JP7128283B2 - 複数の自由度を持つ光送信機の位置合わせ - Google Patents

複数の自由度を持つ光送信機の位置合わせ Download PDF

Info

Publication number
JP7128283B2
JP7128283B2 JP2020543218A JP2020543218A JP7128283B2 JP 7128283 B2 JP7128283 B2 JP 7128283B2 JP 2020543218 A JP2020543218 A JP 2020543218A JP 2020543218 A JP2020543218 A JP 2020543218A JP 7128283 B2 JP7128283 B2 JP 7128283B2
Authority
JP
Japan
Prior art keywords
optical system
light emitting
emitting device
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020543218A
Other languages
English (en)
Other versions
JP2021517234A (ja
Inventor
ガッサン,ブレイズ
ダフ,デビッド
ドロズ,ピエール-イヴ
Original Assignee
ウェイモ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウェイモ エルエルシー filed Critical ウェイモ エルエルシー
Publication of JP2021517234A publication Critical patent/JP2021517234A/ja
Application granted granted Critical
Publication of JP7128283B2 publication Critical patent/JP7128283B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

従来の光検出および測距(LIDAR)システムは、発光送信機(例えば、レーザダイオード)を利用して、環境に光パルスを放射することができる。環境内の物体と相互作用する(例えば、物体から反射する)放射された光パルスは、LIDARシステムの受信機(例えば、光検出器)によって受信することができる。環境内の物体に関する距離情報は、光パルスが放射された最初の時間と反射された光パルスが受信された後続の時間との間の時間差に基づいて決定することができる。
本開示は、概して、光学システム(例えば、LIDARシステム)およびそれらの製造方法に関する。例示的な実施形態は、光学システム内の複数の構成要素間の光学的位置合わせを改善することができるメカニズムをともなう光学システムを含む。
第1の態様では、光学システムが提供される。光学システムは送信機を含む。送信機は、基準軸と、送信経路に沿って光を放射するように構成された発光デバイスとを含む。送信機はまた、基準軸に対する送信経路のピッチ角、ロール角、またはヨー角を調整するために、発光デバイスの向きを調整するように構成された回転可能な取付台を含む。送信機はまた、基準軸に垂直な基準面に沿って発光デバイスの位置を調整するように構成された並進可能な取付台を含む。
第2の態様では、製造方法が提供される。本方法は、発光デバイスをプリント回路基板に結合することを含む。発光デバイスは、送信経路に沿って向けられている。本方法はまた、プリント回路基板を回転可能な取付台に結合することを含む。本方法は、レンズアセンブリの基準軸に対して送信経路を調整するように、回転可能な取付台の向きを調整することをさらに含む。回転可能な取付台の向きを調整することは、基準軸に対する送信経路のピッチ角、ロール角、またはヨー角を調整することを含む。本方法は、回転可能な取付台をクランプによってレンズアセンブリに締め付けることをさらに含む。
他の態様、実施形態、および実装形態は、当業者には、以下の詳細な説明を添付の図面を適宜参照して読み取ることにより明らかになるであろう。
例示的な実施形態による光学システムを示す。 例示的な実施形態による光学システムを示す。 例示的な実施形態による光学システムを示す。 例示的な実施形態による光学システムを示す。 例示的な実施形態による車両を示す。 例示的な実施形態による車両を示す。 例示的な実施形態による車両を示す。 例示的な実施形態による車両を示す。 例示的な実施形態による車両を示す。 例示的な実施形態による光学システムを示す。 例示的な実施形態による方法を示す。 例示的な実施形態による、図6の方法の一部分を示す。 例示的な実施形態による、図6の方法の一部分を示す。 例示的な実施形態による、図6の方法の一部分を示す。
例示的な方法、デバイス、およびシステムが本明細書において説明される。「例(example)」および「例示的(exemplary)」という語は、本明細書においては、「例、事例、または例示としての役割を果たす(serving as an example,instance,or illustration)」ことを意味するために使用されることを理解されたい。本明細書において「例」または「例示的」であるとして説明される任意の実施形態または特徴は、他の実施形態または特徴よりも好ましい、または有利であると必ずしも解釈されるべきではない。本明細書において提示される主題の範囲から逸脱することなく、他の実施形態を利用することができ、他の変更を行うことができる。
このように、本明細書において説明される例示的な実施形態は、限定を意味するものではない。本明細書において概略説明され、図に例示される本開示の態様は、多種多様な異なる構成で配置する、置き換える、組み合わせる、分離する、および設計することができ、これらの構成の全てが本明細書において想到される。
さらに、文脈が異なることを示唆していない限り、これらの図の各図に示されている特徴は、互いに組み合わせて使用することができる。このように、図は一般に、例示される全ての特徴が実施形態ごとに必要である訳ではないという理解の下に、1つ以上の概略実施形態の構成要素の態様として考えられるべきである。
I.概要
LIDARデバイスは、送信経路内の1つ以上の光学素子(例えば、送信レンズ、回転ミラーなどのミラー、および光学窓)を通してLIDARデバイスの環境に光を送信するように構成された光送信機と、送信機から送信され、かつ環境内の物体によって反射された光を受信経路における1つ以上の光学素子(例えば、光学窓、ミラー、受信レンズ、およびピンホール開口)を介して検出するように構成された光検出器と、を含む。光送信機は、例えば、速軸および遅軸に沿って発散する光を放射する(例えば、1つ以上のレーザダイオードバーからなる)レーザダイであってもよい。レーザダイは、レーザダイによって放射された光の速軸を視準して、部分的に視準された透過光を提供する速軸視準(FAC)レンズ(例えば、円柱レンズ)に光学的に結合することができる。光検出器は、例えば、ピンホール開口を通して光を受信するシリコン光電子増倍管(SiPM)であってもよい。この配置では、光送信機および光検出器は、光送信機からの光が送信経路を通過してLIDARデバイスの環境に到達し、ついで環境内の物体によって反射されてLIDARデバイスに戻り、かつ受信経路を通って検出器によって受信されるように、互いに対して位置合わせされることが期待される。しかし、光送信機および光検出器が互いに正しく位置合わせされていない場合、光送信機からの光が送信経路を通過する適切な方向にないか、あるいは、環境内の物体からの反射光の一部分のみが検出器に到達するか、またはまったく到達しない方向に送信光が送信経路を通過する可能性がある。
