JP7164790B2 - エンドトキシンの測定のための、改良された細菌エンドトキシン試験 - Google Patents
エンドトキシンの測定のための、改良された細菌エンドトキシン試験 Download PDFInfo
- Publication number
- JP7164790B2 JP7164790B2 JP2020194005A JP2020194005A JP7164790B2 JP 7164790 B2 JP7164790 B2 JP 7164790B2 JP 2020194005 A JP2020194005 A JP 2020194005A JP 2020194005 A JP2020194005 A JP 2020194005A JP 7164790 B2 JP7164790 B2 JP 7164790B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- endotoxin
- rituximab
- ler
- dialysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/38—Diluting, dispersing or mixing samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/579—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving limulus lysate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/195—Assays involving biological materials from specific organisms or of a specific nature from bacteria
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/10—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- G01N2400/50—Lipopolysaccharides; LPS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Description
1)試料中に存在するエンドトキシン結合タンパク質が原因で生じるエンドトキシンマスキング(「タンパク質マスキング」、Petsch, Anal. Biochem. 259, 1998, 42-47(非特許文献3))。例えば、例としてヒトリポタンパク質Apo A1、リゾチーム、リボヌクレアーゼA、またはヒトlgGとのタンパク質-エントドキシン凝集物の形成は、エンドトキシンのLAL反応性を低下させることが周知である(Emancipator, 1992; Petsch, Anal. Biochem. 259, 1998, 42-47(非特許文献4))。
2)薬学的製品中にしばしば存在するある種の配合成分または緩衝液構成成分が原因で生じるエンドトキシンマスキング。例えば、ポリソルベートとクエン酸またはリン酸のいずれかとの組合せが特に原因となって生じるエンドトキシンマスキングは、「エンドトキシン低回収」またはLERと呼ばれている(Chen, J. and Williams, K. L., PDA Letter 10, 2013, 14-16(非特許文献5)、Williams, American Pharmaceutical Review, October 28, 2013: Endotoxin Test Concerns of Biologics(非特許文献6))。エンドトキシンマスキングはまた、他の任意の緩衝液構成成分および非イオン系界面活性剤またはそれらの組合せが原因で生じる場合もある。
(a)好ましくはMgCl2の形態のマグネシウムイオンを試料に添加する段階、
(b)試料を希釈する段階、および
(c)5.7~9.0、好ましくは5.7~8.0のpH値を有する試料を、エンドトキシンフリー水溶液に対して透析する段階。
(a)好ましくはMgCl2の形態のマグネシウムイオンを試料に(すなわち、抗体を含む試料に)添加する段階、
(b)試料を希釈する段階、
(c)5.7~8.0のpH値を有する試料を、エンドトキシンフリー水溶液に対して透析する段階、および
(d)LALアッセイ法を用いることによって、試料中の細菌エンドトキシンを測定する段階。
[本発明1001]
以下の順序で以下の段階を含む、リムルスアメーバ様細胞溶解物(LAL)アッセイ法のための、抗体を含む試料を調製するための方法:
(a)好ましくはMgCl2の形態のマグネシウムイオンを該試料に添加する段階、
(b)該試料を希釈する段階、および
(c)5.7~8.0のpH値を有する該試料を、エンドトキシンフリー水溶液に対して透析する段階。
[本発明1002]
以下の順序で以下の段階を含む、LER作用を示す抗体を含む試料中の細菌エンドトキシンを測定するための方法:
(a)好ましくはMgCl2の形態のマグネシウムイオンを該試料に添加する段階、
(b)該試料を希釈する段階、
(c)5.7~8.0のpH値を有する該試料を、エンドトキシンフリー水溶液に対して透析する段階、および
(d)LALアッセイ法を用いることによって、該試料中の細菌エンドトキシンを測定する段階。
[本発明1003]
抗体が治療的抗体である、本発明1001または1002の方法。
[本発明1004]
抗体がポリソルベート80と共に製剤化されている、本発明1001~1003のいずれかの方法。
[本発明1005]
抗体がクエン酸緩衝液と共に製剤化されている、本発明1001~1004のいずれかの方法。
[本発明1006]
抗体が、約25mMのクエン酸ナトリウム緩衝液および約700mg/lのポリソルベート80と共に製剤化され、約6.5のpH値を有する、本発明1001~1005のいずれかの方法。
[本発明1007]
抗体が抗CD20抗体リツキシマブである、本発明1001~1006のいずれかの方法。
[本発明1008]
段階(a)において、最終濃度が約25~75mMとなるまでマグネシウムイオンが添加される、本発明1001~1007のいずれかの方法。
[本発明1009]
段階(b)において、10~50mMのTris/HCl緩衝液pH6.0~9.0、好ましくは6.0~8.0で試料を希釈することによって、該試料のpH値が調整される、本発明1001~1008のいずれかの方法。
[本発明1010]
段階(b)において試料が1:10の比で希釈される、本発明1001~1009のいずれかの方法。
[本発明1011]
段階(c)における透析の間、試料が6.0~8.0のpH値を有する、本発明1001~1010のいずれかの方法。
[本発明1012]
段階(c)において透析が室温で約24時間を要する、本発明1001~1011のいずれかの方法。
[本発明1013]
段階(c)における透析のために、分子量カットオフ値が10kDaである膜が使用される、本発明1001~1012のいずれかの方法。
[本発明1014]
段階(c)における透析のために酢酸セルロース膜が使用される、本発明1001~1013のいずれかの方法。
[本発明1015]
段階(c)における透析のために水が2回交換される、本発明1001~1014のいずれかの方法。
[本発明1016]
試料のアリコートに公知の量のエンドトキシンをスパイクし、エンドトキシンをスパイクされた該試料のアリコートを60分間~2時間振盪することによって、エンドトキシン低回収(LER)陽性対照を作製する段階をさらに含む、本発明1002~1015のいずれかの方法。
[本発明1017]
抗体を含む試料を、LAL酵素カスケードにおけるC因子に対して反応性にするための、本発明1001~1016のいずれかの方法の使用。
(a)例えばMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで試料に添加する段階、
(b)1:5(試料:緩衝液)~1:20(試料:緩衝液)、好ましくは1:10(試料:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて試料を希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料を、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は、50~300rpm、好ましくは200rpmである。
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで試料に添加する段階、
(b)1:5(試料:緩衝液)~1:20(試料:緩衝液)、好ましくは1:10(試料:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて試料を希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料を、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は、50~300rpm、好ましくは200rpmである。
(d)LALアッセイ法を用いることによって、試料中の細菌エンドトキシンを測定する段階。
-試験される試料のアリコートに、最終濃度が5.0EU/mlとなるまでCSEをスパイクする段階。好ましくは、「LER陽性対照」は、1.5~5ml容の透明なガラス製のクリンプネック平底容器中で、より好ましくは、Macherey-Nagel GmbH製のスクリューネックガラスバイアル(1.5mlまたは4ml)中で調製される。
-スパイクされたアリコートを60分間以上(より好ましくは60分間~2時間、最も好ましくは60分間)、振盪する段階。好ましくは、スパイクされたアリコートは、高速(2,037rpm)、室温(すなわち21±2℃)で振盪される。最も好ましくは、スパイクされたアリコートは、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で振盪される。
-スパイクされたアリコートを、エンドトキシンフリー水で希釈する段階。スパイクされたアリコートは、本明細書において提供される方法の段階(b)における試験される試料と同程度まで希釈される(すなわち、試験される試料が、段階(b)において1:10の比で希釈される場合、スパイクされたアリコートもまた、1:10の比で希釈される)。
-スパイクされたアリコートを(例えば1分間)振盪する段階。
(a0)-抗体を含む試料の第1のアリコートに公知の量のエンドトキシンをスパイクすること、および
-エンドトキシンをスパイクされたアリコートを60分間~2時間(好ましくは、室温で約60分間)振盪すること
によって、PPCを調製する段階、
(a)試験される試料の第2のアリコートおよびPPCにマグネシウムイオンを添加する段階、
(b)試験される試料の第2のアリコートおよびPPCを希釈する段階、
(c)5.7~8.0(好ましくは5.8~7.0)のpH値を有する試験される試料の第2のアリコートおよびPPCを、エンドトキシンフリー水溶液に対して透析する段階であって、試験される試料およびPPCが5.7~9.0のpH値を有する、段階、ならびに
(d)LALアッセイ法を用いることによって、試験される試料の第2のアリコート中およびPPC中の細菌エンドトキシンを測定する段階。
(a0)-抗体を含む試料の第1のアリコートに公知の量のエンドトキシンをスパイクすること、および
-エンドトキシンをスパイクされたアリコートを60分間以上(好ましくは、室温で60分間)振盪すること
によって、PPCを調製する段階、
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで試料の第2のアリコートに添加する段階、
(b)1:5(試料:緩衝液)~1:20(試料:緩衝液)、好ましくは1:10(試料:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて、試料の第2のアリコートを希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料を、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い。
(d)LALアッセイ法を用いることによって、試料中の細菌エンドトキシンを測定する段階。
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで試料に添加する段階; および試料を30分間~6時間、好ましくは1~4時間、最も好ましくは1時間、インキュベートする段階、
(b)1:5(試料:緩衝液)~1:20(試料:緩衝液)、好ましくは1:10(試料:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて試料を希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料を、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。(好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い)。透析後、試料は、10分間~1時間、好ましくは20分間、振盪される。
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで試料に添加する段階; および試料を30分間~6時間、好ましくは1~4時間、最も好ましくは1時間、インキュベートする段階(試料は、インキュベーションの前および後に振盪されてよい)、
(b)1:5(試料:緩衝液)~1:20(試料:緩衝液)、好ましくは1:10(試料:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて試料を希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料を、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。(好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い)。透析後、試料は、10分間~1時間、好ましくは20分間、振盪される。
