JP7169275B2 - センサーデバイスおよび方法 - Google Patents
センサーデバイスおよび方法 Download PDFInfo
- Publication number
- JP7169275B2 JP7169275B2 JP2019534131A JP2019534131A JP7169275B2 JP 7169275 B2 JP7169275 B2 JP 7169275B2 JP 2019534131 A JP2019534131 A JP 2019534131A JP 2019534131 A JP2019534131 A JP 2019534131A JP 7169275 B2 JP7169275 B2 JP 7169275B2
- Authority
- JP
- Japan
- Prior art keywords
- orx
- sensor device
- analyte
- substrate
- insect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 101
- 241000238631 Hexapoda Species 0.000 claims description 188
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 183
- 239000002041 carbon nanotube Substances 0.000 claims description 176
- 239000002107 nanodisc Substances 0.000 claims description 121
- 239000012491 analyte Substances 0.000 claims description 117
- 102000012547 Olfactory receptors Human genes 0.000 claims description 107
- 108050002069 Olfactory receptors Proteins 0.000 claims description 107
- 239000000758 substrate Substances 0.000 claims description 98
- 239000002502 liposome Substances 0.000 claims description 87
- 230000004044 response Effects 0.000 claims description 72
- 230000027455 binding Effects 0.000 claims description 71
- 230000008859 change Effects 0.000 claims description 53
- 238000001514 detection method Methods 0.000 claims description 45
- 239000012528 membrane Substances 0.000 claims description 39
- 238000004891 communication Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 26
- 239000000232 Lipid Bilayer Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 17
- -1 amphipols Substances 0.000 claims description 15
- 230000005684 electric field Effects 0.000 claims description 13
- 239000003599 detergent Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000003278 mimic effect Effects 0.000 claims description 7
- 239000002322 conducting polymer Substances 0.000 claims description 5
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- 239000000693 micelle Substances 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 172
- 239000003446 ligand Substances 0.000 description 113
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 74
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 71
- 239000002953 phosphate buffered saline Substances 0.000 description 71
- 239000010931 gold Substances 0.000 description 67
- CMNQZZPAVNBESS-UHFFFAOYSA-N 6-sulfanylhexanoic acid Chemical compound OC(=O)CCCCCS CMNQZZPAVNBESS-UHFFFAOYSA-N 0.000 description 63
- 229910052737 gold Inorganic materials 0.000 description 61
- 210000004027 cell Anatomy 0.000 description 60
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 59
- 239000000243 solution Substances 0.000 description 59
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 58
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 56
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 47
- 238000005259 measurement Methods 0.000 description 46
- 238000003380 quartz crystal microbalance Methods 0.000 description 46
- 101100028092 Drosophila melanogaster Or22a gene Proteins 0.000 description 45
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 42
- 230000008878 coupling Effects 0.000 description 41
- 238000010168 coupling process Methods 0.000 description 41
- 238000005859 coupling reaction Methods 0.000 description 41
- 108090000765 processed proteins & peptides Proteins 0.000 description 39
- 239000013545 self-assembled monolayer Substances 0.000 description 39
- 239000013078 crystal Substances 0.000 description 37
- 102000005962 receptors Human genes 0.000 description 37
- 108020003175 receptors Proteins 0.000 description 37
- 239000002094 self assembled monolayer Substances 0.000 description 37
- 238000007306 functionalization reaction Methods 0.000 description 36
- 102000004196 processed proteins & peptides Human genes 0.000 description 35
- 229920001184 polypeptide Polymers 0.000 description 34
- 239000000872 buffer Substances 0.000 description 31
- 238000010790 dilution Methods 0.000 description 30
- 239000012895 dilution Substances 0.000 description 30
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 30
- 108090000623 proteins and genes Proteins 0.000 description 30
- 239000003205 fragrance Substances 0.000 description 29
- 101100295884 Aedes aegypti SGPRor7 gene Proteins 0.000 description 28
- 108091006146 Channels Proteins 0.000 description 28
- 101150041122 Orco gene Proteins 0.000 description 28
- 229960001047 methyl salicylate Drugs 0.000 description 28
- 102000004169 proteins and genes Human genes 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 27
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 26
- 230000035945 sensitivity Effects 0.000 description 23
- CHWNEIVBYREQRF-UHFFFAOYSA-N 4-Ethyl-2-methoxyphenol Chemical compound CCC1=CC=C(O)C(OC)=C1 CHWNEIVBYREQRF-UHFFFAOYSA-N 0.000 description 22
- 101100350391 Drosophila melanogaster Or10a gene Proteins 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 20
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 18
- 101100188756 Drosophila melanogaster Or35a gene Proteins 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 230000004913 activation Effects 0.000 description 17
- 239000004205 dimethyl polysiloxane Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 17
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 230000005669 field effect Effects 0.000 description 16
- INOAASCWQMFJQA-UHFFFAOYSA-N 16-sulfanylhexadecanoic acid Chemical group OC(=O)CCCCCCCCCCCCCCCS INOAASCWQMFJQA-UHFFFAOYSA-N 0.000 description 15
- 229910021607 Silver chloride Inorganic materials 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 15
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 14
- 238000011534 incubation Methods 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 239000011550 stock solution Substances 0.000 description 14
- 108010002724 Pheromone Receptors Proteins 0.000 description 13
- 230000003993 interaction Effects 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 102100038344 Vomeronasal type-1 receptor 2 Human genes 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 101100135062 Drosophila melanogaster Or71a gene Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- 239000010453 quartz Substances 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 8
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 239000002427 pheromone receptor Substances 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 239000012901 Milli-Q water Substances 0.000 description 7
- 239000000877 Sex Attractant Substances 0.000 description 7
- 238000004630 atomic force microscopy Methods 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 231100000673 dose–response relationship Toxicity 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 229910021397 glassy carbon Inorganic materials 0.000 description 7
- 150000002632 lipids Chemical class 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 6
- LYRHMTIBOUXAME-UHFFFAOYSA-N 6-sulfanylhexadecanoic acid Chemical compound CCCCCCCCCCC(S)CCCCC(O)=O LYRHMTIBOUXAME-UHFFFAOYSA-N 0.000 description 6
- 241000256182 Anopheles gambiae Species 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 241000255601 Drosophila melanogaster Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229940117389 dichlorobenzene Drugs 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000003016 pheromone Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001149 cognitive effect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 235000019645 odor Nutrition 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000000527 sonication Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 108091005462 Cation channels Proteins 0.000 description 4
- 241000080590 Niso Species 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 239000002238 carbon nanotube film Substances 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000002298 density-gradient ultracentrifugation Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- 210000001331 nose Anatomy 0.000 description 4
- 102000052563 odorant-binding protein Human genes 0.000 description 4
- 108010000645 odorant-binding protein Proteins 0.000 description 4
- 210000000287 oocyte Anatomy 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- BETUMLXGYDBOLV-UHFFFAOYSA-O 2-[hydroxy(tetradecoxy)phosphoryl]oxyethyl-trimethylazanium Chemical group CCCCCCCCCCCCCCOP(O)(=O)OCC[N+](C)(C)C BETUMLXGYDBOLV-UHFFFAOYSA-O 0.000 description 3
- 241000255789 Bombyx mori Species 0.000 description 3
- 101150112539 OR gene Proteins 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 241000269370 Xenopus <genus> Species 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 3
- 238000000089 atomic force micrograph Methods 0.000 description 3
