JP7153752B2 - ダム水位予測支援システム - Google Patents

ダム水位予測支援システム Download PDF

Info

Publication number
JP7153752B2
JP7153752B2 JP2021035745A JP2021035745A JP7153752B2 JP 7153752 B2 JP7153752 B2 JP 7153752B2 JP 2021035745 A JP2021035745 A JP 2021035745A JP 2021035745 A JP2021035745 A JP 2021035745A JP 7153752 B2 JP7153752 B2 JP 7153752B2
Authority
JP
Japan
Prior art keywords
information
time
micro
degree
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021035745A
Other languages
English (en)
Other versions
JP2022048070A (ja
Inventor
成仁 山保
江里子 佐藤
悟史 山口
伸一 塩原
尚史 楠田
昭義 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020153660A external-priority patent/JP6906094B1/ja
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2021035745A priority Critical patent/JP7153752B2/ja
Publication of JP2022048070A publication Critical patent/JP2022048070A/ja
Application granted granted Critical
Publication of JP7153752B2 publication Critical patent/JP7153752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、ダム水位予測支援システムに関する。
本技術分野の背景技術として、下記特許文献1の要約には、「……前記上流ダムが放流を開始した時刻を示す上流ダム放流開始時刻を算出する上流ダム放流開始時刻保存手段と、前記発電機が発電を開始した時刻を示す発電開始時刻を算出する発電開始時刻保存手段と、前記下流ダムに入水が開始した時刻を示す下流ダム入水開始時刻を算出する下流ダム入水開始時刻保存手段と、前記上流ダム放流開始時刻、前記発電開始時刻、および前記下流ダム入水開始時刻から、前記上流ダムから放流を開始して前記下流ダムに入水を開始する時刻を示す流下遅れ時間を算出する流下遅れ時間算出手段と、を備える。」と記載されている。
特開2013-78179号公報
しかし、上記特許文献1においては、ダムの水位等、ダムの状態量を予測した根拠となる領域情報を適切に呈示することについては、特に記載されていない。このため、ダムの状態量を予測した根拠となる領域情報を活用してダムを運用することが困難であった。
この発明は上述した事情に鑑みてなされたものであり、ダムの状態量を予測した根拠となる領域情報を適切に呈示できるダム水位予測支援システムを提供することを目的とする。
上記課題を解決するため本発明のダム水位予測支援システムは、河川の水を貯水するダムである目的ダムの上流域の異なる位置の観測点における流量情報を示す第1の時系列情報を受信する入力部と、現在時刻から所定時間後の前記目的ダムに流入する前記河川の流量情報を示す観測流量の予測値を算出する際に用いる前記第1の時系列情報の関連度合(f,f0,f1,f2)を抽出する関連領域抽出部と、を備えることを特徴とする。
本発明によれば、ダムの状態量を予測した根拠となる領域情報を適切に呈示できる。
好適な第1実施形態による状態量予測支援装置のブロック図である。 観測流量と、相関係数と、関連度合と、の例を示す図である。 第1のミクロ領域情報および第1のマクロ領域情報の例を示す図である。 第1の関連領域表示画面70の例を示す図である。 第2の関連領域表示画面130の例を示す図である。 パラメータ修正画面200の例を示す図である。
[第1実施形態]
〈第1実施形態の構成〉
図1は、好適な第1実施形態による状態量予測支援装置10(コンピュータ)のブロック図である。
状態量予測支援装置10は、予測対象とする目的ダム104の水位H等、各種状態量を予測するものである。なお、水位Hの予測値を予測水位Hh(状態量予測値)と呼ぶ。目的ダム104には、河川102の上流域102aから水が流入し、目的ダム104は、河川102の下流域102bに水を放流する。上流域102aにおける3箇所の観測点m1,m2,m3には、流量計測装置30が設けられている。これら流量計測装置30は、各観測点における流量を計測し、その結果を流量情報Q1,Q2,Q3(第1の時系列情報)として出力する。流量情報Q1,Q2,Q3は、時刻tの関数になる時系列情報である。なお、観測点m1,m2,m3は、例えば目的ダム104の上流に位置する他のダムであるが、観測点m1,m2,m3はダムに限られるものではない。
また、上流域102aの少なくとも一部を含む範囲であって、降水量を監視する範囲を降水量監視範囲106と呼ぶ。図示の例において降水量監視範囲106は「6×6=36」個の空間メッシュ点k1~k36に分割されている。気象情報サーバ110は、空間メッシュ点k1~k36における現在の降水量および将来の予測降水量である降水量情報rp1~rp36(第2の時系列情報)を状態量予測支援装置10に供給する。ここで、降水量情報rp1~rp36と、各降水量の計測地点とを示す情報を降水量マップmrpと呼ぶ。