(d)LALアッセイ法を用いることによって、試料中の細菌エンドトキシンを測定する段階。
(a0)-抗体を含む試料の第1のアリコートに公知の量のエンドトキシンを(例えば、最終濃度が5.0EU/mlとなるまで)スパイクすること、および
-エンドトキシンをスパイクされたアリコートを60分間~2時間(好ましくは、室温で60分間)振盪すること
によって、PPCを調製する段階、
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55MgCl2となるまで、試料の第2のアリコートおよびPPCに添加する段階;(ならびに好ましくは、試料およびPPCを30分間~6時間、より好ましくは1~4時間、最も好ましくは1時間、インキュベートする段階(試料は、インキュベーションの前および後に振盪されてよい))、
(b)1:5(試料/PPC:緩衝液)~1:20(試料/PPC:緩衝液)、好ましくは1:10(試料/PPC:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて、試料およびPPCを希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料およびPPCを、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。(好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い)。透析後、試料およびPPCは、10分間~1時間、好ましくは20分間、振盪される。
(d)LALアッセイ法を用いることによって、試料中およびPPC中の細菌エンドトキシンを測定する段階。
(a0)-抗体を含む試料の第1のアリコートに公知の量のエンドトキシンを(例えば、最終濃度が5.0EU/mlとなるまで)スパイクすること、および
-エンドトキシンをスパイクされたアリコートを60分間~2時間(好ましくは、室温で60分間)振盪すること
によって、PPCを調製する段階、
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が10~100mM、好ましくは40~75mM、最も好ましくは45~55mMとなるまで、試料の第2のアリコートおよびPPCに添加する段階; (ならびに好ましくは、試料およびPPCを30分間~6時間、より好ましくは1~4時間、最も好ましくは1時間、インキュベートする段階(試料は、インキュベーションの前および後に振盪されてよい))、
(b)1:5(試料/PPC:緩衝液)~1:20(試料/PPC:緩衝液)、好ましくは1:10(試料/PPC:緩衝液)の比で10~50mMのTris/HCl緩衝液pH6.0~8.0、好ましくは50mMのTris/HCl緩衝液pH約7.0を用いて、試料およびPPCを希釈する段階、
(c)5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料およびPPCを、エンドトキシンフリー水に対して1~48時間、好ましくは4~24時間、最も好ましくは24時間、透析する段階。(好ましくは、分子量カットオフ値が10kDaである酢酸セルロース膜が使用され、2時間後および4時間後に水が交換される。最も好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い)。透析後、試料およびPPCは、10分間~1時間、好ましくは20分間、振盪される。
(d)LALアッセイ法を用いることによって、試料中およびPPC中の細菌エンドトキシンを測定する段階であって、このLALアッセイ法において「LER陽性対照」が使用され、LER陽性対照が、
-試験される試料の第3のアリコートに、最終濃度が5.0EU/mlとなるまでCSEをスパイクすること;
-スパイクされたアリコートを60分間以上、最も好ましくは60分間、振盪すること;
-スパイクされたアリコートを、エンドトキシンフリー水で希釈すること(スパイクされたアリコートは、本明細書において提供される方法の段階(b)における試験される試料と同程度まで希釈される);
-スパイクされたアリコートを(例えば1分間)振盪すること
によって調製される、段階。
(a0)-抗体を含む試料の第1のアリコートに公知の量のエンドトキシンを最終濃度が5.0EU/mlとなるまでスパイクすること、および
-エンドトキシンをスパイクされたアリコートを室温で約60分間振盪すること
によって、PPCを調製する段階、
(a)好ましくはMgCl2の形態のマグネシウムイオンを、最終濃度が45~55mMとなるまで試料の第2のアリコートおよびPPCに添加する段階、試料およびPPCを1分間振盪する段階、試料およびPPCを1時間インキュベートする段階、ならびにインキュベーション後に試料およびPPCを再び振盪する段階、
(b)試料およびPPCを、1:10(試料/PPC:緩衝液)で50mM Tris/HCl緩衝液pH約7.0を用いて希釈する段階、
(c)分子量カットオフ値が10kDaである酢酸セルロース膜を用いることによって、5.7~8.0(好ましくは6.5~7.5)のpH値を有する試料およびPPCを、エンドトキシンフリー水に対して24時間、透析する段階であって、2時間後および4時間後に水が交換される段階(好ましくは、高速スピン透析器が使用され、スターラーの回転数は高い)、ならびに試料およびPPCを20分間振盪する段階、ならびに
(d)LALアッセイ法を用いることによって、試料中およびPPC中の細菌エンドトキシンを測定する段階であって、このLALアッセイ法において「LER陽性対照」が使用され、LER陽性対照が、
-試験される試料の第3のアリコートに、最終濃度が5.0EU/mlとなるまでCSEをスパイクすること、
-スパイクされたアリコートを60分間、振盪すること、
-スパイクされたアリコートを、1:10の比でエンドトキシンフリー水を用いて希釈すること、
-スパイクされたアリコートを(例えば1分間)振盪すること
によって調製される、段階。
・試験される試料の濃度をPPCに合わせる(例えば、900μlの抗体+100μlのエンドトキシンフリー水)
・PPCを作製するために、試験される試料のアリコートにエンドトキシンをスパイクする(例えば、900μlの抗体+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml))
・水対照を調製する(例えば、1000μlのエンドトキシンフリー水)
・別の水対照を調製する(例えば、900μlのエンドトキシンフリー水+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml))
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)で)、室温で約60分間、試料を振盪する
・例えば、10kDa酢酸セルロース(CA)膜を使用し、エンドトキシンフリー水(例えば、製造業者B. Braun(メルスンゲン)製の蒸留水300ml)を入れた結晶皿にそれらを入れる
・それらを注意深く1時間振盪する(振盪機SG 20(IDL GmbH、ドイツ)または同等物、50~300rpm、好ましくは100rpm)
・新しいエンドトキシンフリー水(例えば、製造業者B. Braun(メルスンゲン)製の蒸留水300ml)を入れた新しい結晶皿に、これらの膜を移す
・それらを1時間振盪する(振盪機SG 20(IDL GmbH、ドイツ)または同等物、50~300rpm、好ましくは100rpm)
・例えばMgCl2の形態のMg2+を、最終濃度が25~100mM、好ましくは50~100mMとなるまで段階(a0)の試料に添加する(例えば、50μlの1M MgCl2原液を段階(a0)の試料に添加する)
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)2~5分間、例えば1分間、振盪する
・試料を45~75分間、好ましくは60分間、室温でインキュベートする
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)1分間、振盪する
・段階(a)の試料の内の1つを取り、緩衝液pH約7.0(例えば50mM Tris/HCl緩衝液pH約7.0)を用いてそれを1:10希釈する(例えば、895μlの50mM Tris緩衝液+105μlの試料)
・好ましくは、2つの希釈試料を調製する
・例えば、以下のとおりである:
○ Tris緩衝液で1:10希釈した抗体 ×2 (試料)
○ Tris緩衝液で1:10希釈した、5.0EU/mlをスパイクした抗体 ×2 (PPC)
○ Tris緩衝液で1:10希釈したLAL水 ×2 (バックグラウンド)
○ Tris緩衝液で1:10希釈した5.0EU/mlのLAL水 ×2 (標準品)
○ LAL水=加えて下さい
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)1分間、希釈試料すべてを振盪する
・それらを透析器(好ましくはFastSpinDIALYZER)に移す
・撹拌機上のビーカー1個につき1つの透析器を入れる
・ビーカーをエンドトキシンフリー水(例えば、製造業者B. Braun(メルスンゲン)製の蒸留水200ml)で満たす
・室温で24時間透析し、2時間後および4時間後にエンドトキシンフリー水を交換する
・スターラーの回転数は、(特に、FastSpinDIALYZERが使用される場合)、好ましくは50~300rpm、より好ましくは200rpmである。スターラーは、好ましくは、長さが20~60mmであり、直径が5~25mmである。より好ましくは、スターラーは、長さが約40mmであり直径が約14mmであるマグネチックスターラーである。
・透析後、新しい容器(例えば、1.5ml容のスクリューバイアル)中に試料を移し、(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)20~60分間振盪する
1. (段階(d00)は、必ずしも段階(d)の後に実施される必要はない。段階(d00)は、LALアッセイ法が始まる際に「LER陽性対照」およびさらなる水対照が準備できていることを条件として、任意の時点に実施されてよい)。好ましくは、透析が終わる1時間前に、「LER陽性対照」(すなわち「陽性LER対照」)を調製する(例えば、900μlの抗体+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml))
・例えば以下の、さらなる水対照を調製する:
1. 900μlの抗体+100μlのLAL水
2. 1000μlのLAL水
・900μlのLAL水+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml)
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)1時間、振盪する
・エンドトキシンフリー水で試料を1:10希釈する
・(例えば、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温で)1分間、振盪する
製造業者の取扱い説明書に従って標準品(すなわち、使用されるLALアッセイ法キット中に含まれる標準品)を調製し、以下のようにして測定を開始する:
(1)LAL試薬(Kinetic-QCL(商標)試薬)の調製:
・使用直前に、バイアル1つにつき2.6mlのLAL試薬水を用いて、カブトガニ、アメリカカブトガニ(Limulus polyphemus)のアメーバ様細胞から調製された溶解物および発色性基質を同時に凍結乾燥した混合物を元に戻す。
(2)CSE原液(50EU/ml、すなわち、標準物質S1と等価)の調製:
・分析証明書に記載されており、かつ50EU(またはIU)/mlを含む溶液を生じるように計算された体積のLAL試薬水中で、CSE調製物(大腸菌O55:B5-LPS、各バイアルは、50~200EUの凍結乾燥エンドトキシンを含む)を元に戻す。
・このCSE原液を振盪機上で高速で少なくとも15分間、勢いよく振盪する。
・使用前に、溶液を室温まで温まらせ、振盪機上で高速で15分間、勢いよく再び振盪する。
(3)CSE標準品の系列の調製:
・室温で、LAL試薬水を用いて1:10方式でCSE原液/標準品S1を希釈して(段階1)、CSE標準品の全系列を得る(50、5、0.5、0.05、および0.005EU/ml)
(4)96ウェルマイクロプレートELISAリーダー形式でのLAL解析:
・マイクロプレートの適切なウェルの中に、100μlのLAL試薬水ブランク、エンドトキシン標準品、製品試料、陽性製品対照を注意深く分注する。
・満たしたプレートをマイクロプレートリーダー中に置き、蓋を閉める。
・37℃±1℃で10分間以上、プレートをプレインキュベートする。
・8チャンネルマルチピペッターを用いて、100μlのKinetic-QCL(商標)試薬をマイクロプレートのすべてのウェル中に、最初の列(A1~H1)から始めて、使用される最後の列まで順に進んで、分注する。試薬はできるだけ迅速に添加する(気泡を避ける)。
・直ちにコンピューターキーボードのOKボタンをクリックして、試験を開始する。(注意: Kinetic-QCL(商標)アッセイ法は、マイクロプレートのカバーを取り除いた状態で実施する)
-LPS-LPS凝集物の形成(Akama, 1984, In "Bacterial Endotoxin" (Eds. J. Y. Homma, S. Kanegasaki, O. Luderitz, T. Shiba and O. Westphal), Publisher Chemie)
-例えば、ヒトリポタンパク質Apo A1、リゾチーム、リボヌクレアーゼA、またはヒトlgGとの、タンパク質-LPS凝集物の形成(Emancipator, 1992, Infect Immun. 60:596-601; Petsch, 1998, Anal. Biochem. 259:42-47)