- 230000003592 biomimetic effect Effects 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 150000002343 gold Chemical class 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 201000004792 malaria Diseases 0.000 description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000011896 sensitive detection Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000011895 specific detection Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 2
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- TUBRCQBRKJXJEA-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O TUBRCQBRKJXJEA-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000918644 Epiphyas postvittana Species 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 102100027196 Odorant-binding protein 2a Human genes 0.000 description 2
- 241001147398 Ostrinia nubilalis Species 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 101710205286 Replication origin-binding protein Proteins 0.000 description 2
- 101710184528 Scaffolding protein Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002873 global sequence alignment Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- UWCCKVJVOHTHAF-UHFFFAOYSA-N vuaa1 Chemical compound C1=CC(CC)=CC=C1NC(=O)CSC(N1CC)=NN=C1C1=CC=CN=C1 UWCCKVJVOHTHAF-UHFFFAOYSA-N 0.000 description 2
- PSQYTAPXSHCGMF-BQYQJAHWSA-N β-ionone Chemical compound CC(=O)\C=C\C1=C(C)CCCC1(C)C PSQYTAPXSHCGMF-BQYQJAHWSA-N 0.000 description 2
- SFEOKXHPFMOVRM-UHFFFAOYSA-N (+)-(S)-gamma-ionone Natural products CC(=O)C=CC1C(=C)CCCC1(C)C SFEOKXHPFMOVRM-UHFFFAOYSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- WTJKGGKOPKCXLL-VYOBOKEXSA-N 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC WTJKGGKOPKCXLL-VYOBOKEXSA-N 0.000 description 1
- IWTBVKIGCDZRPL-LURJTMIESA-N 3-Methylbutanol Natural products CC[C@H](C)CCO IWTBVKIGCDZRPL-LURJTMIESA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- 102000005416 ATP-Binding Cassette Transporters Human genes 0.000 description 1
- 108010006533 ATP-Binding Cassette Transporters Proteins 0.000 description 1
- 241000256021 Antheraea polyphemus Species 0.000 description 1
- 241000256844 Apis mellifera Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- CIVIWCVVOFNUST-VFABXPAXSA-N Bombycol Natural products C(CCCCCCCC\C=C\C=CCCC)O CIVIWCVVOFNUST-VFABXPAXSA-N 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 101710167800 Capsid assembly scaffolding protein Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000030933 DNA methylation on cytosine Effects 0.000 description 1
- 208000033978 Device electrical impedance issue Diseases 0.000 description 1
- 101100081488 Drosophila melanogaster lush gene Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- 244000303040 Glycyrrhiza glabra Species 0.000 description 1
- 241000256244 Heliothis virescens Species 0.000 description 1
- 101001003187 Hordeum vulgare Alpha-amylase/subtilisin inhibitor Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000018427 Iphisa elegans Species 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 1
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241001147397 Ostrinia Species 0.000 description 1
- 241000237503 Pectinidae Species 0.000 description 1
- 101710186196 Pheromone-binding protein Proteins 0.000 description 1
- 101710130420 Probable capsid assembly scaffolding protein Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 101710204410 Scaffold protein Proteins 0.000 description 1
- 108010034546 Serratia marcescens nuclease Proteins 0.000 description 1
- 241000256247 Spodoptera exigua Species 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008484 agonism Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 239000000009 alarm pheromone Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- CIVIWCVVOFNUST-SCFJQAPRSA-N bombykol Chemical compound CCC\C=C/C=C/CCCCCCCCCO CIVIWCVVOFNUST-SCFJQAPRSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 108091008690 chemoreceptors Proteins 0.000 description 1
- 230000000723 chemosensory effect Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000000970 chrono-amperometry Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000001339 gustatory effect Effects 0.000 description 1
- 108091005708 gustatory receptors Proteins 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 1
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- 238000011898 label-free detection Methods 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 101150075330 odr-10 gene Proteins 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical compound SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 102000015130 taste receptor activity proteins Human genes 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4145—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/122—Circuits particularly adapted therefor, e.g. linearising circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/122—Circuits particularly adapted therefor, e.g. linearising circuits
- G01N27/123—Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature
- G01N27/124—Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature varying the temperature, e.g. in a cyclic manner
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
- G01N33/5438—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4146—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring Fluid Pressure (AREA)
- Air Bags (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
多くの著者が、アフリカツメガエル卵母細胞2、昆虫細胞株3、およびヒトHEK293細胞4を使用する昆虫ORの機能1に関する細胞ベースのアッセイを記載している。しかしながらそれらの用途は、主として昆虫ORの化合物の特異性を同定することに限定され、その一部は、害虫の行動制御のための活性化および阻害化合物を同定するのに使用される5。
市販されているポータブルの揮発物質感知技術は、電子鼻または化学電子鼻に限定されているが、その性能は、感度および特異性に関して実質的に昆虫の嗅覚器系に劣る。さらに、出願人が知る限り、上記で論じられた昆虫ORベースのシステムに基づく市販品はない。イオン移動度分光計や質量分析計などの他の技術は、電子鼻より改善された感度および特異性を提供するが、入手に非常に費用がかかり、使用者の広範な訓練を必要とし、可動性が極めて低い。
第1の形態において、本発明は、基板と電気的に連通する昆虫の匂い物質受容体(odorant receptor)(OrX)を含むセンサーデバイスであって、基板の電気的な特徴における変化を検出するように設計されている、上記センサーデバイスを提供する。
さらなる実施態様において、相互作用は、OrXへの分析物の結合である。
さらなる実施態様において、分析物とOrXとの相互作用は、特異的(specific)である。
したがって、一実施態様において、センサーは、基板の電気的な特徴における変化を検出することによって、OrXへの分析物の結合を検出することが可能である。
好ましくは、検出は、分析物に特異的である。
一実施態様において、電気的な連通は、受容体が基板の電気的な特徴に影響を与えることができることを意味する。
さらなる実施態様において、OrXにおけるコンフォメーション変化は、基板の電気的な特徴における変化をもたらす。
さらなる実施態様において、OrXは、基板にカップリングされる。
OrXの存在
さらなる実施態様において、OrXは、分析物との相互作用に応答してコンフォメーション変化を受けることが可能な形態で存在する。
膜模倣物は、リポソーム、アンフィポール(amphipole)、洗剤ミセル、ナノベシクル、脂質二重層、およびナノディスクから選択することができる。
またOrXは、界面活性剤に存在していてもよく、界面活性剤は、イオン性であってもよいし、または非イオン性であってもよい。
一実施態様において、センサーは、1×10-3M未満、好ましくは1×10-3M未満、より好ましくは1×10-4M未満、より好ましくは1×10-5M未満、より好ましくは1×10-6M未満、より好ましくは1×10-7M未満、より好ましくは1×10-8M未満、より好ましくは1×10-9M未満、より好ましくは1×10-10M未満、より好ましくは1×10-11M未満、より好ましくは1×10-12M未満、より好ましくは1×10-13M未満、より好ましくは1×10-14M未満、より好ましくは1×10-15M未満、より好ましくは1×10-16M未満、より好ましくは1×10-17M未満、より好ましくは1×10-18M未満の濃度で分析物の存在を検出することができる。
さらなる実施態様において、センサーは、昆虫の匂い物質コレセプター(insect odorant co-receptor)(Orco)を含まない。
一実施態様において、基板は、電極、半導体材料、カーボンナノチューブ(CNT)、グラフェン、酸化物、ドープシリコン(doped silicon)、導電性ポリマー、共振器要素(resonator component)の少なくとも1つから選択されるか、またはそれで構成される。
一実施態様において、電気的な特徴は、導電率(conductivity)、抵抗、複合抵抗(complex resistance)、インピーダンス、電気化学インピーダンス、電流の流れ、および交流電場により誘導された振動の共振振動数の少なくとも1つから選択される。
さらなる実施態様において、センサーは、基板の電気的な特徴における変化を測定する検出器要素を含む。
センサーデバイスの一実施態様において、基板は、電気化学セルの作用電極である。
一実施態様において、電気化学セルは、作用電極に加えて、対電極をさらに含む。
さらなる実施態様において、電気化学セルは、ポテンシオスタットをさらに含む。
さらなる実施態様において、電気的な特徴は、電気化学インピーダンスである。
一実施態様において、作用電極は、金で構成されるか、または金でコーティングされている。
OrXは、上述したような膜模倣物に存在していてもよい。
一実施態様において、OrXは、リポソームに存在する。
さらなる実施態様において、OrXは、脂質二重層に存在する。
さらなる実施態様において、OrXは、人工脂質二重層に存在する。
EISセンサーデバイスにおける電極への昆虫OrXのカップリング
一実施態様において、昆虫OrXは、作用電極にカップリングされる。
さらなる実施態様において、リンカー分子は、OrXと電極との電気的な連通が可能になる程度に短い。
さらなる実施態様において、リンカー分子は、16-メルカプトヘキサデカン酸(16-MHDA)、6-メルカプトヘキサデカン酸(Mecaptohexadecanoic acid)(6-MHDA)および6-メルカプトヘキサン酸(MHA)から選択される。
さらなる実施態様において、リンカーは、自己組織化単分子(SAM)層の一部である。
好ましい実施態様において、昆虫OrXは、6-メルカプトヘキサン酸(MHA)リンカー分子で構成されるSAM層を介して電極にカップリングされる。
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、検出は、分析物に特異的である。
好ましい実施態様において、作用電極の電気化学インピーダンスは、昆虫OrXに分析物が結合すると減少する。
検出器要素
さらなる実施態様において、センサーは、検出器要素を含む。さらなる実施態様において、検出器要素は、作用電極の電気化学インピーダンスにおける変化を検出するか、または測定する。
センサーデバイスの一実施態様において、基板は、半導体材料である。あらゆる好適な半導体材料を使用することができる。
一実施態様において、基板は、カーボンナノチューブ(CNT)で構成される。カーボンナノチューブ(CNT)は、単壁、二重壁もしくは多重壁、またはそれらの組合せであってもよい。好ましい実施態様において、カーボンナノチューブ(CNT)は、単壁である。
一実施態様において、CNT-FET装置は、ソース電極およびドレイン電極を含む。
さらなる実施態様において、チャネルは、ソース電極およびドレイン電極と電気的に連通する。
CNT-FETセンサーデバイスにおけるOrXの存在
OrXは、上述したような膜模倣物に存在していてもよい。
カーボンナノチューブ(CNT)へのOrXのカップリング
一実施態様において、OrXは、チャネルにおいて、カーボンナノチューブにカップリングされる。
昆虫OrXの機能化(官能基化、functionalisation)
一実施態様において、昆虫OrXは、CNTへのカップリングが容易になるように機能化される。
それゆえに、一実施態様において、OrXは、his-タグを含む。
好ましくは、his-タグは、OrXタンパク質のN末端にある。
一実施態様において、CNTは、昆虫OrXへのカップリングが容易になるように機能化される。
カップリング
さらなる実施態様において、OrXは、his-タグとの親和性結合を介してCNTにカップリングされる。
CNT-FETセンサーにおける分析物の検出