降水量情報rp1~rp36も、時刻tの関数になる時系列情報である。地形情報サーバ112は、降水量監視範囲106における地形情報Cを状態量予測支援装置10に供給する。表示装置116は、状態量予測支援装置10から供給された各種画像データを表示する。入力装置118は、マウス、キーボード等を備え、ユーザの操作に基づいて状態量予測支援装置10に各種のデータや指令を入力する。
状態量予測支援装置10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)等、一般的なコンピュータとしてのハードウエアを備えており、SSDには、OS(Operating System)、アプリケーションプログラム、各種データ等が格納されている。OSおよびアプリケーションプログラムは、RAMに展開され、CPUによって実行される。図1において、状態量予測支援装置10の内部は、アプリケーションプログラム等によって実現される機能を、ブロックとして示している。
すなわち、状態量予測支援装置10は、入力部12(入力手段)と、関連度合分析部13と、状態量予測部14(状態量予測手段)と、予測結果表示部15と、領域表示部16と、指令受信部18と、関連領域抽出部20(関連領域抽出手段)と、を備えている。また、関連領域抽出部20は、マクロ領域抽出部22と、ミクロ領域抽出部24と、を備えている。
入力部12は、上述した流量情報Q1,Q2,Q3を観測点m1,m2,m3から受信し、降水量情報rp1~rp36を気象情報サーバ110から受信し、地形情報Cを地形情報サーバ112から受信する。そして、入力部12は、受信した流量情報Q1,Q2,Q3および降水量情報rp1~rp36を、所定周期(例えば1時間)毎の時系列情報として、記憶部に記憶する。なお、降水量情報rp1~rp36には、所定の方法で降水量に換算した降雪量を含む。
関連度合分析部13は、目的ダム104の水位Hと、流量情報Q1,Q2,Q3との関連度合である関連度合f(第1の関連度合)を求める。さらに、関連度合分析部13は、目的ダム104の水位Hと、降水量情報rp1~rp36との関連度合である関連度合g(第2の関連度合)を求める。換言すれば、関連度合分析部13は、降水量情報rp1~rp36が、目的ダム104の水位Hに与える影響度に基づいて、関連度合gを求める。ここで、関連度合f,gの詳細については後述する。
状態量予測部14は、関連度合f,g等に基づいて、予測水位Hh等の状態量予測値を算出する。予測結果表示部15は、予測水位Hh等の状態量予測値を表示装置116に表示させる。関連領域抽出部20は、マクロ領域抽出部22と、ミクロ領域抽出部24と、を備えている。
マクロ領域抽出部22は第1および第2のマクロ領域情報(詳細は後述する)を算出する。また、ミクロ領域抽出部24は、第1および第2のミクロ領域情報(詳細は後述する)を算出する。領域表示部16は、第1および第2のマクロ領域情報および第1および第2のミクロ領域情報を表示装置116に表示させる。指令受信部18は、入力装置118から各種のデータや指令を受信する。
〈流量情報に基づく状態量の予測〉
現在からT時間後における、目的ダム104の水位H等の状態量を予測する場合に、流量情報Q1,Q2,Q3および/または降水量情報rp1~rp36が主として関係すると考えられる。但し、水位H等の状態量は、他の要因によって変動することも考えられるため、他の要因も状態量の予測に加えてもよい。
まず、図2を参照し、河川102の流量情報Q1,Q2,Q3を用いた状態量予測について説明する。
図2は、観測流量Xq(t)と、相関係数PX0,PX1,PX2(影響度)と、関連度合f0,f1,f2と、の例を示す図である。
観測流量Xq(t)は、時刻tにおいて目的ダム104に流入する水の流量である。ここで、図1に示した観測点m1,m2,m3のうち任意の観測点を観測点mxと呼び、観測点mxにおける流量情報をQxと呼ぶ。図2に示す相関係数PX0は、上述した観測流量Xq(t)と、観測点mxの時刻tにおける流量情報Qx(t)との相関係数である。また、相関係数PX1は、観測流量Xq(t)と、観測点mxの時刻t-1(時刻tから1時間前)における流量情報Qx(t-1)との相関係数である。また、相関係数PX2は、観測流量Xq(t)と、観測点mxの時刻t-2(時刻tから2時間前)における流量情報Qx(t-2)との相関係数である。
相関係数PX0,PX1,PX2は、実際は観測流量Xq(t)の大きさに応じて連続的に変化する。但し、図2に示す例においては、100~300[トン/秒]および301~500[トン/秒]の流量範囲に対して、それぞれ相関係数PX0,PX1,PX2が定められている。また、各流量範囲の相関係数PX0,PX1,PX2に対して、最大の相関係数に“1”を割り当て、他の相関係数に“0”を割り当てたものを、関連度合f0,f1,f2(第1の関連度合)と呼ぶ。
図2に示す例においては、100~300[トン/秒]の流量範囲に対して、相関係数PX2=0.90が最大値になるため、関連度合f0,f1,f2は、[0,0,1]になる。また、301~500[トン/秒]の流量範囲に対して、相関係数PX1=0.95が最大値になるため、関連度合f0,f1,f2は、[0,1,0]になる。但し、相関係数PX0,PX1,PX2の何れも有意な値にならない場合には、全ての関連度合f0,f1,f2が「0」になる場合もある。以下、関連度合f0,f1,f2等を総称して関連度合fと呼ぶことがある。
図2に示した観測流量Xq(t)は、現在時刻tにおける観測流量であるが、未来における流量も、同様に予測することができる。関連度合fに基づいて予測することができる。ある時間(T)だけ未来に生じる流量等を予測する場合、このTを予測対象時間と呼ぶ。例えば、予測対象時間Tの値について「0」は「現在時刻」、「1」は「1時間後」、「2」は「2時間後」を表す。そして、ある特定の予測対象時間Tにおける関連度合fの集合を、当該予測対象時間Tに対する「第1のミクロ領域情報」と呼ぶ。流量情報Q1,Q2,Q3に基づいて発生する観測流量Xq(t)の予測値を予測流量XqhT(t)と呼ぶ。状態量予測部14(図1参照)は、下式(1)によって予測流量XqhT(t)を算出する。