適切な位置合わせを容易にするために、光送信機(レーザダイおよびFACレンズ)を、光送信機の複数の自由度の調整を可能にする調整メカニズムに取り付けてもよい。例示的な実施形態では、調整メカニズムは、ピッチ、ロール、およびヨー角の調整を可能にする球形界面(中心に光送信機を有する)と、光送信機のxおよびy位置の調整を可能にする平面インターフェースと、を含む。光送信機の向きおよび位置は、球形および平面インターフェースを使用して丁重に調整することができるため、光送信機からの光がLIDARデバイスの動作中に光検出器に到達する。
II.例示的な光学システム
図1は例示的な実施形態による光学システム100を示す。いくつかの例では、光学システム100は、LIDARシステムを含み得る。一例として、光学システム100は送信機110を含む。送信機110は、基準軸112を含む。いくつかの実施形態では、基準軸112は、光学レンズセット、主光軸、開口、最終目標、所望の放射軸、または別の軸によって規定され得る。
送信機110は、発光デバイス120を含む。発光デバイス120は、レーザダイ122(例えば、レーザダイオード)と速軸視準(FAC)レンズ124とを含み得る。少なくとも1つのレーザダイ122は、赤外光パルスを放射するように構成され得る。FACレンズ124は、少なくとも1つのレーザダイ122に光学的に結合される。いくつかの実施形態では、FACレンズ124は、円柱レンズを含み得る。しかしながら、本開示の状況内では、他の光学素子(例えば、円筒レンズ、球面レンズなど)も企図され、かつ可能である。
発光デバイス120は、基板126上に配置することができる。いくつかの実施形態では、基板126は、プリント回路基板、レーザダイパッケージ、または別のタイプの基板を含み得る。例示的な実施形態では、基板126は、セラミック材料で形成することができる。追加的または代替的に、基板126は、FR-4などのガラス強化エポキシ積層材料を含み得る。本開示においては、他のタイプの剛性基板材料も可能であり、かつ企図されている。
発光デバイス120は、送信経路114に沿って光を放射するように構成されている。送信経路114は、例えば、レーザダイ122の主放射軸であってもよい。いくつかの実施形態では、送信経路114は、少なくとも部分的に、軸に沿っている、および/またはレーザダイ122のレーザバーのファセットから実質的に垂直に延びるベクトルに平行であると定義することができる。
送信機110はまた、回転可能な取付台130を含む。回転可能な取付台130は、基準軸112に対する送信経路114のピッチ角、ロール角、またはヨー角を調整するために、発光デバイス120の向きを調整するように構成され得る。そのようなシナリオでは、回転可能な取付台130は、球形界面132を含み得る。球形界面132は、曲率半径と対応する曲率中心とを有し得る。発光デバイス120は、実質的に曲率中心で回転可能な取付台130に固定される。
いくつかの実施形態では、回転可能な取付台130は、-5~+5度の先端/傾斜範囲を提供するように構成されている。本開示の範囲内では、他の角度調整範囲(例えば、-2度~+2度、-10度~+10度など)も企図され、かつ可能である。
いくつかの実施形態では、光学システム100は、並進可能な取付台140を含み得る。そのようなシナリオでは、並進可能な取付台140は、基準軸112に垂直な基準面に沿って発光デバイス120の位置を調整するように構成され得る。そのようなシナリオでは、並進可能な取付台140は、回転可能な取付台130に機械的に結合される。いくつかの例では、発光デバイス120の位置を調整することは、xオフセット位置またはyオフセット位置を調整するために、基準面に沿って発光デバイス120の位置を調整することを含む。
いくつかの実施形態では、並進可能な取付台140は、xおよびyにおいて-1~+1mmの調整範囲を提供するように構成され得る。本開示の範囲内では、他の調整範囲(例えば、-10mm~+10mm)も並進可能な取付台140について企図され、かつ可能である。
様々な実施形態では、光学システム100は、受信機160も含む。受信機160は、受信経路164に沿って光を受信するように構成された光検出デバイス162を含む。
いくつかの実施形態では、発光デバイス120は、接着材料(例えば、金属共晶、接着剤、エポキシ、または要素を結びつけるように構成された別の材料)または複数の留め具のうちの少なくとも1つによって、回転可能な取付台130および/または並進可能な取付台140に機械的に固定することができる。例えば、いくつかの実施形態では、発光デバイス120は、少なくとも1つの留め具に結合された少なくとも1つの球形ワッシャによって、回転可能な取付台130に固定することができる。留め具および/または球形ワッシャは、アルミニウム、鋼、または別のタイプの構造材料で形成することができる。他の実施形態では、発光デバイス120は、はんだ接合および/またはスポット溶接接合によって、回転可能な取付台130および/または並進可能な取付台140に固定することができる。
例示的な実施形態では、光学システム100は、回転可能なミラー170を含み得る。そのようなシナリオでは、送信経路114に沿って放射された光は、光学システム100の環境に向けて反射されるように、回転可能なミラー170と相互作用する。いくつかの実施形態では、光学システム100は、追加的または代替的に、複数の光学窓180を含み得る。光学システム100の環境に向けて反射された光は、複数の光学窓180の少なくとも1つを通って透過される。回転可能なミラー170および光学窓180については、図5に関連してさらに説明する。
いくつかの例では、光学システム100は、コントローラ150も含む。コントローラ150は、フィールドプログラマブルゲートアレイ(FPGA)または特定用途向け集積回路(ASIC)のうちの少なくとも1つを含む。追加的または代替的に、コントローラ150は、1つ以上のプロセッサ152とメモリ154とを含み得る。1つ以上のプロセッサ152は、汎用プロセッサまたは特殊用途プロセッサ(例えば、デジタル信号プロセッサなど)を含み得る。1つ以上のプロセッサ152は、メモリ154に格納されているコンピュータ可読プログラム命令を実行するように構成され得る。したがって、1つ以上のプロセッサ152は、本明細書に記載の機能および動作の少なくともいくつかを提供するためにプログラム命令を実行することができる。
メモリ154は、1つ以上のプロセッサ152が読み取りまたはアクセス可能な1つ以上のコンピュータ可読記憶媒体を含むか、あるいはその形態を採ることができる。1つ以上のコンピュータ可読記憶媒体は、1つ以上のプロセッサ152の少なくとも1つと全体的または部分的に一体化することができる光メモリ、磁気メモリ、有機メモリ、もしくは他のメモリ、またはディスクストレージのような揮発性および/または不揮発性ストレージ部品を含み得る。いくつかの実施形態では、メモリ154は、単一の物理デバイス(例えば、1つの光メモリ、磁気メモリ、有機メモリ、もしくは他のメモリ、またはディスクストレージユニット)を使用して実装することができるのに対し、他の実施形態では、メモリ154は、2つ以上の物理デバイスを使用して実装することができる。
