような発光装置は、横方向に光が広がり易く、例えば、バックライト用の光源などとして用いることができる。 2. Description of the Related Art A light-emitting device is known in which a reflective resin is provided on the top surface of a transparent resin that seals a light-emitting element, and light from the light-emitting element is emitted to the outside from the side surface of the transparent resin (for example, Patent Document 1). Such a light-emitting device can spread light easily in the horizontal direction, and can be used, for example, as a light source for a backlight.

特開2013-115280号公報JP 2013-115280 A 特開2013-115088号公報JP 2013-115088 A 特開2013-118244号公報JP 2013-118244 A 特開2013-258175号公報JP 2013-258175 A

近年、バックライトはますます薄型化されており、また、直下型方式を採用し画像に併せてバックライトの明るさを制御するローカルディミング方式が広がっている。そのため、光を効率よく横方向に広げることができる発光装置が求められている。 In recent years, backlights have become thinner and thinner, and a local dimming method, which adopts a direct type method and controls the brightness of the backlight in accordance with an image, is spreading. Therefore, there is a demand for a light-emitting device that can spread light efficiently in the lateral direction.

本発明の実施形態は、以下の構成を含む。
電極形成面と電極形成面の反対側の発光面と電極形成面と発光面との間の側面とを備える半導体積層体と、電極形成面に備えられた一対の電極と、を備える発光素子と、発光素子の側面を被覆する光反射性の被覆部材と、発光素子の前記発光面と被覆部材の上面とにわたって配置される光学部材と、を備え、光学部材は、発光素子の上方に配置される光反射部と、光反射部と被覆部材との間に配置され、発光装置の外側面の一部を構成する透光部と、を備える、発光装置。
An embodiment of the present invention includes the following configurations.
A light-emitting element comprising: a semiconductor laminate having an electrode-formed surface, a light-emitting surface opposite to the electrode-formed surface, and a side surface between the electrode-formed surface and the light-emitting surface; and a pair of electrodes provided on the electrode-formed surface. a light-reflective covering member covering the side surface of the light emitting element; and an optical member arranged over the light emitting surface of the light emitting element and the upper surface of the covering member, wherein the optical member is arranged above the light emitting element. and a translucent portion disposed between the light reflecting portion and the covering member and constituting a part of the outer surface of the light emitting device.

以上により、発光装置からの光をより効率よく横方向に広げることができる。 As described above, the light from the light emitting device can be spread in the horizontal direction more efficiently.

実施形態1に係る発光装置の一例を示す概略斜視図である。1 is a schematic perspective view showing an example of a light emitting device according to Embodiment 1; FIG. 図1AのIB-IB断面における概略断面図である。FIG. 1B is a schematic cross-sectional view along the IB-IB cross section of FIG. 1A; 実施形態1に係る発光装置の一例を示す概略下面図である。1 is a schematic bottom view showing an example of a light emitting device according to Embodiment 1; FIG. 実施形態1に係る発光装置の一例を示す光学部材の概略斜視図である。1 is a schematic perspective view of an optical member showing an example of a light emitting device according to Embodiment 1. FIG. 実施形態2に係る発光装置の一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a light emitting device according to Embodiment 2; 実施形態2に係る発光装置の一例を示す概略下面図である。FIG. 5 is a schematic bottom view showing an example of a light emitting device according to Embodiment 2; 実施形態3に係る発光装置の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a light emitting device according to Embodiment 3; 実施形態3に係る発光装置の変形例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiment 3; 実施形態1~3に係る発光装置の変形例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の変形例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の変形例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の変形例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の変形例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a modified example of the light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態1~3に係る発光装置の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing a light emitting device according to Embodiments 1 to 3; 実施形態4に係る発光装置の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a light emitting device according to Embodiment 4; 実施形態4に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 4; 実施形態4に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 4; 実施形態4に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 4; 実施形態4に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 4; 実施形態5に係る発光装置の一例を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing an example of a light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法を示す図である。FIG. 10 is a diagram showing a method for manufacturing a light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法の変形例を示す図である。FIG. 12 is a diagram showing a modification of the method for manufacturing the light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法の変形例を示す図である。FIG. 12 is a diagram showing a modification of the method for manufacturing the light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法の変形例を示す図である。FIG. 12 is a diagram showing a modification of the method for manufacturing the light emitting device according to Embodiment 5; 実施形態5に係る発光装置の製造方法の変形例を示す図である。FIG. 12 is a diagram showing a modification of the method for manufacturing the light emitting device according to Embodiment 5; 実施形態6に係る発光装置の一例の断面図である。FIG. 11 is a cross-sectional view of an example of a light emitting device according to Embodiment 6; 実施形態6に係る発光装置の他の例の断面図である。FIG. 12 is a cross-sectional view of another example of the light emitting device according to Embodiment 6; 実施形態1~6に係る発光装置の変形例の断面図である。FIG. 4 is a cross-sectional view of a modification of the light emitting device according to Embodiments 1 to 6;

以下、図面に基づいて本発明の実施の形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」および、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。成形、固化、硬化、個片化の前後を問わず、同じ名称を用いて説明する。すなわち、成形前は液状であり、成形後に固体となり、更に、成形後の固体を分割して形状を変化させた固体となる場合など、工程の段階によって状態が変化する部材について、同じ名称で説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In the following description, terms indicating specific directions and positions (for example, "upper", "lower", and other terms including those terms) are used as necessary. These terms are used to facilitate understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of these terms. Parts with the same reference numerals appearing in multiple drawings indicate the same parts or members. Regardless of before and after molding, solidification, hardening, and singulation, the same names are used for explanation. In other words, the same name will be used to describe a member whose state changes depending on the stage of the process, such as when it is liquid before molding, becomes solid after molding, and then divides the solid after molding to change its shape. do.

実施形態に係る発光装置は、発光素子と、被覆部材と、光学部材と、を備える。被覆部材は光反射性であり、発光素子の側面を直接的又は間接的に被覆するように配置される。
光学部材は、発光素子の上から被覆部材の上にわたって配置される部材である。光学部材は、光反射部とその下側に配置される透光部とを備えた少なくとも2層構造を有する。
A light-emitting device according to an embodiment includes a light-emitting element, a covering member, and an optical member. The covering member is light reflective and is arranged to directly or indirectly cover the side surface of the light emitting element.
The optical member is a member arranged over the light emitting element and the covering member. The optical member has at least a two-layer structure including a light reflecting portion and a light transmitting portion arranged therebelow.

発光素子の上方には、光学部材の光反射部が配置されている。これにより、発光素子からの光は、発光素子の上方(直上)から外部に出射されにくい。光学部材の透光部は、光反射部と被覆部材の間に配置される。つまり、光学部材の透光部は、発光装置の側面の一部を構成する。発光素子からの光は、光学部材の透光部内を伝搬して、主として透光部の側面から外部に出射される。 A light reflecting portion of the optical member is arranged above the light emitting element. As a result, light from the light emitting element is less likely to be emitted to the outside from above (directly above) the light emitting element. The light transmitting portion of the optical member is arranged between the light reflecting portion and the covering member. In other words, the translucent portion of the optical member forms part of the side surface of the light emitting device. Light from the light-emitting element propagates through the light-transmitting portion of the optical member and is emitted to the outside mainly from the side surface of the light-transmitting portion.

このように、実施形態に係る発光装置からの光は、主として発光装置の側面の一部である透光部から外部に出射される。さらに、発光装置の側面の全部ではなく、限られた一部を発光面とすることで、外部に出射される光の光密度を向上させることができる。これにより、発光素子からの光を、効率よく側方に出射することができる。例えば、発光装置をバックライト用の光源として導光板の直下に配置させる場合に、より広い範囲に光を照射することができる。
以下、各実施形態について詳説する。
In this way, the light from the light emitting device according to the embodiment is emitted to the outside mainly from the translucent portion which is part of the side surface of the light emitting device. Furthermore, by using a limited portion of the side surface of the light emitting device instead of the entire side surface as the light emitting surface, the light density of the light emitted to the outside can be improved. As a result, the light from the light emitting element can be efficiently emitted sideways. For example, when the light-emitting device is arranged directly under the light guide plate as a light source for backlight, it is possible to irradiate light over a wider range.
Each embodiment will be described in detail below.

<実施形態1>
実施形態1に係る発光装置100を図1A~図1Cに示す。発光装置100は、外観形状が略直方体である。発光装置100の下面101及び上面102の形状は正方形又は長方形などの四角形である。また、発光装置100の側面103の形状も略四角形である。
側面103のうち、少なくとも反対側に位置する2つの側面103は同じ大きさである。
尚、発光装置は上記形状に限らず、上面視が六角形等の多角形等とすることができる。
<Embodiment 1>
A light emitting device 100 according to Embodiment 1 is shown in FIGS. 1A to 1C. The light emitting device 100 has a substantially rectangular parallelepiped external shape. The shape of the lower surface 101 and the upper surface 102 of the light emitting device 100 is a quadrangle such as a square or a rectangle. Moreover, the shape of the side surface 103 of the light emitting device 100 is also substantially rectangular.
Of the side surfaces 103, at least two opposite side surfaces 103 have the same size.
The shape of the light emitting device is not limited to the above shape, and may be polygonal such as hexagonal when viewed from above.

発光装置100は、発光素子10と、被覆部材20と、光学部材30と、を備える。被覆部材20は、発光素子10の側面11cを被覆するように配置される。光学部材30は、発光素子10の発光面11bと被覆部材20の上面22とにわたって配置される。 A light emitting device 100 includes a light emitting element 10 , a covering member 20 and an optical member 30 . The covering member 20 is arranged to cover the side surface 11 c of the light emitting element 10 . The optical member 30 is arranged over the light emitting surface 11 b of the light emitting element 10 and the upper surface 22 of the covering member 20 .

(発光素子)
発光素子10は、半導体層を含む積層構造体11と、電極12と、を備える。積層構造体11は、電極形成面11aと、電極形成面11aの反対側の発光面11bと、を備える。電極12は、正極側の電極12pと、負極側の電極12nとを備える。積層構造体11の電極形成面11aは、発光素子10の電極形成面でもある。積層構造体11の発光面11bは、発光素子10の発光面でもある。
(light emitting element)
The light emitting device 10 includes a laminated structure 11 including semiconductor layers and an electrode 12 . The laminated structure 11 includes an electrode forming surface 11a and a light emitting surface 11b opposite to the electrode forming surface 11a. The electrode 12 includes a positive electrode 12p and a negative electrode 12n. The electrode formation surface 11 a of the laminated structure 11 is also the electrode formation surface of the light emitting element 10 . The light emitting surface 11 b of the laminated structure 11 is also the light emitting surface of the light emitting element 10 .

積層構造体11は、発光層を含む半導体層を含む。さらに、サファイア等の透光性基板を備えていてもよい。半導体積層体の一例としては、第1導電型半導体層(例えばn型半導体層)、発光層(活性層)および第2導電型半導体層(例えばp型半導体層)の3つの半導体層を含むことができる。紫外光や、青色光から緑色光の可視光を発光可能な半導体層としては、例えば、III-V族化合物半導体等の半導体材料から形成することができる。具体的には、InAlGa1-X-YN(0≦X、0≦Y、X+Y≦1)等の窒化物系の半導体材料を用いることができる。赤色を発光可能な半導体積層体としては、GaAs、GaAlAs、GaP、InGaAs、InGaAsP等を用いることができる。積層構造体11の厚みは、例えば3μm~500μmとすることができる。 The laminated structure 11 includes a semiconductor layer including a light emitting layer. Furthermore, a translucent substrate such as sapphire may be provided. An example of a semiconductor laminate includes three semiconductor layers of a first conductivity type semiconductor layer (e.g., n-type semiconductor layer), a light emitting layer (active layer), and a second conductivity type semiconductor layer (e.g., p-type semiconductor layer). can be done. The semiconductor layer capable of emitting ultraviolet light and visible light ranging from blue light to green light can be formed of semiconductor materials such as III-V group compound semiconductors, for example. Specifically, a nitride-based semiconductor material such as In X Al Y Ga 1-XY N (0≦X, 0≦Y, X+Y≦1) can be used. GaAs, GaAlAs, GaP, InGaAs, InGaAsP, or the like can be used as a semiconductor laminate capable of emitting red light. The thickness of the laminated structure 11 can be, for example, 3 μm to 500 μm.

電極12は、当該分野で公知の材料及び構成で、任意の厚みで形成することができる。
また、電極12としては、電気良導体を用いることができ、例えば、Cu、Ni、Sn、Fe、Ti、Au、Ag、Pt等が使用できる。電極12として、AuSnやSnAgCu、SnPbはんだを仕様してもよい。電極12は、これらの金属又ははんだの単層もしくは複数を積層により構成することができるが、好ましくは材料価格の安いCu、Ni、Fe、Sn材料で主要部を構成し、その主要部の最表面を安定な金属であるAu、Ag、Ptで覆う事により構成する。このように安価な金属からなる主要部とその最表面覆う安定な金属膜で構成することにより、電極12を安価にできることに加えて酸化によるハンダ濡れ性の悪化を抑制できる。また、Au、Ag、Ptからなる表面層とCu、Ni、Fe、Snからなる主要部の間に、Ti、Ni、Mo、W、Ru、Pt等の密着層を形成しても良い。これらの密着層は表面層の下地として主要部との密着力を向上させると共に、はんだの拡散を制御してはんだ接合時のボイドを低減し、長期間にわたり安定した強度が維持できる。
電極12は、例えば、1μm~300μmの厚さに形成することができるが、好ましくは5μm~100μmの範囲、より好ましくは10μm~50μmの範囲の厚さに形成する。表面層を形成する場合には、例えば、Au、Ag、Pt等を0.001μm~1μmの厚さ、好ましくは0.01~0.1μmの厚さに形成する。このような厚さの範囲で表面層を形成することにより、コスト上昇を抑えつつ、電極表面の酸化が防止でき、はんだ濡れ性が悪化を抑制できる。表面層と主要部の間に形成するTi、Ni、Mo、W、Ru、Pt等の密着層は、例えば、0.001~1μmの範囲の厚さ、好ましくは0.001~0.05μmの厚さに形成する。電極12の上面視形状は、目的や用途等に応じて、種々の形状を選択することができる。図1Cでは、電極12n、12pはそれぞれ同じ形状であり、長方形である。電極12n、12pは、極性を示すために、異なる形状とすることができる。例えば、長方形のいずれかの辺または角部を切欠いたような形状とすることができる。電極12の下面は被覆部材20から露出しており、外部接続端子として機能することができる。尚、ここでは電極12の下面のみが被覆部材20から露出している例を示しているが、電極12の側面の一部又は全部が、被覆部材20から露出してもよい。
Electrode 12 can be formed of any thickness and of materials and configurations known in the art.
Moreover, as the electrode 12, an electrically good conductor can be used, for example, Cu, Ni, Sn, Fe, Ti, Au, Ag, Pt, etc. can be used. As the electrode 12, AuSn, SnAgCu, or SnPb solder may be used. The electrode 12 can be constructed by laminating a single layer or multiple layers of these metals or solders. The surface is covered with stable metals such as Au, Ag, and Pt. In this way, by constructing the main part made of an inexpensive metal and the stable metal film covering the outermost surface thereof, the electrode 12 can be made inexpensive, and deterioration of solder wettability due to oxidation can be suppressed. Also, an adhesion layer such as Ti, Ni, Mo, W, Ru, Pt, etc. may be formed between the surface layer made of Au, Ag, Pt and the main portion made of Cu, Ni, Fe, Sn. These adhesion layers act as bases for the surface layer to improve adhesion to the main part, control the diffusion of solder to reduce voids during solder bonding, and maintain stable strength over a long period of time.
The electrode 12 can have a thickness of, for example, 1 μm to 300 μm, preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm. When forming the surface layer, for example, Au, Ag, Pt or the like is formed to a thickness of 0.001 μm to 1 μm, preferably 0.01 to 0.1 μm. By forming the surface layer within such a thickness range, oxidation of the electrode surface can be prevented and deterioration of solder wettability can be suppressed while suppressing an increase in cost. The adhesion layer of Ti, Ni, Mo, W, Ru, Pt, etc. formed between the surface layer and the main portion has a thickness in the range of, for example, 0.001 to 1 μm, preferably 0.001 to 0.05 μm. Form to thickness. Various shapes can be selected for the top view shape of the electrode 12 according to the purpose, application, and the like. In FIG. 1C, the electrodes 12n, 12p are each of the same shape and rectangular. Electrodes 12n, 12p may be shaped differently to indicate polarity. For example, it can be shaped like a rectangle with one side or corner notched. The lower surface of the electrode 12 is exposed from the covering member 20 and can function as an external connection terminal. Although only the lower surface of the electrode 12 is exposed from the covering member 20 here, part or all of the side surface of the electrode 12 may be exposed from the covering member 20 .