Figure 0007153752000001
式(1)において、tは時刻変数であり、iは現在時刻に対する時間差(単位:h)であり、以下「参照時間差」と呼ぶ。mは観測点の数(図1の例では「3」)であるが、式(1)の括弧内においては、観測点の番号(1,2,3)になる。nは、計算に必要とする参照時間差iの数である。また、Xqは関連度合を決定する変数であるが、式(1)においては、目的ダム104に流入する流量を表す。「Qm(t-i)」は、時刻(t-i)における観測点mの流量であり、「fm,i(t-i)」は、時刻(t-i)における流量Qm(t-i)に対応する関連度合になる。また、bmは、観測点m毎の定数である。
複数の予測対象時間T(例えば、1時間後:T=1、2時間後:T=2等)に対応する、それぞれの第1のミクロ領域情報についても、上述した式(1)を用いることにより、算出することができる。
図3は、第1のミクロ領域情報52,53,54および第1のマクロ領域情報60の例を示す図である。
図3において、参照時間差iは、水位Hを予測するために用いる現在または過去の時間差を表す。例えば、参照時間差iについて「0」は「現在時刻」、「1」は「1時間前」、「2」は「2時間前」を表す。
第1のミクロ領域情報52は、予測対象時間Tが「0」であって、参照時間差i=0,1,2および観測点m1,m2,m3のそれぞれに対応する、9個の関連度合fの集合である。同様に、第1のミクロ領域情報53は、予測対象時間Tが「1」であって、参照時間差i=0,1,2および観測点m1,m2,m3のそれぞれに対応する、9個の関連度合fの集合である。同様に、第1のミクロ領域情報54は、予測対象時間Tが「2」であって、参照時間差i=0,1,2および観測点m1,m2,m3のそれぞれに対応する、9個の関連度合fの集合である。
図3において、合計値群58は参考用に示したものであり、それぞれの第1のミクロ領域情報52,53,54において、観測点m1,m2,m3毎に関連度合fを合計した結果である。そして、第1のマクロ領域情報60は、合計値群58の値を、観測点m1,m2,m3毎にさらに合計した値である。図示の例において、第1のマクロ領域情報60における各観測点m1,m2,m3の関連度合fは、それぞれ0,1,2になる。
図4は、第1の関連領域表示画面70の例を示す図である。
第1の関連領域表示画面70は、領域表示部16(図1参照)によって表示装置116に表示される画面であり、第1のミクロ領域表示部72,73,74と、第1のマクロ領域表示部80と、を含んでいる。第1のミクロ領域表示部72は、予測対象時間T=0における第1のミクロ領域情報52(図3参照)等を表示するものである。そのため、第1のミクロ領域表示部72は、アイコンvm1,vm2,vm3,vm4と、流量表示画像vcと、相関表示画像vdと、を含んでいる。
ここで、アイコンvm4は目的ダム104(図1参照)に対応し、アイコンvm1,vm2,vm3は、観測点m1,m2,m3に対応する。そして、アイコンvm1,vm2,vm3のうち、対応する予測対象時間T(ここではT=0)において関連度合fの最も高いものの表示態様を、他のアイコンの表示態様とは異なる態様で表示する。図3において、予測対象時間T=0における合計値群58は、観測点m1,m2,m3に対して0,0,1であった。従って、図4の第1のミクロ領域表示部72において、アイコンvm1,vm2は白ヌキにされ、アイコンvm3にはメッシュが付与されている。
また、流量表示画像vcは、観測点m1,m2,m3のうち関連度合fの最も高いものにおける流量情報(上記例では流量情報Q3)の時系列上の変化をグラフによって表示する。また、相関表示画像vdは、縦方向に分割された3つの領域を有している。これら3つの領域は、予測対象時間T=0における観測流量Xq(t)と、対応する観測点(上記例では観測点m3)における流量情報Q3(t),Q3(t-1),Q3(t-2)と、の相関を表す。すなわち、これら3つの領域は、相関係数PX0,PX1,PX2(図2参照)にそれぞれ対応する。図2に示したように、相関係数PX0,PX1,PX2は連続的な量であるため、図4に示した相関表示画像vdの例では、ドット、ハッチ、メッシュ等の表示態様によって相関係数の数値範囲を表示している。
図4において、第1のミクロ領域表示部73,74は、予測対象時間T=1,2における第1のミクロ領域情報53,54(図3参照)等を表示するものである。従って、第1のミクロ領域表示部73,74は、それぞれ、第1のミクロ領域表示部72と同様に、アイコンvm1~vm4と、流量表示画像vcと、相関表示画像vdと、を含んでいる。図3において、予測対象時間T=1における合計値群58は、観測点m1,m2,m3に対して0,0,1であった。従って、図4の第1のミクロ領域表示部73においても、アイコンvm1,vm2は白ヌキにされ、アイコンvm3にはメッシュが付与されている。
第1のミクロ領域表示部73における流量表示画像vcは、観測点m3における流量情報Q3を表すため、第1のミクロ領域表示部72における流量表示画像vcと同形状になっている。但し、第1のミクロ領域表示部72における相関表示画像vdは、予測対象時間T=0に対する相関係数PX0,PX1,PX2を表すのに対して、第1のミクロ領域表示部73における相関表示画像vdは、予測対象時間T=1における相関係数PX0,PX1,PX2を表す。このため、第1のミクロ領域表示部72,73における相関表示画像vdは、表示態様が若干異なっている。
次に、図3において、予測対象時間T=2における合計値群58は、観測点m1,m2,m3に対して0,1,0であった。従って、図4の第1のミクロ領域表示部74においては、アイコンvm1,vm3は白ヌキにされ、アイコンvm2にはメッシュが付与されている。また、第1のミクロ領域表示部74の流量表示画像vcは観測点m2における流量情報Q2を表すため、第1のミクロ領域表示部72,73における流量表示画像vcとは形状が異なっている。