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、分析物の検出は、特異的である。
好ましい実施態様において、ソース-ゲイン電流は、昆虫OrXに分析物が結合すると減少する。
検出器要素
さらなる実施態様において、センサーは、検出器要素を含む。さらなる実施態様において、検出器要素は、ソース-ドレイン電流における変化を検出または測定する。
センサーデバイスの一実施態様において、基板は、水晶振動子マイクロバランスにおける共振器要素である。
電気的な特徴
一実施態様において、電気的な特徴は、共振器要素に適用された交流電場により誘導された振動の共振振動数である。
一実施態様において、共振器要素は、その対向する2つの側に電極が取り付けられている。
QCMセンサーデバイスにおけるOrXの存在
OrXは、上述したような膜模倣物中に存在していてもよい。
さらなる実施態様において、OrXは、人工リポソームに存在する。
さらなる実施態様において、OrXは、脂質二重層に存在する。
好ましい実施態様において、OrXは、リポソーム中に存在する。
QCMセンサーデバイスにおける共振器要素への昆虫OrXのカップリング
一実施態様において、昆虫OrXは、共振器要素にカップリングされる。
さらなる実施態様において、リンカー分子は、OrXと共振器要素との電気的な連通が可能になる程度に短い。
さらなる実施態様において、リンカー分子は、16-メルカプトヘキサデカン酸(16-MHDA)、6-メルカプトヘキサデカン酸(6-MHDA)および6-メルカプトヘキサン酸(MHA)から選択される。
さらなる実施態様において、リンカーは、自己組織化単分子層(SAM)の一部である。
好ましい実施態様において、昆虫OrXは、6-メルカプトヘキサン酸(MHA)リンカー分子で構成されるSAM層を介して共振器要素にカップリングされる。
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、検出は、分析物に特異的である。
一実施態様において、共振振動数は、昆虫OrXに分析物が結合すると増加する。
検出器要素
さらなる実施態様において、センサーは、検出器要素を含む。さらなる実施態様において、検出器要素は、共振器要素に適用された交流電場により誘導された共振器要素における共振振動数における変化を検出または測定する。
本発明のセンサーデバイスを使用して分析物の結合を検出する方法
さらなる形態において、本発明は、分析物を検出する方法であって、
a)本発明のセンサーにおいて、分析物を昆虫OrXに結合させる工程、
b)基板の電気的な特徴における変化を検出する工程
を含み、
基板の電気的な特徴における変化が分析物の検出を示す、上記方法を提供する。
さらなる形態において、本発明は、環境における分析物の存在を検出する方法であって、
a)本発明のセンサーを、分析物を含有する環境に曝露する工程、
b)センサーにおいて、分析物を昆虫OrXに結合させる工程
c)基板の電気的な特徴における変化を検出する工程
を含み、
基板の電気的な特徴における変化が環境における分析物の存在を示す、上記方法を提供する。
さらなる形態において、本発明は、分析物を検出する方法であって、
a)本発明の電気化学セルにおいて、分析物を昆虫OrXに結合させる工程、
b)作用電極における電気化学インピーダンスにおける変化を測定する工程
を含み、電気化学インピーダンスにおける変化が分析物の検出を示す、上記方法を提供する。
さらなる形態において、本発明は、環境における分析物の存在を検出する方法であって、
a)本発明のセンサーを、分析物を含有する環境に曝露する工程、
b)本発明の電気化学セルにおいて、分析物を昆虫OrXに結合させる工程、
c)作用電極の電気化学インピーダンスにおける変化を測定すること
を含み、電気化学インピーダンスにおける変化が環境における分析物の存在を示す、上記方法を提供する。
さらなる形態において、本発明は、分析物を検出する方法であって、
a)本発明のセンサーにおいて、分析物を昆虫OrXに結合させる工程、
b)CNT-FET装置で、ソース-ゲイン電流における変化を測定する工程
を含み、ソース-ゲイン電流における変化が分析物の検出を示す、上記方法を提供する。
さらなる形態において、本発明は、環境における分析物の存在を検出する方法であって、
a)本発明のセンサーを、分析物を含有する環境に曝露する工程、
b)センサーにおいて、分析物を昆虫OrXに結合させる工程
c)CNT-FET装置で、ソース-ゲイン電流における変化を測定する工程
を含み、ソース-ゲイン電流における変化はが環境における分析物の存在を示す、上記方法を提供する。
さらなる形態において、本発明は、分析物を検出する方法であって、
a)本発明のセンサーにおいて、分析物を昆虫OrXに結合させる工程、
b)QCM装置で、共振器要素に適用された交流電場により誘導された共振器要素における共振振動数における変化を測定する工程
を含み、共振振動数における変化が分析物の検出を示す、上記方法を提供する。
さらなる形態において、本発明は、環境における分析物の存在を検出する方法であって、
d)本発明のセンサーを、分析物を含有する環境に曝露する工程、
e)センサーにおいて、分析物を昆虫OrXに結合させる工程
f)QCM装置で、共振器要素に適用された交流電場により誘導された共振器要素の共振振動数の変化を測定する工程
を含み、共振振動数における変化が環境における分析物の存在を示す、上記方法を提供する。
さらなる形態において、本発明は、センサーデバイスを製造する方法であって、昆虫OrXとセンサーデバイスの基板との間に電気的な連通を確立する工程を含み、センサーデバイスは、基板の電気的な特徴における変化を検出するように設計されている、上記方法を提供する。
一実施態様において、OrXがカップリングされた基板がセンサーデバイスに組み立てられる前に、OrXは、基板にカップリングされる。
本発明のEISセンサーデバイスの製造方法
実施態様において、基板は、本明細書に記載されるような電気化学セルの作用電極である。
一実施態様において、OrXがカップリングされた作用電極がセンサーデバイスに組み立てられる前に、OrXは、作用電極にカップリングされる。
電極への昆虫OrXのカップリング
さらなる実施態様において、昆虫OrXは、リンカーを介して電極にカップリングされる。
さらなる実施態様において、リンカー分子は、電極が受容体から分離することを防ぐ程度に短い。
さらなる実施態様において、リンカーは、自己組織化単分子(SAM)層の一部である。
好ましい実施態様において、昆虫Orxは、6-メルカプトヘキサン酸(MHA)リンカー分子で構成されるSAM層を介して電極にカップリングされる。
好ましくは、リンカーまたはMHAのカルボキシル基の活性化は、電極に昆虫OrXをカップリングする前に、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)およびN-ヒドロキシスクシンイミド(NHS)の溶液を使用して実行される。
好ましい実施態様において、センサーは、昆虫の匂い物質コレセプター(Orco)を含まない。
実施態様において、基板は、本明細書に記載されるようなCNT-FET装置のチャネルである。
一実施態様において、OrXがカップリングされたチャネルがセンサーデバイスに組み立てられる前に、OrXは、チャネルにカップリングされる。
カーボンナノチューブ(CNT)へのOrXのカップリング
一実施態様において、OrXは、チャネル中で、カーボンナノチューブにカップリングされる。
一実施態様において、昆虫OrXは、CNTへのカップリングが容易になるように機能化される。
それゆえに、一実施態様において、OrXは、his-タグを含む。
好ましくは、his-タグは、OrXタンパク質のN末端にある。
一実施態様において、CNTは、昆虫OrXへのカップリングが容易になるように機能化される。
カップリング
さらなる実施態様において、OrXは、his-タグとの親和性結合を介してCNTにカップリングされる。
センサーデバイスにおけるOrcoの欠如
好ましい実施態様において、センサーは、昆虫の匂い物質コレセプター(Orco)を含まない。
実施態様において、基板は、水晶振動子マイクロバランスの水晶共振子である。
したがって、一実施態様において、方法は、昆虫OrXと、水晶振動子マイクロバランスの共振器要素との間に電気的な連通を確立する工程を含み、水晶振動子マイクロバランスは、QCM装置で、共振器要素に適用された交流電場により誘導された共振器要素の共振振動数における変化を検出するように設計されており、このようにしてセンサーデバイスが形成される。
一実施態様において、OrXがカップリングされた作用共振器要素がセンサーデバイスに組み立てられる前に、OrXは、共振器要素にカップリングされる。
好ましくは、センサーの要素、カップリングおよび機能化は、本明細書に記載される通りである。
さらなる実施態様において、昆虫OrXは、リンカーを介して共振器要素にカップリングされる。
さらなる実施態様において、リンカー分子は、共振器要素が受容体から分離することを防ぐ程度に短い。
さらなる実施態様において、リンカーは、自己組織化単分子層(SAM)の一部である。
好ましい実施態様において、昆虫Orxは、6-メルカプトヘキサン酸(MHA)リンカー分子で構成されるSAM層を介して共振器要素にカップリングされる。
好ましくは、リンカーまたはMHAのカルボキシル基の活性化は、共振器要素に昆虫OrXをカップリングする前に、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)およびN-ヒドロキシスクシンイミド(NHS)の溶液を使用して実行される。
好ましい実施態様において、センサーは、昆虫の匂い物質コレセプター(Orco)を含まない。
本出願人の発明は初めて、昆虫の匂い物質受容体(OrX)の匂いを感知する力を便利なセンサー様式とうまく組み合わせている。
昆虫の匂い物質受容体(OR)は、リガンド開口型非選択的カチオンチャネルを形成する7回膜貫通タンパク質の新規のファミリーのメンバーである。図1に提示されるように、高度に保存された昆虫の匂い物質コレセプター(Orco)は、インビボで活性なチャネルを形成すると考えられ、匂い物質の特異性は、リガンド結合サブユニット(OrX)の一群によって付与される。
昆虫OrXタンパク質は、OrXポリペプチドと記載される場合もあり、当業者周知である。本発明で使用するために好適なOrX配列としては、多様なVOC(44~46)を検出することができるキイロショウジョウバエOR遺伝子ファミリー(43)、多様なVOC(48、49)を検出することができるガンビアハマダラカ(Anopheles gambiae)OR遺伝子ファミリー(47)の配列;加えて、公知のORファミリーの近年のリストに記載された他の昆虫種からのOR遺伝子ファミリーの配列が挙げられる。Montagne 2015(1)の表Iを参照されたい。一実施態様において、昆虫OrXタンパク質は、このような参考文献1、43および47で開示された配列、またはそれらのバリアント(variant)もしくは機能的なフラグメントを含む。
好ましい実施態様において、OrXは、組換え発現の後に精製されている。
一実施態様において、OrXは、昆虫嗅覚細胞から直接的に精製されていない。
本発明のセンサーデバイスで使用するための基板
本発明のセンサーデバイスで使用するための基板は、電気的な特徴における変化を測定できるあらゆる基板であってもよい。好ましくは、電気的な特徴における変化は、OrXと分析物との相互作用の結果としての変化である。
好適な基板は、電極、半導体材料、カーボンナノチューブ(CNT)、グラフェン、酸化物、ドープシリコン、導電性ポリマー、共振器要素の少なくとも1つを含むか、またはそれで構成される。
一実施態様において、電気的な特徴は、導電率、抵抗、複合的な抵抗、インピーダンス、電気化学インピーダンス、電流の流れ、および交流電場により誘導された振動の共振振動数の少なくとも1つから選択される。
一実施態様において、本発明のセンサーデバイスは、化学的セルの作用電極における電気化学インピーダンスにおける変化を検出するように設計されている。したがって、この実施態様におけるセンサーデバイスは、電気化学インピーダンス分光法(EIS)に合わせて設計される。
電気化学インピーダンス分光法は当業者周知であり、電気化学システムの研究に長く採用されてきた。インピーダンスを測定する場合、小さい正弦波AC電圧プローブ(典型的には2~10mV)が適用され、電流応答が決定される。同位相(in-phase)の電流応答は、インピーダンスの実際の(抵抗性の)要素を決定するが、一方で位相が異なる(out-of-phase)電流応答は、仮想の(容量性の)要素を決定する。ACプローブ電圧は、システム応答が線形であり単純な等価回路分析が可能になる程度に十分小さくあるべきである。インピーダンス方法は、それらが、広範に異なる時間定数の物理化学的プロセスを特徴付けること、高い周波数で電子移動をサンプリングすること、および低い周波数で物質移動をサンプリングすることが可能であるという点でかなり強力である。
EISデバイスは、典型的には、
・作用電極(WE)
・対電極(CE)
・参照電極(RE)
・ポテンシオスタット/ガルバノスタット(PGSTAT)
を有する電気化学セルを含む。
ポテンシオスタットモードでは、ポテンシオスタット/ガルバノスタット(PGSTAT)は、作用電極(WE)と参照電極(RE)との間の電位差が明確であり、使用者によって特定された値に相当するように、作用電極(WE)に対する対電極(CE)の電位を正確に制御するだろう。ガルバノスタットモードでは、WEとCEとの間の電流の流れが制御される。REとWEとの間の電位差およびCEとWEとの間に流れる電流は、連続的にモニターされる。PGSTATを使用することによって、使用者によって特定された値(すなわち適用された電位または電流)は、負のフィードバックメカニズムを使用することによって、測定中いつも正確に制御される。
一実施態様において、本発明のセンサーデバイスは、CNT-FET装置のソース-ゲイン電流における変化を検出するように設計されている。
カーボンナノチューブ電界効果トランジスタ(CNT-FET)は、従来の金属酸化物半導体電界効果トランジスタ(MOS-FET)構造におけるバルクシリコンの代わりに、チャネル材料として単一のカーボンナノチューブまたはカーボンナノチューブのアレイを利用する電界効果トランジスタである。
CNT-FETデバイスは、典型的には、
a)ソース電極(SE)
b)ドレイン電極(DE)
c)ゲート電極(GE)、および
d)カーボンナノチューブ(CNT)で構成される少なくとも1つのチャネル
を含む。
CNT-FETデバイスはまた、ソース-ドレイン電流における変化を測定するための要素を含んでいてもよい。
一実施態様において、本発明のセンサーデバイスは、水晶振動子マイクロバランス(QCM)における共振器要素の共振振動周波数における変化を検出するように設計されている。
水晶振動子マイクロバランス(QCM)
水晶振動子マイクロバランス(QCM)技術は当業者周知であり、水晶共振子の周波数における変化を測定することによって単位面積当たりの質量変動を測定する。共振(resonance)は、音響共振器表面における酸化物の成長/減衰またはフィルム堆積による小さい質量の付与または除去によって乱される。QCMは、真空、気相および液体環境中で使用することができる。これは、認識部位で機能化された表面への分子(特にタンパク質)の親和性を測定するのに極めて有効である。QCMはまた、生体分子間の相互作用を調査するのにも使用されてきた。周波数測定は、容易に高精度になるため、1μg/cm2未満もの低いレベルまで質量密度を簡単に測定することができる。周波数を測定することに加えて、誘電正接(dissipation factor)(共振帯域幅と同等である)が、分析を補助するためにしばしば測定される。誘電正接は、共振のQ値(quality factor)の逆数、Q-1=w/frであり、これは、系中の減衰を定量し、サンプルの粘弾性と関連する。
典型的なQCMのための装置は、水冷チューブ、保持ユニット、マイクロドットフィードスルーを介した周波数感知器具、加振源、ならびに測定および記録デバイスを含有する。
第1の形態において、本発明は、基板と電気的に連通する昆虫の匂い物質受容体(OrX)を含むセンサーデバイスであって、基板の電気的な特徴における変化を検出するように設計されている、上記センサーデバイスを提供する。
さらなる形態において、本発明は、本明細書で定義されるように基板と電気的に連通するOrXを含む、センサーデバイスのための要素を提供する。この要素は、本発明に係るセンサーデバイスに付与するのに有用である。
一形態において、本発明は、基板の電気的な特徴における変化を検出するように設計されている、本発明のセンサーデバイスの要素を含むセンサーデバイスを提供する。
さらなる形態において、本発明は、センサーデバイスを組み立てる方法であって、本発明のセンサーデバイスの要素を、センサーデバイスに付与することを含み、組み立てられたセンサーデバイスは、基板の電気的な特徴における変化を検出するように設計されている、上記方法を提供する。
一実施態様において、センサーデバイスは、電気化学セルを含む。
一実施態様において、電気化学セルは、少なくとも2つの電極を含む。
a)作用電極(WE)、および
b)対電極(CE)
を含む。
さらなる実施態様において、電気化学セルは、ポテンシオスタット/ガルバノスタット(PGSTAT)を含む。
a)作用電極(WE)、
b)対電極(CE)、
c)参照電極(RE)、および
d)ポテンシオスタット/ガルバノスタット(PGSTAT)
の全てを含む。
一実施態様において、対電極は、白金(Pt)、金(Au)、グラファイトまたはグラッシーカーボン(GC)から選択される材料で構成されるか、またはそれでコーティングされている。
好ましくは、対電極は、白金(Pt)線である。
参照電極
好ましくは、参照電極は、銀/塩化銀(Ag/AgCl)参照電極である。
一実施態様において、電気化学インピーダンス分光法(EIS)装置は、少なくとも1つの作用電極を含む。
ポテンシオスタット/ガルバノスタット(PGSTAT)
好ましくは、ポテンシオスタット/ガルバノスタット(PGSTAT)は、ポテンシオスタットモードで使用される。
さらなる実施態様において、センサーは、検出器要素を含む。検出器要素は、基板の電気的な特徴における変化を検出または測定する。
昆虫OrXを組換え技術で発現させ、精製するための方法は、当業者公知である14。
昆虫OrXの存在
さらなる実施態様において、OrXは、分析物との相互作用に応答してコンフォメーション変化を受けることが可能な形態で存在する。
膜模倣物は、名前が示唆する通り、天然膜を模倣するものであり、インビボで見出されるのと同じかまたは類似したコンフォメーションで受容体を支持することができる。
好ましくは、膜模倣物は、人工物である。
一実施態様において、膜模倣物は、人工リポソームである。
さらなる実施態様において、膜模倣物は、脂質二重層である。
リポソームにおいて昆虫受容体を再構成するための方法は、当業界において公知である14。
理論に制限されることは望まないが、出願人は、一部の実施態様において、リポソーム中の昆虫OrXが作用電極に適用されると、リポソームが構造を変化させて電極上に脂質二重層を形成すると仮定している。出願人は、受容体のリガンド/分析物結合ドメインがリガンド/分析物に接近可能になるように、昆虫OrXは、インビボで細胞膜に見出されるものと類似のまたは同じコンフォメーションで脂質二重層中に埋め込まれると仮定している。
さらなる実施態様において、OrXは、基板にカップリングされる。
基板にタンパク質をカップリングするための多数の方法が当業者公知である。このような方法としては、共有結合による化学的カップリング、光化学的な架橋、表面のコーティング/修飾、金の表面化学、タンパク質親和性タグ、ビオチン-ストレプトアビジン連結、抗体固定、および操作された表面結合ペプチド配列の使用が挙げられる。
さらなる実施態様において、昆虫OrXは、リンカーを介して電極にカップリングされる。
さらなる実施態様において、リンカー分子は、電極が受容体から分離することを防ぐ程度に短い。
さらなる実施態様において、リンカーは、自己組織化単分子(SAM)層の一部である。
さらなる実施態様において、MHAのカルボキシル基の活性化は、昆虫OrXのカップリングの前に実行される。
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、分析物の検出は、特異的である。
カーボンナノチューブ電界効果トランジスタ(CNT-FET)装置
好ましくは、カーボンナノチューブ電界効果トランジスタ(CNT-FET)装置は、少なくとも2つの端部を含む。さらなる実施態様において、CNT-FET装置は、少なくともソース電極およびドレイン電極を含む。
a)ソース電極
b)ドレイン電極
c)ゲート電極
d)カーボンナノチューブ(CNT)で構成される少なくとも1つのチャネル
を含む。
検出器要素
さらなる実施態様において、センサーは、検出器要素を含む。検出器要素は、ソース-ドレイン電流における変化を検出または測定する。
さらなる実施態様において、OrXは、分析物との相互作用に応答してコンフォメーション変化を受けることが可能な形態で存在する。
膜模倣物は、名前が示唆する通り、天然膜を模倣するものであり、インビボで見出されるのと同じかまたは類似したコンフォメーションで受容体を支持することができる。
好ましくは、膜模倣物は、人工物である。
本発明のCNT-FETデバイス中のチャネルへのOrXのカップリング
一実施態様において、OrXは、チャネル中で、カーボンナノチューブにカップリングされる。
一実施態様において、昆虫OrXは、CNTへのカップリングが容易になるように機能化される。
それゆえに、一実施態様において、OrXは、his-タグを含む。
好ましくは、his-タグは、OrXタンパク質のN末端にある。
一実施態様において、CNTは、昆虫OrXへのカップリングが容易になるように機能化される。
カップリング
さらなる実施態様において、OrXは、his-タグとの親和性結合を介してCNTにカップリングされる。
分析物の検出
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、分析物の検出は、特異的である。
水晶振動子マイクロバランス(QCM)装置
好ましくは、水晶振動子マイクロバランス(QCM)装置は、
a)共振器要素
b)加振源要素
c)周波数を感知する要素
を含む。
一実施態様において、共振器要素は、圧電材料、少なくとも1種の圧電性結晶、および少なくとも1種の水晶振動子であるかまたはそれで構成される。好ましい実施態様において、共振器要素は、水晶共振子である。
一実施態様において、共振器要素は、その対向する2つの側に電極が取り付けられている。
好ましい実施態様において、共振器要素は、少なくとも1つの昆虫OrXと電気的に連通している。
一実施態様において、加振源要素は、共振器要素に交流電場を適用するように設計されている。
周波数を感知する要素
一実施態様において、周波数を感知する要素は、共振器要素の振動周波数を測定するように設計されている。一実施態様において、周波数を感知する要素は、共振器要素の振動周波数における変化を測定するように設計されている。
さらなる実施態様において、OrXは、分析物との相互作用に応答してコンフォメーション変化を受けることが可能な形態で存在する。
膜模倣物は、名前が示唆する通り、天然膜を模倣するものであり、インビボで見出されるのと同じかまたは類似したコンフォメーションで受容体を支持することができる。
好ましくは、膜模倣物は、人工である。
さらなる実施態様において、膜模倣物は、脂質二重層である。
さらなる実施態様において、膜模倣物は、人工脂質二重層である。
共振器要素上での昆虫OrXを含む脂質二重層の形成
理論に制限されることは望まないが、出願人は、一部の実施態様において、リポソーム中の昆虫OrXが作用電極に適用されると、リポソームが構造を変化させて共振器要素上に脂質二重層を形成すると仮定している。出願人は、受容体のリガンド/分析物結合ドメインがリガンド/分析物に接近可能になるように、昆虫OrXは、インビボで細胞膜に見出されるものと類似のまたは同じコンフォメーションで脂質二重層中に埋め込まれると仮定している。
さらなる実施態様において、昆虫OrXは、リンカーを介して共振器要素にカップリングされる。
さらなる実施態様において、リンカー分子は、共振器要素が受容体から分離することを防ぐ程度に短い。
さらなる実施態様において、リンカーは、自己組織化単分子層(SAM)の一部である。
さらなる実施態様において、MHAのカルボキシル基の活性化は、昆虫OrXのカップリングの前に実行される。
さらなる実施態様において、センサーは、昆虫OrXへの分析物の結合を検出することが可能である。
好ましくは、分析物の検出は、特異的である。
検出の感度
上記で論じられたように、本発明のセンサーは驚くほどよく作用する。出願人は、本発明のセンサーデバイスが、昆虫ORの使用を含む公知のアッセイのどれよりも顕著に高い感度を有することを示した。
一実施態様において、センサーにおいて、分析物の検出に関するダイナミックレンジは、少なくとも2、好ましくは少なくとも3、より好ましくは少なくとも4、より好ましくは少なくとも5、より好ましくは少なくとも6、より好ましくは少なくとも7、より好ましくは少なくとも8、より好ましくは少なくとも9、より好ましくは少なくとも10桁の分析物濃度である。
これまでに公知の昆虫の匂い物質受容体を使用する全てのシステム/アッセイは、昆虫OrXおよび匂い物質コレセプター(Orco)の組合せを利用する。これは、コグネイトリガンド(cognate ligand)に特異的に結合してリガンドの結合に対する応答を変換することが可能な適切な組合せで、OrX/Orcoを有する昆虫匂い物質受容体(OR)複合体を生産するために、従来技術ではOrXとOrco要素の両方を要求したことについての非常に強いバイアスを意味する。
本発明のセンサーの他の利点
本発明のセンサーは、便利さ、携帯できること、安定性、迅速な検出、感度、および測定の容易さに関して、これまでに公知の昆虫ORベースのシステム/アッセイを上回る多数のさらなる潜在的な利点を提供する。
分析物は、ガス状または液状媒体中にあってもよい。
任意の捕獲要素
センサーデバイスは、加えて、分析物を捕獲し、受容体に分析物を提示するための要素を含んでいてもよい。一部の実施態様において、この要素は、OrXへ提示するために揮発性分析物を捕獲することに関して有用であり得る。これは、液相または気相のいずれかにおいて標的VOCを取り扱うためのマイクロチャネルの使用を含んでいてもよい(50)。マイクロ流体システムは、液相中(51、52)および気相中(53、52、54)でセンサー表面に標的分子を送達するように設計されている。
本発明は、複数の異なるOrXタンパク質を使用する多重アプローチを予期する。この方法で、使用者は、複数の分析物に対して高感度を有する多重デバイスを構築することができる。このような多重デバイスは、本明細書で記載される通り、数十、数百、またはさらには数千ものセンサーを含んでいてもよい。また多重デバイスは、ダブルチェックをデバイスに導入するように、同じOrXにカップリングされる2つまたはそれより多くのセンサーを含んでいてもよい。
本発明は、上述したような分析物および/または環境における分析物の存在を検出するための本発明のセンサーデバイスの使用方法を提供する。
使用者は、デバイスの電気的な特徴を、対照、公知の分析物、またはその両方にデバイスを曝露したときに測定された対応する電気的な特徴と比較することができる。使用者はまた、サンプル中の1種またはそれより多くの分析物の存在を見積もることもできる。これは、サンプルで観察された電気的な特徴を、目的の分析物の公知の量を有する対照または標準から集められたデータポイントに対応するその電気的な特徴の検量線と比較することによって達成することができる。この方法で、使用者は、デバイスが接触したサンプル中に存在する分析物の濃度を見積もることができる。
センサーデバイス
さらなる形態において、本発明は、センサーデバイスを製造する方法であって、昆虫OrXとセンサーデバイスの基板との間に電気的な連通を確立する工程を含み、センサーデバイスは、基板の電気的な特徴における変化を検出するように設計されている、上記方法を提供する。
一実施態様において、OrXは、OrXがカップリングされた基板がセンサーデバイスに組み立てられる前に、基板にカップリングされる。
センサーの要素
さらなる形態において、本発明は、センサーデバイスのための要素を生産するための方法であって、要素は、本明細書で定義されるように基板と電気的に連通するOrXを含む、上記方法を提供する。本方法は、本明細書に記載されるように、OrXと基板との間に電気的な連通を確立する工程を含む。この要素は、本発明に係るセンサーデバイスに付与するのに有用である。
実施態様において、基板は、本明細書に記載されるような電気化学セルの作用電極である。
本発明のCNT-FETセンサーデバイスの製造方法
実施態様において、基板は、本明細書に記載されるようなCNT-FET装置のチャネルである。
実施態様において、基板は、本明細書に記載されるような水晶振動子マイクロバランス(QCM)の共振器要素である。
一般的な定義および方法
OrXタンパク質/ポリペプチドおよびフラグメント
用語「ポリペプチド」は、本明細書で使用される場合、アミノ酸残基が共有結合によるペプチド結合によって連結された、あらゆる長さを有する、ただし好ましくは全長タンパク質を含み、少なくとも5個のアミノ酸のアミノ酸鎖を含む。本発明で使用するためのポリペプチドは、好ましくは、組換えまたは合成技術を使用して部分的または全体的に生産される。
OrXポリペプチドの「機能的なフラグメント」は、分析物と結合し、分析物の結合のときにコンフォメーション変化を受ける機能を発揮することができるOrXの部分配列であり、ここでコンフォメーション変化は、機能的なフラグメントを結合させた基板の電気特性における変化をもたらす。
バリアント
OrXポリペプチドのバリアントは、1つまたはそれより多くのアミノ酸残基が欠失、置換または付加された、具体的に同定された配列と異なるポリペプチド配列を指す。バリアントは、天然に存在する対立遺伝子バリアント(allelic variant)であってもよいし、または天然に存在しないバリアントであってもよい。バリアントは、同じ種由来であってもよいし、または他の種由来であってもよく、ホモログ、パラログおよびオルソログを含んでいてもよい。ある特定の実施態様において、同定されたポリペプチドのバリアントは、本発明のポリペプチドまたはポリペプチドの生物活性と同じまたは類似の生物活性を有する。好ましくは、OrXポリペプチドバリアントは、分析物と結合し、分析物の結合のときにコンフォメーション変化を受ける機能を発揮することができ、ここでコンフォメーション変化は、機能的なフラグメントが結合した基板の電気特性における変化をもたらす。
本発明で使用されるポリペプチドは、バリアントポリペプチドを含め、当業界において周知のペプチド合成方法、例えば固相技術を使用する直接のペプチド合成(例えばStewartら、1969、Solid-Phase Peptide Synthesis、WH Freeman Co、カリフォルニア州サンフランシスコ)、または例えばアプライドバイオシステムズ(Applied Biosystems)の431Aペプチドシンセサイザー(カリフォルニア州フォスターシティー)を使用する自動合成を使用して調製することができる。ポリペプチドの突然変異した形態も、このような合成中に生産することができる。
本発明で使用するための遺伝学的コンストラクトは、本発明で使用するためのOrXポリペプチドをコードする1つまたはそれより多くのポリヌクレオチド配列を含み、例えば細菌、真菌、昆虫、哺乳類または植物などの生物を形質転換するのに有用であり得る。
ポリヌクレオチドを含む宿主細胞は、本発明で使用するためのポリペプチドの組換え生産に関して、当業界において周知の方法(例えばSambrookら、Molecular Cloning:A Laboratory Manual、第2版、Cold Spring Harbor Press、1987;Ausubelら、Current Protocols in Molecular Biology、Greene Publishing、1987)において有用である。このような方法は、本発明のポリペプチドの発現に好適な、またはそれを助長する条件下で、適切な培地で宿主細胞を培養することを含んでいてもよい。発現された組換えポリペプチドは、任意に培養物に分泌させてもよく、次いで、当業界において周知の方法(例えばDeutscher編、1990、Methods in Enzymology、182巻、Guide to Protein Purification)によって培地、宿主細胞または培養培地から分離してもよい。
上述の例のみに本発明の範囲を限定することは意図されない。当業者は理解しているであろうように、本発明の範囲から逸脱することなく多くのバリエーションが可能である。
1.0 実験方法
1.1 材料
N-(3-ジメチルアミノプロピル)-N’-エチルカルボジイミド(EDC)、N-ヒドロキシスクシンイミド(NHS)、リン酸緩衝塩類溶液(PBS)ペレット、6-メルカプトヘキサン酸(MHA)、ジメチルスルホキシド(DMSO)をシグマアルドリッチ(Sigma Aldrich)から購入した。別段の指定がない限り、全ての水溶液を蒸留水(ミリQ(Milli-Q)18.2ΜΩ)を用いて調製し、マイクロサイエンス(Microscience)のヒドラフロン(Hydraflon)フィルター(0.22μm)に通過させてろ過し、N2で10分間フラッシングした。1.6mmの金(Au)ディスク電極、白金(Pt)らせん形補助電極およびAg/AgCl参照電極を、BASIから購入した。
N2ガス流下で、小さいガラスチューブ中で、ホスファチジルエタノールアミン(PE)、ホスファチジルセリン(PS)、ホスファチジルコリン(PC)、およびコレステロール(CH)を5:3:3:1のモル比で含有する溶液を蒸発させ、次いで真空中で1時間乾燥させることによって生産されたリン脂質溶液を使用して、リポソームを調製した。
それらの使用の前に、リポソームを氷上で解凍し、次いで0.2%のCHAPSと共に室温で15分インキュベートすることによって不安定化した。次いで200μgの精製した匂い物質受容体14を1mgのリポソームに添加し、10rpmで1時間回転した。25mgのバイオビーズ(Bio-Beads)SM-2(バイオラッド(Bio-Rad)、米国)を4回添加し、それぞれ4℃で30分、2時間、一晩およびさらに2時間インキュベートすることによって、過量の洗浄剤を除去した。各インキュベーション期間後にバイオビーズを除去した。ORが一体化したリポソームを、100,000gで1時間の遠心分離によってペレット化し、500μlの再水和緩衝液中に再懸濁した。アキュデンツ(アキュレートケミカル&サイエンティフィック(Accurate Chemical & Scientific)社、米国)を使用した密度勾配超遠心分離(DGU)によって、リポソームへのOrXの一体化を評価した。等しい体積の80%アキュデンツ溶液の添加によって、一体化されたリポソームを40%アキュデンツにし、超遠心分離管の底部に入れ、30%アキュデンツ溶液、およびDGU緩衝液(25mMのHEPES、pH7.5、100mMのNaCl、10%グリセロール)を上に載せた。次いでサンプルを、100,000g、4℃で4時間遠心分離した。リポソームは、それらの低密度のために、アキュデンツDGUの後の勾配の最上部に浮遊するであろう。
金ディスク(2mm)電極をアルミナペーストで2分磨くことによってクリーニングし、純粋なエタノール中で、次いでミリQ水中でそれぞれ5分、超音波破砕した。次いでチオール脱離の場合、3つの末端電気化学セルにおいて、それぞれ0.1MのNaOH中で-1.4Vを30秒間適用した。電極を再度アルミナペーストで2分間磨き、純粋なエタノール中で、次いでミリQ水中でそれぞれ5分間、超音波破砕した。50mV/秒のスキャン速度で-0.2から1.6Vの間で5サイクルにわたり0.5MのH2SO4中に循環させることによって、残存する全ての有機分子をクリーニングした。
クリーニングされた電極を6-メルカプトヘキサン酸(MHA)の2mMのエタノール溶液に一晩浸した。その後、電極を無水エタノールおよびミリQ水で処理した。
-COOH活性化の後、PBS(pH7.4)でのリポソームの1:100希釈液100μl中で、室温で20分間、電極をインキュベートした。次いでそれらを過量のPBS(pH7.4)で穏やかに濯いだ。
標的溶液を1%DMSOを含有するPBS(pH7.4)で希釈し、128pM、640pM、3.2nM、16nM、80nM、400nMおよび2μΜの濃度にした。電極を関連する匂い物質溶液中でそれぞれ5分間インキュベートし、PBS(pH7.4)で穏やかに洗浄した。
続いて、対電極(CE)として白金(Pt)線、Ag/AgCl(3MのKCl、SHEに対して+0.197V)参照電極(RE)、および作用電極(WE)としてリポソームを含む1.6mmの金ディスク電極を含む3つの末端の電気化学セルにおいて、100kHz~0.2Hzの間で、参照に対して-0.7Vを適用して、EIS測定を実行した。表面の電荷移動抵抗は、各匂い物質のインキュベーション後、減少し、2μΜの匂い物質の添加後、不変のままであった。
きれいな金表面をMHAと共に一晩インキュベートして、-COOH基で表面機能化した。次いでリポソームを有する受容体(Or35a、Or22aまたはOr10aのいずれか)を、NHS-EDC化学を介してMHAに共有結合させた(図2)。濃度を増加させた標的(リガンド)のインキュベーションの前および後にEIS測定を実行した。表1に、この研究で使用された受容体およびリガンドを示す。
出願人は、最初に様々な自己組織化単分子層(SAM層)を試験して、リポソームを金電極表面上に結合させるのに最適な長さのリンカーとして6-メルカプトヘキサン酸(MHA)を同定した。事前に、16-メルカプトヘキサデカン酸(16-MHDA)酸を使用して、金表面を機能化し、リポソームを金電極上に結合させた。この実験が高い感度を示さなかったという結果は、検出可能なシグナルを生じるにはリポソームが電極表面から極端に離れていたことを示唆している。この障害を克服するために、出願人はその代わりに、より短い6-メルカプトヘキサン酸を使用した。出願人は、リンカーがより短ければ、金とリポソームとの間のより速い電子移動が提供されると予想され、したがってその表面上で起こるあらゆる事象をより高い感度でモニターできると仮定した。未加工の細胞膜中に哺乳類匂い物質受容体を固定した2つの論文のケースでは、著者らは、16-メルカプトヘキサデカン酸(16-MHDA)34または6-メルカプトヘキサデカン酸(6-MHDA)14のいずれかをSAM形成に使用した。
1.要約
出願人は、昆虫OrX配列を使用する便利な高感度のセンサーデバイスを生産した。ナノディスク55、56中に埋め込まれたキイロショウジョウバエ(Drosophila melanogaster)のOR35a43昆虫OrX受容体を、1-ピレンブタン酸スクシンイミジルエステル(PBASE)およびポリヒスチジン機能化によりCNT FET上で機能化した。CNT FETは、1fM濃度から開始したリアルタイムの電流測定モードで、標的リガンドであるE-2-ヘキセナールに対して明確な電子応答を示した。結合の特異性は、対照材料、PBSおよびヘキサン酸メチルに対するOR35aで機能化したCNT FET応答を試験することによって検証される。特異性をさらに確認するために、元のCNT FET(pristine CNT FET)および空のナノディスクで機能化したCNT FET(empty nanodisc functionalized CNT FET)のE-2-ヘキセナールに対する応答も、試験される。