-細菌細胞からのLPSの抽出方法(Galanos, 1984, In "Bacterial Endotoxin" (Eds. J. Y. Homma, S. Kanegasaki, O. Luderitz, T. Shiba and O. Westphal), Publisher Chemie)
-細菌の種類; 腸内細菌科内でのLAL活性化活性は様々で、1000倍の幅がある(Niwa, 1984, In "Bacterial Endotoxin"(Eds. J. Y. Homma, S. Kanegasaki, O. Luderitz, T. Shiba and O. Westphal), Publisher Chemie)
-ゲル化技術(エンドトキシンによって誘発されるゲル化に基づく)
-比濁技術(ゲル化によって引き起こされる濁度に基づく)
-比色技術(合成ペプチド-色素原複合体の分裂後の発色に基づく)。
方法A: ゲル化法、限度試験
方法B: ゲル化法、半定量的試験
方法C: キネティック比濁法
方法D: キネティック比色法
方法E: 比色エンドポイント法
方法F: 比濁エンドポイント法
Ph.Eur./USP/JPによれば、これら6種の方法は、等価とみなすことができる。
1. 分子量カットオフ値が10kDaである膜を入手し洗浄する
2. 透析チューブ、カセット、または装置の中に試料を充填する
3. (緩衝液を撹拌しながら)透析液を入れた外部容器の中に試料を置く
4. 室温で24時間透析する; この24時間の間に水を2回替える
適切な体積の透析液および複数回の緩衝液交換を用いることによって、試料内のクエン酸ナトリウム緩衝液の濃度を無視できるレベル(すなわち、最初の含有量の1~2%)まで低下させることができる。
1. 技術的機器
1.1 マイクロプレートリーダーシステム(本明細書において「リーダー」とも呼ばれる)
・Infinite(登録商標)200 PRO、マルチモードマイクロプレートリーダー; Tecan(スイス)/Tecan Deutschland GmbH(ドイツ)、P/N: 30050303。
・Magellan V. 7.1ソフトウェア
・Costar(商標)細胞培養プレート、96ウェル、Fisher Scientific、P/N: 07-200-89。
1.2 振盪機システムおよびガラスバイアル
・Multi Reax; Heidolph、ドイツ、P/N: 545-10000-00。
・1.5ml容スクリューネックガラスバイアル(N8); Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 702004(100本)
・N 8 PPスクリューキャップ、黒色、クローズドトップ; Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 70250(100個)。
・4ml容スクリューネックガラスバイアル(N13); Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 702962(100本)
・N 13 PPスクリューキャップ、黒色、クローズドトップ; Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 702051(100個)。
1.3 透析機器
・SpinDIALYZER(商標)、容器体積1000μl; Harvard Apparatus、U.S.A.、P/N740314(1個)および740306(5個)、地域の販売代理店: Hugo Sachs Elektronik Harvard Apparatus, GmbH、ドイツ、P/N SP1 74-0306(5個)。備考: ロット番号032613の使用。
この透析器は、生物試料の透析のための単純な一方向装置である。20μl~5mlの範囲の試料体積に適応させるために広範囲の透析器サイズが利用可能である。(本明細書において使用される)1ml用のカタログ番号は74-0314である。膜のMWCOは、100~300,000Daの範囲である。ユニット全体は、事実上非反応性の材料であるPTFEで構築されている。
・高速SpinDIALYZER、容器容積1000μl、Harvard Apparatus、U.S.A.、P/N740510(1個)または740504(5個)、備考; 双方向膜システム、表面の膜および底面の膜。
この透析器は、高い試料回収率を目的とするPTFE製の再使用可能な試料容器であり、さらに速い透析速度のためには、より大きな膜表面積を提供するように設計し直された。超高速透析器は、容積が50μl~1500μlであり、本明細書では1000μlで用いられた。(本明細書において使用される)1ml用のカタログ番号は74-0412である。
・酢酸セルロース膜、500Da MWCO、Harvard Apparatus、U.S.A.、P/N: SP1 7425-CA500、地域の販売代理店: Hugo Sachs Elektronik Harvard Apparatus GmbH、ドイツ、P/N: SP1 7425-CA500。
・酢酸セルロース膜、10kDa MWCO、Harvard Apparatus、U.S.A.、P/N: SP1 7425-CA10K、地域の販売代理店: Hugo Sachs Elektronik Harvard Apparatus GmbH、ドイツ、P/N: SP1 7425-CA10K。
備考: リツキシマブに関するLER調査ならびにネオレコルモン(登録商標)に関するLER実験において、「標準的な」500Da MWCO膜に加えて試験される。
・酢酸セルロース膜、25kDa MWCO、Harvard Apparatus、U.S.A.、P/N: SP1 7425-CA25K、地域の販売代理店: Hugo Sachs Elektronik Harvard Apparatus GmbH、ドイツ、P/N: SP1 7425-CA25K。
備考: リツキシマブに関するLER調査ならびにネオレコルモン(登録商標)に関するLER実験において、「標準的な」500Da MWCO膜に加えて試験される。
・Aqua B. Braun、滅菌済みパイロジェンフリー水、1l、Braun Melsungen AG、ドイツ、P/N: 14090586。
・結晶皿、900ml、OMNILAB、ドイツ、P/N: 5144008。(備考: 透析膜をゆすぐために使用)
・DURAN(登録商標)ビーカー、細長型、2000ml、OMNILAB、ドイツ、P/N: 5013163。
・DURAN(登録商標)ビーカー、細長型、250ml、OMNILAB、ドイツ、P/N: 5013136。
1.4 常用的な実験機器
・オートクレーブシステム(備考: 透析容器の滅菌のために使用)
・epT.I.P.S.(登録商標)LoRetention-Reloads、PCRクリーン、0.5~10μl、Eppendorf、ドイツ、P/N: 0030072.057
・epT.I.P.S.(登録商標)LoRetention-Reloads、PCRクリーン、2~200μl、Eppendorf、ドイツ、P/N: 0030072.022
・epT.I.P.S.(登録商標)LoRetention-Reloads、PCRクリーン、50~1000μl、Eppendorf、ドイツ、P/N: 0030072.030
・Stripettes(登録商標)、個包装(Individual)、5ml、紙/可プラスチック包装、Fisher Scientific、P/N: 10420201。
2.1 キネティック比色LALアッセイ法およびLALに関連する試薬
・Kinetic-QCL(商標)キット; Lonza、スイス、P/N: 50-650Uまたは50-650H(すなわち「Lonzaキット」)。
・CHROMO-LAL、Associates of Cape Cod (AAC) Inc.(USA)製、P/N: C0031-5(すなわち「ACCキット」)。
・K-QCL用のエンドトキシン大腸菌O55:B5; Lonza、スイス、P/N: E50-643。
・エンドトキシン大腸菌O55:B5、2.5mg/バイアル; Lonza、スイス、P/N: N185。
・LAL試薬水-100ml; Lonza、スイス、P/N: W50-100。
・MgCl2、LALと共に使用するための10mM溶液、30ml容バイアル; Lonza、スイス、P/N: S50-641。
・分析用の塩化マグネシウム六水和物EMSURE(登録商標)ACS, ISO, Reag. Ph. Eur.、250g; Merck、ドイツ、P/N: 1.05833.0250。
・トリス緩衝液、LALと共に使用するための50mM溶液、30ml容バイアル; Lonza、スイス、P/N: S50-642。
2.2 タンパク質試薬
・ウシアルブミン画分V、極めて少量のエンドトキシン、脂肪酸を含まない、25g; Serva、ドイツ、P/N: 47299.04。
・アルブミン、ヒト血清、画分V、高純度; 1g; Merck、ドイツ、P/N: 126658-1GM。
本明細書において説明する実施例のために、リツキシマブ(を含む)およびネオレコルモン(登録商標)(エポエチンベータを含む)を使用した。さらに、リツキシマブおよびネオレコルモン(登録商標)の各々のプラセボも、本明細書において説明する方法において使用した。各試料のプラセボは、活性な治療成分を欠くことを除いて、試料と同一である。すなわち、リツキシマブプラセボはリツキシマブを含まないが、製剤の他のすべての構成成分は含む。
実施例2.1: LER作用を抑えるためのプロトコール
本実施例では、リツキシマブおよびリツキシマブプラセボを試料として使用した。しかし、下記に考察するように、本明細書において説明するプロトコールは、薬学的抗体のあらゆる典型的な製剤においてLERを抑えるのに有用である。
-膜:
・Harvard Apparatus(U.S.A.)製の10kDa酢酸セルロース(CA)膜、P/N: SP1 7425-CA10K
-透析器:
・高速SpinDIALYZER、容器容積1000μl; Harvard Apparatus、U.S.A.、P/N740510(1個)および740504(5個)
-試料バイアル:
・1.5ml容スクリューネックガラスバイアル(N8); Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 702004
・N8 PPスクリューキャップ、黒色、クローズドトップ; Macherey-Nagel GmbH & Co. KG、ドイツ、P/N: 70250
-結晶皿:
・900ml、Duran, VWR、ドイツ、P/N: 216-1817
-MgCl2-原液:
・水に溶解させた1M MgCl2(分析用の塩化マグネシウム六水和物EMSURE(登録商標)ACS, ISO, Reag. Ph. Eur.、250g; Merck、ドイツ、P/N: 1.05833.0250)
-Tris緩衝液、LALと共に使用するための(すなわち、エンドトキシンを含まない)50mM溶液、30ml容バイアル; Lonza、スイス、P/N: S50-642
-試料:
・リツキシマブプラセボおよびLAL水
段階1: 試料の調製
・900μlのリツキシマブプラセボ+100μlのLAL水 ×1
・900μlのリツキシマブプラセボ+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml) ×1
・1000μlのLAL水 ×1
・900μlのLAL水+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml) ×1
・RT(室温)で60分、試料を振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm))
段階2: 透析膜の洗浄
・10枚の10kDa酢酸セルロース(CA)膜を使用し、300mlのAqua Braun(すなわち、製造業者B. Braun(メルスンゲン)製の蒸留水)を入れた結晶皿にそれらを入れる
・それらを1時間振盪する(振盪機SG 20(IDL GmbH、ドイツ)または同等物、50~300rpm、好ましくは100rpm)
・それらの膜を、新しいAqua Braun(同様に300ml)を入れた新しい結晶皿に移す
・それらを1時間振盪する(振盪機SG 20(IDL GmbH、ドイツ)または同等物、50~300rpm、好ましくは100rpm)
段階3: 最終MgCl2濃度を約50mM MgCl2とするMgCl2の添加
・50μlの1M MgCl2原液を、段階1の試料に添加する
・それらを1分振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
・試料を室温で60分間インキュベートする
・それらを1分振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
段階4: 希釈
・段階3の試料の内の1つを取り、緩衝液pH約7(すなわち、50mMのTris/HCl緩衝液pH約7)を用いてそれを1:10希釈する
○ 895μlの50mM Tris緩衝液+105μlの試料
・反復測定(すなわち、2つ組の測定)のために、それを2回実施する:
○ Tris緩衝液で1:10希釈したリツキシマブプラセボ ×2
○ Tris緩衝液で1:10希釈したリツキシマブプラセボ5.0EU/ml ×2
○ Tris緩衝液で1:10希釈したLAL水 ×2
○ Tris緩衝液で1:10希釈したLAL水5.0EU/ml ×2
段階5: 透析
・希釈試料すべてを1分間振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
・FastSpinDIALYZER中に移す
・マグネチックスターラープレート上のビーカー(すなわち、DURAN(登録商標)ビーカー(baker)、細長型、2000ml、OMNILAB、ドイツ、P/N: 5013163)1個につき1つの透析器を入れる。スターラーの回転数が高くなるように(すなわち、「高速スピン」)調整する。スターラーの高回転数とは、50~300rpm、好ましくは200~300rpmを意味する。スターラーは、加熱滅菌(250℃で4時間)された、長さが約40mmで直径が約14mmのマグネチックスターラーである。