(被覆部材)
被覆部材20は光反射性であり、発光素子10の側面11cを直接的又は間接的に被覆する。換言すると、被覆部材20の内側面24は、発光素子10の側面11cと接する又は対向する。図1Bに例示する発光装置100では、被覆部材20は、発光素子10の側面11cと接している。
(coating member)
The covering member 20 is light reflective and covers the side surface 11c of the light emitting element 10 directly or indirectly. In other words, the inner side surface 24 of the covering member 20 contacts or faces the side surface 11 c of the light emitting element 10 . In the light emitting device 100 illustrated in FIG. 1B, the covering member 20 is in contact with the side surface 11c of the light emitting element 10. As shown in FIG.

被覆部材20の外側面23は、後述の光学部材30の側面33と共に、発光装置100の側面103を構成する。被覆部材20の外側面23と光学部材30の側面33とは、同一面とすることが好ましい。 The outer side surface 23 of the covering member 20 constitutes the side surface 103 of the light emitting device 100 together with the side surface 33 of the optical member 30 which will be described later. The outer side surface 23 of the covering member 20 and the side surface 33 of the optical member 30 are preferably flush with each other.

被覆部材20は、発光素子10の一対の電極12p、12nのそれぞれの少なくとも一部が露出するように積層構造体11の電極形成面11aを被覆する。詳細には、被覆部材20は、電極12pの下面と、電極12nの下面とが露出し、電極12pの側面と電極12nの側面とを被覆する。被覆部材20の下面21は、発光装置100の下面101の一部を構成する。図1Bに示す発光装置100では、被覆部材20の下面21と電極12の下面とが同一面に位置している。積層構造体の下面を被覆する被覆部材は、例えば、被覆部材20の下面21と電極12の下面とが同一面に位置するように電極12の厚さと同じ、例えば、5~100μmの範囲、好ましくは10~50μmの厚さに形成する。この範囲の厚さの被覆部材により積層構造体の下面を被覆すると、積層構造体の下面から出射される光を少なくできる(光抜けを抑制できる)。尚、積層構造体の下面を被覆する被覆部材の厚さは、例えば、被覆部材に含有させるTiO2の濃度を考慮して適宜設定することができる。上述したように、例えば、被覆部材20の下面21と電極12の下面とは同一面上に位置するようにするが、本実施形態では、電極12の下面と被覆部材20の下面21の間には段差があってもよい。その場合、電極12の下面は被覆部材20の下面21から突出していてもよいし、窪んでいてもよい。電極12の下面と被覆部材20の下面21間の段差は、接続強度が高く、接続抵抗が低い安定した接続を確保するために、例えば、0.1~30μm、好ましくは0.5~20μm、より好ましくは0.5~10μmの範囲とする。例えば、被覆部材20の下面21より電極12を突出させて形成すると、その突出部の側面にもはんだを接合させることができることから、接合強度を高くできる。また、電極12の下面を被覆部材20の下面21より窪ませて電極12を形成すると、実装時における発光装置の傾きを抑制でき、実装後の発光装置の配向方向のばらつきを小さくできる。 The covering member 20 covers the electrode formation surface 11a of the laminated structure 11 so that at least a portion of each of the pair of electrodes 12p and 12n of the light emitting element 10 is exposed. Specifically, the covering member 20 exposes the lower surface of the electrode 12p and the lower surface of the electrode 12n, and covers the side surface of the electrode 12p and the side surface of the electrode 12n. The lower surface 21 of the covering member 20 constitutes part of the lower surface 101 of the light emitting device 100 . In the light-emitting device 100 shown in FIG. 1B, the lower surface 21 of the covering member 20 and the lower surface of the electrode 12 are positioned on the same plane. The covering member that covers the lower surface of the laminated structure preferably has a thickness equal to the thickness of the electrode 12, for example, in the range of 5 to 100 μm, so that the lower surface 21 of the covering member 20 and the lower surface of the electrode 12 are positioned on the same plane. is formed to a thickness of 10-50 μm. When the lower surface of the laminated structure is covered with a coating member having a thickness within this range, the amount of light emitted from the lower surface of the laminated structure can be reduced (light leakage can be suppressed). The thickness of the covering member that covers the lower surface of the laminated structure can be appropriately set, for example, in consideration of the concentration of TiO2 contained in the covering member. As described above, for example, the lower surface 21 of the covering member 20 and the lower surface of the electrode 12 are positioned on the same plane. may have steps. In that case, the lower surface of the electrode 12 may protrude from the lower surface 21 of the covering member 20 or may be recessed. The step between the lower surface of the electrode 12 and the lower surface 21 of the covering member 20 is, for example, 0.1 to 30 μm, preferably 0.5 to 20 μm, in order to ensure stable connection with high connection strength and low connection resistance. More preferably, the range is 0.5 to 10 μm. For example, if the electrode 12 is formed so as to protrude from the lower surface 21 of the covering member 20, the solder can be joined to the side surface of the protruding portion, so that the joining strength can be increased. Further, by forming the electrode 12 with the lower surface of the electrode 12 recessed from the lower surface 21 of the covering member 20, tilting of the light emitting device during mounting can be suppressed, and variation in the alignment direction of the light emitting device after mounting can be reduced.

被覆部材20の上面22は、光学部材30の下面31と接している。図1Bに示す発光装置100では、被覆部材20の上面22と発光素子10の発光面11bとは同一面に位置している。 The upper surface 22 of the covering member 20 is in contact with the lower surface 31 of the optical member 30 . In the light-emitting device 100 shown in FIG. 1B, the upper surface 22 of the covering member 20 and the light-emitting surface 11b of the light-emitting element 10 are positioned on the same plane.

被覆部材20は、発光素子10からの光を反射可能な部材であり、例えば光反射性物質を含有する樹脂材料を用いることができる。被覆部材20は、発光素子10からの光に対する反射率が70%以上であることが好ましく、更に、80%以上であることが好ましく、90%以上であることがより好ましい。 The covering member 20 is a member capable of reflecting light from the light emitting element 10, and can be made of, for example, a resin material containing a light reflecting substance. The coating member 20 preferably has a reflectance of 70% or more, more preferably 80% or more, and more preferably 90% or more with respect to the light from the light emitting element 10 .

被覆部材20としては、例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を主成分とする樹脂材料を母材とすることが好ましい。樹脂材料中に含有させる光反射性物質としては、例えば、白色物質を用いることができる。具体的には、例えば、酸化チタン、酸化ケイ素、酸化ジルコニウム、チタン酸カリウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、ムライトなどが好適である。
光反射性物質は、粒状、繊維状、薄板片状などが利用できる。
The base material of the covering member 20 is preferably a resin material containing a thermosetting resin such as a silicone resin, a modified silicone resin, an epoxy resin, or a phenol resin as a main component. For example, a white substance can be used as the light-reflecting substance contained in the resin material. Specifically, for example, titanium oxide, silicon oxide, zirconium oxide, potassium titanate, aluminum oxide, aluminum nitride, boron nitride, mullite and the like are suitable.
The light-reflecting substance can be used in the form of granules, fibers, flakes, or the like.

(光学部材)
光学部材30は、発光装置100の配光特性を制御するための部材である。図1Dは、図1Aに示す発光装置100の光学部材30を、下面側から見た概略斜視図である。光学部材30は、発光素子10の発光面11bと被覆部材20の上面22とにわたって配置される板状の部材である。光学部材30は、少なくとも上下方向において2層構造であり、上側に光反射部50を備え、下側に透光部40を備える。光反射部50の上面52は光学部材30の上面32であり、発光装置100の上面102でもある。光反射部50の側面53は、光学部材30の側面33の一部であり、発光装置100の側面103の一部である。透光部40の側面43は、光学部材30の側面33の一部であり、発光装置100の側面103の一部である。透光部40の下面41は光学部材30の下面31の一部又は全部であり、少なくとも被覆部材20の上面22と対向する面である。
(optical member)
The optical member 30 is a member for controlling light distribution characteristics of the light emitting device 100 . FIG. 1D is a schematic perspective view of the optical member 30 of the light emitting device 100 shown in FIG. 1A, viewed from the bottom side. The optical member 30 is a plate-shaped member arranged over the light emitting surface 11 b of the light emitting element 10 and the upper surface 22 of the covering member 20 . The optical member 30 has a two-layer structure at least in the vertical direction, with the light reflecting portion 50 on the upper side and the light transmitting portion 40 on the lower side. The upper surface 52 of the light reflecting portion 50 is the upper surface 32 of the optical member 30 and also the upper surface 102 of the light emitting device 100 . The side surface 53 of the light reflecting portion 50 is part of the side surface 33 of the optical member 30 and part of the side surface 103 of the light emitting device 100 . A side surface 43 of the translucent portion 40 is a part of the side surface 33 of the optical member 30 and a part of the side surface 103 of the light emitting device 100 . The lower surface 41 of the translucent portion 40 is part or all of the lower surface 31 of the optical member 30 , and faces at least the upper surface 22 of the covering member 20 .

実施形態1では、透光部40は、被覆部材20の上方に加え、発光素子10の上方にも配置される。換言すると、透光部40の下面41は、発光素子10の発光面11bと対向する。これにより、発光素子10の発光面11bと光反射部50の下面51とが、透光部40を介して対向配置されることになるため、発光素子10からの光を光反射部50の下面51を用いて効率よく反射して側方にある発光面から外部に光を取り出しやすくすることができる。 In Embodiment 1, the translucent part 40 is arranged above the light emitting element 10 in addition to above the covering member 20 . In other words, the lower surface 41 of the translucent portion 40 faces the light emitting surface 11 b of the light emitting element 10 . As a result, the light emitting surface 11 b of the light emitting element 10 and the lower surface 51 of the light reflecting section 50 are arranged to face each other with the light transmitting section 40 interposed therebetween. The light can be efficiently reflected by using 51 so that the light can be easily extracted to the outside from the light emitting surface on the side.

光学部材30の厚みTは、全体にわたって同じ厚みとすることができる。すなわち、光学部材30の下面31と上面32とは共に平面であり、互いに平行な面とすることができる。光学部材30の上面32を図1Bに示すような平面とすることで、例えば、コレット等によって吸着して発光装置を移送させる際に、精度よく吸着することができる。ただし、光学部材30の上面32と下面31とは、一部又は全部が平行ではない面を有していてもよい。光学部材30の厚みTは、発光素子10の大きさや発光装置100の大きさ、発光装置100の配光特性等に応じて適宜選択することができる。例えば、光学部材30の厚みTは、発光装置100の厚みの20%~80%程度とすることができる。 The thickness T 2 O of the optical member 30 can be the same throughout. That is, the lower surface 31 and the upper surface 32 of the optical member 30 are both flat surfaces and can be made parallel to each other. By making the upper surface 32 of the optical member 30 flat as shown in FIG. 1B, for example, when the light emitting device is transferred by being sucked by a collet or the like, it can be sucked with high accuracy. However, the upper surface 32 and the lower surface 31 of the optical member 30 may have surfaces that are not parallel partially or entirely. The thickness TO of the optical member 30 can be appropriately selected according to the size of the light emitting element 10, the size of the light emitting device 100, the light distribution characteristics of the light emitting device 100, and the like. For example, the thickness T 2 O of the optical member 30 can be about 20% to 80% of the thickness of the light emitting device 100 .

(光学部材の透光部)
光学部材30の下面31側に配置される透光部40は、発光素子10からの光を伝搬させるための部材である。透光部40は、透光性の樹脂材料、ガラス等を用いることができる。例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を用いることができる。また、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。透光部40は、発光素子からの光に対する透過率が70%以上であることが好ましく、更に、80%以上であることが好ましく、90%以上であることがより好ましい。透光部40は、後述の蛍光体を実質的に含まない。また、拡散材等も含まない。上述の樹脂材料又はガラスのみからなる。これにより、透光部40の内部で光が散乱することを抑制し、光反射部50の下面51及び被覆部材20の上面22とによって反射された光を、効率よく透光部40の側面43から外部に出射することができる。
(Translucent part of optical member)
The light transmitting portion 40 arranged on the lower surface 31 side of the optical member 30 is a member for propagating the light from the light emitting element 10 . Translucent resin material, glass, or the like can be used for the translucent portion 40 . For example, thermosetting resins such as silicone resins, silicone-modified resins, epoxy resins, and phenol resins can be used. Thermoplastic resins such as polycarbonate resins, acrylic resins, methylpentene resins, and polynorbornene resins can also be used. In particular, silicone resins, which are excellent in light resistance and heat resistance, are suitable. The translucent portion 40 preferably has a transmittance of 70% or more, more preferably 80% or more, and more preferably 90% or more with respect to the light from the light emitting element. The translucent portion 40 does not substantially contain a phosphor, which will be described later. Also, diffusion materials and the like are not included. It consists only of the above-mentioned resin material or glass. As a result, scattering of light inside the translucent portion 40 is suppressed, and the light reflected by the lower surface 51 of the light reflecting portion 50 and the upper surface 22 of the covering member 20 is efficiently transferred to the side surface 43 of the translucent portion 40 . can be emitted to the outside.

透光部40の側面43は、発光素子10からの光を外部に出射する面であり、発光装置100の発光面である。図1A、図1Bに示すように、矩形の発光装置100の4つの側面103の全てにおいて、透光部40の側面43が配置されている。つまり、発光装置100は、4つの側面103に発光面を備える。これにより、発光装置100は、上面視において発光装置100を中心として360度方向に発光面を備える。 A side surface 43 of the translucent portion 40 is a surface through which light from the light emitting element 10 is emitted to the outside, and is a light emitting surface of the light emitting device 100 . As shown in FIGS. 1A and 1B, the side surfaces 43 of the translucent portion 40 are arranged on all four side surfaces 103 of the rectangular light emitting device 100 . That is, the light-emitting device 100 has light-emitting surfaces on the four side surfaces 103 . As a result, the light emitting device 100 has light emitting surfaces extending 360 degrees around the light emitting device 100 when viewed from above.

このように、発光装置100の側面103において、被覆部材20と光反射部50とで上下を挟まれた透光部40を発光面とすることで、発光素子10からの光を、発光装置100の厚みに比して小さい面積の発光面から外部に出射することになる。そのため、発光装置100の側方に出射される光をより遠くまで出射することができる。 In this way, on the side surface 103 of the light-emitting device 100, the light-transmitting portion 40 sandwiched between the covering member 20 and the light-reflecting portion 50 is used as the light-emitting surface. The light is emitted to the outside from a light emitting surface having a smaller area than the thickness of the . Therefore, the light emitted to the side of the light emitting device 100 can be emitted farther.

全体が同じ厚みの平板状の光学部材30において、透光部40の厚み又は光反射部50の厚みも、それぞれ同じ厚みとすることができる。つまり、平板状の透光部40と平板状の光反射部50とすることができる。好ましくは、図1Bに示すように、断面視において、透光部40の厚みは、中心部における厚みTT2よりも、側面43における厚みTT1の方が厚いことが好ましい。透光部40の側面43における厚みTT1は、光学部材30の厚みTに対して、50%~100%とすることができる。つまり、透光部40の側面43の厚みTT1と、光学部材の厚みTとが同じであってもよい。また、透光部40の中心部における厚みTT2は、光学部材30の厚みTに対して、0%~90%とすることができる。つまり、透光部40の中央部において、光反射部50の厚みTT2と、光学部材30の厚みTとが同じであってもよい。 In the plate-shaped optical member 30 having the same thickness as a whole, the thickness of the translucent portion 40 or the thickness of the light reflecting portion 50 can also be the same. In other words, it is possible to have a plate-like light transmitting portion 40 and a plate-like light reflecting portion 50 . Preferably, as shown in FIG. 1B, in cross-sectional view, the thickness TT1 of the side surface 43 of the translucent portion 40 is thicker than the thickness TT2 of the central portion. The thickness T 2 T1 of the side surface 43 of the translucent portion 40 can be 50% to 100% of the thickness T 2 O of the optical member 30 . That is, the thickness T T1 of the side surface 43 of the translucent portion 40 and the thickness T O of the optical member may be the same. Further, the thickness T 2 T2 at the central portion of the translucent portion 40 can be 0% to 90% of the thickness T 2 O of the optical member 30. FIG. In other words, the thickness T T2 of the light reflecting portion 50 and the thickness T O of the optical member 30 may be the same at the central portion of the translucent portion 40 .

(光学部材の光反射部)
光学部材30の光反射部50は、発光素子10からの光を、発光面である透光部40の側面43に向けて反射させるための部材である。光反射部50は、例えば、光反射性物質を含有する樹脂材料や、金属材料を用いることができる。あるいは、誘電体多層膜を用いた無機材料を用いることができる。光反射部50は、発光素子からの光に対する反射率が70%以上であることが好ましく、更に、80%以上であることが好ましく、90%以上であることがより好ましい。
(Light reflecting portion of optical member)
The light reflecting portion 50 of the optical member 30 is a member for reflecting the light from the light emitting element 10 toward the side surface 43 of the translucent portion 40 which is the light emitting surface. For the light reflecting section 50, for example, a resin material containing a light reflecting substance or a metal material can be used. Alternatively, an inorganic material using a dielectric multilayer film can be used. The light reflecting portion 50 preferably has a reflectance of 70% or more, more preferably 80% or more, and more preferably 90% or more, with respect to the light from the light emitting element.