2.1 カーボンナノチューブトランジスタデバイスの製作
カーボンナノチューブ電界効果トランジスタ(CNT FET)を製作するために、まず、センサープラットフォームであるCNTを、界面活性剤を含まない溶液堆積方法(a solution deposition route with no surfactants)を使用してSiO2/Si基板(SiO2=100nm)上に堆積させる58、59。鋭いピンセットの先端の量のCNTバッキーペーパー(99.9%のナノインテグリス(Nano Integris)製のイソナノチューブ-S(IsoNanotube-S))を、1時間超音波破砕することによりジクロロベンゼン(DCB)中に分散する。図5(a)で示されるようにして、SiO2基板を、ポリジメチルシロキサン(PDMS)スタンピング方法により2-チオール-ピリジンの薄層(シグマアルドリッチ)で機能化する58、59。次いで、図5(b)58、59で示されるように、2-チオール-ピリジンで機能化したSiO2/Si基板を、30分から6時間までの範囲の時間にわたりCNT DCB懸濁液中に浸す。本発明者らは、浸す時間によってCNT薄膜ネットワーク構造の制御を可能にする。CNT懸濁液から基板を取り出し、エタノール中でクリーニングし、きれいなN2中で乾燥させる。その結果、基板表面全体をカバーする一様の薄膜CNTネットワークを得る。
2.2.1 カーボンナノチューブの非共有結合による機能化
CNTの電子特性を損なうことなく嗅覚受容体をCNT表面上に固定するために、非共有結合による機能化方法を選ぶ。OrX機能化は、his-タグ化学反応を介してなされ、ここでCNT表面は、最初に1-ピレンブタン酸スクシンイミジルエステル(PBASE)(95%純度、シグマアルドリッチ)で機能化される。PBASE溶液を、ジメチルスルホキシド(DMSO)溶媒中10mMの濃度で作製し、DMSO中にPBASEが完全に溶解するまで1600rpmで30秒撹拌する。PDMS試験ウェルに、120μlのPBASE溶液を室温で1時間かけて添加する。PBASEで機能化した後、過量のPBASEを洗浄して取り除くために、CNT FETを純粋なDMSO溶媒中で3回クリーニングする。デバイス基板から残留したDMSOを除去するために、サンプルをリン酸緩衝塩類溶液(PBS、pH=7.4)中で3回洗浄する。
次いでPBASEで機能化したCNT FETを、11.3mM濃度のニトリロ三酢酸溶液に2時間浸すことによって、ニトリロ三酢酸(NTA、Mw約191.14g/mol)で機能化する。PBS中11.3mMのNTAを、100mMのNTAストック溶液(ストック溶液は、通常、使用しないときは4℃の冷蔵庫に保管される)から希釈し、120μlのNTA溶液を、室温での機能化のためにPDMSウェルに添加する。PBS中で3回洗浄し、続いて脱イオン水(脱イオン水、18.2Ω・cm)中に少なくとも1時間浸漬することによって、過量のNTAをクリーニングする。
NTAで機能化したCNTを、11.3mMの硫酸ニッケル(NiSO4、Mw約154.76g/mol)溶液中で30分インキュベートする。PBS中11.3mMのNiSO4を、100mMのNiSO4ストック溶液(ストック溶液は、使用しないときは4℃の冷蔵庫で維持される)から希釈する。120μlのNiSO4溶液を、室温での機能化のためにPDMSウェルに添加する。PBS中で3回洗浄することによって過量のNiSO4を除去する。
OR/ナノディスク55、56は、his-タグとの親和性結合を介して、Ni-NTAで機能化したCNT FET上に固定される。ナノディスク溶液を調製するために、バルクのOrX/ナノディスク溶液を、PBS緩衝液で1:10または1:100希釈のいずれかに希釈する。1:10希釈液を作製するために、10μlのストックナノディスク溶液を、100μlのPBSに添加する。1:100希釈液を作製するために、1μlのストックナノディスク溶液を、100μlのPBSに添加する。OrX/ナノディスクストック溶液は通常、使用しないときは-80℃の冷凍庫で貯蔵されるか、または1週間まで-20℃の冷凍庫中で貯蔵される。希釈したナノディスクをPDMSウェルに添加し、次いでCNT表面の全体を、機能化のためにナノディスク中に室温で30分浸漬する。機能化プロセスの後、過量のナノディスクを、PBS中で3回洗浄することによってクリーニングする。
電気的な測定を行うために、図9で示されるようにして、マイクロマニピュレーターおよびルッカー・アンド・コールス(Rucker and Kolls)のプローブステーションにより、PDMSウェルならびにソース、ドレインおよびゲート電極を用いてデバイスを組み立てる。電気的な測定を開始する前に、100μlのPBS緩衝液(1%DMSO含有)を試験ウェルに添加した。ゲート電極は、プラスチックで覆ったAg/AgCl線(インビボでの測定基準)である。ここで、ゲート電極の活性領域を変化させるときに生じることが知られている電気的な産物を回避するために、Ag/AgCl端部の露出した領域は完全にPBS緩衝液に挿入された。アジレントの4156Cパラメーター分析器は、全ての電気的な測定に使用することができる20。パラメーター分析器は、優れた感度を有し、フェムトアンペアスケールで電流を正確に測定することができる。
E-2-ヘキセナールリガンド溶液を、本発明者らの100mMのストック溶液から、感知実験に必要な濃度範囲に希釈する。DMSO中100mMのストックE-2-ヘキセナールを調製するために、本発明者らは、5μl体積の8.4MのE-2-ヘキセナール(シグマアルドリッチから購入)を取り、415μlのDMSO中で混合し、使用しないときは冷蔵庫中4℃で貯蔵する。この溶液を試験範囲までさらに希釈するために、PBS緩衝液を使用する。PBS(1%DMSO含有)中のE-2-ヘキセナールの測定範囲は、1fM~1nM(10倍の増加)または64pM~200nM(5倍の増加)である。リアルタイムの測定中、PBS溶液(1%DMSO含有)を最初に対照として添加し、加えて分析物を濃度を増加させて添加する。
3.1 OR35a/ナノディスクの機能化後のCNT FETの変換特性
感知測定を行う前に、CNT FET変換特性を測定して、機能化プロセスの成功を決定する。図10は、OR35aナノディスクで機能化したCNT FET(丸)と、元のCNT FET(四角)との比較であり、それによれば、閾値電圧は、OR35aナノディスクの機能化後に負電圧方向にシフトしたことは明らかである。フォワードI-Vスキャンにおける閾値電圧は、0.6V(元)から0.42V(OR35aナノディスクを含む)にシフトした。これは、Ni+(NiSO4)の正電荷からの静電ゲーティング(electrostatic gating)作用に加えて、担体がCNTの側壁に取り付けられたナノディスクによって散乱することに起因する可能性がある60。CNTに係留されたアプタマーの負電荷が閾値電圧で正のシフトを引き起こすとき、これは、本発明者らの以前の調査と同様に、OrX/ナノディスクの固定が成功したことを示す証拠である58、61。ORでうまく機能化されたCNT FETの場合、閾値電圧は常に、負電圧方向にシフトする。
3.2.1.OR35aナノディスクで機能化されたCNT FET(1:10希釈)
CNT FETを、上述したようにして、OR35aナノディスクで、1:10希釈で機能化した。PBS緩衝液を試験ウェルに添加し、次いで、デバイスのソース-ドレイン電流を絶えずモニターしながら、E-2-ヘキセナールを、64pM、320pM、1.6nM、8nM、40nMおよび200nMの順番で3分毎に添加する。図11(a)において、PBS緩衝液の添加による電流のわずかな増加がみられ、それに対して電流は、64pMのE-2-ヘキセナールへの曝露の後に即時の大きい減少を示す。この電流における減少は、OR35aとE-2-ヘキセナールとの結合がCNT FETへの有効なゲーティングを変化させることに起因する58、60、62。320pM、1.6nM、8nMおよび40nMのE-2-ヘキセナールへの曝露それぞれにおいて、さらなる電流の減少が観察される。
電流応答が本当にOR35aとE-2-ヘキセナールとの結合によるものであることを確認するために、対照実験を行った。これらの測定は、元のCNT FETおよび空のナノディスクで機能化されたCNT FETによるE-2-ヘキセナール応答である。図12では、リアルタイムの電流測定をプロットして比較を示す。
非特異的なリガンド、このケースではヘキサン酸メチルに対するOR35aナノディスクの電気的な応答も測定される(図13)。図13において測定された濃度範囲は、70nMから500μΜであり、これは、図12におけるE-2-ヘキセナール濃度の測定範囲より高い。E-2-ヘキセナールが添加される時間に明確な段階的応答が観察され、3分後に電流が安定状態に到達する図11に示した結果とは異なり、図13におけるヘキサン酸メチルリガンドに関するリアルタイムの測定は、経時的なバックグラウンドのドリフト電流を示すが、明確な応答を示さない。
この研究は、電子デバイスプラットフォームをベースとしたOR35aおよび有望な嗅覚バイオセンサー用途の認識能力を実証した。CNTをNi-NTAで機能化した後、ナノディスク中に埋め込まれたOR35aを、ポリヒスチジンタグを介してCNT FET上で機能化する。Ni-NTAを、PBASEで機能化したCNT FETのN-ヒドロキシスクシンイミド基上に連結する。この方法を使用することによって、OR35aナノディスクで機能化したCNT FETは、リアルタイムで64pMのE-2-ヘキセナールリガンドに対する応答を実証し、PBS緩衝液に対する応答はなかった。元のCNT FETにおける結果、加えて空のナノディスクで機能化したCNT FETと比較して、E-2-ヘキセナールに対する明確な電流応答は観察されない。OR35aの特異的な結合も、OR35aで機能化したCNT FETからの、PBSおよび対照リガンドであるヘキサン酸メチルに対する応答を試験することによって検証した。OR35aナノディスクで機能化したCNT FETは、経時的なE-2-ヘキセナールの特異的で高感度な検出を実証した。
1.要約
出願人はさらに、昆虫OrX配列を使用する便利な高感度のセンサーデバイスを例示した。4種のキイロショウジョウバエOrX受容体(Or10a、Or22a、OR35aおよびOr71a)43、63をそれぞれ、ナノディスク55、56中に埋め込み、さらに最適化された条件下で1-ピレンブタン酸スクシンイミジルエステル(PBASE)およびアミン基反応(OrXおよび膜足場タンパク質上に存在する)によりCNT FET上で機能化した。OrXで機能化したCNT FETのそれぞれは、1fM濃度から開始したリアルタイムの電流測定モードで、それらの標的リガンドに対して(Or10aはサリチル酸メチル、Or22aはヘキサン酸メチル、Or35aはE-2-ヘキセナール、Or71aは4-エチルグアヤコールに対して)明確な電子応答を示した。結合の特異性は、対照材料、PBSおよび非応答性リガンドに対する各OrXで機能化したCNT FET応答を試験することによって検証される。特異性をさらに確認するために、元のCNT FETおよび空のナノディスクで機能化したCNT FETの標的リガンドに対する応答も、試験される。
2.1 材料
膜足場タンパク質MSP1E3D1を、キューブバイオテック(Cube Biotech)(番号26152)から購入し、5mg/mLに水中に再懸濁した。1-パルミトイル-2-オレオイル-sn-グリセロ-3-ホスホコリン(POPC)を、アバンティポーラーリピッド(Avanti polar lipids)(番号850457)から購入し、必要になるまでクロロホルム中100mg/mLのストック溶液として-20℃で貯蔵した。
この実験設定において、ランダムチャネルCNT FETセンサープラットフォームを、簡単な溶液堆積方法および標準的なフォトリソグラフィー技術を使用して、SiO2/Si基板(SiO2=100nm)上に製作した20、21。まず第一に、SWNT懸濁液を、超音波破砕を使用して無水1,2-ジクロロベンゼン(DCB)中で調製した。99%の半導体グレードのSWNTバッキーペーパー(ナノインテグリス)の重さを量り、DCB中に分散して、5μg/ml懸濁液を得た。透明な溶液が得られるまで分散液を超音波破砕した。温度を超音波破砕プロセス中ずっと25℃に維持した。次いで、図5(a)で示されるようにして、SiO2/Si基板を、簡単なスタンピング方法によって、チオールピリジン分子で機能化した。1mlのメタノール中に10mgの2-メルカプトピリジン(99%、シグマアルドリッチ)を溶解させることによってチオールピリジン溶液を調製した。この溶液を、ポリジメチルシロキサン(PDMS)表面上に、2000rpmで1分間スピンコーティングした。スピンコーティングプロセスの前に、PDMS表面を、湿潤性を改善するために1分にわたり50Wの酸素プラズマによってクリーニングした。クリーニングされた基板を、PDMS表面上にひっくり返して3分置き、エタノール中で洗浄して、過量のチオールピリジン分子を除去した。次いで基板をCNT懸濁液に移し、懸濁液に10分間浸した。懸濁液からサンプルを取り出し、エタノールにさらに10分間浸して、SWNTネットワーク中のチオールピリジン分子を除去した。フォトリソグラフィーおよび5nmのクロムおよび50nmの金の熱蒸着によりマーカーを画定することによって、アライメントマーカーを堆積させる。15分のアセトン浸漬とそれに続くイソプロピルアルコール(IPA)での洗浄およびN2でのブロー乾燥によって、金属のリフトオフを行った。その結果、基板表面全体をカバーする均一な薄膜CNTネットワークが得られる。
2.2 嗅覚受容体の固定
2.2.1 精製されたORサブユニットの調製
精製手順は、Carraherら、201314で詳述されたものの改変法である。バキュロウイルスに感染したSf9細胞からタンパク質をhis-タグ親和性により精製するために、500mlの2×106/mlを0.1のMOIでバキュロウイルスに感染させ、27℃で72時間インキュベートした。3800gで室温で10分の遠心分離によって細胞ペレットを収集し、次いで25U/mLベンゾナーゼ(Benzonase)を含む40mlの再懸濁緩衝液A(20mMのトリス/HCl、pH7.5、100mMのNaCl、1×プロテアーゼ阻害剤カクテル(ロシュ・ダイアグノスティックス社(Roche Diagnostics GmbH)、ドイツ))に再懸濁し、次いでエマルシフレックスC5(Emulsiflex C5)乳化装置(アベスティン、ドイツ)を10,000~15,000psiで2回通過させることによって溶解させた。次いでサンプルを1000gで5分遠心分離して、細胞全体および核を除去した。上清を除去し、4℃、100,000gで1時間スピンした。膜ペレットを、1%w/v洗浄剤(ツヴィッタージェント(Zwittergent)3-16)を含む40mlの緩衝液Aに再懸濁し、室温で1時間、10rpmで回転させた。次いでサンプルを、18℃、100,000gで1時間遠心分離した。上清を除去し、1mlのNiNTAカラム(GEヘルスケア(GE Healthcare))にローディングし、そこでツヴィッタージェント3-16洗浄剤をフォス-コリン14(Fos-Choline 14)(FC-14)に交換した。カラム体積の10倍の300mMのNaClおよび20mMのイミダゾールを含む緩衝液B(20mMのトリス/HCl、pH7.5、3.6mMのFC-14)中で、さらにカラム体積の10倍の100mMのNaClおよび50mMのイミダゾールを含む緩衝液B中でカラムを洗浄した。タンパク質を、100mMのNaClおよび500mMのイミダゾールを含むカラム体積の4倍の緩衝液Bで溶出した。クーマシー染色されたSDS-PAGEゲルおよびウェスタンブロッティングで純度を評価した。
Bayburtら、2010および200355、56から改変したプロトコールを使用して、ナノディスクを調製した。1:0.2:150のMSP:タンパク質:脂質の比率でナノディスクを形成した。100mg/mLストックから必要な量の脂質を取り出し、窒素ガスの一定流下で乾燥させ、次いで真空中で一晩さらに乾燥させた。脂質を必要な体積の緩衝液(20mMのトリス/HCl、pH7.5、100mMのNaCl、50mMのコール酸ナトリウム)中に再懸濁し、超音波破砕し、透明な脂質ストックを20mg/mL濃度で得た。洗浄剤緩衝液中の精製した匂い物質受容体タンパク質を、MSP1E3D1およびPOPC脂質と必要な比率で混合し、氷上で1時間インキュベートした。系から洗浄剤を除去することによって再構成を開始させるために、バイオビーズSM2(バイオラッド番号1523920)を、1:1の重量:体積比でサンプルに添加し、混合物を一定して回転させながら4℃で一晩インキュベートした。次いでバイオビーズを除去し、取り込まれたナノディスクを、必要になるまで-80℃で凍結した。
嗅覚受容体ナノディスクをCNT表面上に固定するために、共有結合による機能化方法を選ぶ。OR機能化を、アミン/エステル反応を介して達成し、ここでCNT表面は、最初に1-ピレンブタン酸スクシンイミジルエステル(PBASE)(95%純度、シグマアルドリッチ)で機能化された。これを行うために、体積120μlのPBASE溶液を、室温で1時間かけてCNTチャネルに添加する。PBASE溶液を、1分間の超音波破砕によって、メタノール中10mMの濃度で作製する。PBASEで機能化した後、過量のPBASEを洗浄して取り除くために、CNT FETをメタノール中で3回クリーニングする。残留したメタノールを除去するために、デバイスをリン酸緩衝塩類溶液(PBS、pH=7.4)中で3回洗浄する。
CNTフィルム構造を評価するために、原子間力顕微鏡法を使用した。ナノサーフ(Nano surfe)(NaioAFM)を使用し、タッピングモードで画像を取った。ナノディスクの機能化の前および後にフィルムを評価した。
電気的な測定を、実施例2のセクション2.3で説明したようにして、以下の点を変更して実行した。ゲート電極は、Ag/AgCl線(BASi、MF2052)である。移動(Vlg-Ids)測定中、ゲート電圧(Vlg)を-500mVから+1Vの間でスイープし、ソースドレイン電圧(Vds)は、100mVとして設定する。本発明者らのリアルタイム感知測定のために、Vlgを0に設定し、Vdsを、100mV、1秒の工程時間として設定する。
リガンド溶液を、100mMのストック溶液から感知実験に必要な濃度範囲に希釈する。リガンドのストック溶液を、DMSO中で100mMの濃度まで作製し、使用しないときは4℃で貯蔵した。この溶液を試験範囲までさらに希釈するために、PBS緩衝液を使用する。PBS(1%DMSO含有)中のリガンドの測定範囲は、1fM~10pM(10倍の増加)である。リアルタイムの測定中、PBS溶液(1%DMSO含有)を最初に対照として添加し、加えて分析物を濃度を増加させて添加する。
3.1 OrX-ナノディスクの共有結合による機能化後のCNT FETの変換特性