・ビーカーを200mlのAqua Braunで満たす
・室温(21±2℃)で、24時間透析し、2時間後および4時間後にAquaBraunを交換する
・透析後、新しい1.5ml容スクリューバイアル中に試料を移す。
段階6: 振盪
・試料を20分間振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
段階7: 「LER陽性対照」(すなわち、陽性LER対照)およびさらなる水対照の調製
・透析が終わる1時間前にLER陽性対照を調製する
1. 900μlのリツキシマブプラセボ+100μlのLAL水
2. 900μlのリツキシマブプラセボ+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml))
3. 1000μlのLAL水
4. 900μlのLAL水+100μlの濃度50EU/mlのCSE(=最終濃度5.0EU/ml)
・1時間振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
・試料をLAL水で1:10(試料:LAL水)希釈する
・1分間振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
段階8: LALアッセイ法
・製造業者の取扱い説明書に従って標準品を調製し、LALアッセイ法を開始する(Kinetic-QCL(商標)アッセイ法; Lonza)
図3(A)(すなわち[リツキシマブ117])および3(B)(すなわち[リツキシマブ115])で認めることができるように、前述の方法は、LER作用を抑えることができる。さらに、この方法を用いることによって、リツキシマブならびにリツキシマブプラセボにおいて、LER作用を抑えることができる。このことから、前述のプロトコールが、特定のモノクローナル抗体を含む製剤に依存しておらず、ポリソルベート80およびキレート化緩衝剤(例えばクエン酸ナトリウム)を含むあらゆる製剤においてLER作用を未然に防ぐのに使用できることが示される。この製剤は、抗体、特にモノクローナル抗体にとって典型的である。したがって、前述の方法は、あらゆる抗体製剤においてLER作用を抑えるのに有用であると予想される。
本実施例において、やはりLER作用を抑える改良プロトコールが使用された。実施例2.1と比べて最も重要な変更点は、下記のとおりである:
1. 実施例2.2では、スピン透析器が使用された。一方、実施例2.1では、より効率的な透析容器を有しており、透析効率を高める(膜が、シリンダーの両側に存在する)FastSpinDIALYZERが使用される。
2. 実施例2.2では、透析膜のMWCOは500Daである。一方、実施例2.1では、透析膜のMWCOは10kDaである。
3. 実施例2.2では、希釈率は、エンドトキシンフリー水による1:10である。一方、実施例2.1では、希釈率は、Tris緩衝液pH約7(すなわちTris/HCL緩衝液pH約7)による1:10である。1:10の比でエンドトキシンフリー水を用いて試料を希釈することによって、試料のpH値は、約pH6.0に調整される。
4. 実施例2.2では、透析時間は4時間である。一方、実施例2.1では、透析時間は24時間である。
本実施例では、リツキシマブおよびリツキシマブプラセボを試料として使用した。しかし、実施例2.1に関して論じたのと同じ理由で、このプロトコールは、あらゆる典型的な抗体製剤においてLERを抑えるのに有用である。
具体的に、実施例2.2で使用されたプロトコールを以下に詳述する。
段階1: 「LER作用の設定」(下記の「LER陽性対照」も参照されたい):
リツキシマブ試料およびリツキシマブプラセボ試料に5EU/mlまたは0.5EU/ml(CSE; Lonza、大腸菌O055:B5)をスパイクし、混合物を最大速度(振盪機: Heidolph Multi Reax、高速(2,037rpm))で、室温で60分間振盪して、「陽性LER作用」試料を得た。
段階2: MgCl2の添加: 透析前に、最終濃度が約50mM MgCl2となるように2M MgCl2原液を添加する; 段階1のように1分間振盪。
段階3: 1:10希釈(1つの試料は、基準として希釈しない(無希釈)); 段階1のように1分間振盪。
段階4: 500Da膜を用いて4時間透析(0.2%BSAと共に30分間プレインキュベーション; 任意であり、必須ではない)、2時間後に水を一度交換。溶液を透析容器からガラスバイアル中に移し、室温(RT)(room temperature、すなわち21±2℃)で20分間、段階1のように振盪。
段階5: キネティックLALアッセイ法による測定。
段階1: 試料の調製
・50mM MgCl2用の抗体溶液(リツキシマブ)の調製: 1本のチューブを877.5μlのリツキシマブ+97.5μlのCSEで満たす(50(5)EU CSE/mlの原液→最終濃度5(0.5)EU/ml)
・スパイクされていない対照: 877.5μlのリツキシマブプラセボ+97.5μlの水
・スパイクされていない水対照: 975μlの水(ブランクを差し引くため)
・使用するバイアル: 透明、平底、小さな開口部、1.5ml、Macherey & Nagel、商品番号(Ref. Nr)70213
・Heidolph Multi Reaxを高速(2,037rpm)で用いて、室温で1時間、振盪する
段階2: 最終濃度を50mM MgCl2とするMgCl2の添加
・原液1M MgCl2・6H2O: スパイクされた試料ならびにスパイクされていない試料(ブランク)に50μlの1M MgCl2原液を添加する。
段階3: 希釈
・50mM MgCl2を含むリツキシマブ試料: 900μlのエンドトキシンフリー水(すなわちLAL水)+100μl試料を添加することによって1:10希釈物を調製する
・水対照は、リツキシマブの代わりにエンドトキシンフリー水(すなわちLAL水)を用いて同じように処理する、すなわち1:10希釈する
段階4: 透析
・透析前に1分間振盪する(すなわち、Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)。
・MWCOが500Daの膜(任意で、0.2%BSAと共に30分間プレインキュベートした)が取り付けられた1ml容の透析器容器(Harvard Spin Dialyzer)に試料を入れる。
・1lのAqua Braun(すなわち、滅菌済みパイロジェンフリー水; B. Braun, メルスンゲンによって供給される)に対して24℃で4時間透析する; 2時間後に水を交換する。交換用の水も、24℃に調節しておいた。
・Spin Dialyzerは、撹拌しながら(テフロン(Teflon)マグネチックスターラー)、1lのAqua Braunを満たした複数の2l容ビーカーに(透析容器の数に応じて)割り当てる。
・1つの2l容ビーカーに最大で5個のDialyzerが存在する。
段階5: LER陽性対照の調製
また、本実施例では、LER陽性対照もLALアッセイ法において使用される。このLER陽性対照は、LALアッセイ法が開始する際に準備ができていることを条件として、任意の時点に調製してよい。有利には、LER陽性対照は、すべての試料が同時に試験準備が整うように、4時間の透析が終わる1時間前に調製される。LER陽性対照を調製するために、以下のプロトコールが使用される:
・900μlのリツキシマブ+100μlのCSE→最終濃度CSE: 5.0EU/ml。
・Heidolph Multi Reaxにおいて、高速(2,037rpm)、室温で1時間、振盪する。これらの条件下でのみ、最大LER作用(<1%回収率)が得られると考えられる。
・並行して、以下のブランクを調製する:
○ 5.0EU/ml CSEを含む水
○ 5.0EU/ml CSEを含む水; 1:10希釈されたもの(0.5EU/ml)。
段階6: LALアッセイ法
・すべての試料が調製された後に試験を開始する。
・すべての試料から、プレート中で反復測定(2回、すなわち、2つ組の測定)するために100μlのアリコート2つを使用する。このプレートをTecan Reader中、37℃で10分間、インキュベートする。
・100μlのLAL試薬(Kinetic-QCL(商標)アッセイ法; Lonza)を各試料に明確な順序で(機械表示に従って)添加する。
実施例2.1で説明したプロトコールにより、最も優れた再現可能な回収率が得られた(水対照に関しても同様)。しかし、実施例2.2で説明したプロトコールにより、両方のCSEスパイク濃度の場合に50~95%の範囲の良好なCSE回収率が得られた(図4(B)[リツキシマブ046])を参照されたい)。したがって、実施例2.2で使用されたプロトコールは、実施例2.1で説明したプロトコールの機能的等価物に相当する。
先行技術では、所定の量のCSEを試料にスパイクした直後にLER作用が現れると仮定されている(C. Platco, 2014, “Low lipopolysaccharide recovery versus low endotoxin recovery in common biological product matrices”. American Pharmaceutical Review, September 01, 2014, pp. 1-6)。したがって、最初は、室温で、約2~10分というかなり短い時間、LPSスパイク後に試料を振盪した。しかし、この種のスパイクは、結果的に非効率的であることが分かり、いくつかの実験から、スパイクされた材料のマスキング効果は、この短い時間間隔(10分未満)の間にはその最大値にまだ達していないことが示された。スパイクのメカニズムが、LER作用を正確な方法で解析する際の重要な工程の内の1つであることが判明した(例えば、図13[リツキシマブ027]を参照されたい)。これらのデータによれば、LER作用は動力学的現象であり、例えば、配合混合物のミセル中に侵入することによってCSE分子をマスクするのに時間を要する。したがって、LER作用を解析するための次の段階の前に2~10分間振盪すること(これはルーチン的な実施の代表例である)は不適切であり、LER作用の成立のための条件はまだ満たしていないため、LER作用に相当するとみなすことはできない。したがって、(LAL試験によって0%の回収率に達した場合に存在すると定められる)「陽性LER作用」を試験するための内部標準を、これらの実験に含めた。リツキシマブにおけるLER作用について動態研究を実施することによって、陽性LER作用が60分以上のインキュベーション期間を必要とすることが実証された。
エンドトキシンをスパイクされたリツキシマブ試料の回収率に対するHSAおよび様々なMgCl2濃度の作用を明らかにするために、以下の実験を実施した。さらに、この実験では、回収率に対する透析の影響も解析した。より具体的には、「陽性LER作用」を得るために、スパイクされたリツキシマブ試料を60分間振盪した。透析に先立って、10~75mM MgCl2を添加し、続いて、希釈を行った。BSAでブロックした膜は使用しなかった。透析後、0.01μg/ml HSAを添加するか、または添加しない。続いて、20分間の振盪を実施する。さらに、いくつかの試料は、まったく透析しなかった。具体的には、LALアッセイ法で試験した様々な試料を図5(すなわち[リツキシマブ059])に示している。この実験において、LER作用は、透析を行わないいくつかの試料において抑えることができた。しかし、さらなる実験から、透析を行わない場合、再現可能にLER作用を抑えることはできないことが実証された。または、言い換えると、透析を行わない場合、LER作用を抑える場合もあれば、抑えない場合もある。したがって、試料を透析することにより、LER作用を抑えるための、状況に左右されにくい方法が得られる。
・10mM MgCl2のための、スパイクされたリツキシマブの調製: 5.0EU/mlが得られるように、897μlのリツキシマブ+99.8μlのCSE
・50mM MgCl2のための、スパイクされたリツキシマブの調製: 5.0EU/mlが得られるように、889μlのリツキシマブ+98.8μlのCSE
・75mM MgCl2のための、スパイクされたリツキシマブの調製: 5.0EU/mlが得られるように、883μlのリツキシマブ+98.1μlのCSE
・10mM MgCl2のための、スパイクされた水の調製: 5.0EU/mlが得られるように、897μlの水+99.8μlのCSE
・50mM MgCl2のための、スパイクされた水の調製: 5.0EU/mlが得られるように、889μlの水+98.8μlのCSE
・75mM MgCl2のための、スパイクされた水の調製: 5.0EU/mlが得られるように、883μlの水+98.1μlのCSE
・60分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階2: MgCl2の添加
・4MのMgCl2原液(すなわち、511.437mgのMgCl2・6H2Oを0.629mlの水に溶かしたもの)を使用した。
○ 10mM MgCl2の場合、スパイク試料に2.5μlの4M溶液を添加する。
○ 50mM MgCl2の場合、スパイク試料に12.5μlの4M溶液を添加する。
○ 75mM MgCl2の場合、スパイク試料に19μlの4M溶液を添加する。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階3: 希釈
・1:10の比の希釈物を以下のように調製した:
・リツキシマブ1:10の調製: 常に900μlのLAL水+100μlの試料
・十分な透析器が入手できないため、水は1:10希釈しなかった。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階4: 透析
・試料を1mL容の透析器の中に入れた。500Daの膜。しかし、膜をLAL水の中で洗浄した。
・1LのAqua Braunに対して24℃で4時間透析を実施し、2時間後に水を交換した。新しい水の温度も24℃であった。