光反射部50として、光反射性物質を樹脂材料中に分散させた光反射性の樹脂材料を用いる場合、光反射性物質としては、例えば、白色物質を用いることができる。具体的には、例えば、酸化チタン、酸化ケイ素、酸化ジルコニウム、チタン酸カリウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、ムライトなどが好適である。光反射性物質は、粒状、繊維状、薄板片状などが利用できる。母材として、例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を用いることができる。 When a light-reflecting resin material in which a light-reflecting substance is dispersed is used as the light-reflecting part 50, for example, a white substance can be used as the light-reflecting substance. Specifically, for example, titanium oxide, silicon oxide, zirconium oxide, potassium titanate, aluminum oxide, aluminum nitride, boron nitride, mullite and the like are suitable. The light-reflecting substance can be used in the form of granules, fibers, flakes, or the like. Thermosetting resins such as silicone resins, silicone-modified resins, epoxy resins, and phenol resins can be used as the base material.

光反射部50として、光反射率の高い金属材料を用いる場合、例えば、銀、アルミニウム、ロジウム、金、銅等およびそれらの合金を挙げることができ、1又は2以上を組み合わせてもよい。 When a metal material having a high light reflectance is used as the light reflecting portion 50, examples thereof include silver, aluminum, rhodium, gold, copper, and alloys thereof, and one or more of them may be combined.

光反射部50として、誘電体多層膜を用いる場合、例えば、酸化チタン、酸化ケイ素、酸化ジルコニウム、チタン酸カリウム、酸化アルミニウム、窒化アルミニウ等を用いたものを挙げることができる。 When a dielectric multilayer film is used as the light reflecting section 50, for example, those using titanium oxide, silicon oxide, zirconium oxide, potassium titanate, aluminum oxide, aluminum nitride, and the like can be used.

光反射部50は、透光部40内に入射された光を反射する反射面として機能する下面51を備える。光反射部50の下面51は、発光素子10の発光面11bに対して平行な面とすることができる。好ましくは、また、発光面11b側に凸状である凸状面とすることができる。これにより、発光素子10からの光を、発光装置の側面に位置する発光面(透光部40の側面43)方向に光を反射し易くすることができる。 The light reflecting portion 50 has a lower surface 51 functioning as a reflecting surface for reflecting light incident on the light transmitting portion 40 . The lower surface 51 of the light reflecting portion 50 can be a surface parallel to the light emitting surface 11 b of the light emitting element 10 . Preferably, it can also be a convex surface that is convex toward the light emitting surface 11b side. Thereby, the light from the light emitting element 10 can be easily reflected toward the light emitting surface (the side surface 43 of the translucent portion 40) located on the side surface of the light emitting device.

さらに、光反射部50の下面51が凸状面である場合、最も発光素子10の発光面11bに近い部分である頂部Rは、上面視において、発光素子10の中心とが一致するように配置されることが好ましい。これにより、発光素子10からの光を、発光装置の側面の全ての発光面から外部に向けて、均等に光を照射し易くすることができる。 Furthermore, when the lower surface 51 of the light reflecting portion 50 is a convex surface, the top portion R, which is the portion closest to the light emitting surface 11b of the light emitting element 10, is arranged so as to coincide with the center of the light emitting element 10 when viewed from above. preferably. As a result, the light from the light-emitting element 10 can be easily emitted evenly toward the outside from all the light-emitting surfaces on the sides of the light-emitting device.

光反射部50は、発光素子10からの光の透過率が50%程度以下となるような厚みとすることが好ましい。図1Bに示すように、光反射部50が、厚みの異なる部材である場合は、最も厚みが薄い部分において、発光素子10からの光の透過率が50%程度より小さくなるような厚みとすることが好ましい。 The light reflecting portion 50 preferably has a thickness such that the transmittance of light from the light emitting element 10 is about 50% or less. As shown in FIG. 1B, when the light reflecting portion 50 is a member with a different thickness, the thickness is such that the light transmittance from the light emitting element 10 is less than about 50% at the thinnest portion. is preferred.

光学部材30が平板状の場合、光反射部50の厚みは、中心に位置する頂部Rにおける厚みTR2よりも、側面53における厚みTR1の方が薄いことが好ましい。 When the optical member 30 is flat, it is preferable that the thickness TR1 at the side surface 53 of the light reflecting portion 50 is thinner than the thickness TR2 at the top portion R located in the center.

光反射部50として、光反射物質を含む樹脂材料等を用いる場合は、光反射物質の組成や含有量等によって光の透過率が変化する。そのため、用いる材料に応じて厚み等については適宜調整する。例えば、酸化チタンを70wt%程度含む樹脂材料を用いた光反射部50であって、図1Bに示すような、中央部が厚く側面53が薄い光反射部50の場合、側面53における厚みTR1は、0μm~300μmが好ましく、20μm~100μmが更に好ましいも厚く、例えば、20μm~500μmが好ましく、50μm~300μmが更に好ましい。 When a resin material or the like containing a light reflecting substance is used as the light reflecting portion 50, the light transmittance changes depending on the composition, content, or the like of the light reflecting substance. Therefore, the thickness and the like are appropriately adjusted according to the material to be used. For example, in the case of the light reflecting portion 50 using a resin material containing about 70 wt % of titanium oxide and having a thick central portion and a thin side surface 53 as shown in FIG. is preferably from 0 μm to 300 μm, more preferably from 20 μm to 100 μm.

光反射部50の頂部Rにおける厚みTR2は、光学部材30の厚みTと同じであってもよい。つまり、光学部材30の厚み方向において、透光部40が存在しない領域を備えていても構わない。 The thickness T R2 at the top R of the light reflecting portion 50 may be the same as the thickness T O of the optical member 30 . In other words, in the thickness direction of the optical member 30, there may be a region where the translucent portion 40 does not exist.

光反射部50の下面51は、円錐状とすることができる。例えば、図1Bに示すように、中心部を頂部Rとし、この頂部Rから側面53にかけて傾斜する傾斜面である円錐状とすることが好ましい。傾斜面としては、図1Bに示すような、断面視において直線となる傾斜面とすることができる。その場合、傾斜面の角度θ(水平面からの角度)は、例えば、10度~80度とすることが好ましく、更に、20度~60度とすることが好ましい。 The lower surface 51 of the light reflecting portion 50 can be conical. For example, as shown in FIG. 1B, it is preferable to form a conical shape, which is a slanted surface 53 from which the central portion is the apex R and which is slanted from the apex R to the side surface 53 . The inclined surface may be an inclined surface that is straight in a cross-sectional view, as shown in FIG. 1B. In that case, the angle θ of the inclined surface (the angle from the horizontal plane) is, for example, preferably 10 degrees to 80 degrees, and more preferably 20 degrees to 60 degrees.

光反射部50の変形例については、後述する。 Modified examples of the light reflecting portion 50 will be described later.

<実施形態2>
実施形態2に係る発光装置200を図2A、図2Bに示す。発光装置200は、外観形状は図1Aに示す発光装置100と同様であり、実施形態1の発光装置100と比べると、導光部材60を備える点、波長変換部材70を備える点、金属層80を備える点において異なる。尚、導光部材60、波長変換部材70、金属層80は、これらの全てを備えていてもよく、あるいは、いずれか1つ、または2つを備えていてもよい。以下において、主として導光部材60、波長変換部材70、金属層80について説明する。その他の構成については、実施形態1と同様とすることができるため、適宜説明を省略する。
<Embodiment 2>
A light emitting device 200 according to Embodiment 2 is shown in FIGS. 2A and 2B. The light-emitting device 200 has the same external shape as the light-emitting device 100 shown in FIG. It is different in that it has In addition, the light guide member 60, the wavelength conversion member 70, and the metal layer 80 may be provided with all of these, or may be provided with any one or two. The light guide member 60, the wavelength conversion member 70, and the metal layer 80 will be mainly described below. Since other configurations can be the same as those of the first embodiment, description thereof will be omitted as appropriate.

(導光部材)
導光部材60は、発光素子10の側面11cを被覆するように配置される部材であり、発光素子10の側面11cから出射される光を光学部材30に導光させるための部材である。導光部材60は、透光性の樹脂材料を用いることができる。例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を主成分とする樹脂材料が好ましい。導光部材60は、発光素子からの光に対する透過率が70%以上であることが好ましく、更に、80%以上であることが好ましく、90%以上であることがより好ましい。
(light guide member)
The light guide member 60 is a member arranged to cover the side surface 11 c of the light emitting element 10 and is a member for guiding the light emitted from the side surface 11 c of the light emitting element 10 to the optical member 30 . A translucent resin material can be used for the light guide member 60 . For example, resin materials containing thermosetting resins such as silicone resins, silicone-modified resins, epoxy resins, and phenol resins as main components are preferable. The light guide member 60 preferably has a transmittance of 70% or more, more preferably 80% or more, and more preferably 90% or more with respect to the light from the light emitting element.

導光部材60は、発光素子10の側面11cの50%以上を被覆することが好ましい。
また、導光部材60は発光素子10の発光面11bを被覆してもよい。導光部材60の外側面63は、被覆部材20によって被覆されている。そのため、発光素子10の側面11cから出射された光は、導光部材60内に入射した後、導光部材60の外側面63によって上方向(発光素子10の発光面11b方向)に反射され、光学部材30の透光部40内に入射される。このような導光部材60を備えることで、発光素子10からの光を、効率よく光学部材30の透光部40に入射することができる。
The light guide member 60 preferably covers 50% or more of the side surface 11 c of the light emitting element 10 .
Moreover, the light guide member 60 may cover the light emitting surface 11 b of the light emitting element 10 . An outer surface 63 of the light guide member 60 is covered with the covering member 20 . Therefore, the light emitted from the side surface 11c of the light emitting element 10 enters the light guide member 60 and is reflected upward (toward the light emitting surface 11b of the light emitting element 10) by the outer surface 63 of the light guide member 60. The light enters the translucent portion 40 of the optical member 30 . By providing such a light guide member 60 , the light from the light emitting element 10 can efficiently enter the light transmitting portion 40 of the optical member 30 .

導光部材60の上面62は、光学部材30の下面31と、光学的に直接的又は間接的に連続するように接続される。詳細には、光学部材30の透光部40の下面41と、光学的に直接的又は間接的に接続される。図2Aに示す発光装置200は、発光素子10の発光面11bと光学部材30の下面31との間に波長変換部材70を備えており、導光部材60の上面62は波長変換部材70の下面71と接している。後述のように波長変換部材70は透光性の部材であるため、発光素子10の側面11cから出射された光は、導光部材60内に入射された後、波長変換部材70内に入射され、その後に光学部材30の透光部40内に入射される。つまり、導光部材60と光学部材30とは、その間に波長変換部材70を介して光学的に間接的に連続している。波長変換部材70を備える場合は、導光部材60と光学部材30とは、波長変換部材70を間に介して接続させることが好ましい。 The upper surface 62 of the light guide member 60 is connected to the lower surface 31 of the optical member 30 so as to be optically continuous directly or indirectly. Specifically, it is optically directly or indirectly connected to the lower surface 41 of the translucent portion 40 of the optical member 30 . The light-emitting device 200 shown in FIG. 2A includes a wavelength conversion member 70 between the light-emitting surface 11b of the light-emitting element 10 and the lower surface 31 of the optical member 30, and the upper surface 62 of the light guide member 60 is the lower surface of the wavelength conversion member 70. It is in contact with 71. Since the wavelength conversion member 70 is a translucent member as will be described later, the light emitted from the side surface 11c of the light emitting element 10 enters the light guide member 60 and then enters the wavelength conversion member 70. , and then enter the translucent portion 40 of the optical member 30 . That is, the light guide member 60 and the optical member 30 are optically and indirectly connected via the wavelength conversion member 70 therebetween. When the wavelength conversion member 70 is provided, the light guide member 60 and the optical member 30 are preferably connected with the wavelength conversion member 70 interposed therebetween.

導光部材60は、図2Bに示す下面図のように、上面62の外形が略円形とすることができる。このような形状の導光部材60は、後述に記載する発光装置の製造方法において、平板状の光学部材30上に、液状の導光部材60をポッティング等により形成することで形成することができる。 As shown in the bottom view of FIG. 2B, the light guide member 60 can have an upper surface 62 with a substantially circular outer shape. The light guide member 60 having such a shape can be formed by forming the liquid light guide member 60 on the flat plate-like optical member 30 by potting or the like in the manufacturing method of the light emitting device described later. .

(波長変換部材)
波長変換部材70は、発光素子10からの光を吸収し、異なる波長の光に変換する蛍光体を含む。波長変換部材70は、発光素子10の発光面11bと、光学部材30の下面31との間に配置される。詳細には、波長変換部材70は、発光素子10の発光面11bと、光学部材30のの透光部40の下面41との間に配置される。波長変換部材70を、発光素子10と透光部40との間に配置することで、透光部40には、発光素子10からの光と、波長変換部材70からの光の混光が入射される。波長変換部材70と発光素子10の間に、導光部材60が配置されていてもよい。
(Wavelength conversion member)
The wavelength conversion member 70 contains a phosphor that absorbs light from the light emitting element 10 and converts it into light of different wavelengths. The wavelength converting member 70 is arranged between the light emitting surface 11 b of the light emitting element 10 and the lower surface 31 of the optical member 30 . Specifically, the wavelength conversion member 70 is arranged between the light emitting surface 11 b of the light emitting element 10 and the lower surface 41 of the light transmitting portion 40 of the optical member 30 . By arranging the wavelength converting member 70 between the light emitting element 10 and the light transmitting portion 40, mixed light of light from the light emitting element 10 and light from the wavelength converting member 70 is incident on the light transmitting portion 40. be done. A light guide member 60 may be arranged between the wavelength conversion member 70 and the light emitting element 10 .

波長変換部材70は、図2A等に示すように、発光素子10の発光面11bの全面を被覆することが好ましい。換言すると、波長変換部材70の下面71及び上面72の幅(面積)は、発光素子10の発光面11bの幅(面積)よりも大きいことが好ましい。発光素子10の側面11cに導光部材60を備える場合は、波長変換部材70は、発光素子10の発光面11bの全面と、導光部材60の上面62の全面と、を覆うことが好ましい。換言すると、波長変換部材70の下面71及び上面72の幅は、発光素子10の幅(面積)と、導光部材60の上面62の幅(面積)とを足した幅(面積)よりも大きいことが好ましい。波長変換部材70の下面71と上面72は、同じ大きさ、又は異なる大きさとすることができる。また、波長変換部材70の側面73は、垂直な面、傾斜した面、曲面等とすることができる。
波長変換部材70の外形(上面視したときの外形)は、発光素子10の発光面の外形と相似形であることが好ましい。このようにすると、発光素子10の発光面の中心軸と波長変換部材70の中心軸とが略一致するように配置することにより、発光素子10の発光面の外側に位置する波長変換部材70の外周部の幅を略一定にでき、色むらを抑制できる。すなわち、発光素子10の発光面の外側に位置する波長変換部材70の外周部の幅が一定でない場合には、波長変換部材により波長変換される光量が方向によって異なるようになり、色むらが生じるおそれがあるが、波長変換部材70の外周部の幅を一定にすることにより色むらを抑えることができる。
The wavelength conversion member 70 preferably covers the entire light emitting surface 11b of the light emitting element 10, as shown in FIG. 2A and the like. In other words, the width (area) of the lower surface 71 and upper surface 72 of the wavelength conversion member 70 is preferably larger than the width (area) of the light emitting surface 11 b of the light emitting element 10 . When the light guide member 60 is provided on the side surface 11 c of the light emitting element 10 , the wavelength conversion member 70 preferably covers the entire light emitting surface 11 b of the light emitting element 10 and the entire upper surface 62 of the light guide member 60 . In other words, the width of the lower surface 71 and the upper surface 72 of the wavelength conversion member 70 is larger than the width (area) of the width (area) of the light emitting element 10 plus the width (area) of the upper surface 62 of the light guide member 60. is preferred. The bottom surface 71 and the top surface 72 of the wavelength converting member 70 can be the same size or different sizes. Also, the side surface 73 of the wavelength conversion member 70 can be a vertical surface, an inclined surface, a curved surface, or the like.
The outer shape of the wavelength conversion member 70 (the outer shape when viewed from above) is preferably similar to the outer shape of the light emitting surface of the light emitting element 10 . In this way, by arranging the central axis of the light emitting surface of the light emitting element 10 and the central axis of the wavelength conversion member 70 to substantially match, the wavelength converting member 70 positioned outside the light emitting surface of the light emitting element 10 The width of the outer peripheral portion can be made substantially constant, and color unevenness can be suppressed. That is, if the width of the outer peripheral portion of the wavelength conversion member 70 located outside the light emitting surface of the light emitting element 10 is not constant, the amount of light converted by the wavelength conversion member varies depending on the direction, resulting in color unevenness. Although there is a risk, color unevenness can be suppressed by making the width of the outer peripheral portion of the wavelength conversion member 70 constant.

波長変換部材70の側面73は、発光装置200の側面203から離間していることが好ましい。換言すると、波長変換部材70の第1面71及び第2面72の幅(面積)は、発光装置200の発光面11bの幅(面積)よりも小さいことが好ましい。波長変換部材70の上面視形状は、四角形、円形、多角形等とすることができる。波長変換部材70の厚みは、用いる蛍光体の種類や量、目的とする色度等に応じて適宜選択することができる。例えば、波長変換部材70の厚みは、20μm~200μmとすることができ、好ましくは、40μm~180μm、より好ましくは、60μm~150μmの範囲とする。
また、波長変換部材70は、異なる種類の蛍光体を含む複数の層により構成してもよい。複数の層に異なる種類の蛍光体を含有させることにより、蛍光体の相互吸収を抑制して波長変換効率を改善し、光出力の高い発光装置とする事ができる。例えば、2つの層により波長変換部材70を構成する場合には、例えば、各層の厚みは10~100μm、より好ましくは40~80μmの範囲に設定する。
Side surface 73 of wavelength conversion member 70 is preferably spaced apart from side surface 203 of light emitting device 200 . In other words, the width (area) of the first surface 71 and the second surface 72 of the wavelength conversion member 70 is preferably smaller than the width (area) of the light emitting surface 11 b of the light emitting device 200 . The top view shape of the wavelength conversion member 70 can be a quadrangle, a circle, a polygon, or the like. The thickness of the wavelength conversion member 70 can be appropriately selected according to the type and amount of phosphor to be used, the desired chromaticity, and the like. For example, the thickness of the wavelength conversion member 70 can be 20 μm to 200 μm, preferably 40 μm to 180 μm, more preferably 60 μm to 150 μm.
Also, the wavelength conversion member 70 may be composed of a plurality of layers containing different types of phosphors. By containing different types of phosphors in a plurality of layers, mutual absorption of the phosphors can be suppressed, wavelength conversion efficiency can be improved, and a light emitting device with high light output can be obtained. For example, when the wavelength conversion member 70 is composed of two layers, the thickness of each layer is set in the range of 10 to 100 μm, more preferably in the range of 40 to 80 μm.

波長変換部材70は、透光性の樹脂材料、ガラス等の母材と、波長変換材料として蛍光体と含む。母材としては、例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を用いることができる。また、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。母材は、発光素子からの光に対する透過率が70%以上であることが好ましく、更に、80%以上であることが好ましく、90%以上であることがより好ましい。 The wavelength conversion member 70 includes a base material such as translucent resin material or glass, and a phosphor as a wavelength conversion material. Thermosetting resins such as silicone resins, silicone-modified resins, epoxy resins, and phenol resins can be used as the base material. Thermoplastic resins such as polycarbonate resins, acrylic resins, methylpentene resins, and polynorbornene resins can also be used. In particular, silicone resins, which are excellent in light resistance and heat resistance, are suitable. The base material preferably has a transmittance of 70% or more, more preferably 80% or more, and more preferably 90% or more, with respect to the light from the light emitting element.

蛍光体は、発光素子10からの光を吸収し、異なる波長の光に変換するものが使用される。換言すると、発光素子10からの発光で励起可能なものが使用される。例えば、青色発光素子又は紫外線発光素子で励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG:Ce);セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(LAG:Ce);ユウロピウムおよび/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO-Al-SiO);ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)SiO);βサイアロン蛍光体、CASN系蛍光体、SCASN系蛍光体等の窒化物系蛍光体;KSF系蛍光体(KSiF:Mn);硫化物系蛍光体、量子ドット蛍光体などが挙げられる。これらの蛍光体と、青色発光素子又は紫外線発光素子と組み合わせることにより、様々な色の発光装置(例えば白色系の発光装置)を製造することができる。これら蛍光体は、1種類又は複数用いることができる。複数用いる場合は、混合させてもよく、積層させてもよい。
また、波長変換部材には、粘度を調整する等の目的で、各種のフィラー等を含有させてもよい。
A phosphor that absorbs light from the light emitting element 10 and converts it into light of a different wavelength is used. In other words, one that can be excited by light emitted from the light emitting element 10 is used. For example, phosphors that can be excited by a blue light emitting device or an ultraviolet light emitting device include a cerium-activated yttrium aluminum garnet phosphor (YAG:Ce); a cerium activated lutetium aluminum garnet phosphor (LAG:Ce); nitrogen-containing calcium aluminosilicate phosphor activated with europium and/or chromium (CaO—Al 2 O 3 —SiO 2 ); silicate phosphor activated with europium ((Sr, Ba) 2 SiO 4 ); Nitride-based phosphors such as β-sialon phosphors, CASN-based phosphors, and SCASN-based phosphors; KSF-based phosphors (K 2 SiF 6 :Mn); Sulfide-based phosphors, quantum dot phosphors etc. By combining these phosphors with blue light emitting elements or ultraviolet light emitting elements, light emitting devices of various colors (for example, white light emitting devices) can be manufactured. One or a plurality of these phosphors can be used. When using a plurality of them, they may be mixed or laminated.
Further, the wavelength conversion member may contain various fillers for the purpose of adjusting the viscosity.

(金属層)
金属層80は導電性の部材であり、発光装置200の外部接続端子として機能することができる。
(metal layer)
The metal layer 80 is a conductive member and can function as an external connection terminal of the light emitting device 200 .

金属層80は、発光素子10の電極12n、12pと、それぞれ電気的に接続される。
金属層80は被覆部材20の下面21の一部を被覆するように配置することができる。換言すると、発光装置200の下面において、金属層80は発光素子10の電極12から被覆部材20の下面21にわたって配置することができる。これにより、発光装置200の下面において、発光素子10の電極12よりも大きな面積の外部接続端子として外部に露出させることができる。金属層80の面積を発光素子10の電極12よりも大きくすることで、配線基板等の上に、半田等を用いて発光装置200を実装する際に、位置精度よく実装することができる。また、配線基板と発光装置200との接合強度を向上させることができる。
Metal layer 80 is electrically connected to electrodes 12n and 12p of light emitting element 10, respectively.
The metal layer 80 can be arranged to cover a portion of the lower surface 21 of the cover member 20 . In other words, on the bottom surface of the light emitting device 200 , the metal layer 80 can be arranged from the electrode 12 of the light emitting element 10 to the bottom surface 21 of the covering member 20 . As a result, the lower surface of the light emitting device 200 can be exposed to the outside as external connection terminals having a larger area than the electrodes 12 of the light emitting element 10 . By making the area of the metal layer 80 larger than the electrode 12 of the light emitting element 10, the light emitting device 200 can be mounted on a wiring board or the like using solder or the like with high positional accuracy. Also, the bonding strength between the wiring board and the light emitting device 200 can be improved.

金属層80は、発光素子10の電極12よりも耐腐食性や耐酸化性に優れたものを選択することが好ましい。金属層80は単一の材料の一層のみで構成されてもよく、異なる材料の層が積層されて構成されていてもよい。特に、高融点の金属材料を用いるのが好ましく、例えば、Ru、Mo、Ta等を挙げることができる。また、これら高融点の金属材料を、発光素子の電極と最表面の層との間に設けることにより、はんだに含まれるSnが、発光素子の電極や電極に近い層に拡散することを低減することが可能な拡散防止層とすることができる。このような拡散防止層を備えた積層構造の例としては、Ni/Ru/Au、Ti/Pt/Au等が挙げられる。また、拡散防止層(例えばRu)の厚みとしては、10Å~1000Å程度が好ましい。 For the metal layer 80 , it is preferable to select a material that is superior in corrosion resistance and oxidation resistance to the electrode 12 of the light emitting element 10 . The metal layer 80 may be composed of only one layer of a single material, or may be composed of laminated layers of different materials. In particular, it is preferable to use a metal material with a high melting point, such as Ru, Mo, Ta, and the like. In addition, by providing these high melting point metal materials between the electrode of the light emitting element and the outermost layer, Sn contained in the solder is prevented from diffusing into the electrode of the light emitting element and layers close to the electrode. can be a diffusion prevention layer capable of Ni/Ru/Au, Ti/Pt/Au and the like are given as examples of laminated structures having such a diffusion barrier layer. Also, the thickness of the diffusion prevention layer (eg, Ru) is preferably about 10 Å to 1000 Å.

金属層80の厚みは、種々選択することができる。金属層80の厚みは、例えば、10nm~3μmとすることができる。ここで、金属層80の厚みとは、金属層80が複数の層が積層されて構成されている場合には、複数の層の合計の厚みのことをいう。 Various thicknesses of the metal layer 80 can be selected. The thickness of the metal layer 80 can be, for example, 10 nm to 3 μm. Here, the thickness of the metal layer 80 means the total thickness of the plurality of layers when the metal layer 80 is configured by laminating a plurality of layers.

金属層80は、発光装置200の底面において、側面203に達する大きさとすることができる。また、金属層80は、発光装置200の底面において、側面203から離間するような大きさとすることができる。金属層80は、底面視において同じ形状、同じ大きさ、又は、異なる形状、異なる大きさとすることができる。例えば、電極12nに接続される金属層80と電極12pに接続される金属層80のいずれか一方に、カソードマーク、アノードマークなどとして機能するように切欠き部などを設けてもよい。 The metal layer 80 can be sized to reach the side surface 203 on the bottom surface of the light emitting device 200 . Also, the metal layer 80 can be sized to be spaced apart from the side surface 203 on the bottom surface of the light emitting device 200 . The metal layers 80 can have the same shape and size, or different shapes and sizes in bottom view. For example, either one of the metal layer 80 connected to the electrode 12n and the metal layer 80 connected to the electrode 12p may be provided with a notch or the like so as to function as a cathode mark or an anode mark.

<実施形態3>
実施形態3に係る発光装置を図3A、図3Bに示す。発光装置300A及び発光装置300Bは、外観形状は図1Aに示す発光装置100等と同様である。また、前述の実施形態2では、発光素子10の側面11cに導光部材60が配置されているのに対し、実施形態3では、波長変換部材70の側面73に導光部材60Aが配置されている点が異なる。
<Embodiment 3>
A light-emitting device according to Embodiment 3 is shown in FIGS. 3A and 3B. The light emitting device 300A and the light emitting device 300B have the same external shape as the light emitting device 100 and the like shown in FIG. 1A. Further, while the light guide member 60 is arranged on the side surface 11c of the light emitting element 10 in the second embodiment described above, the light guide member 60A is arranged on the side surface 73 of the wavelength conversion member 70 in the third embodiment. There is a difference.

発光装置300Bは、発光素子10の側面に導光部材60が配置され、波長変換部材70の側面に導光部材60Aが配置されている。このような場合、導光部材60及び導光部材60Bは、光学的に連続しないように配置することが好ましい。導光部材60と導光部材60Aとが光学的に連続すると、波長変換部材70を通過しない光が、透光部40内に入射されてしまうため、色ムラの原因となるため好ましくない。 In the light emitting device 300B, the light guide member 60 is arranged on the side surface of the light emitting element 10, and the light guide member 60A is arranged on the side surface of the wavelength conversion member . In such a case, it is preferable to arrange the light guide member 60 and the light guide member 60B so as not to be optically continuous. If the light guide member 60 and the light guide member 60A are optically continuous, light that does not pass through the wavelength conversion member 70 enters the light transmitting portion 40, which causes color unevenness, which is not preferable.

波長変換部材70の側面73に配置される導光部材60Aは、発光装置300A、300Bの側面303から離間するように配置されることが好ましい。換言すると、導光部材60Aは、被覆部材20によって埋設されていることが好ましい。また、図3A及び図3Bに示す例では、金属層80を備えているが、これは必須ではない。 60 A of light guide members arrange|positioned at the side surface 73 of the wavelength conversion member 70 are preferably arrange|positioned so that it may space apart from the side surface 303 of light-emitting devices 300A and 300B. In other words, the light guide member 60A is preferably embedded in the covering member 20. As shown in FIG. Also, although the example shown in FIGS. 3A and 3B includes a metal layer 80, this is not essential.

<光学部材の変形例>
図4A~図4Eに示す発光装置は、実施形態1~3において例示した光学部材の変形例を示す。ここでは、一例として波長変換部材、導光部材、金属層等を備えた発光装置を例示しているが、これらの部材は必須ではない。
<Modified example of optical member>
The light emitting devices shown in FIGS. 4A to 4E are modifications of the optical members illustrated in the first to third embodiments. Here, as an example, a light-emitting device including a wavelength conversion member, a light guide member, a metal layer, etc. is illustrated, but these members are not essential.

図4A~図4Eに示す光学は、光反射部の下面が、中心部において下方に凸状である点が共通している。 The optics shown in FIGS. 4A to 4E have in common that the lower surface of the light reflecting portion is convex downward at the center.

図4Aに示す発光装置400Aは、光学部材30Aの光反射部50Aは、下面51Aが曲面である。すなわち、半球状、又は、回転放物面とすることができる。光反射部50Aの下面51Aは、その中心部近傍が最も発光素子10に近い頂部Rとなっている。頂部Rは曲面であり、頂部Rから発光装置400Aの側面403の間の下面51Bは、側面に向かって凸状となる曲面である。 In the light emitting device 400A shown in FIG. 4A, the light reflecting portion 50A of the optical member 30A has a curved lower surface 51A. That is, it can be hemispherical or parabolic of revolution. The lower surface 51A of the light reflecting portion 50A has a top portion R that is closest to the light emitting element 10 in the vicinity of the central portion thereof. The top portion R is a curved surface, and the lower surface 51B between the top portion R and the side surface 403 of the light emitting device 400A is a curved surface that protrudes toward the side surface.

図4Bに示す発光装置400Bでは、光学部材30Bの光反射部50Bの下面51Bは、頂部Rを挟んで上面側に凸状である曲面となる形状であり、円錐の変形例のような形状である。詳細には、光反射部50Bの下面51Bは、発光装置400Bの側面403に対して凹状となる曲面である。図4Bに示すように、側面403に対して凹状となる曲面を反射面とすることで、図4Aに示す発光装置400Aよりも、より遠くに光を広げることができる。 In the light emitting device 400B shown in FIG. 4B, the lower surface 51B of the light reflecting portion 50B of the optical member 30B has a curved shape that is convex toward the upper surface with the apex R sandwiched therebetween. be. Specifically, the lower surface 51B of the light reflecting portion 50B is a curved surface that is concave with respect to the side surface 403 of the light emitting device 400B. As shown in FIG. 4B, by using a curved surface that is concave with respect to the side surface 403 as a reflecting surface, light can be spread farther than the light emitting device 400A shown in FIG. 4A.

また、光反射部の下面を、図4A、図4Bに示すような曲面とすることで、図1B等に示すような、断面視において平面となる傾斜面を備えた光反射部に比して、明るさのロスを減らしつつ、配向を制御することができる。光反射部の下面を曲面とする場合、その曲面の曲率は、例えば、1/(波長変換部材の長さL×0.5)~1/(波長変換部材の長さL×20)、好ましくは1/(波長変換部材の長さL)~1/(波長変換部材の長さL×10)の範囲にする。この範囲の曲面とすることにより、効果的に光を側面方向に反射することができ、光出力の高い発光装置が得られる。
ここで、波長変換部材の長さLは、波長変換部材の長さLは、波長変換部材の外形が矩形の場合は対角線の長さであり、波長変換部材の外形が円形の場合は、直径をいう。
In addition, by forming the lower surface of the light reflecting portion into a curved surface as shown in FIG. 4A and FIG. , the orientation can be controlled while reducing the loss of brightness. When the lower surface of the light reflecting portion is curved, the curvature of the curved surface is, for example, 1/(length of wavelength conversion member L×0.5) to 1/(length of wavelength conversion member L×20), preferably is in the range of 1/(length L of wavelength conversion member) to 1/(length L×10 of wavelength conversion member). By setting the curved surface within this range, light can be effectively reflected in the lateral direction, and a light emitting device with high light output can be obtained.
Here, the length L of the wavelength conversion member is the length of the diagonal line when the outer shape of the wavelength conversion member is rectangular, and the length L of the wavelength conversion member is the diameter when the outer shape of the wavelength conversion member is circular. Say.

図4Cに示す発光装置400Cでは、光学部材30Cの光反射部50Cは、その下面51C側の中心部近傍に凸部50Caを備え、その凸部50Caの周囲に平面部50Cbを備える。すなわち、図1B等に例示した光学部材30の光反射部50の下面51は、その全体が傾斜面または曲面であるのに対し、図4Cに示す光反射部50Cの下面51Cは、その一部である中心部近傍が凸部50Caの下面51Caであり、傾斜面である。なお、ここでは凸部50Caの下面51Caは、断面視において直線となる傾斜面となっている例を示しているが、これに限らず、図4A、図4Bに示すような凸状の曲面、または凹状の曲面を備えた下面51Caとしてもよい。 In the light emitting device 400C shown in FIG. 4C, the light reflecting portion 50C of the optical member 30C has a convex portion 50Ca near the center portion on the lower surface 51C side thereof, and a planar portion 50Cb around the convex portion 50Ca. That is, the lower surface 51 of the light reflecting portion 50 of the optical member 30 illustrated in FIG. 1B and the like is entirely inclined or curved, whereas the lower surface 51C of the light reflecting portion 50C shown in FIG. 4C is partially inclined. is the lower surface 51Ca of the convex portion 50Ca, which is an inclined surface. Here, the lower surface 51Ca of the convex portion 50Ca shows an example in which the lower surface 51Ca of the convex portion 50Ca is an inclined surface that becomes a straight line in a cross-sectional view, but is not limited to this, and may be a convex curved surface as shown in FIGS. 4A and 4B, Alternatively, the lower surface 51Ca may have a concave curved surface.

光反射部50Cの凸部50Caは発光素子10の上方に配置される。凸部50Caは、光学部材30Cの中心部近傍に配置されることが好ましい。さらに、上面視において凸部50Caの頂部Rと波長変換部材70の中心とが一致することが好ましい。ただし、波長変換部材70内は光が伝播するため、多少、発光素子10の中心と凸部50Caの中心がずれていても、波長変換部材70の中心と凸部50Caの中心とが一致していれば、均一に光が広がりやすい図4Cに示す光反射部50Cの凸部50Caは、その幅WR1が、発光素子10の幅Wよりも小さい例を示している。これに限らず、求められる配光に応じて、凸部50Caの幅WR1は、発光素子10の幅Wと同じでもよく、または、発光素子10の幅Wよりも大きくてもよい。 The convex portion 50Ca of the light reflecting portion 50C is arranged above the light emitting element 10. As shown in FIG. The convex portion 50Ca is preferably arranged near the center of the optical member 30C. Furthermore, it is preferable that the apex R of the convex portion 50Ca and the center of the wavelength conversion member 70 match when viewed from above. However, since light propagates through the wavelength converting member 70, even if the center of the light emitting element 10 and the center of the convex portion 50Ca are slightly misaligned, the center of the wavelength converting member 70 and the center of the convex portion 50Ca are aligned. 4C shows an example in which the width W R1 of the convex portion 50Ca of the light reflecting portion 50C, in which the light tends to spread uniformly, is smaller than the width W D of the light emitting element 10. As shown in FIG. Not limited to this, the width W R1 of the convex portion 50Ca may be the same as the width W D of the light emitting element 10, or may be larger than the width W D of the light emitting element 10 depending on the desired light distribution.

光反射部50Cの平面部50Cbは、光学部材30Cの下面31C(透過部40Cの下面41C)と平行な面であり、この領域における光反射部50Cの厚みは一定である。 The plane portion 50Cb of the light reflecting portion 50C is a surface parallel to the lower surface 31C of the optical member 30C (the lower surface 41C of the transmitting portion 40C), and the thickness of the light reflecting portion 50C in this region is constant.

図4Dに示す発光装置400Dでは、光学部材30Dの上面32D(光反射部50Dの上面52D)が、凹部形状になっている。発光装置400Dの透光部40Dは、図1Bに示す発光装置100の透光部40と同じ形状であり、光反射部50Dの上面52Dの形状が異なっている。さらに、光反射部50Dは、全体にわたって同じ厚みで形成されている。例えば、光反射部50Dとして、金属膜や、スパッタ等によって形成した絶縁性の反射膜等を用いる場合は、このように、全体的に同じ厚みとなるように形成することができる。また、図4Dに示す光反射部50Dは、図4A、図4Bに示すような凸状の曲面、または凹状の曲面を備えた下面としてもよい。 In the light emitting device 400D shown in FIG. 4D, the upper surface 32D of the optical member 30D (the upper surface 52D of the light reflecting section 50D) has a concave shape. The light transmitting portion 40D of the light emitting device 400D has the same shape as the light transmitting portion 40 of the light emitting device 100 shown in FIG. 1B, and the shape of the upper surface 52D of the light reflecting portion 50D is different. Furthermore, the light reflecting portion 50D is formed with the same thickness over its entirety. For example, when a metal film or an insulating reflecting film formed by sputtering or the like is used as the light reflecting portion 50D, it can be formed so as to have the same thickness as a whole. Also, the light reflecting portion 50D shown in FIG. 4D may have a lower surface with a convex curved surface or a concave curved surface as shown in FIGS. 4A and 4B.

図4Dに示すような、上面が凹状に形成された光反射部の場合、その上にさらに、樹脂材料等の充填部材を具備していてもよい。例えば、図4Eに示す発光装置400Eでは、光反射部50Eは、上面52Eが凹状である。そして、この凹状の光反射部50Eの上面52Eの上に、充填部材54を配置している。充填部材54の上面が、光学部材30Eの上面32Eとなる。このように、光反射部50Eの上面52Eと、光学部材30Eの上面32Eとが異なるようにしてもよい。充填部材54の上面を平らな面とすることで、例えば、コレット等によって吸着し易くすることができる。図4Eに示す光反射部50Eも、図4A、図4Bに示すような凸状の曲面、または凹状の曲面を備えた下面としてもよい。 In the case of a light reflecting portion having a concave upper surface as shown in FIG. 4D, a filling member such as a resin material may be further provided thereon. For example, in the light emitting device 400E shown in FIG. 4E, the light reflecting portion 50E has a concave upper surface 52E. A filling member 54 is arranged on the upper surface 52E of the concave light reflecting portion 50E. The upper surface of the filling member 54 becomes the upper surface 32E of the optical member 30E. In this manner, the upper surface 52E of the light reflecting portion 50E and the upper surface 32E of the optical member 30E may be different. By making the upper surface of the filling member 54 flat, for example, it can be easily sucked by a collet or the like. The light reflecting portion 50E shown in FIG. 4E may also have a lower surface with a convex curved surface or a concave curved surface as shown in FIGS. 4A and 4B.

<製造方法>
実施形態1~3における発光装置の製造方法について、図5A~図5Hを用いて説明する。尚、ここでは、実施形態2に係る発光装置を一例として説明する。すなわち、導光部材、波長変換部材、金属層などを備える発光装置の製造方法について説明する。これらの部材を備えない発光装置を得るには、その部材を形成する工程を省略する。
<Manufacturing method>
A method for manufacturing the light emitting device according to Embodiments 1 to 3 will be described with reference to FIGS. 5A to 5H. Here, the light emitting device according to Embodiment 2 will be described as an example. That is, a method for manufacturing a light-emitting device including a light guide member, a wavelength conversion member, a metal layer, and the like will be described. To obtain a light-emitting device that does not include these members, the step of forming the members is omitted.

(光反射部の準備)
まず、図5Aに示すように、光反射部50を準備する。光反射部50は、板状部材である。光反射部50は、平坦な面である第2面52と、凸状部を備えた第1面51とを備える。1つの光反射部50は、1又は複数の凸状部を備えることができる。ここでは、2つの凸状部を備えた光反射部50を一例として説明する。図5Aでは、第2面52を下側、第1面51を上側にして配置している。尚、第1面51は、発光装置100の光反射部50の下面41に相当する面であり、第2面52は、発光装置100の光反射部50の上面52に相当する面である。製造工程においては図5A等に示すように上下が反転する場合があるため、説明の便宜上、下面及び上面に代えて第1面及び第2面と標記している。
(Preparation of light reflecting part)
First, as shown in FIG. 5A, the light reflecting portion 50 is prepared. The light reflecting portion 50 is a plate-like member. The light reflecting portion 50 includes a flat second surface 52 and a first surface 51 having a convex portion. One light reflecting portion 50 can have one or more convex portions. Here, the light reflecting portion 50 having two convex portions will be described as an example. In FIG. 5A, the second surface 52 is arranged on the lower side and the first surface 51 is arranged on the upper side. The first surface 51 corresponds to the lower surface 41 of the light reflecting portion 50 of the light emitting device 100 , and the second surface 52 corresponds to the upper surface 52 of the light reflecting portion 50 of the light emitting device 100 . In the manufacturing process, the top and bottom may be reversed as shown in FIG. 5A and the like, so for convenience of explanation, the first surface and the second surface are used instead of the bottom surface and the top surface.

光反射部50は、上述のような形状の光反射部50を購入して準備してもよく、あるいは、以下のような材料を用いて成形等の工程を経て準備してもよい。 The light reflecting portion 50 may be prepared by purchasing the light reflecting portion 50 having the shape described above, or may be prepared using the following materials through processes such as molding.

光反射部50として、光反射性物質を樹脂材料中に分散させた光反射性の樹脂材料を用いて形成する場合について説明する。光反射性の樹脂材料で構成される光反射部50は、金型等を用いて射出成形、トランスファ成形、圧縮成形などの方法で形成することができる。あるいは、別の樹脂材料等で図5Aに示すような板状部材を準備し、発光素子からの光を反射させる反射面となる第1面51に、上述の同様に射出成形、トランスファ成形、圧縮成形など方法や、印刷、スプレー、スパッタなどによって光反射層を形成して、光反射部50としてもよい。 A case in which the light reflecting portion 50 is formed using a light reflecting resin material in which a light reflecting substance is dispersed will be described. The light reflecting portion 50 made of a light reflecting resin material can be formed by injection molding, transfer molding, compression molding, or the like using a mold or the like. Alternatively, a plate-like member as shown in FIG. 5A is prepared with another resin material or the like, and injection molding, transfer molding, or compression molding is performed in the same manner as described above on the first surface 51 that serves as a reflecting surface for reflecting light from the light emitting element. The light reflecting portion 50 may be formed by forming a light reflecting layer by a method such as molding, or by printing, spraying, sputtering, or the like.

光反射部50として、金属材料を用いて形成する場合について説明する。金属部材を用いる場合は、光反射部50の全体を光反射率の高い金属材料で構成してもよい。その場合は、金属板を研削、屈曲、等の加工を施して図5Aに示すような、片面が凸状となる金属板とすることができる。また、上述のような樹脂材料等からなり、図5Aに示す形状の板状部材を準備し、発光素子からの光を反射させる反射面となる第1面51にめっきなどによって光反射率の高い金属材料からなるめっき膜を形成して、光反射部としてもよい。 A case in which the light reflecting portion 50 is formed using a metal material will be described. When a metal member is used, the entire light reflecting section 50 may be made of a metal material with high light reflectance. In this case, the metal plate can be processed by grinding, bending, or the like to form a metal plate having a convex shape on one side as shown in FIG. 5A. In addition, a plate-shaped member made of the above-mentioned resin material or the like and having a shape shown in FIG. A plated film made of a metal material may be formed to form the light reflecting portion.

光反射部50として、誘電体多層膜を用いる場合について説明する。上述のように樹脂材料等からなり、図5Aに示す形状の板状部材を準備し、発光素子からの光を反射させる反射面となる第1面51にスパッタなどによって誘電体多層膜を形成して、光反射部50としてもよい。 A case where a dielectric multilayer film is used as the light reflecting section 50 will be described. As described above, a plate-shaped member made of a resin material or the like and having a shape shown in FIG. 5A is prepared, and a dielectric multilayer film is formed by sputtering or the like on the first surface 51 that serves as a reflection surface for reflecting light from the light emitting element. may be used as the light reflecting portion 50 .

(透光部の形成)
次に、図5Bに示すように、光反射部50の第1面51上に透光部40を形成する。これにより、透光部40の第1面41を、光学部材30の第1面31とし、かつ、光反射部50の第2面52を、光学部材30の第2面32とする平板状の光学部材30を得ることができる。透光部40は、例えば、金型内に上述の光反射部50を配置し、その後、射出成形、トランスファ成形、圧縮成形などの方法で透光性の樹脂材料を成型して形成することができる。あるいは、透光性の樹脂材料を光反射部50の第1面51上に印刷塗布、スプレー塗布などにより形成することができる。透光部40の第1面41は、後の工程において発光素子が載置される面となるため、平らな面となるようにすることが好ましい。
(Formation of translucent portion)
Next, as shown in FIG. 5B, the translucent portion 40 is formed on the first surface 51 of the light reflecting portion 50 . Thereby, the first surface 41 of the light transmitting portion 40 is the first surface 31 of the optical member 30, and the second surface 52 of the light reflecting portion 50 is the second surface 32 of the optical member 30. An optical member 30 can be obtained. The translucent part 40 can be formed, for example, by arranging the above-described light reflecting part 50 in a mold and then molding a translucent resin material by a method such as injection molding, transfer molding, or compression molding. can. Alternatively, a translucent resin material can be formed on the first surface 51 of the light reflecting portion 50 by printing, spraying, or the like. Since the first surface 41 of the translucent part 40 will be the surface on which the light-emitting element is placed in a later process, it is preferable that the first surface 41 be a flat surface.

(光学部材の準備:変形例)
光学部材30は、上述のように光反射部50を準備した後に、透光部40を形成することで準備することができるほか、まず、透光部40を準備した後に、光反射部50を形成してもよい。特に、光反射部50として金属膜や誘電体多層膜を用いる場合は、先に透光部40を準備し、その透光部40の第1面にこれらの光反射部50を成膜法などを用いて形成することが好ましい。このような透光部40は、購入して準備してもよい。
(Preparation of optical members: modified example)
The optical member 30 can be prepared by forming the light-transmitting portion 40 after preparing the light-reflecting portion 50 as described above. may be formed. In particular, when a metal film or a dielectric multilayer film is used as the light reflecting portion 50, the light transmitting portion 40 is prepared first, and these light reflecting portions 50 are formed on the first surface of the light transmitting portion 40 by a film forming method or the like. It is preferable to form using Such a translucent part 40 may be purchased and prepared.

(波長変換部材の形成)
次に、図5Cに示すように、光学部材30の第1面31上(透光部40の第1面41上)に、波長変換部材70を配置する。尚、波長変換部材を備えない発光装置の製造工程においては、この工程は省略する。
(Formation of wavelength conversion member)
Next, as shown in FIG. 5C, the wavelength conversion member 70 is arranged on the first surface 31 of the optical member 30 (on the first surface 41 of the light transmitting portion 40). Note that this step is omitted in the manufacturing steps of a light-emitting device that does not include a wavelength conversion member.

波長変換部材70は、光学部材30の第1面31上(透光部40の第1面31上)であって、光反射部50の各凸状部の頂部Rと対向する位置に、それぞれ配置させる。隣接する波長変換部材70同士は、頂部Rの間において離間されている。波長変換部材70の中心は、光反射部50の頂部Rとが一致するように配置させることが好ましい。 The wavelength converting member 70 is provided on the first surface 31 of the optical member 30 (on the first surface 31 of the light transmitting portion 40) and at a position facing the apex R of each convex portion of the light reflecting portion 50. place it. Adjacent wavelength conversion members 70 are spaced apart between the tops R. The center of the wavelength conversion member 70 is preferably arranged so that the apex R of the light reflecting portion 50 is aligned.

波長変換部材70は、成型品を準備して、光学部材30の第1面31上に接着剤等を用いて配置することができる。尚、接着剤を用いた場合は、図3A等に示すように、波長変換部材70の側面73に接着剤が配置されることで導光部材60Aを形成することができる。 The wavelength conversion member 70 can be arranged on the first surface 31 of the optical member 30 by preparing a molded product and using an adhesive or the like. When an adhesive is used, the light guide member 60A can be formed by placing the adhesive on the side surface 73 of the wavelength conversion member 70, as shown in FIG. 3A.

また、波長変換部材70は、樹脂材料に蛍光体を含有させた液状樹脂材料を、光学部材30の第1面31上に、印刷、スプレー、射出成形、圧縮成形、トランスファ成形等により形成することができる。例えば、あらかじめ光学部材30の第1面31上に、光反射部の頂部Rと対向する領域に、所望の形状の開口部を備えたマスク等を設け、その開口部内に波長変換部材70を形成し、マスクを除去することで、それぞれ離間した波長変換部材70を形成することができる。あるいは、光学部材30の第1面31の全面に波長変換部材70を形成し、その後、光反射部の頂部Rと対向する領域に所望の形状の波長変換部材70が残るよう、他の部分を除去することで、それぞれ離間した波長変換部材70を形成することができる。また、マスクを用いず、ディスペンスノズル等を用いて、光学部材30の第1面31上に、液状樹脂材料をポッティングして、波長変換部材70を形成してもよい。 Further, the wavelength conversion member 70 may be formed by printing, spraying, injection molding, compression molding, transfer molding, or the like, on the first surface 31 of the optical member 30 with a liquid resin material containing a phosphor in the resin material. can be done. For example, on the first surface 31 of the optical member 30, a mask or the like having an opening of a desired shape is provided in advance in a region facing the apex R of the light reflecting portion, and the wavelength conversion member 70 is formed in the opening. Then, by removing the mask, it is possible to form the wavelength conversion members 70 separated from each other. Alternatively, the wavelength conversion member 70 is formed on the entire surface of the first surface 31 of the optical member 30, and then other portions are formed so that the wavelength conversion member 70 having a desired shape remains in the region facing the apex R of the light reflecting portion. By removing, the wavelength conversion members 70 spaced apart from each other can be formed. Alternatively, the wavelength conversion member 70 may be formed by potting a liquid resin material on the first surface 31 of the optical member 30 using a dispensing nozzle or the like without using a mask.

波長変換部材70の第1面71は、後の工程において発光素子が載置される面である。
そのため、波長変換部材70の第1面71は、発光素子が載置可能な平坦面を少なくとも備えることが好ましい。
The first surface 71 of the wavelength conversion member 70 is a surface on which a light emitting element is placed in a later process.
Therefore, the first surface 71 of the wavelength conversion member 70 preferably has at least a flat surface on which the light emitting element can be placed.

(導光部材の形成)
次に、図5Dに示すように、光学部材30の第1面31上に、導光部材60を配置する。光学部材30の第1面31上に、波長変換部材70が配置されている場合は、波長変換部材70の第1面71上に導光部材60を配置する。尚、ここで配置される導光部材60は液状であり、後述の発光素子を光学部材30又は波長変換部材70と接合させるための接合部材として機能するため、変形可能な硬度であることが好ましい。液状の導光部材60の量によって、発光素子の側面に配置される導光部材60の大きさを調整することができる。そのため、発光素子の大きさや、発光素子の高さ等に応じて導光部材60の量を調整することが好ましい。また、波長変換部材70の第1面71上に液状の導光部材60を配置する場合は、波長変換部材70の第1面71の面積よりも小さい大きさとなるように、導光部材60の量を調整することが好ましい。また、本工程の前の液状の波長変換部材70を形成する工程において、液状の波長変換部材70を硬化させる前に発光素子を載置してもよい。すなわち、液状の波長変換部材70自体を接合部材として用いてもよい。このような場合は、導光部材を形成する工程は省略することができる。また、発光素子側に接着剤を付与してある場合や、光学部材と発光素子とを直接接合する場合なども、導光部材を形成する本工程を省略することができる。
(Formation of light guide member)
Next, as shown in FIG. 5D , the light guide member 60 is arranged on the first surface 31 of the optical member 30 . When the wavelength conversion member 70 is arranged on the first surface 31 of the optical member 30 , the light guide member 60 is arranged on the first surface 71 of the wavelength conversion member 70 . The light guide member 60 arranged here is liquid, and functions as a bonding member for bonding a light emitting element (to be described later) to the optical member 30 or the wavelength conversion member 70. Therefore, it is preferable that the light guide member 60 has a deformable hardness. . Depending on the amount of the liquid light guide member 60, the size of the light guide member 60 arranged on the side surface of the light emitting element can be adjusted. Therefore, it is preferable to adjust the amount of the light guide member 60 according to the size of the light emitting element, the height of the light emitting element, and the like. When the liquid light guide member 60 is arranged on the first surface 71 of the wavelength conversion member 70 , the light guide member 60 is arranged so as to have a size smaller than the area of the first surface 71 of the wavelength conversion member 70 . It is preferable to adjust the amount. Moreover, in the step of forming the liquid wavelength conversion member 70 before this step, the light emitting element may be placed before the liquid wavelength conversion member 70 is cured. That is, the liquid wavelength conversion member 70 itself may be used as the joining member. In such a case, the step of forming the light guide member can be omitted. Also, when an adhesive is applied to the light emitting element side, or when the optical member and the light emitting element are directly bonded, this step of forming the light guide member can be omitted.

(発光素子の載置)
次に、図5Eに示すように、導光部材60上に発光素子10を配置する。発光素子10は、電極12が上側になるように、つまり積層構造体11側が導光部材60と対向するように配置する。導光部材60が液状である場合は、発光素子10の側面に這い上がり、図5Eに示すように、フィレット形状の導光部材60が形成される。このような状態で導光部材60を硬化させる。
(Placement of light emitting element)
Next, as shown in FIG. 5E, the light emitting element 10 is arranged on the light guide member 60 . The light emitting element 10 is arranged so that the electrode 12 faces upward, that is, the laminated structure 11 side faces the light guide member 60 . When the light guide member 60 is liquid, it creeps up on the side surface of the light emitting element 10 to form a fillet-shaped light guide member 60 as shown in FIG. 5E. The light guide member 60 is cured in such a state.

(被覆部材の形成)
次に、図5Fに示すように、複数の発光素子10を一体的に被覆するように、光学部材30上に被覆部材20を形成する。被覆部材20は、発光素子10の電極12が埋設される高さまで形成することができる。被覆部材20は、隣接する発光素子10の間の光学部材30の第1面31も埋設するように形成する。被覆部材20は、例えば、射出成形、トランスファ成形、圧縮成形、印刷、ポッティング、スプレー等によって形成することができる。
(Formation of covering member)
Next, as shown in FIG. 5F, a covering member 20 is formed on the optical member 30 so as to cover the plurality of light emitting elements 10 integrally. The covering member 20 can be formed up to a height where the electrodes 12 of the light emitting element 10 are embedded. The covering member 20 is formed so as to also embed the first surface 31 of the optical member 30 between the adjacent light emitting elements 10 . The covering member 20 can be formed by, for example, injection molding, transfer molding, compression molding, printing, potting, spraying, or the like.

(電極の露出)
次に、図5Gに示すように、被覆部材20の一部を除去することで、発光素子10の電極12を露出させる。尚、この工程は、上述のように被覆部材20を形成する際に電極12を埋設させた後に必要な工程である。つまり、被覆部材20を形成する際に、電極12の上面が埋まらないようして形成する場合は、この工程は省略される。被覆部材20の一部を除去する方法としては、研磨、研削、ブラスト等が挙げられる。
(Exposed electrode)
Next, as shown in FIG. 5G, the electrode 12 of the light emitting element 10 is exposed by removing part of the covering member 20 . This step is necessary after embedding the electrodes 12 when forming the covering member 20 as described above. That is, when forming the covering member 20, if the upper surface of the electrode 12 is not buried, this step is omitted. Polishing, grinding, blasting, and the like are examples of methods for removing a portion of the covering member 20 .

次に、図5Hに示すように、露出された一対の電極12の上に、金属層80を形成する。金属層80は、被覆部材20の上を被覆してもよい。金属層80は、スパッタ、蒸着、原子層堆積(Atomic Layer Deposition;ALD)法や有機金属化学的気相成長(Metal Organic Chemical Vapor Deposition;MOCVD)法、プラズマCVD(Plasma-Enhanced Chemical Vapor Deposition;PECVD)法、大気圧プラズマ成膜法、めっきなどによって形成することができる。 Next, as shown in FIG. 5H, a metal layer 80 is formed on the exposed pair of electrodes 12 . A metal layer 80 may be coated over the covering member 20 . The metal layer 80 is formed by sputtering, vapor deposition, atomic layer deposition (ALD), metal organic chemical vapor deposition (MOCVD), plasma-enhanced chemical vapor deposition (PECVD). ) method, atmospheric pressure plasma deposition method, plating, or the like.

金属層80は、被覆部材20と電極12とを含む全面を覆うように形成した後に、例えばレーザ光照射、エッチング等によってパターニングして形成することができる。あるいは、あらかじめパターニングされたマスク等を形成しておき、その後に上述の方法を用いて金属層80を形成し、マスクを除去することで形成することができる。レーザ光照射によるレーザアブレーションにより金属層80を形成する場合は、金属層80の厚みは、例えば、10nm~3μmとすることができ、1μm以下とすることが好ましく、1000Å以下がより好ましい。また、電極12の腐食を低減することができる厚み、例えば5nm以上であることが好ましい。 The metal layer 80 can be formed by patterning, for example, laser light irradiation, etching, etc., after forming the metal layer 80 so as to cover the entire surface including the covering member 20 and the electrodes 12 . Alternatively, it can be formed by forming a patterned mask or the like in advance, then forming the metal layer 80 using the method described above, and then removing the mask. When the metal layer 80 is formed by laser ablation using laser light irradiation, the thickness of the metal layer 80 can be, for example, 10 nm to 3 μm, preferably 1 μm or less, and more preferably 1000 Å or less. Moreover, it is preferable that the thickness be such that corrosion of the electrode 12 can be reduced, for example, 5 nm or more.

(個片化する工程)
最後に、被覆部材20と、光学部材30とを、隣接する発光素子間(図5H中の破線Cで示す切断ライン)で切断して個片化することで、図2Aに示すような、発光装置200を得ることができる。
(Step of singulating)
Finally, the covering member 20 and the optical member 30 are separated by cutting between adjacent light emitting elements (cutting lines indicated by dashed lines C in FIG. 5H) to obtain light emission as shown in FIG. 2A. A device 200 can be obtained.

<実施形態4>
実施形態4に係る発光装置600を、図6に示す。実施形態4では、波長変換部材70Fの上面72F及び側面73Fが光学部材30Fの透光部40Fで被覆される。そのため、発光素子10からの光は、波長変換部材70Fの上面72F及び側面73Fから、透光部40F内に入射される。これにより、光の取り出し効率を向上させることができる。
以下において、実施形態1~3と異なる点について主に説明する。
<Embodiment 4>
A light emitting device 600 according to Embodiment 4 is shown in FIG. In Embodiment 4, the upper surface 72F and the side surface 73F of the wavelength conversion member 70F are covered with the translucent portion 40F of the optical member 30F. Therefore, the light from the light emitting element 10 enters the translucent portion 40F from the upper surface 72F and the side surface 73F of the wavelength conversion member 70F. Thereby, the light extraction efficiency can be improved.
Differences from Embodiments 1 to 3 will be mainly described below.

(被覆部材)
実施形態4では、被覆部材20Fは、発光素子10の側面11cを直接又は間接的に被覆し、波長変換部材70Fの側面73Fを被覆しない。被覆部材20Fの上面22Fは、波長変換部材70Fの下面71Fと面一である。
(coating member)
In Embodiment 4, the covering member 20F directly or indirectly covers the side surface 11c of the light emitting element 10 and does not cover the side surface 73F of the wavelength conversion member 70F. The upper surface 22F of the covering member 20F is flush with the lower surface 71F of the wavelength converting member 70F.

(光学部材)
実施形態4では、光学部材30Fは、その下面31Fが面一ではなく、凹部41Faを備える。詳細には、光学部材30Fの透光部40Fの下面41Fが面一ではなく、凹部41Faを備える。この凹部41Faの内部には、波長変換部材70Fが配置される。透光部40Fの下面41Fと、波長変換部材70Fとの下面71Fとが、面一となる。凹部41Faの幅(面積)は、波長変換部材70Fの第1面71F及び第2面72Fの幅(面積)と同一であることが好ましい。波長変換部材70Fの形成方法によっては、凹部41Faの幅よりも、波長変換部材70Fの第1面71F及び第2面72Fの幅を小さくしてもよい。上面視において、凹部41Faの中心と、波長変換部材70Fの中心とが一致することが好ましい。また、上面視において、凹部41Faの中心と光反射部50Fの頂部Rとが一致することが好ましい。また、凹部41Faの幅は、発光素子10の発光面の幅(面積)よりも大きいことが好ましい。また、導光部材60Fを備える場合は、凹部41Faの幅は、発光素子10の幅(面積)と導光部材60Fの上面62Fの幅(面積)とを足した幅(面積)よりも大きいことが好ましい。凹部41Faの深さは、所望の波長変換部材70Fを配置することができる深さとすることが好ましい。
(optical member)
In Embodiment 4, the optical member 30F has a concave portion 41Fa instead of a flat lower surface 31F. Specifically, the lower surface 41F of the translucent portion 40F of the optical member 30F is not flush but has a concave portion 41Fa. A wavelength converting member 70F is arranged inside the concave portion 41Fa. The lower surface 41F of the translucent portion 40F and the lower surface 71F of the wavelength conversion member 70F are flush with each other. The width (area) of the recess 41Fa is preferably the same as the width (area) of the first surface 71F and the second surface 72F of the wavelength conversion member 70F. Depending on the method of forming the wavelength conversion member 70F, the width of the first surface 71F and the second surface 72F of the wavelength conversion member 70F may be smaller than the width of the recess 41Fa. It is preferable that the center of the concave portion 41Fa and the center of the wavelength conversion member 70F match when viewed from above. In addition, it is preferable that the center of the concave portion 41Fa and the top portion R of the light reflecting portion 50F match when viewed from above. Moreover, it is preferable that the width of the concave portion 41Fa is larger than the width (area) of the light emitting surface of the light emitting element 10 . When the light guide member 60F is provided, the width of the recess 41Fa should be larger than the sum of the width (area) of the light emitting element 10 and the width (area) of the upper surface 62F of the light guide member 60F. is preferred. It is preferable that the depth of the concave portion 41Fa be such that the desired wavelength conversion member 70F can be arranged.

図7A~図7Dは、実施形態4に係る発光装置の製造方法の一部の工程を示す図である。まず、図7Aに示すように、透光部40Fを準備する。透光部40Fは、第1面41F側に、波長変換部材を配置可能な凹部41Faを備える。第2面42F側には傾斜面を備える。透光部40Fは、購入して準備してもよい。また、透光部40Fは、あらかじめ図7Aに示すような形状の透光部40Fを成型等によって準備してもよく、あるいは、第1面41Fとして平らな面を備え、第2面42Fとして傾斜面を備えた透光部を準備した後、凹部41Faを形成するなど、凹部41Faを別工程で形成してもよい。尚、第2面42Fは、図4A~図4Cで示した形状等とすることができる。 7A to 7D are diagrams showing some steps of a method for manufacturing a light emitting device according to Embodiment 4. FIG. First, as shown in FIG. 7A, the translucent portion 40F is prepared. The translucent part 40F includes a concave portion 41Fa in which a wavelength conversion member can be arranged on the first surface 41F side. An inclined surface is provided on the second surface 42F side. The translucent part 40F may be purchased and prepared. 7A may be prepared in advance by molding or the like, or the light transmitting portion 40F may have a flat surface as the first surface 41F and an inclined surface as the second surface 42F. The concave portion 41Fa may be formed in a separate process, such as forming the concave portion 41Fa after preparing a light-transmitting portion having a surface. Note that the second surface 42F may have the shape shown in FIGS. 4A to 4C.

次に、図7Bに示すように、透光部40Fの第2面42F側に光反射部50Fを形成し、光学部材30Fを得る。 Next, as shown in FIG. 7B, a light reflecting portion 50F is formed on the second surface 42F side of the translucent portion 40F to obtain an optical member 30F.

次に、図7Cに示すように、光学部材30Fの第1面31F(透光部40Fの第1面41F)の凹部41Fa内に波長変換部材70Fを配置する。波長変換部材70Fの配置方法は実施形態1~4と同様の方法を用いることができる。特に、凹部41Fa内に液状の波長変換部材70Fを、印刷、又は、ポッティングで形成することが好ましい。透光部40Fの第1面41Fと波長変換部材70Fの第1面71Fとは、同じ高さとする、又は、波長変換部材70Fの第1面71Fが、透光部40Fの第1面41Fよりも高い位置となるとなるようにする。 Next, as shown in FIG. 7C, the wavelength converting member 70F is arranged in the concave portion 41Fa of the first surface 31F of the optical member 30F (the first surface 41F of the translucent portion 40F). The method of arranging the wavelength conversion member 70F can be the same as in the first to fourth embodiments. In particular, it is preferable to form the liquid wavelength conversion member 70F in the concave portion 41Fa by printing or potting. The first surface 41F of the light transmitting portion 40F and the first surface 71F of the wavelength converting member 70F are at the same height, or the first surface 71F of the wavelength converting member 70F is positioned higher than the first surface 41F of the light transmitting portion 40F. should be at a high position.

次に、図7Dに示すように、波長変換部材70Fの第1面71F上に、液状の導光部材60Fを配置する。その後、発光素子10を配置する工程以降については実施形態1~3と同様であるため省略する。 Next, as shown in FIG. 7D, a liquid light guide member 60F is arranged on the first surface 71F of the wavelength conversion member 70F. After that, the steps after the step of arranging the light-emitting element 10 are the same as those in Embodiments 1 to 3, and therefore are omitted.

<実施形態5>
実施形態5に係る発光装置800を、図8に示す。実施形態5では、波長変換部材70Gの側面73Gは、光学部材30Gの透光部40Gで被覆される。波長変換部材70Gの上面72Gは光学部材30Gの光反射部50Gで被覆される。そのため、発光素子10からの光は、波長変換部材70Fの側面73Fのみから、光学部材30Gの透光部40G内に入射される。これにより、より光を横方向に広げることができる。以下において、実施形態1~4と異なる点について主に説明する。
<Embodiment 5>
A light emitting device 800 according to Embodiment 5 is shown in FIG. In Embodiment 5, the side surface 73G of the wavelength conversion member 70G is covered with the translucent portion 40G of the optical member 30G. The upper surface 72G of the wavelength converting member 70G is covered with the light reflecting portion 50G of the optical member 30G. Therefore, the light from the light emitting element 10 enters the translucent portion 40G of the optical member 30G only from the side surface 73F of the wavelength conversion member 70F. Thereby, the light can be spread more laterally. Differences from Embodiments 1 to 4 will be mainly described below.

(被覆部材)
実施形態5では、被覆部材20は、実施形態4と同様に発光素子10の側面11cを直接又は間接的に被覆し、波長変換部材70Gの側面73Gを被覆しない。
(coating member)
In Embodiment 5, similarly to Embodiment 4, the covering member 20 directly or indirectly covers the side surface 11c of the light emitting element 10 and does not cover the side surface 73G of the wavelength conversion member 70G.

(光学部材)
実施形態5では、光学部材30Gの透光部40G及び光反射部50Gが発光装置800の側面803の一部を構成している点において、実施形態1~4と同じである。光反射部50Gの下面51Gのうち、発光装置800側面803から連続する下面51Gの一部と透光部40Gが接しており、発光素子10の上方に位置する光反射部50Gの下面51Gは、波長変換部材70Gが接している点において、実施形態1~4と異なる。換言すると、波長変換部材70Gの上方に、透光部40Gが配置されていない。これにより、より光を横方向に広げることが可能となるだけでなく、出射光の色むらも改善できる。
(optical member)
Embodiment 5 is the same as Embodiments 1 to 4 in that the light transmitting portion 40G and the light reflecting portion 50G of the optical member 30G constitute part of the side surface 803 of the light emitting device 800. FIG. Of the lower surface 51G of the light reflecting portion 50G, a part of the lower surface 51G continuous from the side surface 803 of the light emitting device 800 is in contact with the light transmitting portion 40G, and the lower surface 51G of the light reflecting portion 50G located above the light emitting element 10 is It differs from Embodiments 1 to 4 in that the wavelength converting member 70G is in contact with it. In other words, the translucent portion 40G is not arranged above the wavelength conversion member 70G. As a result, it is possible not only to spread the light more laterally, but also to improve the color unevenness of the emitted light.

なお、ここでは光反射部50Gとして、凸部50Gaと平面部50Gbを備えた光反射部50Gを例示しているが、光反射部50Gは、他の実施形態において用いられる形状のものも適用することができる。 Here, as the light reflecting portion 50G, the light reflecting portion 50G including the convex portion 50Ga and the flat portion 50Gb is exemplified, but the light reflecting portion 50G having a shape used in other embodiments is also applicable. be able to.

波長変換部材70Gの下面71Gの幅(面積)は、発光素子10の幅(面積)よりも大きくすることが好ましい。また、図8に示すように導光部材60Gを備える場合は、導光部材60Gの上面にも波長変換部材70Gが配置されることが好ましい。波長変換部材70Gの上面72Gの幅(面積)は、下面71Gと同じでもよく、また、大きくても小さくてもよい。すなわち、波長変換部材70Gの側面73Gは、垂直、又は傾斜した面とすることができる。また、波長変換部材70Gの側面73Gは、段差を備える面、曲面等とすることもできる。 It is preferable that the width (area) of the lower surface 71G of the wavelength conversion member 70G is larger than the width (area) of the light emitting element 10 . Moreover, when the light guide member 60G is provided as shown in FIG. 8, it is preferable that the wavelength conversion member 70G is also arranged on the upper surface of the light guide member 60G. The width (area) of the upper surface 72G of the wavelength conversion member 70G may be the same as that of the lower surface 71G, or may be larger or smaller. That is, the side surface 73G of the wavelength converting member 70G can be a vertical or inclined surface. Also, the side surface 73G of the wavelength conversion member 70G can be a stepped surface, a curved surface, or the like.

波長変換部材70Gは、図8に示すように、その第2面72Gの全てが光反射部50Gと接している例を示しているが、これに限らず、波長変換部材70Gの第2面72Gの一部が光反射部50Gと接していてもよい。また、波長変換部材70Gは、光反射部50Gの凸部50Ga及び平面部50Gbと接していてもよく、凸部50Gaのみと接していてもよい。 As shown in FIG. 8, the second surface 72G of the wavelength conversion member 70G is entirely in contact with the light reflecting portion 50G. may be in contact with the light reflecting portion 50G. Further, the wavelength conversion member 70G may be in contact with the convex portion 50Ga and the flat portion 50Gb of the light reflecting portion 50G, or may be in contact with only the convex portion 50Ga.

図9A~図9Dは、実施形態5に係る発光装置の製造方法の一部の工程を示す図である。まず、図9Aに示すように、光反射部50Gを準備する。光反射部50Gは、第1面51G側に、凸部51Ga及び平面部50Gbを備える。尚、光反射部50Gの第1面51Gは、他の実施形態で例示された形状を適用することができる。 9A to 9D are diagrams showing some steps of the method for manufacturing the light emitting device according to Embodiment 5. FIG. First, as shown in FIG. 9A, the light reflecting portion 50G is prepared. The light reflecting portion 50G includes a convex portion 51Ga and a flat portion 50Gb on the first surface 51G side. It should be noted that the first surface 51G of the light reflecting portion 50G can have the shapes illustrated in the other embodiments.

次に、図9Bに示すように、光反射部50Gの第1面51Gの一部に、透光部40Gを形成する。透光部40Gは、発光装置800の側面803に配置されるため、後の個片化時に切断される位置に形成する。ここでは、透光部40Gは、光反射部50Gの凸部50Gaから離間する位置であって、平面部50Gb上に形成する。透光部40Gは、図示はしないが上面視において格子状に形成される。そのため、光反射部50Gの第1面51Gを底面とし、透光部40Gを側壁とする凹部34Gが複数形成されることになる。凹部34Gの底面の中央に、凸部50Gaの頂部Rが配置される。 Next, as shown in FIG. 9B, a translucent portion 40G is formed on a portion of the first surface 51G of the light reflecting portion 50G. Since the translucent part 40G is arranged on the side surface 803 of the light emitting device 800, it is formed at a position where it will be cut later when singulating. Here, the translucent portion 40G is formed on the planar portion 50Gb at a position separated from the convex portion 50Ga of the light reflecting portion 50G. The translucent portion 40G is formed in a grid pattern when viewed from above, although not shown. Therefore, a plurality of recesses 34G having the first surface 51G of the light reflecting portion 50G as the bottom surface and the light transmitting portion 40G as the side walls are formed. The apex R of the projection 50Ga is arranged at the center of the bottom surface of the recess 34G.

次に、図9Cに示すように、凹部34G内に波長変換部材70Gを配置する。 Next, as shown in FIG. 9C, the wavelength conversion member 70G is placed inside the recess 34G.

次に、図9Cに示すように、波長変換部材70Gの第1面71G上に、液状の導光部材60Gを配置する。その後、導光部材60Gの上に発光素子を配置する工程以降については実施形態1~4と同様であるため省略する。 Next, as shown in FIG. 9C, a liquid light guide member 60G is arranged on the first surface 71G of the wavelength conversion member 70G. After that, the steps after the step of arranging the light-emitting element on the light guide member 60G are the same as those in the first to fourth embodiments, so the description thereof will be omitted.

図10A~図10Dは、実施形態5に係る発光装置800の製造方法の変形例である。
まず、図10Aに示すように、光反射部50Gを準備する。次に、図10Bに示すように、波長変換部材70Gを形成する。その後、図10Cに示すように、後工程において切断される位置となる部分に配置された波長変換部材70Gを除去することで、光反射部50Gの平面部50Gbを露出させる。次に、図10Dに示すように、隣接する波長変換部材70Gの間の光反射部50Gの上に、透光部40Gを形成する。このように、透光部40Gよりも先に波長変換部材70Gを形成しても、図9Cに示す光学部材30Gと同様のものを形成することができる。
10A to 10D are modifications of the method for manufacturing the light emitting device 800 according to the fifth embodiment.
First, as shown in FIG. 10A, a light reflecting portion 50G is prepared. Next, as shown in FIG. 10B, a wavelength conversion member 70G is formed. After that, as shown in FIG. 10C, by removing the wavelength converting member 70G arranged at the position to be cut in the post-process, the flat portion 50Gb of the light reflecting portion 50G is exposed. Next, as shown in FIG. 10D, the translucent portion 40G is formed on the light reflecting portion 50G between the adjacent wavelength converting members 70G. In this way, even if the wavelength conversion member 70G is formed before the translucent portion 40G, the same optical member 30G as shown in FIG. 9C can be formed.

<実施形態6>
実施形態6の発光装置は、光学部材の側面が光学部材の上面に垂直な方向に対して傾斜している点を除いて実施形態1の発光装置と同様に構成されている。
具体的には、実施形態6に係る一態様の発光装置は、図11Aに示すように、光学部材30Hの側面33Hが光学部材30Hの上面に垂直な方向に対して傾斜角αで内側に傾いている。ここで、本明細書において、内側に傾くとは、上面に近いほど光学部材の中心軸に近づくように傾いていることをいい、内側に傾いたときの傾斜角をαという。
この一態様の発光装置において、光学部材30Hは、実施形態1と同様、光反射部50Hと透光部40Hとを含んでなり、光学部材30Hの側面33Hが透光部40Hの側面43Hと光反射部50Hの側面53Hとを含んでいる場合には、光学部材30Hの側面33Hにおいて少なくとも透光部40Hの側面43Hが内側に傾いていればよい。
<Embodiment 6>
The light-emitting device of Embodiment 6 is configured in the same manner as the light-emitting device of Embodiment 1, except that the side surface of the optical member is inclined with respect to the direction perpendicular to the upper surface of the optical member.
Specifically, as shown in FIG. 11A, in a light emitting device of one aspect according to Embodiment 6, the side surface 33H of the optical member 30H is inclined inward at an inclination angle α with respect to the direction perpendicular to the upper surface of the optical member 30H. ing. Here, in this specification, inclining inward means inclining so as to approach the central axis of the optical member as it approaches the upper surface, and the inclination angle when inclining inward is called α.
In the light emitting device of this aspect, the optical member 30H includes the light reflecting portion 50H and the light transmitting portion 40H, as in the first embodiment. When the side surface 53H of the reflecting portion 50H is included, at least the side surface 43H of the translucent portion 40H should be inclined inward in the side surface 33H of the optical member 30H.

また、実施形態6に係る他の態様の発光装置は、図11Bに示すように、光学部材30Iの側面33Iが光学部材30Iの上面に垂直な方向に対して傾斜角βで外側に傾いている。ここで、本明細書において、外側に傾くとは、上面に近いほど光学部材の中心軸から離れるように傾いていることをいい、外側に傾いたときの傾斜角をβという。
この他の態様の発光装置において、光学部材30Iは、実施形態1と同様、光反射部50Iと透光部40Iとを含んでなり、光学部材30Iの側面33Iが透光部40Iの側面43Iと光反射部50Iの側面53Iとを含んでいる場合には、光学部材30Iの側面33Iにおいて少なくとも透光部40Iの側面43Iが外側に傾いていればよい。
Moreover, as shown in FIG. 11B, in a light emitting device of another aspect according to Embodiment 6, the side surface 33I of the optical member 30I is inclined outward at an inclination angle β with respect to the direction perpendicular to the upper surface of the optical member 30I. . Here, in this specification, "tilting outward" means tilting away from the central axis of the optical member as it approaches the upper surface, and the tilt angle when tilting outward is called β.
In the light emitting device of this other aspect, the optical member 30I includes the light reflecting portion 50I and the light transmitting portion 40I, as in the first embodiment, and the side surface 33I of the optical member 30I is the side surface 43I of the light transmitting portion 40I. When the side surface 53I of the light reflecting portion 50I is included, at least the side surface 43I of the light transmitting portion 40I should be inclined outward in the side surface 33I of the optical member 30I.

以上のように構成された実施形態6の発光装置は、光学部材30H,30Iの側面33H,33Iの傾斜角α,βを調整することにより側面33H,33Iから出射される光の方向を制御できるので、以下のような利点がある。
第1に、横方向の広い範囲に光を広げて出射させることができることに加え、横方向に出射させる光の配光特性をより適切に制御することができる。
また、例えば、製造過程の最終段階で光学部材30H,30Iの側面33H,33Iの傾斜角α,βを調整することにより異なる種々の配光特性を実現でき、異なる配光特性を備えた発光装置を効率よく製造することができる。これにより、配光特性が異なる多品種の発光装置を安価に提供することが可能になる。
The light emitting device of Embodiment 6 configured as described above can control the direction of light emitted from the side surfaces 33H and 33I by adjusting the inclination angles α and β of the side surfaces 33H and 33I of the optical members 30H and 30I. So it has the following advantages.
First, in addition to being able to spread light over a wide range in the lateral direction and emit the light, it is possible to more appropriately control the light distribution characteristics of the light emitted in the lateral direction.
Further, for example, by adjusting the inclination angles α and β of the side surfaces 33H and 33I of the optical members 30H and 30I at the final stage of the manufacturing process, various different light distribution characteristics can be realized, and the light emitting device having different light distribution characteristics. can be produced efficiently. As a result, it becomes possible to inexpensively provide a wide variety of light-emitting devices having different light distribution characteristics.

以上の実施形態6の発光装置では、光学部材30H,30Iの側面33H,33Iが一定の傾斜角α,βで傾斜した例により説明したが、実施形態6の発光装置では、側面33H,33Iを曲面により構成してもよいし、側面33H,33Iに代えて突出した又は窪んだ曲面からなる側面により構成してもよい。このようにしても横方向に出射させる光の配光特性を制御することができる。 In the light emitting device of the sixth embodiment, the side surfaces 33H and 33I of the optical members 30H and 30I are inclined at the constant angles of inclination α and β. It may be configured by a curved surface, or may be configured by a side surface formed of a protruded or recessed curved surface instead of the side surfaces 33H and 33I. Even in this way, it is possible to control the light distribution characteristics of the light emitted in the horizontal direction.

以上の実施形態6の発光装置では、光学部材30H,30Iの側面33H,33Iが一定の傾斜角α,βで傾斜した以外は実施形態1の発光装置と同様に構成した例により説明した。しかしながら、実施形態6の発光装置では、実施形態2~5の発光装置において、例えば、光学部材30H,30Iの側面33H,33Iを一定の傾斜角α,βで傾斜させてもよい。 The light emitting device of Embodiment 6 described above is configured in the same manner as the light emitting device of Embodiment 1 except that the side surfaces 33H and 33I of the optical members 30H and 30I are inclined at the constant angles of inclination α and β. However, in the light emitting device of Embodiment 6, the side surfaces 33H and 33I of the optical members 30H and 30I may be inclined at constant angles of inclination α and β in the light emitting devices of Embodiments 2 to 5, for example.

以上説明したことから理解できるように、実施形態1~6の発光装置では、光反射部の下面の角度又は形状、透光部の側面の面方向を適宜設定することにより透光部の側面から所望の方向に光を出射させることができる。しかしながら、実施形態1~6の発光装置では、さらに透光部の側面の面粗さを制御することにより配光特性を制御することが可能になる。実施形態1の発光装置において、透光部40の側面43の面粗さを大きくした例を図12に模式的に示す。例えば、透光部の側面の表面粗さRaを、0.1~50の範囲、好ましくは、1~20の範囲の比較的大きい面粗さにすると、透光部の側面における光の散乱を大きくでき、透光部の側面から出射される光の配光特性を広がりを持った配光特性にできる。ここで広がりを持った配光特性とは、光反射部の下面の角度及び透光部の側面の面方向により実現され、かつ透光部の側面における光の散乱がないと仮定したときの配光特性に比べて、配光中心とは異なる方向に出射される光の強度の減衰率が小さいことをいう。このように、透光部の側面から出射される光の配光特性を広がりを持った配光特性とすると、例えば、複数の発光装置をマトリクス状に配置した場合に、近い位置に配置した照射対象に対して均一に光を照射することが可能になり、例えば、より薄型のバックライトを実現できる。また、透光部の側面の表面粗さ大きくすると、透光部の側面における全反射を小さくでき、光の取り出し効率を高くすることができる。また、例えば、透光部の側面の表面粗さRaを、0.001~0.1の範囲、好ましくは0.005~0.05の範囲の比較的小さい範囲にすると、透光部の側面における光の散乱を小さくでき、光反射部の下面の角度又は形状、透光部の側面の面方向により設定された配光特性に基づいて光が出射される。透光部の側面の表面粗さRaを小さくする場合、表面粗さRaが小さくなると透光部の側面における全反射が大きくなる傾向があることから、透光部の側面の表面粗さRaは上記範囲の下限値以上とすることが好ましい。
以上説明したように、実施形態1~6の発光装置では、透光部の側面の表面粗さRaを適宜変更することにより、光反射部の下面の角度及び透光部の側面の面方向により実現される、透光部の側面から出射される光の配光特性を変更することができる。
したがって、例えば、製造過程の最終段階で透光部の側面の表面粗さRaを適宜変更することにより、異なる種々の配光特性を実現でき、異なる配光特性を備えた発光装置を効率よく製造することができる。これにより、配光特性が異なる多品種の発光装置を安価に提供することが可能になる。
透光部の側面の表面粗さRaは、個片化された発光装置に側面を所望の面粗さになるように研磨したり、個片化する際の切断刃の砥粒の大きさ及び/又は回転速度を適宜選択することにより、所望の表面粗さに容易に調整できる。
As can be understood from the above description, in the light emitting devices of Embodiments 1 to 6, by appropriately setting the angle or shape of the lower surface of the light reflecting portion and the surface direction of the side surface of the light transmitting portion, the light from the side surface of the light transmitting portion Light can be emitted in a desired direction. However, in the light-emitting devices of Embodiments 1 to 6, it is possible to further control the light distribution characteristics by controlling the surface roughness of the side surface of the light-transmitting portion. FIG. 12 schematically shows an example in which the surface roughness of the side surface 43 of the translucent portion 40 is increased in the light emitting device of the first embodiment. For example, if the surface roughness Ra of the side surface of the light transmitting portion is in the range of 0.1 to 50, and preferably in the range of 1 to 20, the scattering of light on the side surface of the light transmitting portion can be reduced. It can be made large, and the light distribution characteristic of the light emitted from the side surface of the light-transmitting portion can be made to have a spread. Here, the light distribution characteristic with a spread is realized by the angle of the lower surface of the light reflecting portion and the plane direction of the side surface of the light transmitting portion, and the light distribution when it is assumed that there is no scattering of light on the side surface of the light transmitting portion. It means that the attenuation rate of the intensity of light emitted in a direction different from the light distribution center is small compared to the light characteristics. In this way, if the light distribution characteristic of the light emitted from the side surface of the light-transmitting part is a spread light distribution characteristic, for example, when a plurality of light emitting devices are arranged in a matrix, the irradiation light is It becomes possible to uniformly irradiate light onto an object, and for example, a thinner backlight can be realized. Further, by increasing the surface roughness of the side surface of the light-transmitting portion, the total reflection on the side surface of the light-transmitting portion can be reduced, and the light extraction efficiency can be increased. Further, for example, if the surface roughness Ra of the side surface of the light-transmitting portion is set to a relatively small range of 0.001 to 0.1, preferably 0.005 to 0.05, the side surface of the light-transmitting portion light scattering can be reduced, and light is emitted based on the light distribution characteristics set by the angle or shape of the lower surface of the light reflecting portion and the surface direction of the side surface of the light transmitting portion. When the surface roughness Ra of the side surface of the light-transmitting portion is reduced, total reflection on the side surface of the light-transmitting portion tends to increase as the surface roughness Ra decreases. It is preferable to make it more than the lower limit of the said range.
As described above, in the light-emitting devices of Embodiments 1 to 6, by appropriately changing the surface roughness Ra of the side surface of the light-transmitting portion, the angle of the lower surface of the light-reflecting portion and the surface direction of the side surface of the light-transmitting portion It is possible to change the light distribution characteristics of the light emitted from the side surface of the translucent portion.
Therefore, for example, by appropriately changing the surface roughness Ra of the side surface of the light-transmitting portion at the final stage of the manufacturing process, various different light distribution characteristics can be realized, and light emitting devices having different light distribution characteristics can be efficiently manufactured. can do. As a result, it becomes possible to inexpensively provide a wide variety of light-emitting devices having different light distribution characteristics.
The surface roughness Ra of the side surface of the light-transmitting part is determined by polishing the side surface of the singulated light-emitting device to a desired surface roughness, or by the size and size of the abrasive grains of the cutting blade when singulating. / Or by appropriately selecting the rotation speed, the desired surface roughness can be easily adjusted.

100、200、300A、300B、400A、400B、400C、400D、400E、600、800…発光装置
101…発光装置の下面
102…発光装置の上面
103、203、303、403、803…発光装置の側面
10…発光素子
11…積層構造体
11a…積層構造体(発光素子)の電極形成面
11b…積層構造体(発光素子)の発光面
11c…積層構造体(発光素子)の側面
12、12p、12n…電極
20…被覆部材
21…被覆部材の下面(第1面)
22…被覆部材の上面(第2面)
23…被覆部材の外側面
24…被覆部材の内側面
30、30A、30B、30C、30D、30E、30F、30G…光学部材
31、31C…光学部材の下面(第1面)
32、32D…光学部材の上面(第2面)
33…光学部材の側面
34G…凹部
40、40A、40B、40C、40D、40E、40F、40G…透光部
41、41F…透光部の下面(第1面)
41Fa…透光部の下面の凹部
42…透光部の上面(第2面)
43…透光部の側面(光出射面)
50、50A、50B、50C、50D、50E、50F、50G…光反射部
50Ca、50Ga…光反射部の凸部
50Cb、50Gb…光反射部の平面部
R…光反射部の頂部
51、51A、51B、51C、51G…光反射部の下面(第1面)
51Ca、51Ga…光反射部の凸部の下面
51Cb、51Gb…光反射部の平面部の下面
52、52D…光反射部の上面(第2面)
53…光反射部の側面
54…充填部材
60、60A、60F、60G…導光部材
62、62F、62G…導光部材の上面
63…導光部材の外側面
70、70A、70G…波長変換部材
71、71F、71G…波長変換部材の下面(第1面)
72、72F、72G…波長変換部材の上面(第2面)
73、73F、73G…波長変換部材の側面
80…金属層
…光学部材の厚み
T1…透光部の側面における厚み
T2…透光部の中心部における厚み
R1…反射部の側面における厚み
R2…反射部の中心部における厚み
…光学部材の幅
…発光素子の幅
R1…反射部の傾斜部の幅
100, 200, 300A, 300B, 400A, 400B, 400C, 400D, 400E, 600, 800 Light emitting device 101 Bottom surface of light emitting device 102 Top surface of light emitting device 103, 203, 303, 403, 803 Side surface of light emitting device DESCRIPTION OF SYMBOLS 10... Light emitting element 11... Laminated structure 11a... Electrode formation surface of laminated structure (light emitting element) 11b... Light emitting surface of laminated structure (light emitting element) 11c... Side surface of laminated structure (light emitting element) 12, 12p, 12n ... Electrode 20 ... Covering member 21 ... Lower surface (first surface) of covering member
22 ... Upper surface (second surface) of the covering member
23 Outer surface of coating member 24 Inner surface of coating member 30, 30A, 30B, 30C, 30D, 30E, 30F, 30G Optical member 31, 31C Lower surface of optical member (first surface)
32, 32D... Upper surface of optical member (second surface)
33 Side surface of optical member 34G Concave portion 40, 40A, 40B, 40C, 40D, 40E, 40F, 40G Translucent portion 41, 41F Lower surface of translucent portion (first surface)
41Fa... Recess on the lower surface of the translucent part 42... Upper surface of the translucent part (second surface)
43... Side surface of translucent part (light exit surface)
50, 50A, 50B, 50C, 50D, 50E, 50F, 50G... Light reflecting portion 50Ca, 50Ga... Convex portion of light reflecting portion 50Cb, 50Gb... Flat portion of light reflecting portion R... Top portion of light reflecting portion 51, 51A, 51B, 51C, 51G ... the lower surface (first surface) of the light reflecting portion
51Ca, 51Ga... Lower surface of convex portion of light reflecting portion 51Cb, 51Gb... Lower surface of flat portion of light reflecting portion 52, 52D... Upper surface of light reflecting portion (second surface)
53... Side surface of light reflecting part 54... Filling member 60, 60A, 60F, 60G... Light guide member 62, 62F, 62G... Upper surface of light guide member 63... Outer surface of light guide member 70, 70A, 70G... Wavelength conversion member 71, 71F, 71G... Lower surface (first surface) of wavelength conversion member
72, 72F, 72G... Upper surface (second surface) of wavelength conversion member
73, 73F, 73G... Side surface of wavelength conversion member 80... Metal layer TO ... Thickness of optical member TT1 ... Thickness at side surface of translucent part TT2 ... Thickness at central part of translucent part TR1 ... Side surface of reflecting part T R2 : Thickness at the central portion of the reflective portion WO : Width of the optical member WD : Width of the light emitting element WR1 : Width of the inclined portion of the reflective portion

Claims (10)

電極形成面と前記電極形成面の反対側の発光面と前記電極形成面と前記発光面との間の側面とを備える半導体積層体と、前記電極形成面に備えられた一対の電極と、を備える発光素子と、
前記発光素子の側面を被覆する光反射性の被覆部材と、
前記発光素子の前記発光面と前記被覆部材の上面とにわたって配置される光学部材と、
前記発光素子の側面を被覆し、外面が前記被覆部材で被覆される導光部材と、
前記発光素子の上面と、前記導光部材の上面と、を覆い、蛍光体を含む波長変換部材と、
を備え、
前記光学部材は、前記発光素子の上方に配置される光反射部と、前記光反射部と前記被覆部材との間に配置され、発光装置の外側面の一部を構成し、蛍光体を含まない透光部と、を備え、
前記光反射部は、中央に有する凸部と、前記凸部の周囲に有する平面部と、を備え、
前記波長変換部材は、前記光反射部の前記凸部及び前記平面部と接しており、
前記波長変換部材の側面は、前記透光部に被覆されている、発光装置。
a semiconductor laminate including an electrode-formed surface, a light-emitting surface opposite to the electrode-formed surface, and a side surface between the electrode-formed surface and the light-emitting surface; and a pair of electrodes provided on the electrode-formed surface. a light emitting element provided;
a light-reflective covering member that covers the side surface of the light emitting element;
an optical member arranged over the light emitting surface of the light emitting element and the upper surface of the covering member;
a light guide member covering a side surface of the light emitting element and having an outer surface covered with the covering member;
a wavelength conversion member that covers the top surface of the light emitting element and the top surface of the light guide member and contains a phosphor;
with
The optical member includes a light reflecting portion disposed above the light emitting element, disposed between the light reflecting portion and the covering member, constitutes a part of an outer surface of the light emitting device, and contains a phosphor. and
The light reflecting portion includes a convex portion in the center and a planar portion around the convex portion,
the wavelength conversion member is in contact with the convex portion and the planar portion of the light reflecting portion;
The light-emitting device, wherein the side surface of the wavelength conversion member is covered with the translucent portion.
前記導光部材は、前記発光素子の側面の50%以上を被覆する、請求項1記載の発光装置。 2. The light emitting device according to claim 1, wherein said light guide member covers 50% or more of the side surface of said light emitting element. 前記導光部材は、前記発光素子の前記上面を被覆する請求項1又は請求項2に記載の発光装置。 3. The light emitting device according to claim 1, wherein the light guide member covers the upper surface of the light emitting element. 前記導光部材は、前記透光部の下面と直接又は間接的に接続される、請求項1から請求項3のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the light guide member is directly or indirectly connected to the lower surface of the light transmitting portion. 前記波長変換部材の上方に、前記透光部が配置されていない、請求項1から請求項4のいずれか1項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 4, wherein the translucent portion is not arranged above the wavelength conversion member. 前記波長変換部材の上面の全てが前記反射部と接している、請求項1から請求項5のいずれか1項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 5, wherein the entire upper surface of the wavelength conversion member is in contact with the light reflection section. 平面視した際の、前記波長変換部材の平面積は、前記発光素子の平面積と前記導光部材の上面の平面積とを足した平面積よりも大きい、請求項5又は請求項6に記載の発光装置。 7. The method according to claim 5, wherein a plane area of the wavelength conversion member when viewed from above is larger than a plane area obtained by adding the plane area of the light emitting element and the plane area of the upper surface of the light guide member. luminous device. 前記波長変換部材の側面は、垂直な面である、請求項5又は請求項6に記載の発光装置。 7. The light-emitting device according to claim 5, wherein the side surface of said wavelength conversion member is a vertical surface. 前記波長変換部材の側面は、傾斜した面である、請求項5又は請求項6に記載の発光装置。 7. The light-emitting device according to claim 5, wherein the side surface of said wavelength converting member is an inclined surface. 前記波長変換部材の側面は、前記発光装置の側面から離間している、請求項5から請求項9のいずれか1項に記載の発光装置。 10. The light emitting device according to any one of claims 5 to 9, wherein a side surface of said wavelength converting member is spaced apart from a side surface of said light emitting device.
JP2020113908A 2017-06-28 2020-07-01 light emitting device Active JP7177359B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125711 2017-06-28
JP2017125711 2017-06-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018100322A Division JP2019009429A (en) 2017-06-28 2018-05-25 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2020174196A JP2020174196A (en) 2020-10-22
JP7177359B2 true JP7177359B2 (en) 2022-11-24

Family

ID=65029690

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018100322A Pending JP2019009429A (en) 2017-06-28 2018-05-25 Light-emitting device
JP2020113908A Active JP7177359B2 (en) 2017-06-28 2020-07-01 light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018100322A Pending JP2019009429A (en) 2017-06-28 2018-05-25 Light-emitting device

Country Status (1)

Country Link
JP (2) JP2019009429A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164315B2 (en) * 2018-04-03 2022-11-01 シチズン電子株式会社 light emitting device
JP7025660B2 (en) * 2019-03-27 2022-02-25 日亜化学工業株式会社 Luminescent device
JP6947989B2 (en) 2019-03-28 2021-10-13 日亜化学工業株式会社 Linear light source and planar light emitting device
JP7213454B2 (en) * 2019-09-30 2023-01-27 日亜化学工業株式会社 light emitting module
US11561338B2 (en) 2019-09-30 2023-01-24 Nichia Corporation Light-emitting module
JP7295437B2 (en) * 2019-11-29 2023-06-21 日亜化学工業株式会社 light emitting device
JP7108196B2 (en) 2019-12-26 2022-07-28 日亜化学工業株式会社 Light-emitting device, method for manufacturing wavelength conversion member, and method for manufacturing light-emitting device
JP2022168725A (en) 2021-04-26 2022-11-08 日亜化学工業株式会社 Light-emitting device, lamp, and street light
JP7502650B2 (en) 2021-04-26 2024-06-19 日亜化学工業株式会社 Light-emitting devices, lighting fixtures and street lights

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US20120250350A1 (en) 2011-03-30 2012-10-04 Mangeun Kim Display apparatus
JP2012227470A (en) 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2014154769A (en) 2013-02-12 2014-08-25 Nichia Chem Ind Ltd Light-emitting device
JP2015220431A (en) 2014-05-21 2015-12-07 日亜化学工業株式会社 Method of manufacturing light emission device and light emission device
US20150364660A1 (en) 2014-06-12 2015-12-17 Genesis Photonics Inc. Light emitting component
US20160109096A1 (en) 2014-10-17 2016-04-21 Samsung Electronics Co., Ltd. Light emitting device package and lighting device having the same
JP2016072515A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2017041477A (en) 2015-08-18 2017-02-23 日亜化学工業株式会社 Light-emitting device
JP2017050321A (en) 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073154U (en) * 1993-06-01 1995-01-17 株式会社アドビック Light emitting diode, light reflecting member, and warning light
JP4082544B2 (en) * 1999-12-24 2008-04-30 ローム株式会社 Back-mounted chip light-emitting device
JP2007324220A (en) * 2006-05-30 2007-12-13 Toshiba Corp Optical semiconductor device
JP2013038136A (en) * 2011-08-04 2013-02-21 Sharp Corp Light-emitting device and display device
JP5897862B2 (en) * 2011-10-13 2016-04-06 シチズン電子株式会社 Semiconductor light emitting device
JP2013115280A (en) * 2011-11-30 2013-06-10 Citizen Electronics Co Ltd Side emission light-emitting device
JP2013118244A (en) * 2011-12-02 2013-06-13 Citizen Holdings Co Ltd Semiconductor light-emitting device and lighting apparatus using the same
JP2013187245A (en) * 2012-03-06 2013-09-19 Stanley Electric Co Ltd Semiconductor light-emitting device
JP5980577B2 (en) * 2012-05-31 2016-08-31 シチズン電子株式会社 Side-illuminated LED light-emitting device and method for manufacturing side-illuminated LED light-emitting device
KR101996264B1 (en) * 2012-08-30 2019-07-04 엘지이노텍 주식회사 Optical lens, light emitting device and light apparatus having thereof
KR101772550B1 (en) * 2015-12-10 2017-08-31 주식회사 세미콘라이트 Semiconductor light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US20120250350A1 (en) 2011-03-30 2012-10-04 Mangeun Kim Display apparatus
JP2012227470A (en) 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2014154769A (en) 2013-02-12 2014-08-25 Nichia Chem Ind Ltd Light-emitting device
JP2015220431A (en) 2014-05-21 2015-12-07 日亜化学工業株式会社 Method of manufacturing light emission device and light emission device
US20150364660A1 (en) 2014-06-12 2015-12-17 Genesis Photonics Inc. Light emitting component
JP2016072515A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
US20160109096A1 (en) 2014-10-17 2016-04-21 Samsung Electronics Co., Ltd. Light emitting device package and lighting device having the same
JP2017041477A (en) 2015-08-18 2017-02-23 日亜化学工業株式会社 Light-emitting device
JP2017050321A (en) 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device

Also Published As

Publication number Publication date
JP2019009429A (en) 2019-01-17
JP2020174196A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP7177359B2 (en) light emitting device
CN109148674B (en) Light emitting device
KR102535690B1 (en) Light emitting device
JP6277860B2 (en) Light emitting device and manufacturing method thereof
JP6205897B2 (en) Light emitting device and manufacturing method thereof
US10879430B2 (en) Light-emitting device and method of manufacturing the same
JP6171921B2 (en) Wiring board and light emitting device
JP2019029478A (en) Manufacturing method of light emitting device
US11069843B2 (en) Light-emitting device
JP7189451B2 (en) Light emitting module, liquid crystal display
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP7295437B2 (en) light emitting device
TW201511353A (en) Light emitting device and method of manufacturing the same
US20240063348A1 (en) Method of manufacturing wavelength converting member and method of manufacturing light emitting device
JP6460189B2 (en) Light emitting device and manufacturing method thereof
US11056623B2 (en) Light-emitting device and method of manufacturing light-emitting device
JP6920619B2 (en) Light emitting device
JP7295408B2 (en) Method for manufacturing light emitting device
JP7054020B2 (en) Light emitting device
JP6784287B2 (en) Light emitting device and its manufacturing method
JP2023150244A (en) Manufacturing method of light-emitting device and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R151 Written notification of patent or utility model registration

Ref document number: 7177359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151