図14aは、OrXが会合したナノディスクのそれぞれのクーマシー染色されたSDS-PAGEゲル分析を示し、元のおよびOrXナノディスクで機能化されたCNTのAFM画像の例から、CNTへのOrXナノディスクの固定が確認される(図14b)。ここでCNT上の白色のドットに留意されたい。図15aは、OR10aナノディスクで機能化したCNT FET(青色の線)と、元のCNT FET(黒線)との比較であり、それによれば、閾値電圧が、OR10aナノディスクの機能化後に負電圧方向にシフトしたことは明らかである。実施例2のセクション3.1で説明したように、これは、OrX-ナノディスク固定の成功の証拠である。図16a、17a、および18aの、それぞれOr22a、Or35aおよびOr71aでうまく機能化されたCNT FETで示されるように、閾値電圧は常に、負電圧方向にシフトした。
3.2.1.OrXナノディスクで共有結合により機能化されたCNT FET(1:100希釈)
図15(b)は、PBS緩衝液の添加により、OR10aナノディスクによって共有結合で機能化したCNT FET(1:100希釈)からの電流の小さい増加がみられるが、それに対して電流は、増加させたサリチル酸メチル添加への曝露の後に一貫して大きい減少を示すことを示す。この電流における減少は、OR10aとサリチル酸メチルとの結合が、CNT FETへの有効なゲーティングを変化させることに起因する58、60、62。図15(c)は、量を増加させたサリチル酸メチルの添加による、空のナノディスクで共有結合により機能化されたCNT FET(1:100希釈)からの電流の増加がないことを示しており、サリチル酸メチルとの結合におけるOr10aの役割が確認される。図15(d)は、サリチル酸メチルの濃度に対する正規化した電流応答電流の依存性を示し、対照リガンドであるE2-ヘキセナールへの応答は、観察されない。図15(e)は、空のナノディスクで共有結合により機能化されたCNT-FET(1:100希釈)において正規化した電流応答における変化がないことを示す。図15(dおよびe)は、Or10aナノディスクによって呈示されるサリチル酸メチルの検出限界が、1fM未満であることを示す。
この研究はさらに、電子デバイスプラットフォームをベースとしたOrXおよび有望な嗅覚バイオセンサー用途の認識能力を実証した。ナノディスク中に埋め込まれたOrXは、共有結合でCNT FET上で機能化され、経時的な1fMの標的リガンドに対する電流応答を示すが、PBS緩衝液に対する応答を示さない。これは、実施例2に記載のCNT-FETセンサーより5倍高い感度であり、少なくとも4桁のダイナミックレンジを有する。空のナノディスクで機能化したCNT FETにおける結果と比較して、標的リガンドに対する明確な電流応答は観察されない。各OrXの特異的な結合も、OrXで機能化したCNT FETからのPBSおよび対照リガンドに対する応答を試験することによって検証した。OrX-ナノディスクで機能化したCNT FETは、経時的に、それらの標的リガンドの特異的で高感度な検出を実証した。
1.要約
出願人はさらに、昆虫OrX配列を使用する便利な高感度のセンサーデバイスを例示した。3つのOrX受容体(Or10aおよびOr22a、ならびにOR35a)43、63をそれぞれナノディスク55、56中に埋め込み、EIS測定のために金電極上で機能化した。OrXで機能化した金電極のそれぞれは、fMレベルの濃度から開始して、それらの標的リガンドに対して(Or10aはサリチル酸メチル、Or22aはヘキサン酸メチル、およびOr35aはE-2-ヘキセナールに対して)明確な電子応答をリアルタイムで示した。結合の特異性を、非応答性リガンドに対する各OrXナノディスクで機能化した電極の応答を試験することによって検証した。特異性をさらに確認するために、標的リガンドに対する空のナノディスクで機能化した金電極の応答も試験した。
2.1 材料
6-メルカプトヘキサン酸(MHA)、N-ヒドロキシスクシンイミド(NHS)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド)(EDC)、リン酸緩衝塩類溶液(PBS)タブレット、サリチル酸メチル、ヘキサン酸メチル、ヘキサン酸エチル、E2-ヘキセナールおよび4-エチルグアヤコールを、シグマアルドリッチから得た。電気化学的な測定のために、直径1.6mmの金(Au)ディスク電極、コイル状の白金(Pt)線電極および漏れのない銀/塩化銀(Ag/AgCl)電極を、BASiから購入した。
2.2.1 精製されたORサブユニットの調製
ORサブユニットを、実施例3セクション2.3.1に記載した通りに調製した。
ナノディスクを、実施例3セクション2.3.2に記載した通りに調製した。
2.3 電極の調製
金ディスク電極(直径1.6mm)を、各電極につき1分間、アルミナポリッシングパッド上でポリッシングアルミナスラリーを用いて磨いた。磨いた電極を脱イオン水(ミリQ、18.2ΜΩ・cm)で濯ぎ、続いて、残留したアルミナスラリーが電極から完全に除去されるまでエタノール(LRグレード)および脱イオン水中で超音波処理した。-1.2Vでのクロノアンペロメトリーを超音波処理した電極の全てに適用し、3つの末端の電気化学セル中の0.1Mの水酸化ナトリウム(NaOH)電解質溶液、Ag/AgCl(3MのNaCl、SHEに対して0.209V)参照電極、対電極としてコイル状の白金線、および作用電極として金ディスクを使用して、PalmSens3ポテンシオスタットを使用して、30秒にわたり、電極表面上に存在するチオールのSAMを脱着させた。次いで電極を再度脱イオン水で濯ぎ、エタノールと脱イオン水中で連続的に超音波処理した。最終的に、0.5M硫酸(H2SO4)溶液中、-0.2から1.6Vの間で、100mV/秒のスキャン速度でサイクリックボルタンメトリーを10サイクル実行して、他のあらゆる不純物を除去した(3つの電極セル、Ag/AgCl(3MのNaCl中、SHEに対して0.209V)参照電極、対電極としてコイル状の白金線、および作用電極として金ディスク)。
5mlエタノール(ARグレード)中に1.36μlのMHAを溶解させることによって、2mMのMHAを調製した。クリーニングされた電極をMHA溶液に浸し、一晩インキュベートした。次の日、未反応の酸を除去するために、全ての電極をエタノールと脱イオン水で徹底的に洗浄した。2:1のmol:mol比のEDC:NHS(100mMのEDC、50mMのNHS)を2mlのPBS(pH=6.5)溶液中で調製した。次いでこの溶液中で電極を28℃で1時間インキュベートして、MHAのカルボン酸(COOH)基を活性化した。
PBS溶液を、PBSの1つのタブレットを200mlのミリQ水中に浸漬すること(製造元の説明書に従って)によって調製し、0.2μmのシリンジフィルターを使用してろ過した。調製された緩衝溶液のpHをpHメーターで測定した。ORをPBS緩衝溶液(pH=7.4)で100倍希釈し、その緩衝溶液中でCOOH活性化電極を室温で1時間インキュベートした。次いで電極をPBS緩衝溶液で徹底的に洗浄して、全ての未結合のナノディスクを洗い落とした。
PBS溶液(pH=7.4)を、電気化学的な測定;EISおよびCVを実行するための電解質として使用した。電気化学的な測定の前に、PBS緩衝液を15分脱気した。リガンド溶液を、100mMのストック溶液から感知実験に必要な濃度範囲に希釈した。リガンドのストック溶液を、DMSO中で100mMの濃度まで作製し、使用しないときは4℃で貯蔵した。この溶液を試験範囲までさらに希釈するために、PBS緩衝液を使用した。PBS(1%DMSO含有)中のリガンドの測定範囲は、Or10aナノディスクの場合、1fM~100nM(10倍の増加)、Or22aナノディスクの場合、100fM~100pM(10倍の増加)、およびOr35aナノディスクの場合、10aM~1pM(10倍の増加)であった。
ORが固定された電極を、関連する匂い物質溶液中でそれぞれ約30分間インキュベートし、EIS測定の前にPBSで穏やかに洗浄した。続いて、対電極(CE)として白金(Pt)線、Ag/AgCl(3MのKCl、SHEに対して+0.197V)参照電極(RE)、および作用電極(WE)としてナノディスクを含む1.6mmの金ディスク電極を含む3つの末端の電気化学セルにおいて、100mHzから100kHzの間で、参照に対して-0.7Vを適用して、EIS測定を実行した。
実施例1のセクション2.0で説明したようにして、EIS測定を実行し、分析した。濃度を増加させた標的リガンドまたは対照リガンドとのインキュベーションの前および後に、EIS測定を、OrX(Or10a、Or22aまたはOr35aのいずれか)または空のナノディスクで機能化された金電極で実行した。センサー応答をΔRct/R0 ct対log[C(リガンド)]と定義することによって検量線を得た(図19)。図19(a)は、Or10aナノディスクが、サリチル酸メチルに高感度で(10fMのLOD)選択的に応答するが、予想通りに対照リガンドであるE2-ヘキセナールに応答しないことを示す。図19(b)は、Or22aナノディスクが、ヘキサン酸メチルに高感度で(<100pMのLOD)選択的に応答するが、予想通りに対照リガンドであるE2-ヘキセナールに応答しないことを示す。図19(c)は、Or35aナノディスクが、E2-ヘキセナールに高感度で(<1fMのLOD)選択的に応答するが、予想通りに対照リガンドであるサリチル酸メチルに応答しないことを示す。図面のそれぞれにおいて、空のナノディスクは、試験された標的リガンドのいずれに対しても応答しないことから、各OrXの存在が各標的リガンドの検出にとって重要であることが実証される。
この研究はさらに、電子デバイスプラットフォームをベースとしたOrXおよび有望な嗅覚バイオセンサー用途の認識能力を実証した。金電極に機能化されたナノディスク中に埋め込まれたOrXは、fMの標的リガンドに対して電気化学インピーダンス応答を示し、4桁のダイナミックレンジを示す。空のナノディスクで機能化した電極からの標的リガンドに対するインピーダンス応答は、観察されない。
要約
出願人はさらに、昆虫OrX配列を使用する便利な高感度のセンサーデバイスを例示した。3つのOrX受容体(Or10a、Or22a、OR71a)43、63をそれぞれリポソーム55、56中に埋め込み、EIS測定のために、さらなる最適化された実験条件下で金電極上で機能化した。OrXで機能化した金電極のそれぞれは、fM濃度から開始して、その標的リガンドに対する(Or10aはサリチル酸メチル、Or22aはヘキサン酸メチル、Or71aは4-エチル-グアヤコールに対する)明確な電子応答を示した。結合の特異性は、非応答性リガンドに対する各OrXリポソームで機能化した電極応答を試験することによって検証される。特異性をさらに確認するために、標的リガンドに対する空のナノディスクで機能化した金電極の応答も試験した。
2.1 材料
実施例4のセクション2.1で説明した通りである。
2.2.1 精製されたORサブユニットの調製
ORサブユニットを、実施例3のセクション2.3.1で説明したようにして調製した。
ORおよびOR/Orcoが会合したリポソームを、実施例1のセクション1.2に記載した通りに調製した。
実施例4のセクション2.3で説明した通りである。
2.4 自己組織化単分子層(SAM)の調製およびEDCNHS活性化
実施例4のセクション2.4で説明した通りである。
実施例4のセクション2.5で説明した通りである。
2.6 標的匂い物質溶液の調製およびインキュベーション
実施例4のセクション2.6で説明した通りである。
実施例4のセクション2.7で説明した通りである。
3.0 結果
図20は、Or22aについてのORが会合したリポソーム調製物の実施例のSDS-PAGEゲル分析からのウェスタンブロットを示す。レーン4は、Or22aが会合したリポソームの最終的な調製物を示し、この調製物にアキュデンツ勾配超遠心分離(レーン5~12)が適用されると、Or22aが会合したリポソームは、勾配の最上部に浮遊し、上2つの勾配画分(レーン11および12)に見出される14。
この研究はさらに、電子デバイスプラットフォームをベースとしたOrXおよび有望な嗅覚バイオセンサー用途の認識能力を実証した。金電極上で機能化されるリポソーム中に埋め込まれたOrXは、fMレベルまで低い濃度の標的リガンドに対して極めて高感度の電気化学インピーダンス応答を示し、8桁を超えるダイナミックレンジを示す。空のナノディスクで機能化した電極における結果と比較して、標的リガンドに対する透明なインピーダンス応答は、観察されていない。各OrXの特異的な結合も、OrXリポソームで機能化した電極からの対照リガンドに対する応答を試験することによって検証した。OrXリポソームで機能化した電極は、特異的かつ高感度でそれらの標的リガンドを検出するための高い将来性を示した。
要約
出願人は、リポソーム中に埋め込まれたキイロショウジョウバエOr22a43、63配列を使用して、便利な圧電性センサーデバイスを生産した。散逸(dissipation)モニタリング機能付き水晶振動子マイクロバランス(QCM-D)は、結晶への質量負荷に伴い振動周波数が変化する質量検出型圧電性トランスデューサーである。QCM-Dセンサーの振動周波数変化とそれにカップリングされたOr22aリポソームをモニターすることによって、Or22aと標的リガンドであるヘキサン酸メチルとの相互作用を検出した。結合の特異性を、QCM-Dセンサーにカップリングされた空のリポソームの、試験した標的リガンドに対するに対する応答を試験することによって検証した。
2.1 材料
6-メルカプトヘキサン酸(MHA)、N-ヒドロキシスクシンイミド(NHS)、1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミド)(EDC)、リン酸緩衝塩類溶液(PBS)タブレット、およびヘキサン酸メチルを、シグマアルドリッチから得た。金(100nm)センサー結晶(QSX301)を、ATAサイエンティフィックインスツルメンツ(ATA Scientific Instruments)から得た。
2.2.1 精製されたORサブユニットの調製
ORサブユニットを、実施例3のセクション2.2.1に記載した通りに調製した。
OR22aリポソームを、実施例1のセクション1.2に記載した通りに調製した。
2.3 水晶振動子マイクロバランス(QCM)の調製およびデータ収集
金(100nm)センサー結晶をそれぞれエタノールおよびミリQ水中で15分間超音波破砕した。5:1:1体積比のミリQ水、アンモニア(25%)、および過酸化水素(30%)を5分で75℃に加熱し、超音波破砕した結晶を加熱した溶液中に5分間入れた。次いで結晶を溶液から取り出し、ミリQ水で濯ぎ、その後、窒素ガスで乾燥させた。過量のまたは緩く結合した分子を除去するために、それらをMHAの2mMエタノール溶液に一晩曝露し、続いてエタノール溶液で洗浄することによって、きれいな金結晶をチオールで機能化した。次いでSAMで機能化した結晶をQ-センス分析装置(ビオリンサイエンティフィック(Biolin Scientific))のチャンバーに入れ、PBS緩衝溶液中のNHS/EDC、OR22a/リポソームおよび様々な濃度のヘキサン酸メチル(1.6μM、8μM、40μM、200μMおよび1mM)と共に流動させて、周波数(Δf)および散逸(ΔD)値の変化を測定した。
図23(a)は、SAMおよびNHS/EDCでの改変とそれに続く水晶振動子へのOr22aリポソーム固定、次いで標的リガンドであるヘキサン酸メチルの結合のときの周波数および散逸(dissipation)における変化を示す。結合事象が結晶上で起こる場合、これは、振動周波数を低下させる質量における増加をもたらす64。したがってセンサーの質量は、SAM、NHS/EDC、およびOr22aリポソーム固定に伴い増加する。しかしながらヘキサン酸メチル結合のケースでは、周波数における増加が観察されている(図23(b))。理論に制限されることは望まないが、本発明者らは、このセンサー上の質量の損失は、ヘキサン酸メチルがOr22a受容体に結合して、Or22aリポソームの内部からの水およびイオンの放出を引き起こす、すなわちOr22aが機能的なイオンチャネルを形成することに起因することを示唆している。この周波数の増加は、ヘキサン酸メチルの濃度を1.6から200μMの間に増加させると起こり、ヘキサン酸メチルがOr22a受容体に特異的に結合していることが示されるが、この周波数の増加は、QCM上に固定された空のリポソームでは観察されなかった(図23(c)および(d))。一兆分率(ppt)濃度と同等なμMレベルでのリガンド結合の検出は、C.エレガンスのODR-10でみられるものと同等であった65。
この研究はさらに、電子デバイスプラットフォームをベースとしたOrXおよび有望な嗅覚バイオセンサー用途の認識能力を実証した。水晶振動子マイクロバランス(QCM)圧電性センサー上で機能化されるリポソーム中のOrXは、標的リガンドに対する明確な圧電性応答が観察されなかったQCM上で機能化した空のリポソームにおける結果と比較して、それらの標的リガンドを特異的に検出することができる。OrXリポソームで機能化したQCMは、特異的かつ高感度でそれらの標的リガンドを検出するための高い将来性を示す。
1. Montagne N, de Fouchier A, Newcomb RD, Jacquin-Joly E (2015) Advances in the identification and characterization of olfactory receptors in insects. Progress in molecular biology and translational science 130 : 55-80. doi : 10.1016/bs.pmbts.2014.11.003.
2. Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Jr., Macallister IE, Kavanaugh MP, Wanner KW (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci 109 : 14081-6.
3. Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosci. Methods 159: 189-94. doi : S0165-0270(06)00321-9 [pii]. 10.1016/j.jneumeth.2006.07.005.
4. Claudianos C, Lim J, Young M, Yan SZ, Cristino AS, Newcomb RD, Gunasekaran N, Reinhard J (2014) Odor memories regulate olfactory receptor expression in the sensory periphery. Eur. J. Neurosci. 39 : 1642-1654. doi : Doi 10.1111/Ejn.12539.
5. Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc. Natl. Acad. Sci. U S A 108 : 8821-5.
6. WO2000US4995 - Genes encoding insect odorant receptors and uses thereof.
7. WO2002US5414 - Chemosensory gene family encoding gustatory and olfactory receptors and uses thereof.
8. WO2004US42372 - In vivo odorant receptor systems and their uses.
9. WO2000US1823 - Novel odorant receptors in Drosophila.
10. WO2002US9559 - Efficient methods for isolating functional G-protein coupled receptors and identifying active effectors and efficient methods to isolate proteins involved in olfaction and efficient methods to isolate and identifying active effectors.
11. WO2012US34847 - Composition for inhibition of insect sensing.
12. Misawa N, Mitsuno H, Kanzaki R, Takeuchi S (2010) Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors. Proc. Natl. Acad. Sci. U. S. A. 107: 15340-4. doi : 10.1073/pnas.1004334107.
13. Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R (2015) Novel cell-based odorant sensor elements based on insect odorant receptors. Biosens. Bioelectron. 65: 287-294. doi : DOI 10.1016/j. bios.2014.10.026.
14. Carraher C, Nazmi AR, Newcomb RD, Kralicek A 2013. Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr Purif 90(2) : 160-169.
15. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG. 2008. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol. 2008, 38(8) : 770-80.
16. Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun. 2015, 13;6: 6077.
17. Jordan MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SD, Kiely A, Gatehouse LN, Greenwood DR, Christie DL and others 2009. Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chemical Senses 34(5) : 383-394.
18. Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD 2009. Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochemistry and Molecular Biology 39(3) : 189-197.
19. Corcoran JA, Jordan MD, Carraher C, Newcomb RD 2014. A novel method to study insect olfactory receptor function using HEK293 cells. Insect Biochem Mol Biol.
20. Forstner M, Breer H, Krieger J 2009. A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. International Journal of Biological Sciences 5(7) : 745-757.
21. Grosse-Wilde E, Gohl T, Bouche E, Breer H, Krieger J 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. European Journal of Neuroscience 25(8) : 2364-2373.
22. Grosse-Wilde E, Svatos A, Krieger J 2006. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chemical Senses 31(6) : 547-555.
23. Kumar BN, Taylor RW, Pask GM, Zwiebel U, Newcomb RD, Christie DL 2013. A conserved aspartic acid is important for agonist (VUAA1) and odorant/tuning receptor-dependent activation of the insect odorant co-receptor (Orco). PLoS One 8(7) : e70218.
24. Turner RM, Derryberry SL, Kumar BN, Brittain T, Zwiebel U, Newcomb RD, Christie DL 2014. Mutational analysis of cysteine residues of the insect odorant co-receptor (Orco) from Drosophila melanogaster reveals differential effects on agonist- and odorant-tuning receptor-dependent activation. Journal of Biological Chemistry 289(46) : 31837-31845.
25. Pask GM, Romaine IM, Zwiebel LJ 2013. The molecular receptive range of a lactone receptor in Anopheles gambiae. Chemical Senses 38(1) : 19-25.
26. Liu CC, Liu Y, Walker WB, Dong SL, Wang GR 2013. Identification and functional characterization of sex pheromone receptors in beet armyworm Spodoptera exigua (Hubner). Insect Biochemistry and Molecular Biology 43(8) : 747-754.
27. Miura N, Nakagawa T, Tatsuki S, Touhara K, Ishikawa Y 2009. A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. International Journal of Biological Sciences 5(4) : 319-330.
28. Mitsuno H, Sakurai T, Murai M, Yasuda T, Kugimiya S, Ozawa R, Toyohara H, Takabayashi J, Miyoshi H, Nishioka T 2008. Identification of receptors of main sex-pheromone components of three Lepidopteran species. European Journal of Neuroscience 28(5) : 893-902.
29. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T 2004. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America 101(47) : 16653-16658.
30. Xu PX, Garczynski SF, Atungulu E, Syed Z, Choo YM, Vidal DM, Zitelli CHL, Leal WS 2012. Moth Sex Pheromone Receptors and Deceitful Parapheromones. Plos One 7(7).
31. Wang G, Vasquez GM, Schal C, Zwiebel LJ, Gould F 2011. Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens. Insect Molecular Biology 20(1) : 125-133.
32. Wanner KW, Nichols AS, Allen JE, Bunger PL, Garczynski SF, Linn CE, Robertson HM, Luetje CW 2010. Sex Pheromone Receptor Specificity in the European Corn Borer Moth, Ostrinia nubilalis. Plos One 5(1).
33. Wang GR, Carey AF, Carlson JR, Zwiebel LJ 2010. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl. Acad. Sci. USA 107(9) : 4418-4423.
34. Geertsma, E.R., et al., Membrane reconstitution of ABC transporters and assays of translocator function. Nature Protocols, 2008. 3(2) : p.256-266.
35. Booth, M.A., S. Harbison, and J. Travas-Sejdic, Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosensors and Bioelectronics, 2011. 28(1) : p.362-367.
36. Booth, M.A., S. Harbison, and J. Travas-Sejdic, Effects of Redox Couple on the Response of Polypyrrole-Based Electrochemical DNA Sensors. Electroana lysis, 2012. 24(6) : p.1311-1317.
37. Zhu, B., et al., Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. Biosensors and Bioelectronics, 2015. 64: p.74-80.
38. Zhu, B., et al., Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. Biosensors and Bioelectronics, 2015. 70: p.398-403.
39. Lu, Y., et a I., Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sensors and Actuators B: Chemical, 2014. 193 : p.420-427.
40. Sankaran, S., S. Panigrahi, and S. Mallik, Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosensors and Bioelectronics, 2011. 26(7) : p.3103-3109.
41. Kuang, Z., et al., Biomimetic Chemosensor: Designing Peptide Recognition Elements for Surface Functionalization of Carbon Nanotube Field Effect Transistors. ACS Nano, 2010. 4(1) : p.452-458.
42. Kannan, B., et al., High-Sensitivity, Label-Free DNA Sensors Using Electrochemically Active Conducting Polymers. Analytical Chemistry, 2011. 83(9) : p.3415-3421.
43. Robertson HM, Warr CG, Carlson JR 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 100: 14537-14542.
44. Hallem EA, Carlson JR 2006. Coding of odors by a receptor repertoire. Cell 125(1):143-160.
45. Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GS, Benton R 2011.Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. Journal of Neuroscience 31(38) : 13357-13375.
46. Boyle SM, Mclnally S, Ray A 2013. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. Elife 2: e01120.
47. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ 2002. G protein-coupled receptors in Anopheles gambiae. Science 298(5591) : 176-178.
48. Carey AF, Wang GR, Su CY, Zwiebel LJ, Carlson JR 2010. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464(7285) : 66-U77.
49. Wang GR, Carey AF, Carlson JR, Zwiebel U 2010. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl. Acad. Sci. USA 107(9) : 4418-4423.
50. Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E 2004. Application of on-chip cell cultures for the detection of allergic response. Biosensors and Bioelectronics 19(7) : 741-747.
51. Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF, Folch A 2010. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip 10(9) : 1120-1127.
52. Hossein-Babaei F, Paknahad M, Ghafarinia V 2012. A miniature gas analyzer made by integrating a chemoresistor with a microchannel. Lab Chip 12(10) : 1874-1880.
53. Hossein-Babaei F, Ghafarinia V 2010. Gas analysis by monitoring molecular diffusion in a microfluidic channel. Analytical Chemistry 82(19) : 8349-8355.
54. Lee SH, Lim JH, Park J, Hong S, Park TH 2015. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosensors and Bioelectronics 71 : 179-185.
55. Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721-1727 (2010).
56. Bayburt, T. H. & Sligar, S. G. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci. 12, 2476-2481 (2003).
57. Stern, E. et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405-3409 (2007).
58. Zheng, H. Y., A. Alsager, O., S. Wood, C, M. Hodgkiss, J. & O. V. Plank, N.Carbon nanotube field effect transistor aptasensors for estrogen detection in liquids. J. Vac. Sci. Technol. B 33, 06F904 (2015).
59. 0. V. Plank, N., Ishida, M. & Cheung, R. Positioning of carbon nanotubes using soft-lithography for electronics applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 23, 3178-3181 (2005).
60. Goldsmith, B. R. et al. Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5, 5408-16 (2011).
61. Zheng, H. Y. et al. Electrostatic gating in carbon nanotube aptasensors.Nanoscale 8, 13659-13668 (2016).
62. Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591-595 (2008).
63. Dweck HKM, Ebrahim SAM, Farhan A, Hansson BS, Stensmyr MC. (2015) Olfactory proxy detection of dietary antioxidants in drosophila. Curr Biol 25:455-66.
64. Glatz R, Bailey-Hill K. (2011) Mimicking nature’s noses: From receptordeorphaning to olfactory biosensing. Prog Neurobiol 93: 270-96.
65. Du L, Chunseng W, Peng H, Zou L, Zha L, Huang L and Wang P (2013) Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sensors and Actuators B 187: 481-487.