・透析器を3つの2l容ビーカーの中に置くと、各ビーカー中には長いスターラー(すなわち撹拌子)があるため、回転した。
・各ビーカー中には常に4つの透析器がある。
段階5: 透析後のHSAの添加
・透析後、試料を分割した。HSA試料を調製するために、各試料を396μlずつ、別々のバイアルに加えた。HSAを含まない試料を調製する場合、400μlを別々のバイアルに加えた。
・HSA濃度を0.01μg/mlにするために、4μlの1μg/ml溶液を396μlの各試料に添加した。
・HSA原液を新しく調製した。
・20分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階6: LER陽性対照の調製
・LER陽性対照は、他の試料と同時に準備が整うように、4時間の透析が終わる1時間前に調製する。
・5.0EU/mlが得られるように、900μlのリツキシマブ+様々なCSE原液の100μlのCSE
・1時間室温で振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm))
段階7: LALアッセイ法
・二重測定(double determination)において、各試料を100μlずつプレートに添加した。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
これらの結果を図5に示す[リツキシマブ059]。この実験は、HSA処理が回収率を低下させ、したがって、本明細書において提供される方法において有用性が低いことを実証する。さらに、これらの結果から、満足のいく回収率を得るのに、透析膜のBSA処理は必要ではないことが示される。さらに、この実験は、50mM MgCl2が回収にとって最適な値であり、10および75mM MgCl2の場合は回収率が低くなることも実証する。しかし、75mM MgCl2を用いた場合でも、満足のいく回収率が得られた。さらに、この実験は、MgCl2を添加すると、透析を行わない場合でさえ、満足のいく範囲の回収率(70~100%)が得られることも示す。しかし、前述したように、透析を行わない場合、LER作用を再現可能に抑えることはできない。したがって、試料を透析することにより、LER作用を抑えるための、状況に左右されにくい方法が得られる。この実験[リツキシマブ059]において、水対照の値が高かった(値の一部は220%を超えた)ことが示されている。LER陽性対照は、満足のいく、すなわち0%の回収である。
この実験では、「陽性LER作用」を実現するために、リツキシマブ試料を60分間振盪した。MgCl2添加後、無希釈試料を室温で4時間インキュベートした。このインキュベーション後、試料を2分間振盪した。LALアッセイ法で試験した様々な試料を図5(B)[リツキシマブ061]に示している。
・10mM MgCl2のための、スパイクされたリツキシマブ/水の調製: 5.0EU/mlが得られるように、897μlのリツキシマブ/水+99.8μlのCSE
・50mM MgCl2のための、スパイクされたリツキシマブ/水の調製: 5.0EU/mlが得られるように、889μlのリツキシマブ/水+98.8μlのCSE
・75mM MgCl2のための、スパイクされたリツキシマブ/水の調製: 5.0EU/mlが得られるように、883μlのリツキシマブ/水+98.1μlのCSE
・100mM MgCl2のための、スパイクされたリツキシマブ/水の調製: 5.0EU/mlが得られるように、877μlのリツキシマブ/水+97.5μlのCSE
・150mM MgCl2のための、スパイクされたリツキシマブ/水の調製: 5.0EU/mlが得られるように、866μlのリツキシマブ/水+96.3μlのCSE
・60分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階2: MgCl2の添加
・4M MgCl2原液(すなわち、534.661mgのMgCl2・6H2Oを0.657mlの水に溶かしたもの)を使用した。
・10mM MgCl2の場合、スパイク試料に2.5μlの4M溶液を添加する。
・50mM MgCl2の場合、スパイク試料に12.5μlの4M溶液を添加する。
・75mM MgCl2の場合、スパイク試料に19μlの4M溶液を添加する。
・100mM MgCl2の場合、スパイク試料に25μlの4M溶液を添加する。
・150mM MgCl2の場合、スパイク試料に37μlの4M溶液を添加する。
・1分間振盪する(高速(2,037rpm)、室温)
段階3: 希釈
・1:10の比の希釈物を調製した: 900μlのLAL水+100μlの試料(すなわち、リツキシマブ試料または水試料)
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階4: LER陽性対照の調製
・5.0EU/mlが得られるように、900μlのリツキシマブ+100μlのCSE
・5.0EU/mlが得られるように900μlリツキシマブ+100μlのCSEを混合し、続いて、その試料をエンドトキシンフリー水で1:10希釈することによって、別のLER陽性対照を調製した。
段階5: 振盪
・すべての試料ならびにLER陽性対照を室温で1時間振盪した(Heidolph Multi Reax振盪機、高速(2,037rpm))。
段階6: LALアッセイ法
・二重測定において、各試料を100μlずつプレートに添加した。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
この実験の結果を図6(B)(すなわち[リツキシマブ061])に示している。この図から、50mM MgCl2がCSE回収のための再現可能な最適値であり; 10、75、および150mMの場合は若干悪い結果を示すことが、再び実証される。MgCl2添加後のインキュベーション期間を実施した場合、無希釈のリツキシマブ試料は、CSE回収をまったくもたらさなかった。図6(B)(すなわち[リツキシマブ061])を参照されたい。しかし、1:10希釈物は、約50~60%の回収をもたらした(特に、10、50、75、または100mM MgCl2が添加された場合)。水対照の値ならびにLER陽性対照は、満足のいくものであった。この実験では、透析を実施しなかった。しかし、いくつかの実験から、再現可能にLER作用を抑えるには透析が必要であることが示された。
「陽性LER作用」を実現するために、リツキシマブ試料を60分間振盪した。MgCl2添加後、無希釈試料を2時間または4時間インキュベートし、次いで、1:10希釈し、LALアッセイ法において測定した。LALアッセイ法で試験した様々な試料を図7(A)および7(B)(すなわち、それぞれ[リツキシマブ062]および[リツキシマブ063])に示している。
・10mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、897μlのリツキシマブ/水+99.8μlの様々なCSE原液
・50mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、889μlのリツキシマブ/水+98.8μlの様々なCSE原液
・75mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、883μlのリツキシマブ/水+98.1μlの様々なCSE原液
段階2: 2つのLER陽性対照の調製
・0.5および5.0EU/mlが得られるように、900μlのリツキシマブ+100μlのCSE
・1:10の比でエンドトキシンフリー水を用いて、LER陽性対照の内の1つを希釈。
段階3: 振盪
・すべての試料ならびにLER陽性対照を1時間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)。
段階4: MgCl2の添加
・4M MgCl2原液を使用した。
○ 10mM MgCl2の場合、スパイク試料に2.5μlの4M溶液を添加する。
○ 50mM MgCl2の場合、スパイク試料に12.5μlの4M溶液を添加する。
○ 75mM MgCl2の場合、スパイク試料に19μlの4M溶液を添加する。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階5: インキュベーション期間
・(無希釈の)試料(ならびにLER陽性対照)を分割する。それぞれ、各試料の一方の半分(約500μl)を2時間インキュベートし、もう一方の半分を4時間インキュベートした。
段階6: 希釈
・2分間振盪する(Heidolph Multi Reax振盪機において、高速(2,037rpm)、室温)
・1:10の比の希釈物を調製した: 900μlのLAL水+100μlの試料(すなわち、リツキシマブ試料または水試料)
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階7: LALアッセイ法
・二重測定において、各試料を100μlずつプレートにアプライした。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
これらの結果を図7(A)および7(B)に示す(すなわち、それぞれ[リツキシマブ062]および[リツキシマブ063])。この実験で、0.5および5.0EU/mlエンドトキシンの回収率を測定した。10~75mM MgCl2を試料に添加した場合、2時間インキュベートした試料(図7(A)、すなわち[リツキシマブ062])および4時間インキュベートした試料(図7(B)、すなわち[リツキシマブ063])において、回収率は同じであった。両方の実験において、回収率は非常に似ている。さらに、5.0EU/mlエンドトキシンがスパイクされた試料では、透析を行わない場合でさえ、満足のいく回収率(80~90%)が得られた。0.5EU/mlエンドトキシンがスパイクされた試料では、回収率は約35~45%であった。重要なことには、希釈(1:10の比)を行わない場合、同じく10~75mM MgCl2の存在下で、完全なLERが観察され、すなわち回収率は0%である。水対照ならびにLER陽性対照は、満足のいくものであった。これらの実験では、透析は実施していない。しかし、さらなる実験から、透析を行わない場合、LER作用を抑える場合もあれば、抑えない場合もあることが実証された。したがって、試料を透析することにより、LER作用を抑えるための、状況に左右されにくい方法が得られる。
「陽性LER作用」を実現するために、リツキシマブ試料を60分間振盪した。MgCl2添加後、無希釈試料をインキュベートしないか、または2時間インキュベートした。次いで、1:10希釈し、LALアッセイ法において測定した。LALアッセイ法で試験した様々な試料を図8(A)および8(B)(すなわち、それぞれ[リツキシマブ064]および[リツキシマブ065])に示している。
この実験では、試料にMgCl2を添加した後にインキュベーションを実施しなかった。
・10mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、897μlのリツキシマブ/水+99.8μlの様々なCSE原液
・25mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、895μlのリツキシマブ/水+99.4μlの様々なCSE原液
・50mM MgCl2のための、リツキシマブ/水の調製: 0.5および5.0EU/mlが得られるように、889μlのリツキシマブ/水+98.8μlの様々なCSE原液
段階2: 2つのLER陽性対照の調製
・0.5EU/mlおよび5.0EU/mlが得られるように、900μlのリツキシマブ+100μlのCSE
・1:10の比でエンドトキシンフリー水を用いて、LER陽性対照の内の1つを希釈。
段階3: 振盪
・すべての試料ならびにLER陽性対照を60分間振盪した(ボルテックスした)(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)。
段階4: MgCl2の添加
・4M MgCl2原液を使用した。
○ 10mM MgCl2の場合、スパイク試料に2.5μlの4M溶液を添加する。
○ 25mM MgCl2の場合、スパイク試料に6.25μlの4M溶液を添加する。
○ 50mM MgCl2の場合、スパイク試料に12.5μlの4M溶液を添加する。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階5: 希釈
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
・1:10の比の希釈物を調製した。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階6: LALアッセイ法
・二重測定において、各試料を100μlずつプレートにアプライした。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
これらの結果を図8(A)(すなわち[リツキシマブ064])に示す。結果を考察するために、参照実施例4.2を参照されたい。
この実験では、MgCl2を添加した後に試料を2時間インキュベートした。参照実施例4.1の箇所で前述したように、段階1~4を実施した。しかし、MgCl2添加後、無希釈試料を室温(21℃)で2時間インキュベートした。インキュベーション後、以下の段階5および6を実施した。LALアッセイ法で試験した様々な試料を図8(B)(すなわち[リツキシマブ065])に示している。
・2分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
・1:10の比の希釈物を調製した: 900μlのLAL水+100μlの試料(すなわち、リツキシマブ試料または水試料)
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階6: 2つのLER陽性対照の調製
・0.5および5.0EU/mlが得られるように、900μlのリツキシマブ+100μlのCSE
・1:10の比でエンドトキシンフリー水を用いて、LER陽性対照の内の1つを希釈。
段階7: 振盪