また、図4において第1のマクロ領域表示部80は、アイコンvm1~vm4を含んでいる。これらのうち、アイコンvm1,vm2,vm3は、第1のマクロ領域情報60(図3参照)に対応するものであり、第1のマクロ領域情報60の値に応じた表示態様(但し、メッシュ>ハッチ>白ヌキとする)が付与されている。なお、上述した例では、影響度の大きさを表すために相関係数PX0,PX1,PX2を適用したが、重要度等、他の指標を適用してもよい。
図4に示すように、第1のミクロ領域表示部72,73,74および第1のマクロ領域表示部80が表示装置116に表示されると、複数の観測点m1,m2,m3のうち、何れの流量が予測水位Hh等、状態量予測値の根拠になるのか、ユーザは一見して把握できる。これにより、ユーザは、目的ダム104の状態量を予測した根拠となる観測点の情報を活用して、目的ダム104を運用することができる。
〈降水量情報に基づく状態量の予測〉
次に、目的ダム104の降水量監視範囲106における降水量情報rp1~rp36を用いた状態量予測支援について説明する。上述したように、関連度合分析部13は、目的ダム104の水位Hと、降水量情報rp1~rp36との関連度合である関連度合gを求める。具体的には、関連度合分析部13は、上述した流量情報Q1,Q2,Q3と同様に、ある特定の予測対象時間T(例えばT=0では現在時刻)における第2のミクロ領域情報として関連度合gを算出する。第2のミクロ領域情報は、それぞれの空間メッシュ点k1~k36(図1参照)毎に、目的ダム104の状態量に影響を与える第2のミクロ領域情報のそれぞれの関連度合gの大きさに対応する。
降水量情報rp1~rp36に基づいて発生する観測流量Xr(t)の予測値を予測流量XrhT(t)と呼ぶ。状態量予測部14は、下式(2)に基づいて、予測流量XrhT(t)を算出する。なお、降水量情報rp1~rp36は、将来時刻の予報値を含むため、将来の予報値を用いてT時間後の降水量を求めることができる。この場合は、下式(2)に示すように、「i=-T」を起点として、計算を実行するとよい。
Figure 0007153752000002
上述の式(1)と同様に、式(2)において、tは時刻変数であり、iは参照時間差(単位:h)である。但し、式(2)においてnは、計算に必要とする参照時間差iのうち、正値の参照時間差iの数である。また、Xrは関連度合を決定する変数であるが、式(2)においては、地形情報Cや雨の強さ等に応じて設定される変数になる。また、kは空間メッシュ点の数(図1の例では「36」)であるが、式(2)の括弧内においては、空間メッシュ点の番号(1~36)になる。「Rk(t-i)」は、時刻(t-i)の空間メッシュ点kにおける降水量であり、「gk,i(t-i)」は、時刻(t-i)における降水量Rk(t-i)に対応する関連度合になる。また、bkは、空間メッシュ点k毎の定数である。
複数の予測対象時間T(例えば、1時間後:T=1、2時間後:T=2等)に対応する、それぞれの第2のミクロ領域情報についても、上述した式(2)を用いることにより、予測流量Xrh(t)を算出することができる。但し、各メッシュ点において、n時間前からT時間後の関連度合gk,i(Xr)を加工して表示すると好ましい。この加工は、例えば最大値や平均値などの統計処理を適用できるが、これらに限られるわけではない。
図5は、第2の関連領域表示画面130の例を示す図である。
第2の関連領域表示画面130は、領域表示部16(図1参照)によって表示装置116に表示される画面であり、第2のミクロ領域表示部132,133,134(第2のミクロ領域情報)と、第2のマクロ領域表示部140(第2のマクロ領域情報)と、を含んでいる。第2のミクロ領域表示部132,133,134は、それぞれ予測対象時間T=0,T=1,T=2における第2のミクロ領域情報を表示するものである。
第2のミクロ領域表示部132,133,134は、それぞれ6×6=36個のメッシュ点(符号なし)を有しており、これらメッシュ点は、降水量監視範囲106の空間メッシュ点k1~k36(図1参照)にそれぞれ対応している。また、目的ダム点prは、目的ダム104(図1参照)が位置するメッシュ点を表示している。図示の例において、メッシュ点は、「白ヌキ」「ドット」または「ハッチ」が付されている。「白ヌキ」は有意な関連度合gが無いことを示し、「ドット」は有意な関連度合gが存在することを示し、「ハッチ」は、有意であって比較的大きな関連度合gが存在することを示す。
また、第2のマクロ領域表示部140も、6×6=36個のメッシュ点(符号なし)を有しており、これらメッシュ点は、降水量監視範囲106の空間メッシュ点k1~k36(図1参照)にそれぞれ対応している。そして、第2のマクロ領域表示部140には、一部のメッシュ点を囲む太線である領域表示画像142が含まれている。この領域表示画像142によって示された領域は、何れかの第2のミクロ領域情報において、有意な関連度合gが存在する領域に含まれるメッシュ点である。換言すれば、領域表示画像142によって示された領域は、第2のミクロ領域表示部132,133,134において、「ドット」または「ハッチ」が示された領域である。
図5に示すように、第2のミクロ領域表示部132,133,134および領域表示画像142が表示装置116に表示されると、複数の空間メッシュ点k1~k36(図1参照)のうち何れの降水量が予測水位Hh等、状態量予測値の根拠になるのか、ユーザは一見して把握できる。これにより、ユーザは、目的ダム104の状態量を予測した根拠となる空間メッシュ点の情報を活用して、目的ダム104を運用することができる。
〈パラメータの修正〉
図6は、パラメータ修正画面200の例を示す図である。
パラメータ修正画面200は、予測結果表示部15および領域表示部16(図1参照)によって表示装置116に表示される画面であり、予測対象時間設定部210と、相関係数設定部220と、観測点表示部230と、関連データ表示部240と、予測結果表示部260と、を含んでいる。予測対象時間設定部210は、入力装置118(図1参照)におけるユーザの操作に基づいて、予測対象時間Tを設定するものである。
相関係数設定部220は、観測点設定部221と、参照時間差表示部222と、デフォルト相関係数表示部224と、相関係数修正部226と、を含んでいる。観測点設定部221は、ユーザの操作に基づいて、複数の観測点(例えば図1に示すm1,m2,m3)のうち何れか一つの観測点を選択するものである。参照時間差表示部222は、参照時間差iを表示する。図示の例においては、参照時間差iとして、「0」「1」「2」の参照時間差iが表示されている。但し、後二者は過去のタイミングを示すことを明確にするためマイナス記号「-」が付されている。
デフォルト相関係数表示部224は、設定された予測対象時間Tと、観測点とに対応する各参照時間差iのデフォルト相関係数を表示する。デフォルト相関係数は、相関係数(図2参照)のデフォルト値であり、例えば過去の計測実績等に基づいて、計算によって求められた値である。相関係数修正部226は、ユーザの操作に基づいて、相関係数修正値を入力するものである。デフォルト相関係数と、相関係数修正値との合計を、適用相関係数(図示せず)と呼ぶ。なお、図示の例において、デフォルト相関係数および相関係数修正値は、「%」単位で表示されている。
観測点表示部230は、河川102の上流域102a(図1参照)を示す上流域画像232と、アイコンvm1,vm2,vm3,vm4と、を含んでいる。アイコンvm1~vm4の意味は第1の関連領域表示画面70(図4参照)における第1のマクロ領域表示部80のものと同様である。また、アイコンvm1,vm2,vm3の表示態様(メッシュ、ハッチ等)の意味も第1のマクロ領域表示部80のものと同様である。
関連データ表示部240は、流量推定値画像242,244と、相関表示画像246と、凡例表示部248と、を含んでいる。流量推定値画像242,244は、観測点設定部221で選択された観測点(図示の例ではm3)における流量(上記例ではQ3)の推定値を表すものである。
但し、破線で示す流量推定値画像244はデフォルト相関係数表示部224に示されたデフォルト相関係数に基づく推定結果である。また、実線で示す流量推定値画像242は、適用相関係数(デフォルト相関係数と相関係数修正値の合計)に基づく推定結果である。相関表示画像246は、「白ヌキ」、「ドット」、「ハッチ」等の表示態様によって適用相関係数の数値範囲を表す。凡例表示部248は、相関表示画像246における表示態様の凡例を表示する。
予測結果表示部260は、予測水位Hh(図1参照)の時系列的変化を示す水位推定値画像262,264を含む。但し、破線で示す水位推定値画像264は、デフォルト相関係数表示部224に示されたデフォルト相関係数に基づく推定結果である。また、実線で示す水位推定値画像262は、適用相関係数(デフォルト相関係数と相関係数修正値の合計)に基づく推定結果である。
図6において、ユーザが予測対象時間設定部210、観測点設定部221、または相関係数修正部226を操作すると、予測結果表示部15および領域表示部16(図1参照)は、変更されたパラメータに応じて、図6における各部の状態を変化させる。
〈実施形態の効果〉
以上のように好適な実施形態によれば、河川102の水を貯水するダムである目的ダム104の上流域102aにおける河川102の流量情報である第1の時系列情報(Q1,Q2,Q3)を受信する入力部12と、第1の時系列情報(Q1,Q2,Q3)を用いて、流下遅れ時間を加味して目的ダム104の水位に関する状態量(H)の所定時間後の予測値である状態量予測値(Hh)を算出する状態量予測部14と、状態量予測値(Hh)を算出する際に用いる第1のミクロ領域情報52,53,54および第1のマクロ領域情報60を算出する関連領域抽出部20と、を備える。これにより、目的ダム104の状態量(H)を予測した根拠となる領域情報を適切に呈示できる。
ここで、関連領域抽出部20は、ミクロ領域抽出部24と、マクロ領域抽出部22と、を備え、ミクロ領域抽出部24は、河川102の上流域102aに沿って異なる観測点m1,m2,m3に配された流量計測装置30から取得した第1の時系列情報(Q1,Q2,Q3)と、第1の時系列情報(Q1,Q2,Q3)に対応する第1の関連度合(f,f0,f1,f2)と、に基づいて、観測点m1,m2,m3毎に第1のミクロ領域情報52,53,54を算出し、マクロ領域抽出部22は、それぞれの第1のミクロ領域情報52,53,54を組み合わせて第1のマクロ領域情報60を算出する機能を有することが一層好ましい。
これにより、個々の第1のミクロ領域情報52,53,54に基づいて観測点m1,m2,m3毎の詳細な情報を取得することができ、第1のマクロ領域情報60に基づいて、全体を俯瞰した情報を取得できる。
また、ミクロ領域抽出部24は、それぞれの観測点m1,m2,m3における第1の時系列情報(Q1,Q2,Q3)が、目的ダム104の状態量(H)に与える影響度(PX0,PX1,PX2)の大きさに基づいて、第1の関連度合(f,f0,f1,f2)を算出する機能を有することが一層好ましい。これにより、第1の時系列情報(Q1,Q2,Q3)が、目的ダム104の状態量(H)に与える影響度(PX0,PX1,PX2)の大きさに基づいた、第1の関連度合(f,f0,f1,f2)を算出することができる。
また、入力部12は、少なくとも上流域102aの一部を含む降水量監視範囲106における地形情報Cと、降水量マップmrpと、を取得する機能を有し、関連領域抽出部20は、さらに、降水量マップmrpに基づく時系列降水量を示す第2の時系列情報(rp1~rp36)を用いて、所定時間後の状態量予測値(Hh)を算出する際に用いる第2のミクロ領域情報(132,133,134)と、第2のマクロ領域情報(140)と、を算出する機能を有することが一層好ましい。これにより、流量に関する第1の時系列情報(Q1,Q2,Q3)のみならず、時系列降水量を示す第2の時系列情報(rp1~rp36)を用いて状態量予測値(Hh)を算出することができる。
また、関連領域抽出部20は、地形情報Cに基づいて作成した空間メッシュ点(k1~k36)毎の第2の時系列情報(rp1~rp36)と、第2の時系列情報(rp1~rp36)に対応する第2の関連度合(g)と、に基づいて、空間メッシュ点(k1~k36)毎に第2のミクロ領域情報(132,133,134)を算出するミクロ領域抽出部24と、第2のミクロ領域情報(132,133,134)を組み合わせて第2のマクロ領域情報(140)を算出するマクロ領域抽出部22と、を備えると一層好ましい。
これにより、個々の第2のミクロ領域情報(132,133,134)に基づいて空間メッシュ点(k1~k36)毎の詳細な情報を取得することができ、第2のマクロ領域情報(140)に基づいて、全体を俯瞰した情報を取得できる。
また、ミクロ領域抽出部24は、それぞれの空間メッシュ点(k1~k36)における第2の時系列情報(rp1~rp36)が、目的ダム104の状態量(H)に与える影響度に基づき、第2の関連度合(g)を算出することが一層好ましい。これにより、第2の時系列情報(rp1~rp36)が目的ダム104の状態量(H)に与える影響度の大きさに基づいた、第2の関連度合(g)を算出することができる。
また、目的ダム104の状態量予測値(Hh)に係る予測対象時間Tを表示装置116に表示させる機能と、第1のミクロ領域情報52,53,54と、第1のマクロ領域情報60と、第2のミクロ領域情報(132,133,134)と、第2のマクロ領域情報(140)と、のうち何れか一つ、または複数の情報を表示装置116に表示させる機能と、を有する領域表示部16をさらに備えると一層好ましい。これにより、第1のミクロ領域情報52,53,54、第1のマクロ領域情報60、第2のミクロ領域情報(132,133,134)、および/または第2のマクロ領域情報(140)を視覚的に把握することができる。
また、それぞれの観測点m1,m2,m3に対する第1のミクロ領域情報52,53,54、および/またはそれぞれの空間メッシュ点(k1~k36)に対する第2のミクロ領域情報(132,133,134)の修正指令を受け付ける指令受信部18をさらに備え、領域表示部16は、修正指令に応じて、第1のミクロ領域情報52,53,54および/または第2のミクロ領域情報(132,133,134)を再算出して表示装置116に再表示させると、一層好ましい。これにより、ユーザは、第1のミクロ領域情報52,53,54および/または第2のミクロ領域情報(132,133,134)を適宜修正しつつ、修正結果を視覚的に把握することができる。
また、第1の時系列情報(Q1,Q2,Q3)、第2の時系列情報(rp1~rp36)、および/または予測対象時間Tに関する表示指令情報を受け付ける指令受信部18をさらに備え、領域表示部16は、表示指令情報に基づいて、第1の時系列情報(Q1,Q2,Q3)、第2の時系列情報(rp1~rp36)、および/または予測対象時間Tを表示装置116に表示させる機能を有すると一層好ましい。これにより、ユーザは、第1のミクロ領域情報52,53,54、第2のミクロ領域情報(132,133,134)、および/または予測対象時間Tを適宜修正しつつ、修正結果を視覚的に把握することができる。
[変形例]
本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
(1)上記実施形態における状態量予測支援装置10のハードウエアは一般的なコンピュータによって実現できるため、上述した各種処理を実行するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
(2)上述した各処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えてもよい。
[付記]
本件の[発明を実施するための形態]の欄および図面は、親出願の出願当初のものに対して、以下の点を変更した。
(1)段落0021および0022([数1])において、「Xqh(t)」と記載されていた箇所を「XqhT(t)」に変更した。
(2)段落0036および0037([数2])において、「Xrh(t)」と記載されていた箇所を「XrhT(t)」に変更した。
(3)図3において、第1のミクロ領域情報54の「m1,i=2」の欄において、「1」と記載されていた箇所を「0」に変更した。
10 状態量予測支援装置(コンピュータ)
12 入力部(入力手段)
14 状態量予測部(状態量予測手段)
16 領域表示部
18 指令受信部
20 関連領域抽出部(関連領域抽出手段)
22 マクロ領域抽出部
24 ミクロ領域抽出部
30 流量計測装置
52,53,54 第1のミクロ領域情報
60 第1のマクロ領域情報
102 河川
102a 上流域
104 目的ダム
106 降水量監視範囲
116 表示装置
132,133,134 第2のミクロ領域表示部(第2のミクロ領域情報)
140 第2のマクロ領域表示部(第2のマクロ領域情報)
C 地形情報
H 水位(状態量)
T 予測対象時間
g 関連度合(第2の関連度合)
Hh 予測水位(状態量予測値)
mrp 降水量マップ
k1~k36 空間メッシュ点
Q1,Q2,Q3 流量情報(第1の時系列情報)
m1,m2,m3 観測点
rp1~rp36 降水量情報(第2の時系列情報)
f,f0,f1,f2 関連度合(第1の関連度合)
PX0,PX1,PX2 相関係数(影響度)

Claims (11)

  1. 河川の水を貯水するダムである目的ダムの上流域の異なる位置の観測点における流量情報を示す第1の時系列情報を受信する入力部と、
    現在時刻から所定時間後の前記目的ダムに流入する前記河川の流量情報を示す観測流量の予測値を算出する際に用いる前記第1の時系列情報の関連度合(f,f0,f1,f2)を抽出する関連領域抽出部と、を備える
    ことを特徴とするダム水位予測支援システム。
  2. 前記関連領域抽出部は、前記観測流量の前記所定時間後の前記予測値を算出する際に用いる前記観測点ごとの前記第1の時系列情報の関連度合(f,f0,f1,f2)である第1の関連度合(f,f0,f1,f2)を抽出して、前記第1の関連度合(f,f0,f1,f2)の集合である第1のミクロ領域情報を抽出するミクロ領域抽出部を備える
    ことを特徴とする請求項1に記載のダム水位予測支援システム。
  3. 前記関連領域抽出部は、
    前記第1のミクロ領域情報を組み合わせることによって、任意の時刻から所定の予測時刻までの範囲内における前記観測点に対する関連度合(f,f0,f1,f2)の集合である第1のマクロ領域情報を抽出するマクロ領域抽出部をさらに備える
    ことを特徴とする請求項2に記載のダム水位予測支援システム。
  4. 前記ミクロ領域抽出部は、前記第1の関連度合(f,f0,f1,f2)を、前記観測流量に前記第1の時系列情報が与える影響度を用いて算出する機能を有する
    ことを特徴とする請求項2に記載のダム水位予測支援システム。
  5. 前記入力部は、前記上流域の降水量監視範囲における地形情報と降水量マップとを取得するものであり、
    前記関連領域抽出部は、さらに、
    前記降水量マップから、前記降水量監視範囲を所定数に分割したそれぞれの空間メッシュ点に対応する降水量を示す第2の時系列情報を抽出し、前記観測流量の前記予測値を算出する際に用いる前記第2の時系列情報の関連度合(g)を抽出する機能を有する
    ことを特徴とする請求項1に記載のダム水位予測支援システム。
  6. 前記関連領域抽出部は、
    前記観測流量の前記所定時間後の前記予測値を算出する際に用いる前記空間メッシュ点ごとの前記第2の時系列情報の関連度合(g)である第2の関連度合(g)を抽出して、前記第2の関連度合(g)の集合である第2のミクロ領域情報を抽出するミクロ領域抽出部をさらに備える
    ことを特徴とする請求項5に記載のダム水位予測支援システム。
  7. 前記第2の関連度合(g)を組み合わせることによって、任意の時刻から所定の予測時刻までの範囲内における前記空間メッシュ点に対する関連度合(g)の集合である第2のマクロ領域情報を抽出するマクロ領域抽出部をさらに備える
    ことを特徴とする請求項6に記載のダム水位予測支援システム。
  8. 前記ミクロ領域抽出部は、前記第2の関連度合(g)を、前記観測流量に前記第2の時系列情報が与える影響度を用いて算出する機能を有する
    ことを特徴とする請求項6に記載のダム水位予測支援システム。
  9. 前記目的ダムの前記予測値に係る予測対象時間を表示装置に表示させる機能と、
    前記第1のミクロ領域情報または前記第1のマクロ領域情報前記表示装置に表示させる機能と、
    を有する領域表示部をさらに備える
    ことを特徴とする請求項に記載のダム水位予測支援システム。
  10. それぞれの前記観測点に対する前記第1のミクロ領域情報修正指令を受け付ける指令受信部をさらに備え、
    前記領域表示部は、前記修正指令に応じて、前記第1のミクロ領域情報再算出して前記表示装置に再表示させる
    ことを特徴とする請求項9に記載のダム水位予測支援システム。
  11. 前記第1の時系列情報および/または前記予測対象時間に関する表示指令情報を受け付ける指令受信部をさらに備え、
    前記領域表示部は、前記表示指令情報に基づいて、前記第1の時系列情報および/または前記予測対象時間を前記表示装置に表示させる機能を有する
    ことを特徴とする請求項9に記載のダム水位予測支援システム。
JP2021035745A 2020-09-14 2021-03-05 ダム水位予測支援システム Active JP7153752B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021035745A JP7153752B2 (ja) 2020-09-14 2021-03-05 ダム水位予測支援システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020153660A JP6906094B1 (ja) 2020-09-14 2020-09-14 ダム水位予測支援システム
JP2021035745A JP7153752B2 (ja) 2020-09-14 2021-03-05 ダム水位予測支援システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020153660A Division JP6906094B1 (ja) 2020-09-14 2020-09-14 ダム水位予測支援システム

Publications (2)

Publication Number Publication Date
JP2022048070A JP2022048070A (ja) 2022-03-25
JP7153752B2 true JP7153752B2 (ja) 2022-10-14

Family

ID=87760941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021035745A Active JP7153752B2 (ja) 2020-09-14 2021-03-05 ダム水位予測支援システム

Country Status (1)

Country Link
JP (1) JP7153752B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029453A1 (ja) * 2022-08-03 2024-02-08 サントリーホールディングス株式会社 情報処理装置、情報処理方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023608A (ja) 2005-07-15 2007-02-01 Yamatake Corp 河川流量推定システムおよび方法、河川水位推定システムおよび方法、並びにプログラム
JP2007205001A (ja) 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd 流量予測装置
JP2008106477A (ja) 2006-10-24 2008-05-08 Yamatake Corp 雨水流出量推定装置およびプログラム
JP2015049177A (ja) 2013-09-03 2015-03-16 中国電力株式会社 流入量予測装置、流入量予測方法、水位予測装置およびプログラム
JP2015113587A (ja) 2013-12-10 2015-06-22 三菱電機株式会社 ダム下流河川流量予測システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023608A (ja) 2005-07-15 2007-02-01 Yamatake Corp 河川流量推定システムおよび方法、河川水位推定システムおよび方法、並びにプログラム
JP2007205001A (ja) 2006-02-01 2007-08-16 Fuji Electric Systems Co Ltd 流量予測装置
JP2008106477A (ja) 2006-10-24 2008-05-08 Yamatake Corp 雨水流出量推定装置およびプログラム
JP2015049177A (ja) 2013-09-03 2015-03-16 中国電力株式会社 流入量予測装置、流入量予測方法、水位予測装置およびプログラム
JP2015113587A (ja) 2013-12-10 2015-06-22 三菱電機株式会社 ダム下流河川流量予測システム

Also Published As

Publication number Publication date
JP2022048070A (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
Latypov et al. Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase materials
Wang et al. A measure of the proportion of treatment effect explained by a surrogate marker
JP2008003920A (ja) 時系列データの予測・診断装置およびそのプログラム
US20180059628A1 (en) Information processing apparatus, information processing method, and, recording medium
JP7153752B2 (ja) ダム水位予測支援システム
JPWO2008087968A1 (ja) 変化点検出方法および装置
JP6906094B1 (ja) ダム水位予測支援システム
Attar et al. On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran
du Bos et al. Modeling stress-strain curves with neural networks: a scalable alternative to the return mapping algorithm
Mohanty et al. Gaussian process time series model for life prognosis of metallic structures
Khazaei et al. Improving the performance of water balance equation using fuzzy logic approach
JP2010054266A (ja) 浸水予測装置
JP6830043B2 (ja) パラメータ推定装置、機器故障予測装置、最適施策探索装置、方法、及びプログラム
JP6915156B2 (ja) 電力需要予測装置、電力需要予測方法、およびそのプログラム
Hermann et al. Bayesian prediction for a jump diffusion process–with application to crack growth in fatigue experiments
JP7175250B2 (ja) 水位予測装置、水位予測方法及び水位予測プログラム
Wright et al. A hybrid framework for quantifying the influence of data in hydrological model calibration
JP6642431B2 (ja) 流量予測装置、混合比推定装置、方法およびコンピュータ読み取り可能記録媒体
WO2022185380A1 (ja) 実験ポイント推薦装置、実験ポイント推薦方法及び半導体装置製造システム
US10733331B2 (en) Information processing apparatus, information processing method, and recording medium
Arbaiy et al. Fuzzy random regression-based modeling in uncertain environment
JP7133175B2 (ja) 空間データ高解像度化装置、空間データ高解像度化方法、及び空間データ高解像度化プログラム
JP2019197267A (ja) データ不足提示システムおよびデータ不足提示方法
JP2010267217A (ja) 予測装置、予測プログラムおよび予測方法
WO2022172442A1 (ja) 浸水予測プログラム、浸水予測装置および機械学習方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7153752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150