上記のように、メモリ154は、光学システム100の動作に関連するコンピュータ可読プログラム命令を含み得る。したがって、メモリ154は、本明細書に記載の機能の一部または全てを実行または促進するためのプログラム命令を含み得る。コントローラ150は、動作を実行するように構成されている。いくつかの実施形態では、コントローラ150は、メモリ154に格納された命令を実行するプロセッサ152によって動作を実行することができる。
動作は、光学システム100の環境に関する距離情報を得るために光学システム100の様々な素子を動作させることを含み得る。コントローラ150は、他の動作も実行するように構成され得る。
図2は、例示的な実施形態による光学システム200を示す。光学システム200は、例えば、回転可能な取付台130を含み得る。回転可能な取付台130は、ボール部分210とソケット部分220とを含み得る。発光デバイス120(レーザダイ122およびFACレンズ124)は、基板126の表面に沿って取り付けることができる。さらに、基板126は、ボール部分210の取り付け面に取り付けることができる。レーザダイ122およびFACレンズ124は、送信経路114を規定することができる。ボール部分210は、球形界面132の要素を構成し得る少なくとも1つの球形の凸面を含み得る。ソケット部分220は、球形界面132の別の要素を構成し得る球形の凹面を含み得る。いくつかの実施形態では、球形界面132は、少なくとも部分的に、球体212を規定することができる。
球形界面に沿って互いに接触している間、ボール部分210およびソケット部分220は、球形界面132の曲率中心(例えば、球体212の中心)に対して回転対称様式で動くように構成され得る。このようなシナリオでは、ソケット部分220に対するボール部分210の動きがレーザダイ122の発光領域の相対位置を実質的に変化させないように、発光デバイス120の1つ以上の部分を球形界面132の曲率中心に配置することができる。むしろ、ソケット部分220に対するボール部分210の動きは、レーザダイ122からの光放射の角度方向の変化をもたらし得る。すなわち、ソケット部分220に対してボール部分210を動かすことで、(例えば、x軸周りの回転における)仰角、(例えば、z軸周りの回転における)ロール角、および/または(例えば、y軸周りの回転における)ヨー角もしくは方位角を調整することができる。言い換えると、回転可能な取付台130は、3つの自由度(DOF)(例えば、仰角/ピッチ、ロール、ヨー/方位)を提供して、発光デバイス120に対する送信経路114の角度を調整することができる。
ボール部分210またはソケット部分220のうちの少なくとも1つは他の形状を有し得ることが理解されるであろう。例えば、ボール部分210および/またはソケット部分220は、中実の球体の表面を含む必要はない。むしろ、いくつかの実施形態では、ボール部分210および/またはソケット部分220は、ソケット部分220に対するボール部分210の回転対称移動を提供するために、球形表面と相互作用するように構成される複数の接触点を含み得る。
他のボール/ソケット配置も可能であり、かつ企図されることが理解されるであろう。例えば、球形のボール部分は、円錐形状の凹状ソケット部分220と相互作用することができる。そのような配置は、たとえ2つの表面が互いに対して小さな倍率で製造されるとしても、部品間の良好な接触を提供することができる。他の界面形状も企図され、かつ可能である。
光学システム200は、レンズアセンブリ230をさらに含み得る。レンズアセンブリ230は、送信レンズ232と受信レンズ234とを含み得る。送信レンズ232および/またはレンズアセンブリ230は、基準軸112を規定することができる。例えば、基準軸112は、送信レンズ232の光軸に対応し得る。追加的または代替的に、受信レンズ234および/またはレンズアセンブリ230は、受信経路164を規定することができる。図2に示すように、ソケット部分220は、基準軸112に実質的に垂直な1つ以上の平面に沿ってレンズアセンブリ230に当接することができる。
いくつかの実施形態では、ソケット部分220およびレンズアセンブリ230は、並進可能な取付台140を形成することができる。そのようなシナリオでは、ソケット部分220およびレンズアセンブリ230は、x-y平面に平行であり得る並進平面に沿って互いに対して動くように構成され得る。したがって、並進可能な取付台140は、追加の2つのDOF(例えば、xおよびyシフト)を提供して、レンズアセンブリ230などの光学システム200の他の部分に対する発光デバイス120の位置を調整することができる。
例示的な実施形態では、光学システム200の様々な素子(例えば、ボール部分210、ソケット部分220、およびレンズアセンブリ230)は、ボルト240または別のタイプの留め具によって互いに固定的に結合させることができる。いくつかの実施形態では、ボルトは、ボール部分210のねじ部分にねじ込むことができる。ソケット部分220および/またはレンズアセンブリ230は、互いに対する素子の移動を提供するのに十分な遊び(例えば、隙間)を有する貫通穴を含み得る。ボルト240は、凸状ワッシャ部分242と凹状ワッシャ部分244とを有する球形ワッシャを介してレンズアセンブリ230に固定的に結合することができる。球形ワッシャは、ボルト240の頭部に対してレンズアセンブリ230の表面をよりよく保持することができる。
図2は、光学システム200の様々な素子の特定の構成を示しているが、そのような素子は、互いに対して異なって位置付けおよび/または配置することができることが理解されよう。一例として、ボルト240の向きおよび対応する結合表面は、ボルト240の頭部を光学システム200のボール部分210に近接して配置することができるように、反転させてもよい。そのようなシナリオにおいて、ボルト240は、レンズアセンブリ230に固定的に結合することができ、球形ワッシャは、ボール部分210に近接して配置することができる。そのような配置は、改善された利用可能性および/または実用可能性を提供することができる。そのようなシナリオにおいて、留め具の軸は、位置合わせ手順の間、レンズアセンブリ230に対して静止するように維持することができる。光学システム200の素子の他の向きおよび/または配置も企図され、かつ可能である。
図3Aは、例示的な実施形態による光学システム300を示す。光学システム300は、図1および2に関連して図示および説明されている光学システム100および200と同様の素子を含み得る。しかしながら、光学システム200とは対照的に、光学システム300は、回転可能な取付台130の異なる配置を含み得る。すなわち、図3Aに示すように、回転可能な取付台130は、基板126の反対側に配置することができる凸状の球対称形状の表面を有するボール部分310を含み得る。言い換えれば、球形の表面は、基板126の実装表面の反対側に配置することができる。さらに、ソケット部分320は、L字型であってもよい。例えば、ソケット部分320は、第1の側面に沿った凹形の球対称表面と、レンズアセンブリ330の一部分に当接するように構成された第2の側面に沿った第2の表面と、を含み得る。例示的な実施形態では、並進可能な取付台140は、ソケット部分320の第2の表面とレンズアセンブリ330との間の界面を含み得る。いくつかの実施形態では、光学システム300の様々な構成要素は、最初は互いに対して固定されて、高い精度を必要としない角度自由度を「ロックダウン」することができる。その後、他の調整可能な構成要素を互いに「微調整」することができる。このようにして、複雑な光学的位置合わせを段階様式で提供することができる。
いくつかの例では、ボルト340は別の場所に配置されてもよい。例えば、ボルト340は、ボール部分310に直接ねじ込むように配置してもよい。そのようなシナリオでは、単一のボルト340を使用して、ボール部分310とソケット部分320との間の接触力を維持することができる。
いくつかの実施形態において、回転可能な取付台130(ならびにその構成要素のボール部分310およびソケット部分320)は、ボルト340、ならびに凸状ワッシャ部分342および凹状ワッシャ部分344を有する球形ワッシャによって位置的に固定することができる。追加的または代替的に、並進可能な取付台140(ならびにその構成要素のソケット部分320およびレンズアセンブリ330)は、ボルト332およびワッシャ334によって位置的に固定することができる。そのようなシナリオでは、発光デバイス120は、回転可能な取付台130によってなされる調整に対して独立した様式で、x-y平面に沿って配置および固定することができる。言い換えれば、発光デバイス120の放射角の角度調整は、並進調整とは独立して実行することができる。
ボルト332およびボルト340を利用することにより、レンズアセンブリ330および/または光学システム300の他の部分に対する発光デバイス120の位置および向きを固定するために、光学システム300の様々な素子(例えば、ボール部分310、ソケット部分320、およびレンズアセンブリ330)に圧縮力を加えることができる。しかしながら、光学システム300の素子に圧縮力を加える他の方式は、本開示内で可能であり、かつ企図される。様々な実施形態では、1つ以上のボルトを異なるように配置することができることが理解されよう。例えば、ボルトは、光軸に対して斜めの角度で位置付けることができ、ボール部分310、ソケット部分320、および/またはレンズアセンブリ330を共に締結することができる。
図3Bは、例示的な実施形態による光学システム350を示す。図1、2、および3Aに関連して図示および説明するように、光学システム350は、いくつかの態様では光学システム100、200、および300と同様であってもよい。いくつかの実施形態では、光学システム350の少なくともいくつかの素子は、接着剤、エポキシ、または別の固定材料(例えば、熱硬化性ポリマー)によって固定されるように構成され得る。例えば、ソケット部分320は、硬化性エポキシ材料を受容し、かつ収容するように構成された接着剤開口部352aを含み得る。接着剤開口部352aをエポキシで充填し、次いでエポキシを硬化させることにより、ボール部分310およびソケット部分320を、互いに対して位置的に固定することができる。追加的または代替的に、ソケット部分320および/またはレンズアセンブリ330は、接着剤開口部352bを提供することができ、これもまた、硬化性エポキシ材料を受容し、かつ収容することができる。さらに、いくつかの実施形態では、接着剤開口部352bにUV光を入れることによってエポキシ材料をより容易かつ均一に硬化することを可能にするために、UV硬化穴354を設けることができる。そのようなシナリオでは、エポキシを接着剤開口部352bに注入し、UV硬化穴354を介してエポキシを硬化することにより、硬化したエポキシは、レンズアセンブリ330に対してソケット部分320を位置的に固定することができる。
図5は、例示的な実施形態による光学システム500を示す。光学システム500は、図1、2、3A、および3Bを参照して図示および説明されるように、光学システム100、200、300、および350と同様であってもよい。例えば、光学システム500は、回転可能なステージ510に取り付けることができる光学システム100を含み得る。回転可能なステージ510は、回転軸502の周りを回転するように構成され得る。いくつかの実施形態では、回転可能なステージ510は、回転可能なステージ510を機械的に回転させるように構成されたステッピングモータまたは別のデバイスによって作動させることができる。
いくつかの実施形態では、光学システム500は、回転可能なミラー170を含み得る。回転可能なミラー170は、三角プリズムのような形状とすることができ、かつミラー軸504の周りを回転するように構成され得る。回転可能なミラー170は、複数の反射面172a、172b、および172cを含み得る。
追加的または代替的に、光学システム500は、光学窓180aおよび180bを含み得る。反射面172a~172cは、送信経路114に沿って光学システム100によって放射された光パルスを反射するように構成され得る。例えば、光パルスは、光学窓180aおよび180bを通して光学システム500の環境に向けて反射させることができる。さらに、環境からの反射光パルスは、受信経路164に沿って反射面172a~172cから反射させることができる。
そのような方法で、光学システム500は、環境の360度の領域に光パルスを放射し、かつそこから反射光パルスを受容するように構成され得る。よって、光学システム500は、それぞれの反射光パルスの飛行時間に基づいて距離情報を決定するように構成され得る。
III.例示的車両
図4A、4B、4C、4D、および4Eは、例示的な実施形態による車両400を示す。車両400は、半自律型または完全自律型の車両であってもよい。図4A~4Eは自動車(例えば、バン)であるとして車両400を示しているが、車両400は、センサおよびその環境についての他の情報を使用して環境内を移動することができる別のタイプの自律車両、ロボット、またはドローンを含み得ることが理解されよう。
車両400は、1つ以上のセンサシステム402、404、406、408、および410を含み得る。いくつかの実施形態、センサシステム402、404、406、408、および410は、所与の平面(例えば、x-y平面)に対してある角度範囲にわたって配置された複数の発光デバイスを有するLIDARセンサを含み得る。
センサシステム402、404、406、408、および410のうちの1つ以上は、車両400の周囲の環境を光パルスで照射するように、所与の平面に垂直な軸(例えば、z軸)の周りを回転するように構成され得る。反射光パルスの様々な態様(例えば、飛行の経過時間、偏光、強度など)の検出に基づいて、環境に関する情報を決定することができる。
例示的な実施形態では、センサシステム402、404、406、408、および410は、車両400の環境内の物理的対象に関係し得るそれぞれの点群情報を提供するように構成され得る。車両400およびセンサシステム402、404、406、408、および410は、特定の特徴を含むものとして示されているが、他のタイプのシステムも本開示の範囲内で企図されることを理解されたい。
例示的な実施形態は、複数の発光デバイスを有するシステムを含み得る。システムは、LIDARデバイスの伝送ブロックを含み得る。例えば、システムは、車両(例えば、自動車、トラック、オートバイ、ゴルフカート、航空機、ボートなど)のLIDARデバイス、またはその一部であってもよい。複数の発光デバイスの各発光デバイスは、それぞれのビーム仰角に沿って光パルスを放射するように構成されている。本明細書の他の箇所に記載されるように、それぞれのビーム仰角は、基準角度または基準面に基づくことができる。いくつかの実施形態では、基準面は、車両400の運動軸に基づいてもよい。
本明細書では複数の発光デバイスを有するLIDARシステムを記載および図示しているが、より少数の発光デバイス(例えば、単一の発光デバイス)を有するLIDARシステムも企図される。例えば、レーザダイオードによって放射された光パルスは、システムの環境の周りに制御可能に向けられてもよい。光パルスの放射の角度は、例えば、機械的走査ミラーおよび/または回転モーターなどの走査デバイスによって調整されてもよい。例えば、走査デバイスは、所与の軸の周りを往復運動で回転する、および/または垂直軸の周りを回転することができる。別の実施形態では、発光デバイスは、回転するプリズムミラーに向けて光パルスを放射することができ、それにより、各光パルスと相互作用するときのプリズムミラー角度の角度に基づいて光パルスを環境に放射させることができる。追加的または代替的に、光学および/または他のタイプの電気光学機械デバイスを走査することは、環境の周りの光パルスを走査することを可能にする。
いくつかの実施形態では、本明細書に記載されるように、単一の発光デバイスは、可変ショットスケジュールに従って、および/またはショット当たりの可変電力で光パルスを放射することができる。すなわち、各レーザパルスまたはショットの放射電力および/またはタイミングは、ショットのそれぞれの仰角に基づき得る。さらに、可変ショットスケジュールは、LIDARシステムから、またはLIDARシステムを支持する所与の車両の表面(例えば、フロントバンパー)からの所与の距離で所望の垂直間隔を提供することに基づくことができる。一例として、発光デバイスからの光パルスが下向きに向けられるとき、目標までの予想される最大距離がより短いことに起因して、ショット当たりの電力が低下する可能性がある。逆に、基準面の上の仰角で発光デバイスによって放射された光パルスは、より長い距離を移動するパルスを適切に検出するのに十分な信号対雑音を提供するように、ショット当たりの電力が比較的より高い場合がある。
いくつかの実施形態では、ショット当たりのパワー/エネルギーは、動的な様式でショットごとに制御され得る。他の実施形態では、ショット当たりのパワー/エネルギーは、いくつかのパルスの連続セット(例えば、10個の光パルス)について制御され得る。すなわち、光パルス列の特性は、パルス当たり基準および/または数パルス当たり基準に変更することができる。
図4は、車両400に取り付けられた様々なLIDARセンサを示しているが、車両400は、以下で説明するように、複数の光学システムなどの他のタイプのセンサを組み込むことができることが理解されよう。
IV.例示的な製造方法
図6は、例示的な実施形態による方法600を示す。図7A、7B、および7Cは、例示的な実施形態による、図6の方法600の1つ以上の部分を示す。方法600は、本明細書で明示的に例証されるか、そうでなければ開示されるものよりも少ないまたは多いステップまたはブロックを含み得ることが理解されよう。さらに、方法600のそれぞれのステップまたはブロックは、任意の順序で実行されてもよく、各ステップまたはブロックは、1回以上実行されてもよい。いくつかの実施形態では、方法600のブロックまたはステップの一部または全ては、図1、2、3A、3B、4A、4B、4C、4D、および4Eに関連して図示および説明されるように、光学システム100、200、300、または350および/または車両400の要素に関連し得る。
ブロック602は、発光デバイス(例えば、発光デバイス120)をプリント回路基板(例えば、基板126)に結合することを含む。発光デバイスをプリント回路基板に結合することは、発光デバイスをプリント回路基板に接合することを含み得る。いくつかの実施形態では、プリント回路基板は、レーザドライバ回路の一部または全てを含み得る。そのようなシナリオでは、発光デバイスは、発光デバイスをレーザドライバ回路に電気的に接続するように、プリント回路基板の導電性パッドにワイヤボンディングされてもよい。
いくつかの実施形態では、発光デバイスは、送信経路に沿ってレンズアセンブリに向けて光を放射するように構成され得る。そのようなシナリオでは、レンズアセンブリの1つ以上のレンズは、基準軸(例えば、基準軸112)を規定することができる。いくつかの例では、送信経路は、レーザバーのファセット面に対して実質的に垂直であり得る。方法600はさらに、速軸視準(FAC)レンズを発光デバイスに光学的に結合することを含み得る。FACレンズは、例えば、円柱レンズを含み得る。
図7Aを参照すると、シナリオ700は、送信経路114を規定するレーザダイ122およびFACレンズ124を含む。送信経路114は、例えば、レーザダイ122からの光放射の主軸を含み得る。レーザダイ122は、プリント回路基板を含み得る基板126に結合(例えば、接合)することができる。
ブロック604は、プリント回路基板を回転可能な取付台に結合することを含む。いくつかの実施形態では、プリント回路基板を回転可能な取付台に結合することは、エポキシまたは別のタイプの接着剤でプリント回路基板を固定することを含み得る。追加的または代替的に、プリント回路基板は、1つ以上の留め具(例えば、ボルト、ねじ、クランプ、ステープルなど)で回転可能な取付台に結合または締結することができる。回転可能な取付台は、曲率半径と、対応する曲率中心とを有する球形界面を含み得る。
いくつかの例では、方法600は、発光デバイスが実質的に曲率中心に配置されるように、回転可能な取付台に対する発光デバイスの位置を調整することを含み得る。
例えば、図7Bを参照して、シナリオ720は、基板126を、ボール部分210とソケット部分220とを含み得る回転可能な取付台130に結合することを含む。球形界面132は、球212を規定することができる。いくつかの実施形態では、発光デバイス120は、ボール部分210とソケット部分220との間の1つ以上の球形界面132の曲率中心(例えば、球212の中心)に配置することができる。
ブロック606は、レンズアセンブリの基準軸に対して送信経路を調整するために、回転可能な取付台の向きを調整することを含む。いくつかの実施形態では、回転可能な取付台の向きを調整することは、基準軸に対する送信経路のピッチ角、ロール角、またはヨー角を調整することを含み得る。
いくつかの実施形態では、回転可能な取付台は、-5~+5度の先端/傾斜範囲内で調整され得る。言い換えると、回転可能な取付台を使用して、送信経路を基準軸に対するピッチ/仰角、ロール、およびヨー/方位角で調整することができる。
ブロック608は、回転可能な取付台をクランプによってレンズアセンブリに締め付けることを含む。そのようなクランプは、例えば、接着接合、はんだ接合、溶接接合などを含み得る。
例として、図7Cを参照して、シナリオ730は、回転可能な取付台130をボルト240でレンズアセンブリ230に固定することを含む。より多くの留め具(例えば、3つのボルト)も使用されることができることが理解されるであろう。いくつかの実施形態では、方法600は、追加的または代替的に、エポキシ材料または複数の留め具のうちの少なくとも1つによって、回転可能な取付台130をレンズアセンブリ230に機械的に固定することを含み得る。例えば、回転可能な取付台130をレンズアセンブリ230に固定するために、接着剤(例えば、硬化性エポキシ)を利用することができる。
例示的な実施形態では、方法600は、基準軸に垂直な基準面に沿って発光デバイスの位置を調整するために、並進可能な取付台の位置を調整することを含み得る。言い換えれば、並進可能な取付台の位置を調整することは、発光デバイスのxオフセット位置またはyオフセット位置を調整することを含み得る。例えば、再び図7Cを参照して、並進可能な取付台140は、x-y平面に沿ってレンズアセンブリ230に対して発光デバイス120を移動させるように調整され得る。
いくつかの実施形態では、方法600は、受信機をレンズアセンブリに結合することを含む。そのようなシナリオでは、受信機は、例えば、受信経路164に沿って光を受信するように構成された光検出デバイス162を含み得る。
例示的な実施形態では、方法600は、発光デバイスに光パルスを放射させることを含み得る。発光デバイスに光パルスを放射させることは、コントローラ(例えば、コントローラ150)でレーザパルス回路を作動させることを含み得る。
方法600は、追加的または代替的に、受信経路(例えば、受信経路164)を通して受信機から光パルスの少なくとも一部分を受信することを含み得る。そのようなシナリオでは、方法600は、受信した光パルスの部分を最大化するように回転可能な取付台の向き(および/または並進可能な取付台の位置)を調整することにより、送信経路を受信経路に位置合わせすることも含み得る。
図に示されている特定の配置は、限定であるとみなされるべきではない。他の実施形態は、所与の図に示される各要素をより多く、またはより少なく含み得ることを理解されたい。さらに、図示される要素のうちのいくつかは、組み合わせることができるか、または省略することができる。なおもさらには、例示的な実施形態は、図に示されていない要素を含み得る。
情報の処理を表すステップまたはブロックは、本明細書において説明される方法または技術の特定の論理機能を実行するように構成することができる回路に対応することができる。代替的にまたは追加的に、情報の処理に相当するステップまたはブロックは、モジュール、セグメント、またはプログラムコード(関連データを含む)の一部分に対応し得る。プログラムコードは、特定の論理機能または処理を方法または技術において実行するプロセッサにより実行可能な1つ以上の命令を含み得る。プログラムコードおよび/または関連データは、ディスク、ハードドライブ、または他の記憶媒体を含む、ストレージデバイスのような任意のタイプのコンピュータ可読媒体に格納することができる。
コンピュータ可読媒体は、レジスタメモリ、プロセッサキャッシュ、およびランダムアクセスメモリ(RAM)のような、データを短期間にわたって格納するコンピュータ可読媒体のような非一時的なコンピュータ可読媒体を含むこともできる。コンピュータ可読媒体は、プログラムコードおよび/またはデータを長期間にわたって格納する非一時的なコンピュータ可読媒体も含み得る。このように、コンピュータ可読媒体は、例えばリードオンリーメモリ(ROM)、光ディスクまたは磁気ディスク、コンパクトディスクリードオンリーメモリ(CD-ROM)のような補助ストレージまたは長期永続的ストレージを含み得る。コンピュータ可読媒体は、任意の他の揮発性または不揮発性ストレージシステムとすることもできる。コンピュータ可読媒体は、例えばコンピュータ可読記憶媒体、または有形のストレージデバイスであると考えることができる。
様々な例および実施形態が開示されてきたが、他の例および実施形態が当業者には明らかであろう。様々な開示された例および実施形態は、例証の目的のためであり、限定することを意図されておらず、その真の範囲は、以下の特許請求の範囲により示される。
本明細書は、条項1~20の形式で表される次の主題を含む。1.光学システムであって、送信機であって、基準軸と、送信経路に沿って光を放射するように構成された発光デバイスと、基準軸に対する送信経路のピッチ角、ロール角、またはヨー角を調整するために、発光デバイスの向きを調整するように構成された回転可能な取付台と、基準軸に垂直な基準面に沿って発光デバイスの位置を調整するように構成された並進可能な取付台と、を含む送信機を備える、光学システム。2.受信機であって、受信経路に沿って光を受信するように構成された光検出デバイスを含む受信機を備える、条項1に記載の光学システム。3.発光デバイスは、赤外光パルスを放射するように構成された少なくとも1つのレーザダイと、少なくとも1つのレーザダイに光学的に結合された速軸視準レンズと、を含む、条項1または2に記載の光学システム。4.速軸視準レンズはシリンドリカルレンズを含む、条項3に記載の光学システム。5.回転可能な取付台は、曲率半径と、対応する曲率中心とを有する球形界面を含み、発光デバイスは、実質的に曲率中心で回転可能な取付台に固定されている、条項1~4のいずれかに記載の光学システム。6.並進可能な取付台は、回転可能な取付台に機械的に結合され、発光デバイスの位置を調整することは、xオフセット位置またはyオフセット位置を調整するために基準面に沿って発光デバイスの位置を調整することを含む、条項1~5のいずれかに記載の光学システム。7.発光デバイスは、接着材料または複数の留め具のうちの少なくとも1つを用いて、回転可能な取付台および並進可能な取付台に機械的に固定されている、条項1~6のいずれかに記載の光学システム。8.少なくとも1つの留め具に結合された少なくとも1つの球形ワッシャをさらに備える、条項7に記載の光学システム。9.回転可能なミラーを備え、送信経路に沿って放射された光は、光学システムの環境に向けて反射されるように、回転可能なミラーと相互作用する、条項1~8のいずれかに記載の光学システム。10.複数の光学窓をさらに備え、光学システムの環境に向けて反射された光は、複数の光学窓の少なくとも1つによって透過される、条項1~9のいずれかに記載の光学システム。11.製造方法であって、発光デバイスをプリント回路基板に結合することであって、発光デバイスは、送信経路に沿ってレンズアセンブリに向けて光を放射するように構成され、レンズアセンブリは基準軸を有する、結合することと、プリント回路基板を回転可能な取付台に結合することと、レンズアセンブリの基準軸に対して送信経路を調整するために回転可能な取付台の向きを調整することであって、回転可能な取付台の向きを調整することは、基準軸に対して送信経路のピッチ角、ロール角、またはヨー角を調整することを含む、調整することと、回転可能な取付台をクランプによってレンズアセンブリに締め付けることと、を含む、製造方法。12.回転可能な取付台が、曲率半径と、対応する曲率中心とを有する球形界面を含む、条項11に記載の製造方法。13.発光デバイスが実質的に曲率中心に配置されるように、回転可能な取付台に対する発光デバイスの位置を調整することをさらに含む、条項12に記載の製造方法。14.基準軸に垂直な基準面に沿って発光デバイスの位置を調整するために、並進可能な取付台の位置を調整することをさらに含む、条項11~13のいずれかに記載の製造方法。15.並進可能な取付台の位置を調整することは、発光デバイスのxオフセット位置またはyオフセット位置を調整することを含む、条項14に記載の製造方法。16.回転可能な取付台を、接着材料または複数の留め具のうちの少なくとも1つによってレンズアセンブリに機械的に固定することをさらに含む、条項11~15のいずれかに記載の製造方法。17.レンズアセンブリに受信機を結合することをさらに含み、受信機は、受信経路に沿って光を受信するように構成された光検出デバイスを含む、条項11~16のいずれかに記載の製造方法。18.発光デバイスに速軸視準レンズを光学的に結合することをさらに含み、速軸視準レンズは円柱レンズを含む、条項11~17のいずれかに記載の製造方法。19.回転可能な取付台は、少なくとも-2~+2度の先端/傾斜範囲を提供するように構成されている、条項11~18のいずれかに記載の製造方法。20.発光デバイスに光パルスを放射させることと、光パルスの少なくとも一部分を受信経路によって受信機から受信することと、受信した光パルスの一部分を最大化するように回転可能な取付台の向きを調整することにより、送信経路を受信経路に位置合わせすることと、をさらに含む、条項11~19のいずれかに記載の製造方法。

Claims (8)

  1. 光学システムであって、
    送信機であって、
    基準軸と、
    送信経路に沿って光を放射するように構成された発光デバイスと、
    前記基準軸に対して前記送信経路のピッチ角、ロール角、またはヨー角を調整するために、前記発光デバイスの向きを調整するように構成された回転可能なボール部分と、
    前記ボール部分を回転可能に支持するソケット部分と、
    前記基準軸に垂直な基準面に沿って前記発光デバイスの位置を調整するように構成され、前記ソケット部分に対して相対的に並進可能なレンズアセンブリと、を含む送信機と、
    受信機であって、
    受信経路に沿って光を受信するように構成された光検出デバイスを含み、前記ボール部は、受信される光を最大化するように、前記送信経路を前記受信経路に対して位置合わせするようにさらに構成された、受信機と、を備える、光学システム。
  2. 前記発光デバイスは、
    赤外光パルスを放射するように構成された少なくとも1つのレーザダイと、
    前記少なくとも1つのレーザダイに光学的に結合された速軸視準レンズと、を含む、請求項1に記載の光学システム。
  3. 前記速軸視準レンズは円柱レンズを含む、請求項に記載の光学システム。
  4. 前記ボール部分は、曲率半径と、対応する曲率中心とを有する球形界面を含み、前記発光デバイスは、実質的に前記曲率中心で前記ボール部分に固定されている、請求項1に記載の光学システム。
  5. 前記レンズアセンブリは、前記ソケット部分に機械的に結合され、前記発光デバイスの位置を調整することは、xオフセット位置またはyオフセット位置を調整するために前記基準面に沿って前記発光デバイスの前記位置を調整することを含む、請求項に記載の光学システム。
  6. 少なくとも1つの留め具に結合された少なくとも1つの球形ワッシャをさらに備える、請求項に記載の光学システム。
  7. 回転可能なミラーをさらに備え、前記送信経路に沿って放射された前記光は、前記光学システムの環境に向けて反射されるように、前記回転可能なミラーと相互作用する、請求項1に記載の光学システム。
  8. 複数の光学窓をさらに備え、前記光学システムの前記環境に向けて反射された前記光は、前記複数の光学窓の少なくとも1つによって透過される、請求項に記載の光学システム。
JP2020543218A 2019-03-05 2020-03-04 複数の自由度を持つ光送信機の位置合わせ Active JP7128283B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962814164P 2019-03-05 2019-03-05
US62/814,164 2019-03-05
PCT/US2020/020872 WO2020180920A1 (en) 2019-03-05 2020-03-04 Alignment of optical transmitter with multiple degrees of freedom

Publications (2)

Publication Number Publication Date
JP2021517234A JP2021517234A (ja) 2021-07-15
JP7128283B2 true JP7128283B2 (ja) 2022-08-30

Family

ID=72338084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543218A Active JP7128283B2 (ja) 2019-03-05 2020-03-04 複数の自由度を持つ光送信機の位置合わせ

Country Status (5)

Country Link
US (1) US20210405157A1 (ja)
EP (1) EP3740805A4 (ja)
JP (1) JP7128283B2 (ja)
CN (1) CN111971608A (ja)
WO (1) WO2020180920A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009376B2 (en) * 2020-12-22 2024-06-11 Beijing Voyager Technology Co., Ltd. Highly integrated transmitter module for LiDAR
WO2024002487A1 (en) * 2022-06-30 2024-01-04 Avancon Sa Light barrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311203A (ja) 2004-04-23 2005-11-04 Sony Corp 発光素子の固定ホルダ、光ピックアップおよび情報処理装置
JP2006339569A (ja) 2005-06-06 2006-12-14 Sony Corp レーザ装置及びこれを備えた画像表示装置
JP2007249058A (ja) 2006-03-17 2007-09-27 Fujifilm Corp 光源の保持機構
JP2008147182A (ja) 2006-12-05 2008-06-26 Ind Technol Res Inst 光の出射角度を調整可能な発光装置
JP2008192215A (ja) 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd レンズ保持構造、光ピックアップ装置および光学式情報記録再生装置
WO2012133081A1 (ja) 2011-03-29 2012-10-04 三洋電機株式会社 物体検出装置および情報取得装置
JP2017003938A (ja) 2015-06-16 2017-01-05 株式会社リコー 光源装置及びこの光源装置を用いた光走査装置、物体検出装置
US20180149732A1 (en) 2015-04-06 2018-05-31 Waymo Llc Long Range Steerable LIDAR System

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124563A1 (de) 2001-05-14 2002-11-28 Deutsch Zentr Luft & Raumfahrt Positioniereinrichtung
US7330633B2 (en) 2004-11-18 2008-02-12 Bookham Technology Plc Three constraint joint
JP4922118B2 (ja) * 2007-03-09 2012-04-25 株式会社リコー 光走査装置及び画像形成装置
JP2011186422A (ja) * 2010-02-10 2011-09-22 Sanyo Electric Co Ltd ビーム照射装置
DE102010040892B4 (de) 2010-09-16 2012-07-12 Osram Ag Leuchtvorrichtung mit Kühlkörper und Verfahren zum Ausrichten eines von einer Leuchtvorrichtung ausgestrahlten Lichtbündels
EP2607924A1 (de) 2011-12-23 2013-06-26 Leica Geosystems AG Entfernungsmesser-Justage
US9678300B2 (en) * 2013-02-01 2017-06-13 Newport Corporation Optical post mount system and method of use
GB2528976B (en) * 2014-08-08 2016-12-28 Servomex Group Ltd Alignment device and transmitter/receiver system with two angular degrees of freedom
WO2016140491A1 (ko) * 2015-03-04 2016-09-09 정민시 수평 자유조절 삼각대
US9651658B2 (en) * 2015-03-27 2017-05-16 Google Inc. Methods and systems for LIDAR optics alignment
US10012723B2 (en) * 2015-03-31 2018-07-03 Amazon Technologies, Inc. Modular LIDAR system
CN105137414B (zh) * 2015-07-23 2017-10-24 中国人民解放军陆军军官学院 一种用于侧向激光雷达测量气溶胶参数的测量装置
CN105605533B (zh) * 2016-03-25 2018-08-10 江苏中正照明集团有限公司 一种节能灯用调节导向灯具装置
US10379540B2 (en) * 2016-10-17 2019-08-13 Waymo Llc Light detection and ranging (LIDAR) device having multiple receivers
US20180227566A1 (en) * 2017-02-06 2018-08-09 Microsoft Technology Licensing, Llc Variable field of view and directional sensors for mobile machine vision applications
KR102368106B1 (ko) * 2017-04-07 2022-02-28 엘지이노텍 주식회사 렌즈 구동 장치, 발광 모듈, 라이다 및 라이다의 구동방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311203A (ja) 2004-04-23 2005-11-04 Sony Corp 発光素子の固定ホルダ、光ピックアップおよび情報処理装置
JP2006339569A (ja) 2005-06-06 2006-12-14 Sony Corp レーザ装置及びこれを備えた画像表示装置
JP2007249058A (ja) 2006-03-17 2007-09-27 Fujifilm Corp 光源の保持機構
JP2008147182A (ja) 2006-12-05 2008-06-26 Ind Technol Res Inst 光の出射角度を調整可能な発光装置
JP2008192215A (ja) 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd レンズ保持構造、光ピックアップ装置および光学式情報記録再生装置
WO2012133081A1 (ja) 2011-03-29 2012-10-04 三洋電機株式会社 物体検出装置および情報取得装置
US20180149732A1 (en) 2015-04-06 2018-05-31 Waymo Llc Long Range Steerable LIDAR System
JP2017003938A (ja) 2015-06-16 2017-01-05 株式会社リコー 光源装置及びこの光源装置を用いた光走査装置、物体検出装置

Also Published As

Publication number Publication date
WO2020180920A1 (en) 2020-09-10
EP3740805A4 (en) 2021-11-17
JP2021517234A (ja) 2021-07-15
EP3740805A1 (en) 2020-11-25
US20210405157A1 (en) 2021-12-30
CN111971608A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
US20220244356A1 (en) Variable Beam Spacing, Timing, and Power for Vehicle Sensors
JP7128283B2 (ja) 複数の自由度を持つ光送信機の位置合わせ
EP3330766B1 (en) Mirror unit and optical-scanning-type object detection device
CN104111514B (zh) 反射镜装置、光幕、反射镜装置的调节方法及装配方法
JP7548590B2 (ja) ライダーシステムにおけるオプトエレクトロニクスコンポーネントの取り付け構成
JP7510433B2 (ja) Lidar送信機および受信機の光学系
EP3685209B1 (en) A lever system for driving mirrors of a lidar transmitter
JP6414349B1 (ja) 光放射装置、物体情報検知装置、光路調整方法、物体情報検知方法、及び、光変調ユニット
CN108872965A (zh) 一种激光雷达
US11675054B2 (en) Kinematic mount for active, multi-degree-of-freedom alignment in a LiDAR system
US11493604B2 (en) Kinematic mount for active reflective mirror alignment with multi-degree-of-freedom
US11614520B2 (en) Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom
US20210199771A1 (en) Kinematic mount for active receiver alignment with multi-degree-of-freedom
WO2019244701A1 (ja) 光放射装置、物体情報検知装置、光路調整方法、及び、物体情報検知方法
CN113514813B (zh) 一种扫描装置和包括该扫描装置的激光雷达
US20230176202A1 (en) Apparatus for manufacturing lidar receiver and method for manufacturing lidar receiver
US20220019034A1 (en) Stabilizing Power Output
JPH05203745A (ja) 光レーダシステムの光学ヘッド
CN217404605U (zh) 反射镜调节装置和反射镜调节组件
US20230139299A1 (en) Micro-mirror die attached to a package substrate through die attach materials with different young's moduluses
JPH10232363A (ja) 光走査装置
JP2004279802A (ja) 光モジュールの組立方法及び組立装置
JP3806532B2 (ja) 半導体レーザ装置の組立方法
JPH10812A (ja) マルチビーム光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150