・すべての試料ならびにLER陽性対照を1時間振盪した(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)。
段階8: LALアッセイ法
・二重測定において、各試料を100μlずつプレートにアプライした。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
参照実施例4.1の結果を図8(A)に示している(すなわち[リツキシマブ064]); 参照実施例4.2の結果を図8(B)に示している(すなわち[リツキシマブ065])。これら2つの実験において、希釈およびLAL測定は、MgCl2の添加直後に(図8(A)、[リツキシマブ064])、またはMgCl2の添加後2時間、試料を休ませた後に(図8(B)、[リツキシマブ065])、実施した。回収率の値はどれも非常に似ており、5.0EU/ml CSEがスパイクされた試料では、透析を行わない場合でさえ、満足のいく(60~80%)回収率が得られていた。興味深いことに、2時間のインキュベーション期間の後、25mM MgCl2濃度の場合、100%の回収率が得られた。したがって、MgCl2添加後のインキュベーション期間は、LER作用を減らすための有用な手段であるように思われる。しかし、0.5EU/ml CSEがスパイクされた試料の回収率の値は低く、約20~35%であった。このことから、Mg2+の添加および希釈のほかに、透析が、LER作用を確実に抑えるために必要な段階であることが示される。これらの実験において、水対照の値は、満足のいくものであった。無希釈のLER陽性対照もまた、満足のいく、すなわち0%であった。
スパイク後、「陽性LER作用」を実現するために、リツキシマブ試料およびリツキシマブプラセボ試料を60分間振盪した。MgCl2添加後、無希釈試料を1時間振盪し、1:2、1:5、1:10、または1:20の比で希釈した。その後、LALアッセイ法を実施した。LALアッセイ法で試験した様々な試料を図9に示している(すなわち[リツキシマブ072])。
段階1: 試料の調製
・25mM MgCl2のための、リツキシマブ/リツキシマブプラセボ/水の調製: 0.5および5.0EU/mlが得られるように、895μlのリツキシマブ/リツキシマブプラセボ/水+99.4μlの様々なCSE原液
段階2: 3つのLER陽性対照の調製
・0.5EU/mlおよび5.0EU/mlが得られるように、450μlのリツキシマブプラセボ+50μlのCSE(第1のLER陽性対照)
・0.5EU/mlおよび5.0EU/mlが得られるように、450μlのリツキシマブ+50μlのCSE(第2のLER陽性対照)
・0.5EU/mlおよび5.0EU/mlが得られるように、450μlのリツキシマブ+50μlのCSE。その後、この試料を1:10の比で希釈した(第3のLER陽性対照)。
段階3: 振盪
・すべての試料ならびにLER陽性対照を60分間振盪した(ボルテックスした)(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)。
段階4: MgCl2の添加
・4M MgCl2原液を使用した。
○ 25mM MgCl2の場合、スパイク試料に6.25μlの4M溶液を添加する。
・1分間振盪する(Heidolph Multi Reax振盪機中、高速(2,037rpm)、室温)
段階5: 希釈
・以下のように試料を希釈した:
○ 1:5の比での希釈: 400μlの水+100μlの試料
○ 1:10の比での希釈: 450μlの水+50μlの試料
○ 1:20の比での希釈: 475μlの水+25μlの試料
・3つのLER陽性対照の内の1つを1:10の比で希釈した。
・MgCl2を含まない水は希釈しなかった。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階6: LALアッセイ法
・二重測定において、各試料を100μlずつプレートにアプライした。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
これらの結果を図9に示している(すなわち[リツキシマブ072])。重要なことには、リツキシマブおよびリツキシマブプラセボの結果は、有意な差を示していない。このことから、リツキシマブにおけるLER作用が、緩衝液系(すなわち、ポリソルベート80を含むクエン酸緩衝液)に主に基づいていること、および抗体(すなわちリツキシマブ)がLER作用に顕著な影響を与えていないことが、示される。しかし、この実験では、リツキシマブおよびリツキシマブプラセボの両方とも、回収率は満足のいくものではない。前述の実験において、水対照の値は、満足のいくものであった。無希釈のLER陽性対照もまた、満足のいく、すなわち回収率が0%であった。
以下の実験において、MgCl2添加前のインキュベーション期間がリツキシマブ試料およびリツキシマブプラセボ試料の回収率に影響を与えるかどうかを試験した。具体的には、「陽性LER作用」を実現するために、リツキシマブ試料およびリツキシマブプラセボ試料を60分間振盪した。次いで、4℃で0時間~3日間、試料をインキュベートした。その後、濃度が50mMとなるまでMgCl2を添加し、試料を希釈した。次いで、BSAでブロックされていない透析膜を用いて、透析を実施した。LALアッセイ法で試験した様々な試料を図10に示している(すなわち、[リツキシマブ079]および[リツキシマブ082])。
・50mM MgCl2のための、リツキシマブ/リツキシマブプラセボ/水の調製: 0.5または5.0EU/mlが得られるように、5,346μlのリツキシマブ/リツキシマブプラセボ/水+596μlの様々なCSE原液。
・60分間ボルテックスする(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
・別の手順のために、各試料1mlずつを新しいバイアルに移した。
段階2: インキュベーション期間
・試料を0時間、4時間、1日、3日、または7日間、4℃の冷蔵庫の中に入れた。
・1日、3日、または7日間のインキュベーション期間の後、試料を2分間振盪した(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)。0時間および4時間のインキュベーション期間の後、試料は振盪しなかった。
段階3: MgCl2の添加
・5M MgCl2原液(すなわち、0.9055gのMgCl2を0.891mlの水に溶かしたもの)を使用した。
○ 50mM MgCl2の場合、スパイク試料に10μlの5M溶液を添加した。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階4: 希釈
・1:10の比の希釈物を調製した: 900μlのLAL水+100μlの試料(すなわち、リツキシマブ試料、リツキシマブプラセボ試料、または水試料)
・MgCl2を含まない水は希釈しなかった。
・1分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階5: 透析
・試料を1mL容の透析器の中に加えた。1lのAqua Braunに対して24℃で4時間透析を実施し、2時間後に水を交換した。新しい水の温度も24℃であった。事前にBSAと共にインキュベートしていない500Daの膜を使用した。
・透析器を3つの2l容ビーカーの中に置くと、各ビーカー中には長いスターラー(すなわち撹拌子)があるため、回転した。
・透析後、試料を新しい1.5ml容バイアルに移した。
段階6: 振盪
・20分間振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm)、室温)
段階7: LER陽性対照の調製
・LER対照は、他の試料と同時に準備が整うように、4時間の透析が終わる1時間前に調製した。
・5.0EU/ml CSEが得られるように、900μlのリツキシマブまたはリツキシマブプラセボ+100μlのCSE
・1時間室温で振盪する(Heidolph Multi Reax振盪機、高速(2,037rpm))
段階8: LALアッセイ法
・二重測定において、各試料を100μlずつプレートにアプライした。
・37℃で10分間、リーダー中でインキュベーション。
・100μlの色素原を各試料に添加した。
・リーダー中での測定を開始。
これらの結果を、図10(A)(すなわち[リツキシマブ079]、インキュベーションなし)、図10(B)(すなわち[リツキシマブ080]、4時間のインキュベーション)、図10(C)(すなわち[リツキシマブ081]、1日のインキュベーション)、および図10(D)(すなわち[リツキシマブ082]、3日間のインキュベーション)に示している。7日間のインキュベーションの結果は示していない。これらの結果もやはり、本明細書において説明するプロトコールを用いることにより、リツキシマブ試料およびリツキシマブプラセボ試料について優れた回収率を得ることができることを実証する。さらに、この実験は、MgCl2添加前のインキュベーション期間によって回収率は改善しないことも実証する。具体的には、0~4時間のインキュベーション期間の場合、所望の範囲内(50~200%)の回収率が得られたのに対し、1日および3日というインキュベーション期間の場合、低い回収率が得られた(約20~30%)。インキュベーションを実施しなかった場合(すなわち0時間)、リツキシマブについて、非常に優れた回収率が得られた(70~80%)。5.0EU/ml CSEをスパイクされたリツキシマブプラセボについても、回収率は満足のいくものであった。0.5EU/ml CSEをスパイクされたリツキシマブプラセボの回収率は、ブランクが非常に高かったため、負の値であった。このことは、このブランク試料がエンドトキシンで汚染されていたことを示す可能性がある。この実験でも、水対照の回収率(80~120%)ならびにLER陽性対照の回収率(約0%)は、満足のいくものであった。
本実施例において、一般に公知であるLALアッセイ法によってリツキシマブ調製物およびリツキシマブプラセボ調製物中のエンドトキシンを検出できるかどうかを明らかにした。したがって、以下の材料を使用した:
[リツキシマブ002]: Lonza CSE+Lonza試薬(すなわちLonzaキット)
[リツキシマブ004]: それぞれACC CSEまたはLonza CSE+ACC試薬(すなわちACCキット)
[リツキシマブ005]: Lonza CSE+ACC試薬(すなわちACCキット)
LER作用を確認しモニターするために、エンドトキシン保持時間試験において、エンドトキシン含有量を経時的にモニターした。したがって、様々な緩衝液の無希釈試料にエンドトキシンをスパイクし、ある期間にわたって(最長28日)保存した。適切な試料混合物のスパイク後にPPC中で回収される許容範囲のエンドトキシン値は、理論上のスパイク値(100%)の50~200%の範囲であると定められる。LER作用は、経時的なエンドトキシンの顕著な減少によって示される。具体的には、理論上のスパイク値の50%未満のエンドトキシン値という不利な傾向は、LER作用を暗示している。
いくつかの実験において、クエン酸および/またはポリソルベート80がLER作用に与える影響を解析した。具体的には、1つの実験において、リツキシマブおよび25mMクエン酸ナトリウム緩衝液を試料として使用した。スパイク前に、pHをpH7に調整した。続いて、CSEスパイクをプレート中で実施し、試料を水で希釈した。図14(A)(すなわち[リツキシマブ006])から認めることができるように、希釈率1:10を用いることによって、クエン酸ナトリウムの場合に満足のいく回収率を得ることができた。しかし、リツキシマブの場合、50%の回収率に到達することはできなかった。
(参照実施例9においてLER作用を有していると確認された緩衝液における)LER作用を抑えるために、様々な物理的方法および生化学的方法を試験した:
下記に詳述するように、市販されているいくつかの透析容器および膜(異なるサイズの分子量カットオフ(MWCO)を含む)を試験した。
試料にMgCl2を添加することによってLER作用が低減し得ることが判明している(例えば、図15(すなわち[リツキシマブ031]を参照されたい)。具体的には、Mg2+の濃度がクエン酸ナトリウム濃度の2倍である(すなわち50mM Mg2+)場合に、最も良い結果が認められた。
機械的処置(例えば、振盪および超音波処理)がミセルを分散させ、それによってLER作用を低減させるのに有用であるかどうかを試験した。
Claims (26)
- 抗体を含む試料のリムルスアメーバ様細胞溶解物(LAL)アッセイ法におけるエンドトキシンマスキングの低下のためのおよび/またはエンドトキシン低回収(LER)作用を抑えるための方法であって、以下の順序で以下の段階:
(a)マグネシウムイオンを該試料に添加する段階、
(b)該試料を希釈する段階、および
(c)5.7~ 8.0のpH値を有する該試料を、エンドトキシンフリー水溶液に対して透析する段階
を含み、該エンドトキシンマスキングおよび/または該LER作用が、
(i)該試料中に存在するエンドトキシン結合タンパク質;および/または
(ii)配合成分または緩衝液構成成分
によって引き起こされ、該配合成分または緩衝液構成成分が、クエン酸緩衝液またはリン酸緩衝液と組み合わされている、両親媒性化合物を含み、かつ該両親媒性化合物がポリソルベートである、前記方法。 - 前記試料が製剤試料である、請求項1記載の方法。
- 前記ポリソルベートがポリソルベート80である、請求項1記載の方法。
- 段階(a)における前記マグネシウムイオンが、MgCl2の形態で添加される、請求項1記載の方法。
- 段階(a)において、マグネシウムイオンが、10~100mMの最終濃度まで添加される、請求項1記載の方法。
- マグネシウムイオンが25~75mMの最終濃度まで添加される、請求項5記載の方法。
- 前記抗体が、ポリソルベート80およびクエン酸緩衝液と共に製剤化される、請求項1記載の方法。
- 前記抗体が、25mM(±10%)のクエン酸ナトリウム緩衝液および700mg/l(±10%)のポリソルベート80と共に製剤化され、6.0~6.5のpH値を有する、請求項7記載の方法。
- 抗体を含む試料のアリコートに公知の量のエンドトキシンをスパイクすることによる、エンドトキシン低回収(LER)陽性対照の作製をさらに含む、請求項1記載の方法。
- 前記LER陽性対照が、請求項1記載の方法の段階(a)~(c)が実施されなかった場合に、LER作用を示す、請求項9記載の方法。
- 前記エンドトキシン低回収(LER)陽性対照の作製が、エンドトキシンをスパイクされたアリコートを振とうすることを含む、請求項9記載の方法。
- 前記アリコートを45分間~2時間振とうすることを含む、請求項11記載の方法。
- 前記エンドトキシン低回収(LER)陽性対照の作製が、前記抗体を含む試料のアリコートに公知の量のエンドトキシンをスパイクし、エンドトキシンをスパイクされた試料のアリコートを60分間~2時間振とうすることによる、請求項9記載の方法。
- 前記エンドトキシン低回収(LER)陽性対照の作製が、抗体を含む試料の前記アリコートを対照エンドトキシン標準品(CSE)でスパイクすることを含む、請求項9記載の方法。
- 前記アリコートにスパイクされたCSEが、所定の濃度である、請求項14記載の方法。
- 前記所定の濃度が、0.5または5 EU/mlである、請求項15記載の方法。
- 前記抗体が治療的抗体である、請求項1記載の方法。
- 前記抗体が抗CD20抗体リツキシマブである、請求項17記載の方法。
- 段階(b)において、前記試料のpH値が、10~50mMのTris/HCl緩衝液pH6.0~9.0で試料を希釈することによって調整される、請求項1記載の方法。
- 前記試料のpH値が、10~50mMのTris/HCl緩衝液pH6.0~8.0で該試料を希釈することによって調整される、請求項19記載の方法。
- 段階(b)において試料が1:10の比で希釈される、請求項1記載の方法。
- 段階(c)における透析の間、試料が6.0~8.0のpH値を有する、請求項1記載の方法。
- 段階(c)において透析が室温で20~24時間を要する、請求項1記載の方法。
- 段階(c)における透析のために、分子量カットオフ値が10kDaである膜が使用される、請求項1記載の方法。
- 段階(c)における透析のために酢酸セルロース膜が使用される、請求項1記載の方法。
- 段階(c)における透析のために水が2回交換される、請求項1記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15178683.7A EP3124976B1 (en) | 2015-07-28 | 2015-07-28 | Improved bacterial endotoxin test for the determination of endotoxins |
EP15178683.7 | 2015-07-28 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018524545A Division JP6800226B2 (ja) | 2015-07-28 | 2016-07-27 | エンドトキシンの測定のための、改良された細菌エンドトキシン試験 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021051080A JP2021051080A (ja) | 2021-04-01 |
JP7164790B2 true JP7164790B2 (ja) | 2022-11-02 |
Family
ID=53776384
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018524545A Active JP6800226B2 (ja) | 2015-07-28 | 2016-07-27 | エンドトキシンの測定のための、改良された細菌エンドトキシン試験 |
JP2020194005A Active JP7164790B2 (ja) | 2015-07-28 | 2020-11-24 | エンドトキシンの測定のための、改良された細菌エンドトキシン試験 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018524545A Active JP6800226B2 (ja) | 2015-07-28 | 2016-07-27 | エンドトキシンの測定のための、改良された細菌エンドトキシン試験 |
Country Status (21)
Country | Link |
---|---|
US (2) | US10585097B2 (ja) |
EP (1) | EP3124976B1 (ja) |
JP (2) | JP6800226B2 (ja) |
KR (1) | KR102630300B1 (ja) |
CN (2) | CN108027374B (ja) |
AR (1) | AR105497A1 (ja) |
AU (1) | AU2016298598B2 (ja) |
BR (1) | BR112018001748A8 (ja) |
CA (1) | CA2989960C (ja) |
DK (1) | DK3124976T3 (ja) |
ES (1) | ES2699526T3 (ja) |
HR (1) | HRP20181954T1 (ja) |
IL (2) | IL256660B (ja) |
LT (1) | LT3124976T (ja) |
MX (1) | MX2018000679A (ja) |
PL (1) | PL3124976T3 (ja) |
PT (1) | PT3124976T (ja) |
RS (1) | RS58167B1 (ja) |
SI (1) | SI3124976T1 (ja) |
TR (1) | TR201816369T4 (ja) |
WO (1) | WO2017017135A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11099189B2 (en) | 2017-10-17 | 2021-08-24 | Board Of Regents, The University Of Texas System | Limulus amoebocyte lysate assay and method of same |
EP3483609B1 (en) | 2017-11-09 | 2022-01-05 | Andreas Buchberger | Method and kit for sample preparation and endotoxin determination |
CN109613228A (zh) * | 2018-12-20 | 2019-04-12 | 湛江安度斯生物有限公司 | 一种减少或消除氢氧化铝佐剂干扰细菌内毒素检测的方法 |
CN111141909B (zh) * | 2019-12-24 | 2023-05-30 | 南京健友生化制药股份有限公司 | 一种凝胶法检测硫代甘油中细菌内毒素的方法 |
CN112462015B (zh) * | 2020-11-18 | 2022-07-12 | 海南倍特药业有限公司 | 一种氢溴酸瑞马唑仑细菌内毒素的检测方法 |
CN116396916B (zh) * | 2023-03-02 | 2023-12-01 | 广州普言生物科技有限公司 | 低内毒素大肠杆菌及低内毒素重组人源胶原蛋白大肠杆菌工程菌 |
CN117969228B (zh) * | 2024-04-02 | 2024-05-28 | 成都翼泰生物科技有限公司 | 一种菌液稀释液、制备方法、参考品、试剂盒及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011004758A (ja) | 2007-08-09 | 2011-01-13 | Boehringer Ingelheim Internatl Gmbh | 抗cd37抗体 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2123198A (en) * | 1936-10-23 | 1938-07-12 | Lederle Lab Inc | Treatment of antitoxins and the like |
US4096091A (en) * | 1974-07-17 | 1978-06-20 | Baxter Travenol Laboratories, Inc. | Limulus lysate having improved capacity to precipitate in the presence of low endotoxin concentrations, and reconstituting solutions therefor |
JPS5549791Y2 (ja) * | 1976-04-21 | 1980-11-20 | ||
DE3366540D1 (en) * | 1982-04-28 | 1986-11-06 | Trustees Of The Garfield Westo | Processes for the production of blood products |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
DK255887D0 (da) * | 1987-05-20 | 1987-05-20 | Claus Koch | Immunoassay |
US5959177A (en) | 1989-10-27 | 1999-09-28 | The Scripps Research Institute | Transgenic plants expressing assembled secretory antibodies |
JP2957251B2 (ja) * | 1990-09-28 | 1999-10-04 | 生化学工業株式会社 | エンドトキシンの測定法 |
GB9021370D0 (en) * | 1990-10-02 | 1990-11-14 | Ciba Geigy Ag | Monoclonal antibodies directed against complexes formed by thrombin and thrombin inhibitors |
US7018809B1 (en) | 1991-09-19 | 2006-03-28 | Genentech, Inc. | Expression of functional antibody fragments |
JP2761839B2 (ja) * | 1993-12-28 | 1998-06-04 | 株式会社 ソフィア | 遊技機の表示制御装置 |
US5789199A (en) | 1994-11-03 | 1998-08-04 | Genentech, Inc. | Process for bacterial production of polypeptides |
US5840523A (en) | 1995-03-01 | 1998-11-24 | Genetech, Inc. | Methods and compositions for secretion of heterologous polypeptides |
JPH09171018A (ja) * | 1995-12-19 | 1997-06-30 | Tokuyama Corp | 免疫学的凝集反応試薬の製造方法 |
EP0892271A1 (en) * | 1997-07-14 | 1999-01-20 | Universiteit Gent Laboratorium voor Bromatologie Faculteit Farmaceutische Wetenschappen | Detection of mycotoxins by flow-through membrane-based enzyme immunoassay |
US6040498A (en) | 1998-08-11 | 2000-03-21 | North Caroline State University | Genetically engineered duckweed |
JP2000105232A (ja) * | 1998-09-29 | 2000-04-11 | Sekisui Chem Co Ltd | 抗HBs抗体測定試薬の製造方法 |
JP4310854B2 (ja) * | 1999-06-14 | 2009-08-12 | Jsr株式会社 | 診断薬用担体粒子および診断薬 |
PT1222292E (pt) | 1999-10-04 | 2005-11-30 | Medicago Inc | Metodo para regulacao da transcricao de genes exogenos na presenca de azoto |
US7125978B1 (en) | 1999-10-04 | 2006-10-24 | Medicago Inc. | Promoter for regulating expression of foreign genes |
AU2001296301A1 (en) * | 2000-09-26 | 2002-04-08 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
US7303890B2 (en) | 2000-09-27 | 2007-12-04 | Japan Tobacco Inc. | Proteins, genes encoding them and method of using the same |
DE102005002969A1 (de) * | 2005-01-21 | 2006-08-03 | Profos Ag | Verfahren zum Nachweis und zur Entfernung von Endotoxin |
WO2009063840A1 (ja) * | 2007-11-12 | 2009-05-22 | Hiroshima University | エンドトキシンの濃度測定方法および濃度測定用キット |
JP2008275638A (ja) * | 2008-06-23 | 2008-11-13 | Daicen Membrane Systems Ltd | エンドトキシン濃度の簡易測定器 |
US7846678B2 (en) * | 2008-08-18 | 2010-12-07 | BioDtech, Inc. | Enhancing endotoxin detection |
AR078161A1 (es) | 2009-09-11 | 2011-10-19 | Hoffmann La Roche | Formulaciones farmaceuticas muy concentradas de un anticuerpo anti cd20. uso de la formulacion. metodo de tratamiento. |
CN102841205A (zh) | 2011-07-19 | 2012-12-26 | 辽宁思百得医药科技有限公司 | 一种检测注射用氟罗沙星细菌内毒素的方法 |
EP2748609B1 (en) * | 2011-09-01 | 2019-04-24 | Fresenius Medical Care Holdings, Inc. | Detection of endotoxin in aqueous solution |
CN102901726B (zh) | 2012-09-14 | 2014-08-13 | 莫水晶 | 血液细菌内毒素检测试剂盒的制备和应用 |
-
2015
- 2015-07-28 LT LTEP15178683.7T patent/LT3124976T/lt unknown
- 2015-07-28 RS RS20181468A patent/RS58167B1/sr unknown
- 2015-07-28 ES ES15178683T patent/ES2699526T3/es active Active
- 2015-07-28 PL PL15178683T patent/PL3124976T3/pl unknown
- 2015-07-28 DK DK15178683.7T patent/DK3124976T3/en active
- 2015-07-28 PT PT15178683T patent/PT3124976T/pt unknown
- 2015-07-28 SI SI201530465T patent/SI3124976T1/sl unknown
- 2015-07-28 TR TR2018/16369T patent/TR201816369T4/tr unknown
- 2015-07-28 EP EP15178683.7A patent/EP3124976B1/en active Active
-
2016
- 2016-07-27 CN CN201680044156.7A patent/CN108027374B/zh active Active
- 2016-07-27 BR BR112018001748A patent/BR112018001748A8/pt unknown
- 2016-07-27 US US15/739,503 patent/US10585097B2/en active Active
- 2016-07-27 KR KR1020187006090A patent/KR102630300B1/ko active IP Right Grant
- 2016-07-27 MX MX2018000679A patent/MX2018000679A/es active IP Right Grant
- 2016-07-27 CA CA2989960A patent/CA2989960C/en active Active
- 2016-07-27 AU AU2016298598A patent/AU2016298598B2/en active Active
- 2016-07-27 WO PCT/EP2016/067896 patent/WO2017017135A1/en active Application Filing
- 2016-07-27 JP JP2018524545A patent/JP6800226B2/ja active Active
- 2016-07-27 AR ARP160102278A patent/AR105497A1/es unknown
- 2016-07-27 CN CN202010521942.XA patent/CN111638346A/zh active Pending
-
2017
- 2017-12-31 IL IL256660A patent/IL256660B/en active IP Right Grant
-
2018
- 2018-11-21 HR HRP20181954TT patent/HRP20181954T1/hr unknown
-
2020
- 2020-01-28 US US16/774,461 patent/US11360085B2/en active Active
- 2020-05-11 IL IL274576A patent/IL274576B/en active IP Right Grant
- 2020-11-24 JP JP2020194005A patent/JP7164790B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011004758A (ja) | 2007-08-09 | 2011-01-13 | Boehringer Ingelheim Internatl Gmbh | 抗cd37抗体 |
Non-Patent Citations (5)
Title |
---|
Denise Bohrer,Interference in the limulus amebocyte lysate assay for endotoxin determination in peritoneal dialysis fluids and concentrates for hemodialysis,Journal of Pharmaceutical and Biomedical Analysis,2001年,26,pp.811-818 |
KANG, Melissa,Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas,BMC Cancer,BioMed Central,2013年,13:91,1-8,http://www.biomedcentral.com/1471-2407/13/91 |
Low Endotoxin Recovery (LER):概説,LAL Update(日本語版),30(2),生化学工業株式会社,2014年10月,1-8 |
Scientific Support, U.S.,Overcoming Assay Inhibition or Enhancement Technical Tips,Pharma&Biotech,Lonza,2002年,pp.1-3 |
エンドトキシン試験法,第十八改正日本薬局方,PMDA,pp.99-102 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7164790B2 (ja) | エンドトキシンの測定のための、改良された細菌エンドトキシン試験 | |
Harris et al. | Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5 | |
Pokidysheva et al. | Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN | |
Kayagaki et al. | Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury | |
Pilhofer et al. | Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton | |
Schmieder et al. | Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells | |
Barnum et al. | Soluble membrane attack complex: biochemistry and immunobiology | |
Khan et al. | Crystallographic and glycan microarray analysis of human polyomavirus 9 VP1 identifies N-glycolyl neuraminic acid as a receptor candidate | |
Houser et al. | Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent | |
Azarkan et al. | Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem | |
Akkaladevi et al. | Following natures lead: on the construction of membrane-inserted toxins in lipid bilayer nanodiscs | |
JP4838957B2 (ja) | 無細胞タンパク質合成系を用いたタンパク質の製造方法 | |
Ruiz-Molina et al. | A synthetic protein as efficient multitarget regulator against complement over-activation | |
Martínez-Alarcón et al. | Biochemical and structural studies of target lectin SapL1 from the emerging opportunistic microfungus Scedosporium apiospermum | |
BR112015010796B1 (pt) | Processo para purificar galactocerebrosídeo-ssgalactosidase recombinante de humano, composição, e, uso da composição | |
Kim et al. | Mimicking Low pH Virus Inactivation Used in Antibody Manufacturing Processes: Effect of Processing Conditions and Biophysical Properties on Antibody Aggregation and Particle Formation | |
Gecchele et al. | A downstream process allowing the efficient isolation of a recombinant amphiphilic protein from tobacco leaves | |
Seok et al. | Divalent cation-induced conformational changes of influenza virus hemagglutinin | |
Wang et al. | Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii | |
Martínez-Alarcón et al. | SapL1: A New Target Lectin for the Development of Antiadhesive Therapy Against Scedosporium apiospermum | |
Reithofer | Structural Proteomics of the Fungal Cell Wall | |
Bochel | Structural characterisation of a carbohydrate binding domain of the human cation-independent mannose 6-phosphate/IGF2 receptor | |
Yang et al. | Structural basis for the evolution and antibody evasion of SARS-CoV-2 BA. 2.86 and JN. 1 subvariants | |
Senthil Kumar | Activation of the canononical NF-kB pathway by the Kaposi's sarcoma-associated herpes virus oncoprotein vFLIP | |
Bera et al. | Molecular determinants for Rous sarcoma virus intasome assemblies involved in retroviral integration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201221 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20210127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211213 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220831 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20220916 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7164790 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |