JP2013187245A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2013187245A
JP2013187245A JP2012049409A JP2012049409A JP2013187245A JP 2013187245 A JP2013187245 A JP 2013187245A JP 2012049409 A JP2012049409 A JP 2012049409A JP 2012049409 A JP2012049409 A JP 2012049409A JP 2013187245 A JP2013187245 A JP 2013187245A
Authority
JP
Japan
Prior art keywords
emitting device
transparent member
semiconductor light
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012049409A
Other languages
Japanese (ja)
Inventor
Hironobu Sakamoto
博信 坂本
Manami Myojin
真奈美 明神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012049409A priority Critical patent/JP2013187245A/en
Publication of JP2013187245A publication Critical patent/JP2013187245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Abstract

PROBLEM TO BE SOLVED: To improve an appearance color without decreasing light extraction efficiency in a semiconductor light-emitting device in which an LED and a fluorescent substance are paired with each other.SOLUTION: A semiconductor light-emitting device comprises a base material, a semiconductor element mounted on the base material, a phosphor layer arranged on the semiconductor element and a transparent member arranged on the phosphor layer across a space. The transparent member has a particular uneven shape at least on one surface. The uneven shape has an arithmetic average roughness Ra (JIS B0601:1994) within a range of 0.2 μm-8 μm, in which a rate of a region of Ra and under is 50% and over to an area of the whole uneven shape.

Description

本発明は、発光素子(LED)を光源とし、蛍光体層で色変換を行う半導体発光装置に関し、特に外観の改良を図った半導体発光装置に関する。   The present invention relates to a semiconductor light-emitting device that uses a light-emitting element (LED) as a light source and performs color conversion with a phosphor layer, and more particularly to a semiconductor light-emitting device with an improved appearance.

LEDを光源とし、蛍光体層で色変換を行う発光装置では、発光素子を覆う蛍光体層が外光によっても発色し、白色以外の色(一般に黄色)を呈することによって、装置の外観を損ねるという問題が従来指摘されている。特に、カメラのストロボ等に用いる発光装置では、蛍光体層の色を消したいという要望がある。   In a light-emitting device that uses an LED as a light source and performs color conversion with a phosphor layer, the phosphor layer that covers the light-emitting element is colored even by external light and exhibits a color other than white (generally yellow), thereby impairing the appearance of the device. This problem has been pointed out in the past. In particular, in a light emitting device used for a camera strobe or the like, there is a desire to erase the color of the phosphor layer.

この問題に対し種々の提案がなされている。例えば、特許文献1には蛍光体層の上に積層される表面層に光拡散剤を添加し、外観色を白色に近付けることが提案されている。また発光装置を覆うカバーとしてすりガラス等の半透明ガラスを用いることも知られている。しかし、すりガラス等を用いた場合や光拡散剤を添加した場合、発光装置からの光取り出し効果が低下し、発光装置の光度が低下するという問題がある。それを改善する技術として、蛍光体層を覆う封止樹脂層の表面に凹凸形状を形成すること(特許文献2)や、蛍光体層の上に配置されるレンズの、蛍光体層に対向する面にプリズム形状を形成すること(特許文献3)が提案されている。   Various proposals have been made for this problem. For example, Patent Document 1 proposes that a light diffusing agent is added to a surface layer laminated on a phosphor layer so that the appearance color approaches white. It is also known to use translucent glass such as ground glass as a cover for covering the light emitting device. However, when ground glass or the like is used or when a light diffusing agent is added, there is a problem that the light extraction effect from the light emitting device is reduced and the luminous intensity of the light emitting device is reduced. As a technique for improving this, forming a concavo-convex shape on the surface of the sealing resin layer covering the phosphor layer (Patent Document 2), or facing a phosphor layer of a lens disposed on the phosphor layer It has been proposed to form a prism shape on the surface (Patent Document 3).

特開2009−16779号公報JP 2009-16779 A 特開2009−302489号公報JP 2009-302489 A 特開2011−44610号公報JP 2011-44610 A

しかし、特許文献1に記載された技術では外観色を白に近付けるには拡散剤添加量を多く混入する必要があるため光度変化は大きくなり、利用価値のある90%以上を確保できないという問題がある。また、特許文献2に記載された技術では、蛍光体層の上に封止樹脂層を形成した後、その表面に金型等を用いて所定の凹凸形状を作成しなければならず、例えば樹脂層表面の面積が1mm角程度である場合には、再現よく微細な形状を加工するのに手間と加工費がかかり製造が困難である。特許文献3に記載された技術では、発光装置に搭載前のレンズ自体を加工するので、搭載後に加工する場合に比べ製造の困難性は緩和されるが、90度以上の大きなプリズム頂角を持つレンズの場合、LEDからの白色光の出射角度が約30度以上の光はプリズムの斜面で全反射が起こりやすいため、レンズから出てくる白色光は出射角度がさらに広がり光度低下を招くおそれがある。   However, in the technique described in Patent Document 1, in order to bring the appearance color close to white, it is necessary to add a large amount of diffusing agent, so that the change in luminous intensity becomes large, and 90% or more of useful value cannot be secured. is there. In the technique described in Patent Document 2, after forming a sealing resin layer on the phosphor layer, a predetermined uneven shape must be created on the surface using a mold or the like. When the area of the surface of the layer is about 1 mm square, it takes time and cost to process a fine shape with good reproducibility, and manufacturing is difficult. In the technique described in Patent Document 3, since the lens itself before being mounted on the light emitting device is processed, the manufacturing difficulty is reduced as compared with the case of processing after mounting, but the prism apex angle is larger than 90 degrees. In the case of a lens, light with an emission angle of white light from the LED of about 30 degrees or more is likely to undergo total reflection on the slope of the prism, so the white light emitted from the lens may further increase the emission angle and cause a decrease in luminous intensity. is there.

本発明は、製造が容易であり且つ光の取り出し効率を低下させることなく外観色を改善することを課題とする。   An object of the present invention is to improve the appearance color, which is easy to manufacture and does not reduce the light extraction efficiency.

上記課題を解決するため、本発明者らは蛍光体層の上に配置される透明部材の表面形状について研究を進めた結果、所定の表面粗さの範囲であって且つ比較的粗い山及び谷の間に平均の表面粗さよりも微細な山や谷が存在する構造を持つ場合に、光の取り出し効率を高く保ったまま下側にある材料(蛍光体層)の色を効果的に白色化できることを見出し、本発明に至ったものである。   In order to solve the above problems, the present inventors have conducted research on the surface shape of the transparent member disposed on the phosphor layer. As a result, the present invention has a predetermined surface roughness range and relatively rough peaks and valleys. When there is a structure with peaks and valleys that are finer than the average surface roughness between the two, the color of the underlying material (phosphor layer) is effectively whitened while maintaining high light extraction efficiency It has been found out that it can be done, and has led to the present invention.

即ち、本発明の半導体発光装置は、基材と、前記基材上に実装された半導体素子と、前記半導体素子の上に配置された蛍光体層と、前記蛍光体層の上に空間を挟んで配置された透明部材とを備え、前記透明部材は、少なくとも片面に凹凸形状が形成されたものであり、前記凹凸形状は、算術平均粗さRa(JIS B0601:1994)が0.2〜8μmの範囲であって、且つ前記Ra以下である領域の割合が凹凸形状全体の面積の50%以上であることを特徴とする。   That is, the semiconductor light emitting device of the present invention includes a base material, a semiconductor element mounted on the base material, a phosphor layer disposed on the semiconductor element, and a space between the phosphor layer. The transparent member has a concavo-convex shape formed on at least one surface, and the concavo-convex shape has an arithmetic average roughness Ra (JIS B0601: 1994) of 0.2 to 8 μm. And the ratio of the region which is equal to or less than the Ra is 50% or more of the total area of the concavo-convex shape.

凹凸形状は、例えば、透明部材の片面或いは両面の全面に設けることができる。或いは、透明部材の片面或いは両面の、蛍光体層の直上を含む領域に部分的に設けることができる。   The uneven shape can be provided, for example, on the entire surface of one side or both sides of the transparent member. Or it can provide partially in the area | region containing the directly upper side of a fluorescent substance layer of the single side | surface or both surfaces of a transparent member.

また本発明の半導体発光装置は、表面に凹凸形状が形成された透明部材を複数配置することができる。   Moreover, the semiconductor light-emitting device of this invention can arrange | position two or more transparent members with the uneven | corrugated shape formed in the surface.

本発明によれば、表面に特定の凹凸形状を持つ透明部材を配置することにより、光の取り出し効率を良好に保ったまま、蛍光体層の色を目立たなくし白色に近い外観色とすることができる。特定の凹凸形状を持つ透明部材は、一般的に入手可能な透明板ガラスやアクリル板等の表面を処理することにより容易に作製することができ、発光装置製造の手間やコスト増加を抑制することができる。   According to the present invention, by arranging a transparent member having a specific concavo-convex shape on the surface, the color of the phosphor layer is made inconspicuous and the appearance color is close to white while maintaining good light extraction efficiency. it can. A transparent member having a specific concavo-convex shape can be easily manufactured by treating the surface of a generally available transparent plate glass, acrylic plate, etc., and can suppress the labor and cost increase of light emitting device manufacture. it can.

本発明の半導体発光装置の第一実施形態を示す側面図。The side view which shows 1st embodiment of the semiconductor light-emitting device of this invention. (a)は本発明の半導体発光装置の透明部材の表面凹凸形状を示す図、(b)及び(c)はそれぞれ一般的な表面凹凸形状を示す図。(A) is a figure which shows the surface uneven | corrugated shape of the transparent member of the semiconductor light-emitting device of this invention, (b) and (c) are figures which show general surface uneven | corrugated shape, respectively. 第一実施形態の変更例を示す側面図。The side view which shows the example of a change of 1st embodiment. 本発明の半導体発光装置の第二実施形態を示す側面図。The side view which shows 2nd embodiment of the semiconductor light-emitting device of this invention. 第二実施形態の変更例を示す側面図。The side view which shows the example of a change of 2nd embodiment. 本発明の半導体発光装置の第三実施形態を示す側面図。The side view which shows 3rd embodiment of the semiconductor light-emitting device of this invention. 実施例1に用いた透明部材(粗面ガラスA)の表面粗さを示すグラフ。The graph which shows the surface roughness of the transparent member (rough surface glass A) used for Example 1. FIG. 比較例1に用いた透明部材(粗面ガラスX)の表面粗さを示すグラフ。The graph which shows the surface roughness of the transparent member (rough surface glass X) used for the comparative example 1. FIG. 実施例及び比較例の半導体発光装置の色度を示すグラフ。The graph which shows the chromaticity of the semiconductor light-emitting device of an Example and a comparative example. 表面粗さRaと光度との関係を示すグラフ。The graph which shows the relationship between surface roughness Ra and luminous intensity.

以下、本発明の半導体発光装置の実施の形態を説明する。   Embodiments of the semiconductor light emitting device of the present invention will be described below.

<第一実施形態>
図1は、本発明の半導体発光装置の第一実施形態を示す側断面図である。この半導体発光装置10は、パッケージ基材1と、基材1上に実装されたLED2と、LED2の上に設けられた蛍光体層3と、透明部材4とを備えている。
<First embodiment>
FIG. 1 is a side sectional view showing a first embodiment of the semiconductor light emitting device of the present invention. The semiconductor light emitting device 10 includes a package substrate 1, an LED 2 mounted on the substrate 1, a phosphor layer 3 provided on the LED 2, and a transparent member 4.

基材1は、底面と側壁を持つカップ型のPLCC(Plastic leaded chip carrier)やセラミックケースなどから構成され、LED2を図示しない駆動回路や電源に接続するための導線パターンが形成されており、LED2が実装される面に導体パターンの電極が形成されている。なおカップ型の基材1の代わりに平坦な基材と基材上に固定された筒状の壁材とを組み合わせたものであってもよい。また形状は図1に示すものに限らず、壁面或いは壁材が底面と垂直な方向に対し傾斜し、上面の開口が広がった形状のものであってもよい。また基材1の内面には、必要に応じて、反射層が形成されている。   The base material 1 is composed of a cup-type PLCC (Plastic leaded chip carrier) having a bottom surface and a side wall, a ceramic case, and the like, and a conductive wire pattern for connecting the LED 2 to a drive circuit and a power source (not shown) is formed. The electrode of the conductor pattern is formed on the surface on which is mounted. A combination of a flat base material and a cylindrical wall material fixed on the base material may be used instead of the cup-type base material 1. The shape is not limited to that shown in FIG. 1, and the wall surface or wall material may be inclined with respect to the direction perpendicular to the bottom surface, and the opening on the top surface may be widened. In addition, a reflective layer is formed on the inner surface of the substrate 1 as necessary.

LED2は、例えば、青色光または紫外光を発生するものを用いる。蛍光体層3は、蛍光体粉末をエポキシ樹脂、シリコーン樹脂等の樹脂中に分散させたものからなる。蛍光体は、LED2が発する光を吸収し、異なる波長の光を発生するものであり、LED2の発光波長に合わせて適切な材料を一種類或いは二種類以上を混合して用いられる。LED2が青色光或いは紫外光を発生するものである場合、通常、YAG系蛍光体やサイアロン系蛍光体などが用いられる。これら蛍光体は黄色を呈し、透明部材4がない場合には、この黄色が発光装置の色として見えることになる。   For example, LED 2 that generates blue light or ultraviolet light is used. The phosphor layer 3 is formed by dispersing phosphor powder in a resin such as an epoxy resin or a silicone resin. The phosphor absorbs light emitted from the LED 2 and generates light having a different wavelength, and one or a mixture of two or more kinds of appropriate materials are used in accordance with the emission wavelength of the LED 2. When the LED 2 generates blue light or ultraviolet light, a YAG phosphor or a sialon phosphor is usually used. These phosphors exhibit a yellow color, and when the transparent member 4 is not present, this yellow color appears as the color of the light emitting device.

透明部材4は、ガラス、ポリカーボネート、アクリルなどの高耐熱性透明樹脂などからなる板材で、材料自体は高い光透過性を持つが、表面41に形成された特定の凹凸形状により光を拡散し、これにより蛍光体層3の色を目立たなくし、白色に近付けることができる。透明部材4の厚みは、特に限定されないが、例えば1mm角のパッケージの場合、0.05mm〜1.1mm程度であり、ガラスの取り扱いを考慮すると壊れにくい0.1〜0.3mm程度とすることがより望ましい。   The transparent member 4 is a plate material made of a highly heat-resistant transparent resin such as glass, polycarbonate, and acrylic, and the material itself has high light transmittance, but diffuses light by a specific uneven shape formed on the surface 41, As a result, the color of the phosphor layer 3 can be made inconspicuous and close to white. The thickness of the transparent member 4 is not particularly limited. For example, in the case of a 1 mm square package, the thickness is about 0.05 mm to 1.1 mm. Is more desirable.

以下、図2を参照して、透明部材4の表面形状について説明する。図2の(a)は本実施形態の透明部材4の表面形状を示し、(b)、(c)は、それぞれ、表面粗さが異なる凹凸形状を示している。ガラスをサンドブラスト処理等することによって表面を荒らした場合には、図2(b)に示すように、凹凸形状の山の高さや谷の深さにはばらつきがあるものの、全体的として同じような分布で、高さや深さにばらつきのある山や谷が散在している。このような凹凸形状の場合、平均表面粗さRaが所定の範囲のときに高い光拡散性が得られ、その結果、透明部材4の下側にあるものの色は白色に近い色になる。しかしこの場合、光の透過性も低下し、結果として発光装置の光度が低下する。一方、図2(c)に示すように、全体として平均表面粗さRaが所定の範囲より小さい場合には平滑な部材に近くなるため、光の透過性は向上するが光の拡散性が低下するため、その下にあるものの色を白色に近づける効果は少ない。   Hereinafter, the surface shape of the transparent member 4 will be described with reference to FIG. FIG. 2A shows the surface shape of the transparent member 4 of the present embodiment, and FIGS. 2B and 2C show uneven shapes having different surface roughnesses. When the surface is roughened by sandblasting the glass or the like, as shown in FIG. 2 (b), the height of the concavo-convex peaks and the depth of the valleys vary, but the overall is similar. In the distribution, there are scattered mountains and valleys with variations in height and depth. In the case of such a concavo-convex shape, high light diffusibility is obtained when the average surface roughness Ra is in a predetermined range, and as a result, the color of what is below the transparent member 4 becomes a color close to white. However, in this case, the light transmittance is also lowered, and as a result, the luminous intensity of the light emitting device is lowered. On the other hand, as shown in FIG. 2 (c), when the average surface roughness Ra as a whole is smaller than a predetermined range, it becomes close to a smooth member, so that the light transmission is improved but the light diffusibility is lowered. Therefore, the effect of bringing the color of the underlying object closer to white is small.

これに対し、図2(a)に示す表面形状は、高低差の平均値(例えば、十点平均粗さRz)は図2(b)と同様であるが、比較的高い山と山との間或いは比較的深い谷と谷の間に、これら高い山と谷によって規定される表面粗さよりも表面粗さが細かい領域4Aが存在する形状になっている。このような表面形状の透明部材4は、表面粗さが細かい領域4Aでは光の透過性が高いため、図2(b)に示す表面形状に比べ、全体として高い光透過性を持つ。しかも、これら領域4Aの間に高い山や谷が点在しているので、光拡散性が維持される。その結果、蛍光体層3から発せられた黄色光が領域4Aから透明部材4の外に出射するとき、この光はそれに隣接して存在する山や谷で散乱された外光や内側からの光と混色され、黄色味が低減し白色光に近い光となる。   On the other hand, the surface shape shown in FIG. 2 (a) is similar to FIG. 2 (b) in the average value of the height difference (for example, the ten-point average roughness Rz). A region 4A having a finer surface roughness than the surface roughness defined by these high peaks and valleys exists between or between relatively deep valleys. The transparent member 4 having such a surface shape has a high light transmittance as a whole compared with the surface shape shown in FIG. Moreover, since high peaks and valleys are scattered between these regions 4A, the light diffusibility is maintained. As a result, when the yellow light emitted from the phosphor layer 3 is emitted from the region 4A to the outside of the transparent member 4, the light is scattered from the mountains and valleys existing adjacent to it or from the inside. Is mixed, and the yellowishness is reduced to light close to white light.

この表面形状は、具体的には、測定面積全体の算術平均粗さRa(JIS B0601:1994)で0.2μm〜8μm、好適には0.3μm〜5.5μmであり、且つ山の高さ及び谷の深さが算術平均粗さRaよりも小さい領域の面積が、測定面積全体の50%以上、好適には60%以上である。また山の高さ及び谷の深さが算術平均粗さRaよりも小さい領域におけるRaは、測定面積全体のRaに対して3分の2以下の値であることが好ましい。このような範囲とすることにより、上述した効果すなわち光の透過性を保ちつつ高い光拡散性を得ることができる。
特に、凹凸形状を透明部材4の片面全面に設ける場合はRaを8μm以下とすることにより、また凹凸形状を両面全面に設ける場合にはRaを5.5μm以下とすることにより、光度90%以上に維持することができる。さらに凹凸形状を片面全面に設ける場合Raを6.5μm以下とすることにより、また凹凸形状を両面全面に設ける場合にはRaを2μm以下とすることにより、光度95%以上に維持することができる。
Specifically, the surface shape is 0.2 μm to 8 μm, preferably 0.3 μm to 5.5 μm in arithmetic average roughness Ra (JIS B0601: 1994) of the entire measurement area, and the height of the mountain. And the area of the area | region where the depth of a trough is smaller than arithmetic mean roughness Ra is 50% or more of the whole measurement area, Preferably it is 60% or more. Further, Ra in the region where the height of the mountain and the depth of the valley are smaller than the arithmetic average roughness Ra is preferably a value of 2/3 or less of Ra of the entire measurement area. By setting it as such a range, high light diffusibility can be acquired, maintaining the effect mentioned above, ie, the light transmittance.
In particular, when the concavo-convex shape is provided on the entire surface of one side of the transparent member 4, Ra is set to 8 μm or less, and when the concavo-convex shape is provided on the entire surface of both surfaces, Ra is set to 5.5 μm or less so Can be maintained. Further, when the uneven shape is provided on the entire surface of one side, Ra can be maintained at 6.5% or less. When the uneven shape is provided on the entire surface of both surfaces, Ra can be maintained at 95% or more by setting Ra to 2 μm or less. .

透明部材4の表面形状を上述した範囲にする方法は、限定されるものではないが、物理的な粗面化処理と化学的な粗面化処理を組み合わせることが好ましい。例えば、透明な板状部材の表面を所定のRaになるようにサンドブラスト処理した後、フッ化水素などのエッチング液につけてエッチング処理を行う。上述した粗さの小さい領域が占める割合は、エッチング処理の条件(エッチング液の種類や濃度、処理時間、処理温度等)を異ならせることにより調整することができる。またエッチング液を透明部材表面に噴霧状につけて、エッチング処理を行ってもよい。   Although the method of making the surface shape of the transparent member 4 into the range mentioned above is not limited, It is preferable to combine a physical roughening process and a chemical roughening process. For example, the surface of a transparent plate-shaped member is sandblasted so as to have a predetermined Ra, and then etched by applying it to an etching solution such as hydrogen fluoride. The ratio of the above-described region having a small roughness can be adjusted by changing the etching process conditions (type and concentration of the etchant, processing time, processing temperature, etc.). Further, the etching treatment may be performed by spraying the etching solution on the surface of the transparent member.

透明部材4は、上述した凹凸形状が形成された面41を、図1に示すように、外側に向けて配置してもよいし、外側に向けて配置してもよく、いずれの場合にも同様の効果が得られる。   As shown in FIG. 1, the transparent member 4 may have the surface 41 on which the above-described uneven shape is formed facing outward, or may be disposed outward. Similar effects can be obtained.

また透明部材4の凹凸形状の面41と反対側の面43は、平坦でもよいし、図3に示すように、凹凸形状が形成されていてもよい。この場合、反対側の面43の凹凸形状は、面41と同様の凹凸形状とすることができる。また、光透過性を阻害しないものであれば、同じ凹凸形状に限らず、それ以外の光学効果や物理的効果を持つ形状としてもよい。例えば、所定の凹凸形状の面41を内側に配置し、外側となる面には汚れ防止効果の高い表面形状を形成したり、集光効果のあるレンズ形状を形成したりすることも可能である。   Moreover, the surface 43 opposite to the uneven surface 41 of the transparent member 4 may be flat, or an uneven shape may be formed as shown in FIG. In this case, the uneven shape of the surface 43 on the opposite side can be the same uneven shape as the surface 41. Moreover, as long as it does not inhibit light transmittance, the shape is not limited to the same uneven shape, and may have a shape having other optical effects and physical effects. For example, it is possible to arrange a predetermined uneven surface 41 on the inner side, and to form a surface shape having a high antifouling effect on the outer surface, or to form a lens shape having a light collecting effect. .

本実施形態の半導体発光装置の製造方法の一例を説明する。まず、パッケージ基材1上にLED2をダイボンディングした後、Auワイヤー5でボンディングする。次いでLED2の上に蛍光体層3を構成する樹脂組成物をディスペンサ等でポッティングして蛍光体層3を形成し硬化させる。LED2の蛍光体層3以外の部分は樹脂封止する必要はないが、樹脂層を設けてもよい。これとは別に、表面に凹凸形状が形成されたガラス板を用意し、これをパッケージ基材1の上面開口に合わせて切断し、ガラス片を用意する。最後に、このガラス片を、LED2及び蛍光体層3を実装したパッケージ基材1の上面開口に、耐熱性接着剤等で貼り合わせ、発光装置10とする。   An example of a method for manufacturing the semiconductor light emitting device of this embodiment will be described. First, the LED 2 is die-bonded on the package substrate 1 and then bonded with the Au wire 5. Next, a resin composition constituting the phosphor layer 3 is potted on the LED 2 with a dispenser or the like to form and cure the phosphor layer 3. The portions other than the phosphor layer 3 of the LED 2 need not be resin-sealed, but a resin layer may be provided. Separately from this, a glass plate having a concavo-convex shape formed on the surface is prepared, and this is cut in accordance with the upper surface opening of the package substrate 1 to prepare a glass piece. Finally, this glass piece is bonded to the upper surface opening of the package substrate 1 on which the LED 2 and the phosphor layer 3 are mounted with a heat-resistant adhesive or the like to obtain the light emitting device 10.

なお図1では、単一のLEDからなる発光装置10を示したが、基板上に複数のLEDを実装した発光装置についても同様に製造することができる。   Although FIG. 1 shows the light emitting device 10 composed of a single LED, a light emitting device in which a plurality of LEDs are mounted on a substrate can be similarly manufactured.

本実施形態によれば、発光装置のパッケージを覆う透明部材として、表面に特定の凹凸形状が形成された部材を用いることにより、発光量を低下させることなく外観色を改善した半導体発光装置を得ることができる。   According to the present embodiment, a semiconductor light-emitting device having an improved appearance color without reducing the amount of light emission is obtained by using a member having a specific uneven shape formed on the surface as a transparent member that covers the package of the light-emitting device. be able to.

<第二実施形態>
第一実施形態の半導体発光装置は、全面に凹凸形状が形成された透明部材を用いたものであるが、本実施形態の半導体発光装置は、部分的に凹凸形状が形成された透明部材を用いることを特徴としている。図4に、本実施形態の半導体発光装置10の全体構成を示す。図4において、透明部材以外の要素は第一実施形態と同じであり、同じ符号で示し、その説明を省略する。
<Second embodiment>
The semiconductor light-emitting device of the first embodiment uses a transparent member having a concavo-convex shape formed on the entire surface, but the semiconductor light-emitting device of the present embodiment uses a transparent member partially having a concavo-convex shape. It is characterized by that. FIG. 4 shows the overall configuration of the semiconductor light emitting device 10 of the present embodiment. In FIG. 4, elements other than the transparent member are the same as those in the first embodiment, are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の透明部材40は、一方の面41に、第一実施形態の透明部材4の面41と同じ特徴を持つ凹凸形状が形成されるとともに、それと反対側の面43の一部43Aに、同じ特徴を持つ凹凸形状が形成されている。この部分43Aは、蛍光体層3の直上であって、蛍光体層3を透明部材40に投影した面積と同じかやや広い面積を持つ。   In the transparent member 40 of the present embodiment, an uneven shape having the same characteristics as the surface 41 of the transparent member 4 of the first embodiment is formed on one surface 41, and on a part 43A of the surface 43 on the opposite side thereof. An uneven shape having the same characteristics is formed. The portion 43A is directly above the phosphor layer 3 and has the same or slightly larger area than the area where the phosphor layer 3 is projected onto the transparent member 40.

透明部材40の表面に、部分的に凹凸形状を形成する方法としては、例えば、凹凸形状を形成すべき領域以外の領域に保護テープを貼付したりレジストを塗布することによりマスクした状態で、物理的粗面化処理と化学的粗面化処理を行う方法や、全体に所定の凹凸形状を形成した後、部分43A以外の領域43Bを研磨するか、透明部材が樹脂の場合には部分43A以外の領域43Bに透明部材を構成する樹脂と同じ樹脂の層を形成して凹凸を平坦化する方法などを採用することができる。   As a method of partially forming a concavo-convex shape on the surface of the transparent member 40, for example, in a state where a masking tape is applied by applying a protective tape to a region other than a region where the concavo-convex shape is to be formed or by applying a resist, The surface roughening treatment and the chemical roughening treatment, or after forming a predetermined uneven shape on the whole, the region 43B other than the portion 43A is polished, or when the transparent member is a resin, other than the portion 43A A method of flattening unevenness by forming a layer of the same resin as that constituting the transparent member in the region 43B can be employed.

本実施形態においても、透明部材40の高い山と谷との間に表面粗さの小さい領域が存在する特定の凹凸形状を配置することによって、光の透過性を維持しつつ光拡散性による白色化効果が得られることは第一実施形態と同様であるが、本実施形態では、蛍光体層3の色が最も目立つ蛍光体層3直上の領域に、二重に特定の凹凸形状を配置したことにより、さらに白色化効果を高めることができる。しかもこの発光装置を発光させたときにLED2及び蛍光体層3から出射される光は、凹凸形状の部分のみならず、その周囲の平坦な部分をも透過する。それにより凹凸形状を重ねたことによる発光量の低下を防止することができる。   Also in the present embodiment, by arranging a specific concavo-convex shape in which a region having a small surface roughness exists between the high peaks and valleys of the transparent member 40, white light due to light diffusibility is maintained while maintaining light transmittance. In the present embodiment, a specific uneven shape is doubly arranged in the region immediately above the phosphor layer 3 where the color of the phosphor layer 3 is most conspicuous. This can further enhance the whitening effect. Moreover, the light emitted from the LED 2 and the phosphor layer 3 when the light emitting device emits light transmits not only the concavo-convex portion but also the flat portion around it. As a result, it is possible to prevent a decrease in the amount of emitted light due to the overlapping of the uneven shapes.

なお図4では、透明部材40の一方の面41は全面に凹凸形状を形成し、他方の面は一部のみ凹凸形状を形成した場合を示したが、本実施形態の変更例として、図5に示すように、両面41、43ともに、蛍光体層3の直上に対応する領域のみに部分的な凹凸形状を形成することも可能であり、同様の効果を得ることができる。さらに一方の面41は平坦な面であって、もう一方の面のみに部分的な凹凸形状の領域43Aを形成したものも本実施形態に含まれる。   FIG. 4 shows a case where one surface 41 of the transparent member 40 is formed with a concavo-convex shape on the entire surface and the other surface is formed with a partial concavo-convex shape, but as a modification of the present embodiment, FIG. As shown in FIG. 5, it is possible to form a partial uneven shape only in the region corresponding to the phosphor layer 3 directly on both surfaces 41 and 43, and the same effect can be obtained. Further, the one surface 41 is a flat surface, and a portion in which a partially uneven region 43A is formed only on the other surface is also included in the present embodiment.

<第三実施形態>
第一及び第二実施形態の半導体発光装置は、一枚の透明部材4又は40を用いたものであるが、本実施形態は複数枚の透明部材を用いたことを特徴とする。図6に、本実施形態の半導体発光装置100の全体構成を示す。図6において、透明部材4を2枚用いたこと以外は第一実施形態と同じであり、同一の要素は同じ符号で示し、その説明を省略する。
<Third embodiment>
The semiconductor light emitting devices of the first and second embodiments use a single transparent member 4 or 40, but this embodiment is characterized by using a plurality of transparent members. FIG. 6 shows the overall configuration of the semiconductor light emitting device 100 of this embodiment. In FIG. 6, it is the same as 1st embodiment except having used two transparent members 4, The same element is shown with the same code | symbol and the description is abbreviate | omitted.

図示するように、本実施形態の半導体発光装置100は、図3の半導体発光装置10の透明部材4の上に、さらに、透明部材4を重ねて配置した構造を有している。2枚目の透明部材4は、1枚目の透明部材4の外周に設けた高耐熱性接着剤の層の上に貼着されている。2枚の透明部材4の間隔は、両者間に実質的な隙間があればよく、特に限定されないが、0.02mm〜0.5mm程度が好ましく、接着剤層の厚みを調整することによって調整することができる。   As illustrated, the semiconductor light emitting device 100 of the present embodiment has a structure in which the transparent member 4 is further stacked on the transparent member 4 of the semiconductor light emitting device 10 of FIG. The second transparent member 4 is stuck on a high heat-resistant adhesive layer provided on the outer periphery of the first transparent member 4. The interval between the two transparent members 4 is not particularly limited as long as there is a substantial gap between them, but is preferably about 0.02 mm to 0.5 mm, and is adjusted by adjusting the thickness of the adhesive layer. be able to.

図示する実施形態では、2枚の透明部材4は、いずれも、両面に特定の凹凸形状が形成されたものであり、凹凸形状が4重に積層された構造である。この構造により、本実施形態の半導体発光装置の外観色はほぼ白色と同等であり、下側にある蛍光体層3の色を視認することはできない。しかも各層の凹凸形状には、光透過性のよいRaの小さい領域がランダムに散在しており、且つこれらは層毎にランダムにずれているため、一般的なすりガラスのような凹凸形状を重ねた場合に比べ、光透過性がよく、発光時に実用的に十分な発光量を得ることができる。   In the illustrated embodiment, each of the two transparent members 4 has a structure in which specific uneven shapes are formed on both surfaces, and the uneven shapes are stacked in a quadruple manner. With this structure, the appearance color of the semiconductor light emitting device of this embodiment is almost the same as white, and the color of the phosphor layer 3 on the lower side cannot be visually recognized. Moreover, in the uneven shape of each layer, small areas of Ra with good light transmittance are randomly scattered, and these are randomly shifted from layer to layer, so that the uneven shape like a general ground glass is superimposed. Compared to the case, the light transmittance is better, and a practically sufficient light emission amount can be obtained at the time of light emission.

なお図6では、2枚の透明部材4がいずれも両面全面に凹凸形状が形成されている場合を示しているが、その一方或いは両方が、図4や図5に示すような、部分的に凹凸形状が形成された透明部材であってもよいし、これらを適宜組み合わせてもよい。また図1に示すような片面のみに凹凸形状が形成された透明部材4を組み合わせることも可能である。   FIG. 6 shows a case where the two transparent members 4 are both unevenly formed on the entire surface, but one or both of them are partially as shown in FIG. 4 or FIG. It may be a transparent member having a concavo-convex shape or a combination thereof. Moreover, it is also possible to combine the transparent member 4 in which uneven | corrugated shape was formed only in one side as shown in FIG.

以下、本発明の半導体発光装置の実施例を説明する。
配線を施したセラミックケース(5mm×5mm、高さ:1mm)の底面に青色発光のLED素子(1mm角)をダイボンディングした後Auワイヤーをボンディングして実装し、その上に蛍光体層(蛍光体:YAG系蛍光体、樹脂:エポキシ樹脂)を約150μmの厚みで形成し、パッケージを作製した。
Examples of the semiconductor light emitting device of the present invention will be described below.
A blue light emitting LED element (1 mm square) is die-bonded to the bottom of a ceramic case (5 mm x 5 mm, height: 1 mm) with wiring, and then Au wire is bonded and mounted thereon, and a phosphor layer (fluorescent light) The body: YAG phosphor, resin: epoxy resin) was formed with a thickness of about 150 μm to produce a package.

一方、このパッケージの上に配置する透明部材として、片面を粗面化処理した粗面ガラスA、X、両面を粗面化処理した粗面ガラスB、Yを用意した。粗面ガラスAは、透明ガラスの一方の表面をマスキングして他方の表面をサンドブラスト処理し、次いでフッ化水素のエッチング液につけてエッチング処理したものである。また粗面ガラスBは、透明ガラスの両面をサンドブラスト処理し、次いでフッ化水素のエッチング液につけてエッチング処理したものである。一方、粗面ガラスXは、透明ガラスの一方の表面をマスキングし、もう一方の表面をサンドブラスト処理したものである。また、粗面ガラスYは、透明ガラスの両表面をサンドブラスト処理したものである。これらとは別に、透明ガラスの片面に、中央の1.2mm角の領域以外をマスクした状態で、両面にサンドブラスト処理し、次いでフッ化水素のエッチング液につけてエッチング処理し、片面が部分的に粗面化された粗面ガラスCを用意するとともに、両面の中央にそれぞれ1.2mm角の領域以外にマスキングし、両面をサンドブラスト処理した後、フッ化水素のエッチング液につけてエッチングし、両面が部分的に粗面化された粗面ガラスDを用意した。これら粗面ガラスの製造には厚み0.1mmの透明ガラスを用いた。   On the other hand, as the transparent member to be disposed on the package, there were prepared rough glass A and X whose one surface was roughened, and rough glass B and Y whose both surfaces were roughened. The rough glass A is one obtained by masking one surface of a transparent glass and subjecting the other surface to sandblast treatment, and then etching by applying it to an etching solution of hydrogen fluoride. The rough glass B is obtained by subjecting both surfaces of a transparent glass to sand blasting, and then applying etching to a hydrogen fluoride etchant. On the other hand, the rough glass X is obtained by masking one surface of a transparent glass and sandblasting the other surface. The rough glass Y is obtained by sandblasting both surfaces of the transparent glass. Apart from these, one side of the transparent glass is sandblasted on both sides in a state where the area other than the central 1.2 mm square area is masked, and then etched with a hydrogen fluoride etchant. A roughened rough glass C is prepared, masked in the center of both sides except for a 1.2 mm square area, both surfaces are sandblasted, etched with a hydrogen fluoride etchant, and both sides are etched. A partially roughened glass D was prepared. A transparent glass having a thickness of 0.1 mm was used for the production of the rough glass.

各粗面ガラスの凹凸面の形状を、触針式表面粗さ計(Veeco製Dektak 6M)を用いて計測し、算術平均粗さRa(JIS B0601:1994)、最大山高さRp(JIS B0601:1994)、及び山高さ又は谷深さが算術平均粗さRa以上の領域(領域I)とRa以下の領域(領域II)の割合を求めた。また領域I、IIについて、それぞれ、平均粗さを求めた。これら領域の平均粗さとは、それ以外の領域を除いて算出した算術平均粗さである。結果を表1に示す。   The shape of the concavo-convex surface of each rough surface glass was measured using a stylus type surface roughness meter (Dektak 6M manufactured by Veeco), arithmetic average roughness Ra (JIS B0601: 1994), maximum peak height Rp (JIS B0601: 1994), and the ratio of the area where the peak height or valley depth is the arithmetic average roughness Ra or more (area I) and the area where Ra is less than or equal to the area (area II). Moreover, the average roughness was calculated | required about area | region I and II, respectively. The average roughness of these areas is the arithmetic average roughness calculated excluding the other areas. The results are shown in Table 1.

Figure 2013187245
Figure 2013187245

粗面ガラスA及び粗面ガラスXの表面形状を測定した結果を図7及び図8に示す。図示するように、粗面ガラスAは粗面ガラスXに比べ凹凸が細かい領域が増加していた。   The result of having measured the surface shape of the rough surface glass A and the rough surface glass X is shown in FIG.7 and FIG.8. As shown in the figure, the rough glass A had more irregular areas than the rough glass X.

<実施例1>
粗面ガラスA(片面全面粗面)を、図1に示すように、その凹凸面が外側となるようにして上記パッケージのセラミックケースの上に接着剤で固定して発光装置を組み立て後、LEDを非点灯時の外観色及びLED点灯時の光度の変化を測定した。
外観色の測定は、標準光源下で輝度計を使って蛍光体の色度を測定した。また光度の変化は、粗面ガラスを設置しない場合と設置した場合について光度を測定し、粗面ガラスを設置しない場合を100とした場合の割合を計算した。結果を図9及び表2に示す。
<Example 1>
After assembling the light emitting device by fixing the rough glass A (one side of the whole rough surface) with an adhesive on the ceramic case of the package so that the uneven surface is outside as shown in FIG. The appearance color when the LED was not turned on and the change in luminous intensity when the LED was turned on were measured.
The appearance color was measured by measuring the chromaticity of the phosphor using a luminance meter under a standard light source. Moreover, the change of luminous intensity measured the luminous intensity about the case where rough surface glass is not installed, and the case where it is installed, and calculated the ratio when the case where rough surface glass is not installed was set to 100. The results are shown in FIG.

<実施例2>
粗面ガラスB(両面全面粗面)を、図3に示すように上記パッケージのセラミックケースの上に接着剤で固定し発光装置を組み立てた後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化率を測定した。結果を図9及び表2に示す。
<Example 2>
As shown in FIG. 3, after the rough glass B (both surfaces are rough) is fixed on the ceramic case of the package with an adhesive and the light emitting device is assembled, the LED is turned off in the same manner as in Example 1. The appearance color and the change rate of the luminous intensity when the LED was turned on were measured. The results are shown in FIG.

<比較例1、2>
粗面ガラスX(片面全面粗面)を、上記パッケージのセラミックケースの上に接着剤で固定し発光装置を組み立てた後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化率を測定した(比較例1)。同様に粗面ガラスY(両面全面粗面)を、上記パッケージのセラミックケースの上に接着剤で固定した後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化を測定した(比較例2)。結果を図9及び表2に示す。
<Comparative Examples 1 and 2>
After assembling the light-emitting device by fixing the rough glass X (one-sided rough surface) with the adhesive on the ceramic case of the above package, the external color when the LED is not lit and when the LED is lit as in Example 1. The rate of change in luminous intensity was measured (Comparative Example 1). Similarly, after the rough glass Y (both surfaces are rough) is fixed on the ceramic case of the package with an adhesive, the appearance color when the LED is not lit and the luminous intensity when the LED is lit are the same as in Example 1. The change was measured (Comparative Example 2). The results are shown in FIG.

<実施例3>
粗面ガラスC(片面部分粗面)を、図4に示すように、部分粗面化された面の粗面領域が蛍光体層の真上に位置するようにして上記パッケージのセラミックケースの上に接着剤で固定し発光装置を組み立てた後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化を測定した。結果を図9及び表2に示す。
<Example 3>
As shown in FIG. 4, the rough glass C (one-sided partial rough surface) is placed on the ceramic case of the above package so that the rough surface area of the partially roughened surface is located directly above the phosphor layer. After assembling the light emitting device with an adhesive, the appearance color when the LED was not lit and the change in luminous intensity when the LED was lit were measured in the same manner as in Example 1. The results are shown in FIG.

<実施例4>
粗面ガラスD(両面部分粗面)を、図5に示すように、部分粗面化された面の粗面領域が蛍光体層の真上に位置するようにして上記パッケージのセラミックケースの上に接着剤で固定し発光装置を組み立てた後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化を測定した。結果を図9及び表2に示す。
<Example 4>
As shown in FIG. 5, the rough glass D (both sides partially rough surface) is placed on the ceramic case of the above package so that the rough surface area of the partially roughened surface is located immediately above the phosphor layer. After assembling the light emitting device with an adhesive, the appearance color when the LED was not lit and the change in luminous intensity when the LED was lit were measured in the same manner as in Example 1. The results are shown in FIG.

<実施例5>
粗面ガラスBを2枚用いて、図6に示すように、上記パッケージのセラミックケースの上に順次、接着剤で固定し発光装置を組み立てた後、実施例1と同様にLEDを非点灯時の外観色及びLED点灯時の光度の変化を測定した。結果を図9及び表2に示す。
<Example 5>
As shown in FIG. 6, after using the two pieces of the rough glass B to fix the light emitting device by sequentially fixing on the ceramic case of the package with an adhesive, the LED is not lit in the same manner as in Example 1. The change in appearance color and luminous intensity when the LED was turned on were measured. The results are shown in FIG.

Figure 2013187245
表2中、色度はCIE表色系による。また蛍光体の外観色の色度(Cx、Cy)は、(Cx=0.463、Cy=0.491)であった。また標準白色板の色度は(Cx=0.395、Cy=0.397)である。
Figure 2013187245
In Table 2, the chromaticity is based on the CIE color system. Further, the chromaticity (Cx, Cy) of the appearance color of the phosphor was (Cx = 0.463, Cy = 0.491). The chromaticity of the standard white plate is (Cx = 0.395, Cy = 0.398).

実施例1〜5の発光装置の外観色は、図9及び表2に示すように、粗面ガラスを配置することにより、蛍光体の外観色が標準白色板(Cx=0.395、Cy=0.397)の色に近づき、片面のみ粗面化されている場合よりも両面が粗面化されている場合のほうが白色に近く、2枚用いた場合にはさらに白色に近いことが確認された。また実施例1(全面粗面)と実施例3(部分粗面)との比較、或いは実施例2(全面粗面)と実施例4(部分粗面)との比較からわかるように、粗面化された領域が部分的であっても全面に設けた場合と同等の白色化の効果が得られた。   As shown in FIG. 9 and Table 2, the appearance color of the light-emitting devices of Examples 1 to 5 is such that the appearance color of the phosphor is a standard white plate (Cx = 0.395, Cy = 0.395). It was confirmed that when both surfaces were roughened, the color was closer to white than when only one surface was roughened, and closer to white when two sheets were used. Further, as can be seen from the comparison between Example 1 (entire rough surface) and Example 3 (partial rough surface), or the comparison between Example 2 (entire rough surface) and Example 4 (partial rough surface), the rough surface. Even if the converted region was partial, the same whitening effect as that obtained when the entire region was provided was obtained.

実施例1〜5の光度変化率については、片面が粗面化されている場合も両面が粗面化されている場合も透明部材を配置しない場合の95%以上の光度が得られた。特に部分的に粗面化した場合には光度の変化が極めて少なく、高い光取り出し効率が得られることが確認された。   About the luminous intensity change rate of Examples 1-5, the luminous intensity of 95% or more of the case where a transparent member is not arrange | positioned was obtained even when both surfaces were roughened even if both surfaces were roughened. In particular, when the surface was partially roughened, it was confirmed that the change in luminous intensity was very small and high light extraction efficiency was obtained.

一方、比較例1の発光装置では、透明部材の表面粗さRaは実施例1の透明部材の表面粗さと殆ど同じであり、外観色は実施例1とほぼ同程度の白色度が得られたが、実施例1の発光装置では光度の低下が見られなかったのに対し、比較例1では透明部材を配置しない場合に比べ95%に低下し、光の取り出し効率が低下していた。同様に比較例2の発光装置は、実施例2とほぼ同程度に蛍光体層の色味を消すことができたが、光度変化は88%と実施例2に比べ大幅に低下した。   On the other hand, in the light emitting device of Comparative Example 1, the surface roughness Ra of the transparent member was almost the same as the surface roughness of the transparent member of Example 1, and the appearance color was almost the same as that of Example 1. However, in the light emitting device of Example 1, no decrease in luminous intensity was observed, whereas in Comparative Example 1, the light extraction efficiency was reduced to 95% as compared with the case where no transparent member was disposed. Similarly, the light emitting device of Comparative Example 2 was able to erase the color of the phosphor layer to the same extent as that of Example 2, but the luminous intensity change was 88%, which was significantly lower than that of Example 2.

さらに実施例1で用いた粗面ガラスA(片面全面粗面)及び実施例2で用いた粗面ガラスB(両面全面粗面)について、Raと光度変化との関係を調べるために、サンドブラスト処理に用いる無機粒子(アルミナ)の粒径を異ならせて、Raの異なる複数の粗面ガラスを作製した。これら複数の粗面ガラスを透明部材として用い、実施例1及び実施例2と同様に発光装置を組み立て、LED点灯時の光度を測定した。この場合も、測定した光度の、透明部材を配置しない場合の光度を100とした場合の割合を計算した。結果を表3及び図10に示す。   Furthermore, in order to investigate the relationship between Ra and the change in luminous intensity, the surface blasting treatment A used in Example 1 (one-sided entire surface) and the surfaced glass B used in Example 2 were subjected to sandblasting. A plurality of rough glass with different Ra were prepared by changing the particle diameter of the inorganic particles (alumina) used in the above. Using the plurality of rough surface glasses as transparent members, a light emitting device was assembled in the same manner as in Example 1 and Example 2, and the luminous intensity during LED lighting was measured. In this case as well, the ratio of the measured luminosity when the luminosity when the transparent member is not disposed is 100 was calculated. The results are shown in Table 3 and FIG.

Figure 2013187245
Figure 2013187245

図10に示す結果からわかるように、片面粗面の場合も両面粗面の場合も、Raが大きくなるほど光度は低下するが、片面粗面ではRaが8μm以下、両面粗面ではRaが5.5μm以下であれば、従来手法では得られない90%の光度が得られ、また片面粗面でRaを6.5μm以下、両面粗面でRaを2μm以下にした場合には、透明体を配置しない場合と実質的に同等の95%以上の光度が得られることがわかった。   As can be seen from the results shown in FIG. 10, the brightness decreases as Ra increases in both the single-sided rough surface and the double-sided rough surface, but Ra is 8 μm or less for the single-sided rough surface, and Ra is 5. If it is 5 μm or less, 90% luminous intensity that cannot be obtained by the conventional method can be obtained, and if Ra is 6.5 μm or less for a single-sided rough surface and Ra is 2 μm or less for a double-sided rough surface, a transparent body is disposed. It was found that a luminous intensity of 95% or more, which is substantially equivalent to that in the case where it is not used, can be obtained.

本発明によれば、光の取り出し効率が高く、外観色のよい半導体発光装置が提供される。   According to the present invention, there is provided a semiconductor light emitting device having high light extraction efficiency and good appearance color.

10、100・・・半導体発光装置、1・・・パッケージ基材、2・・・LED、3・・・蛍光体層、4、40・・・透明部材、41・・・凹凸面、43・・・凹凸面と反対側の面、43A・・・凹凸形状を形成した領域。

DESCRIPTION OF SYMBOLS 10,100 ... Semiconductor light-emitting device, 1 ... Package base material, 2 ... LED, 3 ... Phosphor layer, 4, 40 ... Transparent member, 41 ... Uneven surface, 43. ..A surface on the opposite side to the uneven surface, 43A ... A region where an uneven shape is formed.

Claims (5)

基材と、前記基材上に実装された半導体素子と、前記半導体素子の上に配置された蛍光体層と、前記蛍光体層の上に空間を挟んで配置された透明部材とを備えた半導体発光装置であって、
前記透明部材は、少なくとも片面に凹凸形状が形成されたものであり、
前記凹凸形状は、算術平均粗さRa(JIS B0601:1994)が0.2μm〜8μmの範囲であって、且つ前記Ra以下である領域の割合が凹凸形状全体の面積の50%以上であることを特徴とする半導体発光装置。
A base material, a semiconductor element mounted on the base material, a phosphor layer disposed on the semiconductor element, and a transparent member disposed on the phosphor layer with a space interposed therebetween. A semiconductor light emitting device,
The transparent member has a concavo-convex shape formed on at least one side,
The concavo-convex shape has an arithmetic average roughness Ra (JIS B0601: 1994) in the range of 0.2 μm to 8 μm, and the ratio of the region equal to or less than Ra is 50% or more of the entire surface of the concavo-convex shape. A semiconductor light-emitting device.
請求項1に記載の半導体発光装置であって、
前記凹凸形状は、前記透明部材の少なくとも片面の全面に形成されていることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
The semiconductor light emitting device, wherein the uneven shape is formed on the entire surface of at least one surface of the transparent member.
請求項1に記載の半導体発光装置であって、
前記凹凸形状は、前記透明部材の少なくとも片面の、前記蛍光体層の直上を含む領域に部分的に形成されていることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
The semiconductor light emitting device is characterized in that the uneven shape is partially formed in a region including at least one surface of the transparent member and immediately above the phosphor layer.
請求項1ないし3のいずれか一項に記載の半導体発光装置であって、
前記凹凸形状は、前記透明部材の両面に形成されていることを特徴とする半導体発光装置。
A semiconductor light-emitting device according to any one of claims 1 to 3,
The semiconductor light emitting device, wherein the uneven shape is formed on both surfaces of the transparent member.
請求項1ないし4のいずれか一項に記載の半導体発光装置であって、
前記透明部材を複数枚配置したことを特徴とする半導体発光装置。
A semiconductor light emitting device according to any one of claims 1 to 4,
A semiconductor light emitting device comprising a plurality of the transparent members.
JP2012049409A 2012-03-06 2012-03-06 Semiconductor light-emitting device Pending JP2013187245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049409A JP2013187245A (en) 2012-03-06 2012-03-06 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049409A JP2013187245A (en) 2012-03-06 2012-03-06 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2013187245A true JP2013187245A (en) 2013-09-19

Family

ID=49388464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049409A Pending JP2013187245A (en) 2012-03-06 2012-03-06 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2013187245A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230354A (en) * 2014-06-04 2015-12-21 セイコーエプソン株式会社 Light source device and projector
JP2018022760A (en) * 2016-08-03 2018-02-08 信越化学工業株式会社 Window material for optical element package, optical element package, method for manufacturing the same, and package for optical element
JP2018142567A (en) * 2017-02-27 2018-09-13 スタンレー電気株式会社 Semiconductor light-emitting device
JP2019009429A (en) * 2017-06-28 2019-01-17 日亜化学工業株式会社 Light-emitting device
CN112005390A (en) * 2018-04-23 2020-11-27 克里公司 Semiconductor light emitting device including cover sheet having patterned surface
US11329203B2 (en) 2017-06-28 2022-05-10 Nichia Corporation Light emitting device including covering member and optical member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284106A (en) * 1999-03-31 2000-10-13 Hitachi Chem Co Ltd Light diffusion member, its production and transfer film
WO2008020610A1 (en) * 2006-08-18 2008-02-21 Dai Nippon Printing Co., Ltd. Optical laminate, polarizer and image display unit
JP2009109683A (en) * 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2011040724A (en) * 2009-07-13 2011-02-24 Mitsubishi Electric Corp Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284106A (en) * 1999-03-31 2000-10-13 Hitachi Chem Co Ltd Light diffusion member, its production and transfer film
WO2008020610A1 (en) * 2006-08-18 2008-02-21 Dai Nippon Printing Co., Ltd. Optical laminate, polarizer and image display unit
JP2009109683A (en) * 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2011040724A (en) * 2009-07-13 2011-02-24 Mitsubishi Electric Corp Light emitting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230354A (en) * 2014-06-04 2015-12-21 セイコーエプソン株式会社 Light source device and projector
US10680139B2 (en) 2016-08-03 2020-06-09 Shin-Etsu Chemical Co., Ltd. Window member for optical device package, optical device package, making methods, and optical device-mountable package
KR20180015581A (en) * 2016-08-03 2018-02-13 신에쓰 가가꾸 고교 가부시끼가이샤 Window member for optical device package, optical device package, making methods, and optical device-mountable package
CN107689412A (en) * 2016-08-03 2018-02-13 信越化学工业株式会社 For the window member of Optical devices packaging body, Optical devices packaging body, manufacture method and Optical devices can install packaging body
JP2018022760A (en) * 2016-08-03 2018-02-08 信越化学工業株式会社 Window material for optical element package, optical element package, method for manufacturing the same, and package for optical element
TWI752991B (en) * 2016-08-03 2022-01-21 日商信越化學工業股份有限公司 Window member for optical device package, optical device package, making methods, and optical device-mountable package
CN107689412B (en) * 2016-08-03 2022-05-17 信越化学工业株式会社 Window member for optical device package, manufacturing method, and optical device mountable package
KR102472367B1 (en) * 2016-08-03 2022-11-30 신에쓰 가가꾸 고교 가부시끼가이샤 Window member for optical device package, optical device package, making methods, and optical device-mountable package
JP2018142567A (en) * 2017-02-27 2018-09-13 スタンレー電気株式会社 Semiconductor light-emitting device
JP2019009429A (en) * 2017-06-28 2019-01-17 日亜化学工業株式会社 Light-emitting device
US11329203B2 (en) 2017-06-28 2022-05-10 Nichia Corporation Light emitting device including covering member and optical member
CN112005390A (en) * 2018-04-23 2020-11-27 克里公司 Semiconductor light emitting device including cover sheet having patterned surface
JP2021520064A (en) * 2018-04-23 2021-08-12 クリー インコーポレイテッドCree Inc. Semiconductor light emitting device with a super straight with a patterned surface
JP7278301B2 (en) 2018-04-23 2023-05-19 クリーエルイーディー インコーポレイテッド Semiconductor light emitting device comprising a superstrate with a patterned surface

Similar Documents

Publication Publication Date Title
US8545082B2 (en) Light emitting apparatus and lighting system
JP4066620B2 (en) LIGHT EMITTING ELEMENT, DISPLAY DEVICE HAVING LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING DISPLAY DEVICE
JP3898721B2 (en) Light emitting device and lighting device
JP2013187245A (en) Semiconductor light-emitting device
JP5084324B2 (en) Light emitting device and lighting device
US10680149B2 (en) Method for manufacturing light-emitting device
JP6065408B2 (en) Light emitting device and manufacturing method thereof
JP2011165434A (en) Light source, backlight unit, and liquid crystal display device
JP2016058685A (en) Light emission device and luminaire
JP2009260194A (en) Light emitting device, and manufacturing method of same
US20230207752A1 (en) Light-emitting device and method of manufacturing the same
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2006295230A (en) Light emitting device and lighting apparatus
JP5630966B2 (en) Light emitting element chip assembly and method for manufacturing the same
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP4868960B2 (en) Light emitting device and manufacturing method thereof
US11251346B2 (en) Light emitting diode package structure
JP2015090853A (en) Luminaire and lens
JP2013149690A (en) Light-emitting device and illuminating device
KR20170003182A (en) Light emitting diode
JP2019145384A (en) Lighting fixture and lighting appliance for vehicle
TWI769064B (en) Light emitting device
JP7476002B2 (en) Light-emitting device
EP4033141A1 (en) Lighting module, lighting apparatus, and lamp
KR101125348B1 (en) Lighting Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823