Claims (16)
- 基板と電気的に連通する精製された昆虫の匂い物質受容体OrXサブユニットを含むセンサーデバイスであって、該基板の電気的な特徴における変化を検出するように設計されている、上記センサーデバイス。
- 前記電気的な特徴における変化が、前記精製されたOrXサブユニットへの分析物の結合に起因する、請求項1に記載のセンサーデバイス。
- 前記基板の電気的な特徴における変化を検出することによって、前記精製されたOrXサブユニットへの分析物の結合を検出することが可能である、請求項1または2に記載のセンサーデバイス。
- 前記精製されたOrXサブユニットが、分析物の結合に応答してコンフォメーション変化を受けることが可能な形態で存在する、請求項1~3のいずれか一項に記載のセンサーデバイス。
- 前記精製されたOrXサブユニットが、膜模倣物に存在する、請求項1~4のいずれか一項に記載のセンサーデバイス。
- 膜模倣物が、リポソーム、アンフィポール、洗剤ミセル、ナノベシクル、脂質二重層、ナノディスク、および界面活性剤から選択される、請求項5に記載のセンサーデバイス。
- 前記分析物の存在を、1×10-3M未満の濃度で検出することができる、請求項3に記載のセンサーデバイス。
- 前記基板が、電極、半導体材料、カーボンナノチューブ(CNT)、グラフェン、酸化物、ドープシリコン、導電性ポリマー、および共振器要素の少なくとも1つから選択されるか、またはそれで構成される、請求項1~7のいずれか一項に記載のセンサーデバイス。
- 前記電気的な特徴が、導電率、抵抗、複合抵抗、インピーダンス、電気化学インピーダンス、電流の流れ、および交流電場により誘導された振動の共振振動数の少なくとも1つから選択される、請求項1~8のいずれか一項に記載のセンサーデバイス。
- 分析物を検出する方法であって、
a)請求項1~9のいずれか一項に記載のセンサーデバイスにおいて、分析物を精製された昆虫の匂い物質受容体OrXサブユニットに結合させる工程、
b)基板の電気的な特徴における変化を検出する工程
を含み、
該基板の電気的な特徴における変化は、該分析物の検出を示す、上記方法。 - 環境における分析物の存在を検出する方法であって、
a)請求項1~9のいずれか一項に記載のセンサーデバイスを、分析物を含有する環境に曝露する工程、
b)該センサーデバイスにおいて、該分析物を精製された昆虫の匂い物質受容体OrXサブユニットに結合させる工程
c)基板の電気的な特徴における変化を検出する工程
を含み、
該基板の電気的な特徴における変化は、該環境における該分析物の存在を示す、上記方法。 - センサーデバイスを製造する方法であって、精製された昆虫の匂い物質受容体OrXサブユニットとセンサーデバイスの基板との間に電気的な連通を確立する工程を含み、該センサーデバイスは、該基板の電気的な特徴における変化を検出するように設計されている、上記方法。
- 基板と電気的に連通する精製された昆虫の匂い物質受容体OrXサブユニットを含むセンサーデバイスコンポネント。
- 請求項13に記載のセンサーデバイスコンポネントを含むセンサーデバイスであって、基板の電気的な特徴における変化を検出するように設計されている、上記センサーデバイス。
- センサーデバイスのコンポネントを製造する方法であって、精製された昆虫の匂い物質受容体OrXサブユニットと基板との間に電気的な連通を確立する工程を含む、上記方法。
- センサーデバイスを組み立てる方法であって、請求項13に記載のセンサーデバイスコンポネントを、該センサーデバイスに付与することを含み、組み立てられたセンサーデバイスは、基板の電気的な特徴における変化を検出するように設計されている上記方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ72774716 | 2016-12-21 | ||
NZ727745 | 2016-12-21 | ||
NZ72774516 | 2016-12-21 | ||
NZ727747 | 2016-12-21 | ||
PCT/IB2017/058181 WO2018116186A1 (en) | 2016-12-21 | 2017-12-20 | Sensor device and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020503511A JP2020503511A (ja) | 2020-01-30 |
JP7169275B2 true JP7169275B2 (ja) | 2022-11-10 |
Family
ID=62626061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019534131A Active JP7169275B2 (ja) | 2016-12-21 | 2017-12-20 | センサーデバイスおよび方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US12044651B2 (ja) |
EP (1) | EP3559648B8 (ja) |
JP (1) | JP7169275B2 (ja) |
KR (1) | KR102612950B1 (ja) |
CN (1) | CN110325849B (ja) |
AU (2) | AU2017383462B2 (ja) |
TW (1) | TWI790220B (ja) |
WO (1) | WO2018116186A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3559648B8 (en) | 2016-12-21 | 2024-03-20 | Scentian Bio Limited | Sensor device and methods |
BR112020015715A2 (pt) | 2018-02-01 | 2020-12-08 | Sensor Development Corporation | Dispositivo para detectar larvas de insetos e insetos adultos em produtos armazenados por sensoreação de seus feromônios voláteis e semioquímicos |
TWI835805B (zh) * | 2018-06-13 | 2024-03-21 | 紐西蘭商仙廸恩生物有限公司 | 生物感測器裝置及方法 |
JP6926041B2 (ja) | 2018-09-12 | 2021-08-25 | 株式会社東芝 | ケミカルセンサ及び標的物質検出方法 |
JP6896685B2 (ja) * | 2018-09-18 | 2021-06-30 | 株式会社東芝 | 液膜維持装置及びケミカルセンサ |
EP3980772A4 (en) | 2019-06-07 | 2022-08-03 | Hach Company | SENSOR CLEANING AND CALIBRATION DEVICES AND SYSTEMS |
JP7511186B2 (ja) | 2019-12-10 | 2024-07-05 | 地方独立行政法人神奈川県立産業技術総合研究所 | 揮発性物質濃度推定装置、揮発性物質濃度センサ、揮発性物質濃度推定方法およびプログラム |
WO2021176447A1 (en) | 2020-03-02 | 2021-09-10 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Receptor-based biosensors |
JP7242599B2 (ja) * | 2020-03-17 | 2023-03-20 | 株式会社東芝 | 分子検出装置及び分子検出方法 |
KR102504692B1 (ko) * | 2020-03-23 | 2023-03-02 | 한국생명공학연구원 | Trpa1을 포함하는 나노베지클을 포함하는 그래핀 채널 부재, 및 바이오 센서 |
CN111735852B (zh) * | 2020-05-29 | 2022-03-29 | 东南大学 | 一种用于线虫运动行为和生理特征监测的微流控芯片 |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11760170B2 (en) * | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
US11378569B2 (en) | 2020-08-31 | 2022-07-05 | Simple Labs, Inc. | Smoke taint sensing device |
US12061165B2 (en) * | 2021-01-25 | 2024-08-13 | University Of Central Florida Research Foundation, Inc. | Plasmonic organic electrochemical transistor |
CN113945713B (zh) * | 2021-09-08 | 2024-09-03 | 安徽医科大学 | 用于多种肿瘤标志物联合检测的生物芯片及其制备与应用 |
CN115236160B (zh) * | 2022-07-13 | 2023-12-19 | 华中科技大学 | 一种基于场效应晶体管的嗅觉感知方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122338A1 (ja) | 2016-01-15 | 2017-07-20 | 株式会社日立製作所 | 人工嗅覚センシングシステム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024924A (en) | 1995-09-29 | 2000-02-15 | Forschungzentrum Julich Gmbh | Biosensor system for detecting organic trace compounds produced by smoldering fires |
DE19536389C2 (de) * | 1995-09-29 | 2003-06-12 | Forschungszentrum Juelich Gmbh | Biosensorsystem zur Messung einer oder mehrerer, insbesondere organischen, durch Pflanzenschädigungen verursachten Spurenkomponenten in Luft |
CA2361005A1 (en) | 1999-01-25 | 2000-07-27 | Yale University | Novel odorant receptors in drosophila |
EP1208111B1 (en) | 1999-02-25 | 2008-10-01 | The Trustees of Columbia University in the City of New York | Genes encoding insect odorant receptors and uses thereof |
JP3416726B2 (ja) * | 1999-09-22 | 2003-06-16 | 独立行政法人農業生物資源研究所 | バイオセンサー |
WO2002068593A2 (en) | 2001-02-23 | 2002-09-06 | The Trustees Of Columbia University In The City Of New York | Chemosensory gene family encoding gustatory and olfactory receptors and uses thereof |
WO2002077200A2 (en) | 2001-03-27 | 2002-10-03 | Inscent, Inc | Efficient methods for isolating functional g-protein coupled receptors and identifying active effectors and efficient methods to isolate proteins involved in olfaction and efficient methods to isolate and identifying active effectors |
US20070157323A1 (en) | 2003-12-20 | 2007-07-05 | Carlson John R | In vivo odorant receptor systems and their uses |
AU2008200389A1 (en) * | 2007-09-10 | 2009-03-26 | Commonwealth Scientific And Industrial Research Organisation | Insect olfactory receptors and ligands therefor |
KR101110805B1 (ko) * | 2008-05-07 | 2012-02-24 | 재단법인서울대학교산학협력재단 | 고선택성 생체전자코로 유용한 후각 수용체로 기능화된 트랜지스터 및 이를 이용하는 바이오센서 |
WO2009136742A1 (en) | 2008-05-07 | 2009-11-12 | Seoul National University Industry Foundation | Olfactory receptor-functionalized transistors for highly selective bioelectronic nose and biosensor using the same |
US9612240B2 (en) * | 2010-06-29 | 2017-04-04 | The Trustees Of The University Of Pennsylvania | Biomimetic chemical sensors using nanoelectronic readout of olfactory receptors |
AU2012254032B2 (en) | 2011-05-06 | 2017-02-23 | Vanderbilt University | Compositions for inhibition of insect sensing |
EP2753643A2 (en) * | 2011-09-08 | 2014-07-16 | Institut National De La Recherche Agronomique (INRA) | Novel pheromonal receptor of spodoptera littoralis (lepidoptera, noctuidae) and identification of natural ligand of said receptor and uses thereof |
EP2848929A1 (en) * | 2013-09-11 | 2015-03-18 | AIT Austrian Institute of Technology GmbH | Graphene FET-based biosensor |
EP3559648B8 (en) | 2016-12-21 | 2024-03-20 | Scentian Bio Limited | Sensor device and methods |
-
2017
- 2017-12-20 EP EP17885391.7A patent/EP3559648B8/en active Active
- 2017-12-20 JP JP2019534131A patent/JP7169275B2/ja active Active
- 2017-12-20 AU AU2017383462A patent/AU2017383462B2/en active Active
- 2017-12-20 CN CN201780086932.4A patent/CN110325849B/zh active Active
- 2017-12-20 WO PCT/IB2017/058181 patent/WO2018116186A1/en unknown
- 2017-12-20 US US16/471,552 patent/US12044651B2/en active Active
- 2017-12-20 KR KR1020197018588A patent/KR102612950B1/ko active IP Right Grant
- 2017-12-21 TW TW106145168A patent/TWI790220B/zh active
-
2023
- 2023-08-24 AU AU2023219922A patent/AU2023219922B2/en active Active
-
2024
- 2024-02-21 US US18/583,719 patent/US20240241077A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017122338A1 (ja) | 2016-01-15 | 2017-07-20 | 株式会社日立製作所 | 人工嗅覚センシングシステム |
Also Published As
Publication number | Publication date |
---|---|
AU2023219922B2 (en) | 2024-05-09 |
AU2017383462A1 (en) | 2019-07-11 |
AU2023219922A1 (en) | 2023-09-14 |
EP3559648B1 (en) | 2023-06-07 |
US20190346401A1 (en) | 2019-11-14 |
CN110325849B (zh) | 2022-11-18 |
EP3559648B8 (en) | 2024-03-20 |
CN110325849A (zh) | 2019-10-11 |
KR20190108563A (ko) | 2019-09-24 |
US20240241077A1 (en) | 2024-07-18 |
EP3559648A1 (en) | 2019-10-30 |
EP3559648C0 (en) | 2023-06-07 |
AU2017383462B2 (en) | 2023-05-25 |
WO2018116186A1 (en) | 2018-06-28 |
JP2020503511A (ja) | 2020-01-30 |
EP3559648A4 (en) | 2020-08-26 |
TW201831890A (zh) | 2018-09-01 |
TWI790220B (zh) | 2023-01-21 |
KR102612950B1 (ko) | 2023-12-12 |
US12044651B2 (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7169275B2 (ja) | センサーデバイスおよび方法 | |
JP7457224B2 (ja) | バイオセンサーデバイスおよび方法 | |
Khadka et al. | An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants | |
Goldsmith et al. | Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins | |
Cui et al. | Biomimetic peptide nanosensors | |
Zhao et al. | Protein functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor | |
Murugathas et al. | Evaluating insect odorant receptor display formats for biosensing using graphene field effect transistors | |
KR101684620B1 (ko) | 미각 수용체 기능화된 탄소 나노튜브 전계효과 트랜지스터 기반 미각센서 및 이를 포함한 고선택성 바이오 전자혀 | |
Khadka et al. | Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco | |
Schrems et al. | Bilayer lipid membrane formation on a chemically modified S-layer lattice | |
Du et al. | A biomimetic taste biosensor based on bitter receptors synthesized and purified on chip from a cell-free expression system | |
Manai et al. | Diamond micro-cantilevers as transducers for olfactory receptors-based biosensors: Application to the receptors M71 and OR7D4 | |
El Kazzy et al. | Biomimetic olfactory biosensors and bioelectronic noses | |
Yang et al. | Bioelectronic nose using olfactory receptor-embedded nanodiscs | |
JP7467378B2 (ja) | ケミカルセンサ、標的物質の検出方法及び検出装置 | |
JP5023326B2 (ja) | 検出装置および検出方法 | |
Brandão et al. | Designing Quantum Capacitive Peptide Interfaces for Electroanalytical Applications | |
Hurot | Development of new sensing materials to improve the sensitivity and selectivity of an optoelectronic nose | |
Xu et al. | Sensors & Diagnostics | |
손만기 | Development of carbon nanotube-based bioelectronic sensors using receptor proteins and peptides for to water and food quality assessment and disease diagnosis | |
Hwang et al. | Quantitative label-free biodetection of acute disease related proteins based on nanomechanical dynamic microcantilevers | |
Zou et al. | Gustatory Receptor-Based Taste Sensors | |
El Kazzy et al. | Biomimetic Olfactory Biosensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211202 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220228 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220930 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7169275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |