JP7112952B2 - インピーダンス整合装置及びインピーダンス整合方法 - Google Patents

インピーダンス整合装置及びインピーダンス整合方法 Download PDF

Info

Publication number
JP7112952B2
JP7112952B2 JP2018243192A JP2018243192A JP7112952B2 JP 7112952 B2 JP7112952 B2 JP 7112952B2 JP 2018243192 A JP2018243192 A JP 2018243192A JP 2018243192 A JP2018243192 A JP 2018243192A JP 7112952 B2 JP7112952 B2 JP 7112952B2
Authority
JP
Japan
Prior art keywords
capacitance
impedance
switch
capacitor
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243192A
Other languages
English (en)
Other versions
JP2020107431A (ja
Inventor
龍哉 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2018243192A priority Critical patent/JP7112952B2/ja
Priority to US16/719,358 priority patent/US11050400B2/en
Priority to KR1020190170563A priority patent/KR20200080168A/ko
Publication of JP2020107431A publication Critical patent/JP2020107431A/ja
Priority to US17/328,121 priority patent/US11356074B2/en
Application granted granted Critical
Publication of JP7112952B2 publication Critical patent/JP7112952B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は、高周波電源と負荷との間のインピーダンスの整合を図るインピーダンス整合装置及びインピーダンス整合方法に関する。
高周波電源からプラズマ負荷等の負荷に電力を供給する際、負荷からの電力の反射をなくして負荷に効率良く電力を供給するため、高周波電源の出力インピーダンスと、高周波電源から負荷側を見たインピーダンスとを整合させるインピーダンス整合装置が知られている(例えば、特許文献1)。
特許文献1に記載のインピーダンス整合装置は、可変キャパシタを含み、高周波電源と負荷との間に設けられている。特許文献1の可変キャパシタは、並列に接続された複数のキャパシタを備え、当該複数のキャパシタ夫々に直列に接続された半導体スイッチ(PINダイオード)をオン又はオフするスイッチング制御により、可変キャパシタの静電容量(キャパシタンス)を変更するように構成されている。特許文献1のインピーダンス整合装置は、可変キャパシタの静電容量を変更することにより、インピーダンスの整合を図る。
特開2012-142285号公報
しかしながら、プラズマ負荷のように、インピーダンスが頻繁に変動する負荷に高周波電力を供給する場合、負荷インピーダンスの変化に追従して可変キャパシタの静電容量を決定する半導体スイッチの状態を更新し続けると、半導体スイッチのオンオフ動作が高速かつ連続で行われる。オンオフ動作が高速かつ連続で行われることにより、スイッチングロスによる半導体スイッチの発熱量が増加するという問題点がある。
本発明の目的は、半導体スイッチの発熱量を抑制することができるインピーダンス整合装置及びインピーダンス整合方法を提供する。
本開示の一態様に係るインピーダンス整合装置は、高周波電源と負荷との間に設けられ、前記高周波電源の出力端又は該出力端と同等の箇所から前記負荷側を見たインピーダンスに関する情報を取得して、該高周波電源と負荷とのインピーダンスの整合を図るインピーダンス整合装置であって、前記高周波電源に一端が接続されるキャパシタと、該キャパシタに直列に接続される半導体スイッチとを含むキャパシタンス要素を複数個有し、該複数のキャパシタンス要素が互いに並列に接続された可変キャパシタと、取得した前記インピーダンスに関する情報に基づいて、前記高周波電源と前記負荷との間のインピーダンスが整合するように前記複数の半導体スイッチ夫々をオンオフ制御する制御部とを備え、前記制御部は、取得した前記高周波電源から前記負荷側を見たインピーダンスに関する情報に基づいて反射係数を導出し、前記反射係数が所定値以上の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期にて更新し、前記反射係数が所定値未満の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を前記第1周期よりも長い第2周期で更新する。なお、該出力端と同等の箇所とは例えば、インピーダンス整合装置の入力端である。
本態様にあたっては、制御部は、反射係数が所定値以上の場合、複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期にて更新し、反射係数が所定値未満の場合、複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期よりも長い第2周期で更新する。従って、所定値未満、すなわち整合状態に近づいた後においては、細かい調整が必要となるが、第1周期よりも長い第2周期で更新することにより、半導体スイッチのスイッチング回数を低減させて発熱を抑制することができる。
本開示の一態様に係るインピーダンス整合装置は、前記反射係数の所定値は、0.1である。
本態様にあたっては、反射係数の所定値を0.1とすることで、整合状態に概ね近接している状態であるか否かを判定する閾値として用いることができる。
本開示の一態様に係るインピーダンス整合装置は、前記複数のキャパシタンス要素は、第1キャパシタンス要素群と、前記第1キャパシタンス要素群を構成する一つのキャパシタの静電容量よりも小さい静電容量のキャパシタを有する第2キャパシタンス要素群とを含み、前記制御部は、前記第1周期にて更新する場合、前記第1キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新し、前記第2キャパシタンス要素群の前記半導体スイッチの状態を維持し、前記第2周期にて更新する場合、前記第1キャパシタンス要素群及び前記第2キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新する。
本態様にあたっては、複数のキャパシタンス要素は、第1キャパシタンス要素群と、第1キャパシタンス要素群を構成する一つのキャパシタの静電容量よりも小さい静電容量のキャパシタを有する第2キャパシタンス要素群とを含む。前記制御部は、第1周期にて更新する場合、第1キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新し、第2周期にて更新する場合、前記第1キャパシタンス要素群及び前記第2キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新する。第1キャパシタンス要素群は、各キャパシタンスの静電容量値が大きいため、1つのキャパシタンスを変化させることで、インピーダンスが大きく変わるものとなる。従って、反射係数が所定値以上となる不整合状態のときは、大まかな調整となるため、まずは第1キャパシタンス要素群によってインピーダンスを調整する。反射係数が所定値未満となった場合(整合状態に近づいた後)は、細かい調整が必要となるため、第2キャパシタンス要素群を追加し、第1キャパシタンス要素群及び第2キャパシタンス要素群によりインピーダンスを調整する。第1キャパシタンス要素群を構成するキャパシタンスよりも静電容量値が小さいキャパシタンスを含む第2キャパシタンス要素群のキャパシタは、頻繁にスイッチング(半導体スイッチの状態の更新)を繰り返すものとなる。特に容量値が小さいキャパシタは、当該スイッチングの頻度が高いものとなる。
これに対し、反射係数が所定値以上となる不整合状態の場合、第1周期で第1キャパシタンス要素群をスイッチングさせ、反射係数が所定値未満となった場合(整合状態に近づいた後)は、第2周期で第1キャパシタンス要素群及び第2キャパシタンス要素群をスイッチングさせて、半導体スイッチの状態の更新を行う。
第2周期は第1周期よりも長い周期にしてあるため、反射係数が所定値未満となった場合(整合状態に近づいた後)は、更新周期を長くすることにより、第2キャパシタンス要素群のスイッチングによる発熱を低減させることができる。なお、このように整合状態に近づいた後は、第1キャパシタンス要素群はほとんど変化しないため、第1キャパシタンス要素群のスイッチングにより発熱による影響は少ない。
すなわち、反射係数が所定値未満となった場合(整合状態に近づいた後)は、更新周期を長くすることによって、半導体スイッチのオンオフによるスイッチングロスを低減し、半導体スイッチの温度が上昇することを抑制することができる。又、反射係数が所定値以上となる不整合状態の場合は、静電容量が大きいキャパシタを含む前記第1キャパシタンス要素群の半導体スイッチの状態を第1周期にて更新するため、目標とするインピーダンスの整合点に早期に近接させることができる。
本開示の一態様に係るインピーダンス整合装置は、前記第1キャパシタンス要素群のいずれかのキャパシタの静電容量は、前記第2キャパシタンス要素群の全てのキャパシタの静電容量の合計値よりも大きい。
本態様にあたっては、第1キャパシタンス要素群のいずれかのキャパシタの静電容量は、前記第2キャパシタンス要素群が含む全てのキャパシタの静電容量の合計値よりも大きい。従って、可変キャパシタに要求される静電容量が、第2キャパシタンス要素群が含む全てのキャパシタの静電容量の合計値よりも大きい場合、第1キャパシタンス要素群のキャパシタを用いることにより対応することができる。
本開示の一態様に係るインピーダンス整合方法は、高周波電源と負荷との間に設けられる可変キャパシタによって、前記高周波電源と前記負荷とのインピーダンスの整合を図るインピーダンス整合方法であって、前記可変キャパシタは、キャパシタ及び半導体スイッチを含むキャパシタンス要素を複数個有し、取得した前記高周波電源から前記負荷側を見たインピーダンスに関する情報に基づいて反射係数を導出し、前記反射係数が所定値以上の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期にて更新し、前記反射係数が所定値未満の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を前記第1周期よりも長い第2周期で更新する。
本態様にあたっては、半導体スイッチの発熱量を抑制することができるインピーダンス整合方法を提供することができる。
半導体スイッチの発熱量を抑制することができるインピーダンス整合装置及びインピーダンス整合方法を提供することができる。
実施形態1に係るインピーダンス整合装置の一構成例を略示した回路図である。 制御部の一構成例を略示したブロック図である。 駆動回路の一構成例を略示した回路図である。 第1キャパシタンス要素群に関する説明図である。 第2キャパシタンス要素群に関する説明図である。 半導体スイッチの更新周期に関する説明図である。 実施形態1に係る制御部の処理を示すフローチャートである。 変形例1に係る駆動回路の一構成例を略示した回路図である。
(実施形態1)
以下、実施の形態について、図面に基づいて説明する。図1は、実施形態1に係るインピーダンス整合装置1の一構成例を略示した回路図である。インピーダンス整合装置1は、高周波電源6と負荷8との間に接続されている。高周波電源6とインピーダンス整合装置1との間には、高周波検出部7が設けられている。すなわち、高周波検出部7は、高周波電源6の出力端と、インピーダンス整合装置1の入力端との間に介在してある。インピーダンス整合装置1は、高周波検出部7が検出した高周波電源6から負荷8側を見たインピーダンス(負荷側インピーダンス)に関する情報を取得し、当該情報に基づいて、高周波電源6から負荷8側を見たインピーダンスを、高周波電源6の出力インピーダンスに整合(負荷側インピーダンスと高周波電源6の出力インピーダンスとを共役関係にする)させる。
高周波電源6は、例えば、2MHz、13.56MHz、27MHz又は60MHz等のRF帯(Radio Frequency)の高周波電力を出力する交流電源であり、出力インピーダンスは、例えば50Ω等の所定の値に設定されている。高周波電源6は、インバータ回路(図示せず)を含み、当該インバータ回路を高速でスイッチング制御することにより、高周波の交流電力を生成して後述する負荷8へ出力する。
負荷8は、高周波電源6から入力される高周波電力を用いて各種処理を行うものであり、例えば、プラズマ処理装置や非接触電力伝送装置等である。プラズマ処理装置では、プラズマエッチングやプラズマCVDなどの製造プロセスの進行に伴い、プラズマの状態が時々刻々と変化する。これにより、負荷8のインピーダンスが変動する。負荷8に高周波電源6から効率よく電力を供給するため、負荷8のインピーダンスの変動に伴い、高周波電源6から負荷8側を見たインピーダンス(負荷側インピーダンス)を調整する必要がある。
高周波検出部7は、高周波電源6の出力端より負荷8側を見たインピーダンスである負荷側インピーダンスを演算するために用いるパラメータを検出する。当該パラメータは、例えば高周波電源6から負荷8に供給される高周波電圧、高周波電流、及び高周波電圧と高周波電流との位相差とを用いて導出したパラメータである。当該パラメータは、高周波検出部7とインピーダンス整合装置1の接続接点又は高周波電源6の出力端で検出した進行波電圧、反射波電圧、進行波電流、反射波電流、進行波電力、反射波電力又は、進行波電圧等及び反射波電圧等を用いて導出した反射係数を含むパラメータである。反射係数に関する事項は、例えば公知文献(特開2014-236435号公報、)による。当該パラメータは、公知文献(特開2006-166412号公報)に記載されているようなTパラメータ(transmission parameter)又はSパラメータ(scattering parameter)を含む。高周波検出部7は、高周波電源6から負荷8側を見たインピーダンス(負荷側インピーダンス)に関する情報を検出するインピーダンス検出部に相当する。なお、負荷側インピーダンスは、負荷8のインピーダンスと、インピーダンス整合装置1のインピーダンスとの合成インピーダンスに相当するものであり、負荷側インピーダンスからインピーダンス整合装置1のインピーダンスを減算することにより、負荷8のインピーダンスを導出することができる。
インピーダンス整合装置1は、2つの可変キャパシタ2、インダクタ5、駆動回路3及び制御部4を含む。インピーダンス整合装置1は、高周波検出部7が検出した負荷側インピーダンスに関する情報に基づき、可変キャパシタ2の静電容量を変更し、負荷側インピーダンスを調整することで、インピーダンス整合を行う。又、インピーダンス整合装置1は、高周波検出部7が検出した負荷側インピーダンスに関する情報に基づき、反射係数を導出し、導出した反射係数に基づき、可変キャパシタ2の更新周期の制御を行う。
インピーダンス整合装置1において、一方の可変キャパシタ2は一端を、高周波検出部7を介して高周波電源6に接続し他端をグランドに接続(接地)してある。他方の可変キャパシタ2は、一方の可変キャパシタ2と並列に接続してあり、一端を、高周波検出部7を介して高周波電源6と接続し他端を負荷8に接続してある。他方の可変キャパシタ2と負荷8との間には、インダクタ5が直列に接続されている。すなわち、可変キャパシタ2と高周波電源6との接続は、直接的な接続に限定されず、高周波検出部7等を介した間接的な接続も含む。これら2つの可変キャパシタ2及びインダクタ5によって、逆L型の整合回路11が構成される。なお、整合回路11は逆L型に限定されず、2つの可変キャパシタ2の一端夫々を高周波電源6に接続し、他端夫々をグランドに接続(接地)して、これら2つの可変キャパシタ2を並列に接続するπ型の整合回路11であってもよい。
可変キャパシタ2は、第1キャパシタンス要素群21、第2キャパシタンス要素群22を含む。第1キャパシタンス要素群21は、互いに並列に接続された複数の第1キャパシタンス要素211を含む。第1キャパシタンス要素211は、一端を高周波電源6側に接続した上位ビットキャパシタ212と、上位ビットキャパシタ212の他端に直列に接続された上位ビットスイッチ213を含む。上位ビットキャパシタ212夫々の静電容量は、同じに設定されている。
上位ビットスイッチ213は、例えばPINダイオードであり、アノードを高周波電源6側に、カソードを接地側となるように接続されている。PINダイオードのアノードと、上位ビットキャパシタ212の他端との間の接続節点には、後述する駆動回路3からの直流電圧が出力される電線が接続されている。PINダイオードのアノードとカソード間にて、駆動回路3から出力された直流電圧が順方向となるように印加されることにより、PINダイオードはオン状態となる。PINダイオードからなる上位ビットスイッチ213がオン状態となることにより、当該上位ビットスイッチ213を通して高周波電流を双方向に流すことができる。また、上位ビットスイッチ213がオン状態となることにより、当該上位ビットスイッチ213に直列に接続された上位ビットキャパシタ212を機能させることができ、オン状態とした上位ビットスイッチ213の個数に応じて、第1キャパシタンス要素群21による静電容量(単一の上位ビットキャパシタ212の静電容量×オン状態とした上位ビットスイッチ213の個数)を調整することができる。
第2キャパシタンス要素群22は、互いに並列に接続された複数の第2キャパシタンス要素221を含む。第2キャパシタンス要素221は、一端を高周波電源6側に接続した下位ビットキャパシタ222と、下位ビットキャパシタ222の他端に直列に接続された下位ビットスイッチ223を含む。
下位ビットキャパシタ222夫々の静電容量は、段階的に互いに異なるように設定してある。下位ビットキャパシタ222の内、最小の静電容量である下位ビットキャパシタ222(最小キャパシタ)に対し、他の下位ビットキャパシタ222の静電容量は、当該最小キャパシタの静電容量の2のべき乗の値となるよう設定してある。下位ビットキャパシタ222夫々の静電容量及び上位ビットキャパシタ212の静電容量との関係等、詳細は後述する。
下位ビットスイッチ223は、上位ビットスイッチ213と同様にPINダイオードであり、アノードを高周波電源6側に、カソードを接地側となるように接続されており、駆動回路3から出力された直流電圧に応じてオン状態となる。下位ビットスイッチ223がオン状態となることにより、当該下位ビットスイッチ223に直列に接続された下位ビットキャパシタ222を機能させることができる。オン状態とした下位ビットスイッチ223の状態に応じて、第2キャパシタンス要素群22による静電容量(オン状態の下位ビットキャパシタ222夫々の静電容量の合計値)を調整することができる。
なお、本実施形態において、第1キャパシタンス要素群21に含まれる第1キャパシタンス要素211の個数は3つ、第2キャパシタンス要素群22に含まれる第2キャパシタンス要素221の個数は4つとしてあるが、これら例示による個数に限定されない。第1キャパシタンス要素211の個数は2つ以上であればよく、第2キャパシタンス要素221の個数は2つ以上であればよい。図1において、可変キャパシタ2は、第1キャパシタンス要素群21及び第2キャパシタンス要素群22により構成されるものとしているが、これに限定されない。可変キャパシタ2は、第1キャパシタンス要素群21及び第2キャパシタンス要素群22以外のキャパシタンス要素を含むものであってもよい。図1において、インピーダンス整合装置1は、静電容量を調整するために2つの可変キャパシタ2を含むものとしたが、これに限定されない。インピーダンス整合装置1は、静電容量を調整するために1つ又は3つ以上の可変キャパシタ2を含むものであってよく、更に固定容量のキャパシタを含むものであってよい。
図2は、制御部4の一構成例を略示したブロック図である。制御部4は、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等により構成され、時計機能及び演算機能を有する。制御部4は、ROM(Read Only Memory)又はRAM(Random Access Memory)等の記憶部40と内部バス等により接続されており、記憶部40に記憶されたプログラムを実行することにより、インピーダンス演算部41、静電容量演算部42、目標スイッチ状態決定部43及び更新周期決定部44として機能する。制御部4は、スイッチ制御部45を含み、高周波検出部7が検出した高周波電源6から負荷8側を見たインピーダンス(負荷側インピーダンス)に関する情報を取得し、当該情報に基づきスイッチ制御部45を制御することにより、可変キャパシタ2の静電容量を調整してインピーダンス整合を行う。
インピーダンス演算部41は、高周波検出部7が検出し出力した高周波電源6から負荷8側を見たインピーダンスに関する情報又は当該情報が含まれるパラメータを所定の周期にて取得し、高周波電源6から負荷8側を見たインピーダンスを負荷側インピーダンスとして演算する機能部である。負荷側インピーダンスを演算する周期(演算周期)は、例えば、100μsecから1msecである。又、インピーダンス演算部41は、高周波検出部7が検出し出力した高周波電源6から負荷8側を見たインピーダンスに関する情報又は当該情報が含まれるパラメータを所定の周期にて取得し、反射係数を導出する。上述のごとく、高周波検出部7により検出されたパラメータには反射係数が含まれており、インピーダンス演算部41は、高周波検出部7から取得したパラメータから当該反射係数を導出するものであってもよい。又は、インピーダンス演算部41は、当該パラメータに含まれる進行波電圧及び反射波電圧等に基づき、反射係数を演算(反射係数=反射波電圧/進行波電圧)するものであってもよい。すなわち、インピーダンス演算部41は、反射係数導出部に相当する。
静電容量演算部42は、インピーダンス演算部41により演算された負荷側インピーダンスを、高周波電源6の出力インピーダンスに整合させるため、可変キャパシタ2に要求される静電容量を演算する機能部である。
目標スイッチ状態決定部43は、可変キャパシタ2の静電容量を、静電容量演算部42によって演算された静電容量にするために、可変キャパシタ2に含まれるPINダイオード夫々(上位ビットスイッチ213、下位ビットスイッチ223又は上位ビットスイッチ213及び下位ビットスイッチ223)のオン又はオフの状態を決定する機能部である。
更新周期決定部44は、インピーダンス演算部41が導出した反射係数を取得し、当該反射係数に基づいて、上位ビットスイッチ213又は下位ビットスイッチ223の状態を更新する周期(更新周期)を決定する機能部である。更新周期は、例えば100μsecから5msecであり、更新周期と負荷側インピーダンスを演算又は、反射係数を導出する周期(演算周期)とを同周期としてもよい。更新周期決定部44の詳細は、後述のフローチャートにて説明する。
スイッチ制御部45は、制御回路451及び分岐回路452(図3参照)を含む。スイッチ制御部45は、更新周期決定部44が決定した更新周期にて、上位ビットスイッチ213、下位ビットスイッチ223、又は上位ビットスイッチ213及び下位ビットスイッチ223の状態を更新する。スイッチ制御部45は、目標スイッチ状態決定部43が決定した上位ビットスイッチ213又は下位ビットスイッチ223の状態に基づき、上位ビットスイッチ213又は下位ビットスイッチ223の状態を更新するためのオン・オフ信号を駆動回路3に出力し、上位ビットスイッチ213又は下位ビットスイッチ223の状態を更新する。
図3は、駆動回路3の一構成例を略示した回路図である。駆動回路3は、図1に示すごとく上位ビットスイッチ213又は下位ビットスイッチ223夫々に対応して設けられている。なお、図3では、第1キャパシタンス要素211を基に図示している。
駆動回路3の一端は、PINダイオード(上位ビットスイッチ213、下位ビットスイッチ223)のアノードと、上位ビットキャパシタ212又は下位ビットキャパシタ222との接続節点に接続されている。駆動回路3の他端は、制御部4に含まれるスイッチ制御部45と接続されている。駆動回路3は、スイッチ制御部45からの制御信号に基づき、直流電圧を一端から出力し、PINダイオード(上位ビットスイッチ213、下位ビットスイッチ223)の順方向に対して当該直流電圧を印加する。
駆動回路3は、ハイ側スイッチ31及びロー側スイッチ32を含む。ハイ側スイッチ31及びロー側スイッチ32は、例えばn型MOSFET(metal-oxide-semiconductor field-effect transistor)、IGBT(Insulated Gate Bipolar Transistor)等の半導体スイッチである。
ハイ側スイッチ31のソースとロー側スイッチ32のドレインとを直列に接続し、ハイ側スイッチ31とロー側スイッチ32との接続節点と、PINダイオードと上位ビットキャパシタ212又は下位ビットキャパシタ222との接続節点とは、電線(出力線)により接続されている。この出力線には、コンデンサFC及びコイルFLからなるフィルタ回路33(ローパスフィルタ)が設けられている。ハイ側スイッチ31とロー側スイッチ32との接続節点と、ハイ側スイッチ31との間には、並列接続された抵抗RとスピードアップコンデンサSCが設けられている。ハイ側スイッチ31のドレインには、駆動電源(V)の正極側出力端子34が接続されている。ロー側スイッチ32のソースには、駆動電源(V)の負極側出力端子35が接続されている。ハイ側スイッチ31及びロー側スイッチ32のゲート端子夫々には、スイッチ制御部45からの2つの信号線夫々が接続されている。
スイッチ制御部45は、制御回路451及び分岐回路452を含み、分岐回路452にて2つに分岐した信号線には、ハイ側スイッチ31及びロー側スイッチ32を相補的にオン又はオフする制御信号が出力される。すなわち、制御回路451から出力された制御信号に基づいて、分岐回路452は、ハイレベル(H)とローレベル(L)とになる互いに反転した2つの電圧信号を生成し、一方の電圧信号をハイ側スイッチ31に出力し、他方の電圧信号をロー側スイッチ32に出力する。ハイレベル(H)の電圧信号が入力されたハイ側スイッチ31はオン状態となり、ローレベル(L)の電圧信号が入力されたロー側スイッチ32はオフ状態となる。また、ローレベル(L)の電圧信号が入力されたハイ側スイッチ31はオフ状態となり、ハイレベル(H)の電圧信号が入力されたロー側スイッチ32は、オン状態となる。このように、ハイ側スイッチ31及びロー側スイッチ32は相補的にオン・オフ状態となるように制御され、一方のスイッチがオン状態の場合、他方のスイッチはオフ状態となる。
ハイ側スイッチ31がオン状態(ロー側スイッチ32がオフ状態)の時、駆動電源の正極側(V+)とPINダイオードのアノードとが接続され、PINダイオードのアノードに順方向の直流電圧(順方向電流を流すための必要な電圧)が印加され、PINダイオードはオン状態となる。ハイ側スイッチ31がオフ状態(ロー側スイッチ32がオン状態)の時、駆動電源の負極側(V-)とPINダイオードのアノードとが接続され、PINダイオードのアノードに負電圧(降伏電圧に至らない範囲の電圧)が印加され、PINダイオードはオフ状態となる。
図4は、第1キャパシタンス要素群21に関する説明図である。図5は、第2キャパシタンス要素群22に関する説明図である。本実施形態では、可変キャパシタ2の第1キャパシタンス要素群21は3つの第1キャパシタンス要素211を含み、第2キャパシタンス要素群22は4つの第2キャパシタンス要素221を含むものと例示してある。なお、第1キャパシタンス要素211及び第2キャパシタンス要素221は、当該例示した個数に限定されないことは、言うまでもない。
3つの第1キャパシタンス要素211夫々の上位ビットキャパシタ212(HC1~3)の静電容量は、全て同じ値の16pFである。上位ビットキャパシタ212夫々は、並列に接続されているので、対応する上位ビットキャパシタ212がオンとなっている上位ビットキャパシタ212の静電容量の合計値が、第1キャパシタンス要素群21による静電容量となる。なお、静電容量が全て同じ値であるとは、静電容量が完全に同一である必要はなく、例えばキャパシタの定格値に含まれる誤差の範囲を許容するものである。すなわち、第1キャパシタンス要素群21の静電容量の調整を行うにあたり、精度上許される範囲にて、上位ビットキャパシタ212夫々の静電容量が全て同じ値であればよい。
4つの第2キャパシタンス要素221夫々の下位ビットキャパシタ222(LC1~4)の静電容量は、段階的に互いに異なり、この内、最小の静電容量の下位ビットキャパシタ222(最小キャパシタ)は、例えば1pFである。これに対し、他の3つの下位ビットキャパシタ222の静電容量夫々は、当該最小キャパシタの静電容量の2のべき乗の値で段階的に増加(バイナリステップ)するように設定してある。図5に示すように、静電容量の小さい下位ビットキャパシタ222から桁数を1から4に割りふることにより当該桁数をビット番号とし、静電容量がバイナリステップに設定された下位ビットキャパシタ222夫々のオン又はオフの組合せによって、16段階(2の4乗)に静電容量の合算値(0から15pF)を調整することができる。すなわち、最小キャパシタの静電容量をCmin[pF]とし、下位ビットキャパシタ222の個数をn個とした場合、桁数(ビット番号)がk(ただし、1≦K≦n)の下位ビットキャパシタ222の静電容量Ckは、
Cminに、2の(k-1)乗の値を乗算した値(Ck=Cmin×2(k-1))で表される。下位ビットキャパシタ222夫々は、並列に接続されているので、対応する下位ビットスイッチ223がオンとなっている下位ビットキャパシタ222の静電容量の合計値が、第2キャパシタンス要素群22による静電容量となる。下位ビットキャパシタ222の静電容量はバイナリステップで設定されているので、各ビットを1又は0とすることにより、2のn乗(n:下位ビットキャパシタ222の個数)による段階で、第2キャパシタンス要素群22による静電容量を調整することができる。
可変キャパシタ2の静電容量は、第1キャパシタンス要素群21による静電容量と、第2キャパシタンス要素群22による静電容量との合算値となる。単一の上位ビットキャパシタ212の静電容量は、全ての下位ビットキャパシタ222の静電容量の合計値よりも、大きい値としている。また、上位ビットキャパシタ212夫々、すなわち単一の上位ビットキャパシタ212の静電容量は、最小キャパシタの静電容量に2のn乗(n:下位ビットキャパシタ222の個数)を乗算した値となるように設定してある。このように上位ビットキャパシタ212と下位ビットキャパシタ222の静電容量を設定することにより、可変キャパシタ2に要求される静電容量が、全ての下位ビットキャパシタ222の静電容量の合計値を超える場合であっても、上位ビットキャパシタ212の上位ビットスイッチ213をオン状態とすることにより、対応することができる。例えば本実施形態において、要求される静電容量が18pFの場合、一つの上位ビットキャパシタ212(16pF)と、2ビットに対応する下位ビットキャパシタ222(2pF)を組み合わせることにより、対応することができる。上位ビットキャパシタ212夫々、すなわち単一の上位ビットキャパシタ212の静電容量は、最小キャパシタの静電容量に2のn乗(n:下位ビットキャパシタ222の個数)を乗算した値となるように設定しているため、上位ビットキャパシタ212と下位ビットキャパシタ222とを組み合わせることにより、可変キャパシタ2の静電容量を段階的に増加させることができる。なお、上位ビットキャパシタ212夫々の静電容量は、ある程度大きな値にする必要があるが、大きすぎると制御が煩雑となるため、バランスの良い値とすることが望ましい。
図6は、半導体スイッチの更新周期に関する説明図である。横軸は時間を示し、縦軸は更新周期に対応した信号の波形を示す。更新周期は、第1周期(t1)と第2周期(t2)とを含む。第1周期(t1)は、第2周期(t2)よりも短く(t1<t2)設定されている。
制御部4は、インピーダンスの整合動作を開始した直後は、第1周期(t1)で上位ビットスイッチ213夫々を更新する。上位ビットスイッチ213夫々を更新するにあたり、制御部4は、第1周期(t1)毎に上位ビットスイッチ213夫々のオン又はオフ状態の制御信号を出力する。図4に示すように上位ビットスイッチ213が3つ(HC1、HC2、HC3)の場合、当該制御信号は、3つの上位ビットスイッチ213夫々に対応してオン又はオフ状態を示す情報を含み、例えば当該制御信号が「101」の場合、上位ビットスイッチ213(HC3)はオン、上位ビットスイッチ213(HC2)はオフ、上位ビットスイッチ213(HC1)はオンなる。又、当該制御信号が「000」の場合は全ての上位ビットスイッチ213はオフとなり、当該制御信号が「111」の場合は全ての上位ビットスイッチ213はオンとなる。制御部4は、第1周期(t1)で更新する間は、下位ビットスイッチ223夫々のオン又はオフ状態の制御信号を出力しない、又は全てオフ状態とする制御信号を継続して出力する。従って、第1周期(t1)で更新する間、下位ビットスイッチ223夫々の状態は固定される。第1周期(t1)で更新する間、下位ビットスイッチ223夫々の状態を固定することによって、下位ビットスイッチ223のスイッチングロスによる発熱を低減させることができる。
前回出力した制御信号と、今回出力した制御信号が異なる場合、いずれかの上位ビットスイッチ213の状態は、前回から今回にかけて変更される。前回出力した制御信号と、今回出力した制御信号が同一の場合、上位ビットスイッチ213夫々の状態は、前回から今回にかけて、同じ状態として維持させる。
負荷側インピーダンスが目標とする整合点に近接(例えば、反射係数の大きさが0.1未満)した場合、制御部4は、更新周期を第1周期(t1)から第2周期(t2)に変更する。すなわち、反射係数に基づき、更新周期を第1周期(t1)から第2周期(t2)に変更するにあたっての所定値(閾値)として、例えば0.1を設定することにより、制御部4は、負荷側インピーダンスが目標とする整合点に近接した以降は、第1周期(t1)よりも長い周期となる第2周期(t2)に変更する。
制御部4は、第2周期(t2)で更新する間、第2周期(t2)毎に上位ビットスイッチ213及び下位ビットスイッチ223夫々のオン又はオフ状態の制御信号を出力する。第2周期(t2)にて複数回更新された場合であっても、上位ビットスイッチ213夫々の状態は概ね維持されるものとなるため、上位ビットスイッチ213のスイッチングロスにより発熱を抑制することができる。第2周期(t2)は、第1周期(t1)よりも長いため、下位ビットスイッチ223夫々のスイッチング回数は減少し、下位ビットスイッチ223のスイッチングロスにより発熱を抑制することができる。整合点に到達(例えば、反射係数の大きさが0.03以下)した後、制御部4は、第2周期(t2)にて上位ビットスイッチ213及び下位ビットスイッチ223夫々の状態の更新を継続する。
インピーダンスの整合動作を開始した直後等、反射係数が所定値(閾値)以上の場合は、静電容量の大きい上位ビットキャパシタ212により短い周期となる第1周期(t1)にてインピーダンス整合を行うことにより、下位ビットスイッチ223の発熱を低減しつつ、短時間で目標とする整合点に近接することができる。反射係数が所定値(閾値)未満となった場合、第1周期(t1)よりも長い第2周期(t2)にて、上位ビットスイッチ213及び下位ビットスイッチ223の状態を更新することにより、下位ビットスイッチ223のスイッチングロスを減少させて発熱を抑制することができる。反射係数が所定値(閾値)未満となった場合は、負荷側インピーダンスが目標とする整合点に近接状態であるため、上位ビットスイッチ213の状態はほとんど変化せず、維持されたものとなるため、上位ビットスイッチ213のスイッチングにより発熱による影響を少なくすることができる。なお、反射係数が所定値(閾値)以上の場合は、第1周期(t1)で上位ビットスイッチ213夫々を更新すると共に、下位ビットスイッチ223夫々の状態を固定するとしたがこれに限定されない。反射係数が所定値(閾値)以上の場合であっても、第1周期(t1)で上位ビットスイッチ213夫々及び下位ビットスイッチ223夫々を更新するものであってもよい。反射係数が所定値(閾値)以上の場合、すなわち不整合状態のときは、大まかな調整が優先されるため、主には上位ビットスイッチ213夫々が変化し、比較的短時間で整合点に向かい、反射係数の大きさが所定値(閾値)未満となる。そのため、たとえ第1周期(t1)にて下位ビットスイッチ223の状態を更新させたとしても、発熱の影響を少なくすることができる。
図7は、実施形態1に係る制御部4の処理を示すフローチャートである。インピーダンス整合装置1の制御部4は、整合動作開始の指示等に応じて、インピーダンスの整合動作を開始する。
制御部4は、下位ビットスイッチ223をオフにする(S11)。制御部4は、可変キャパシタ2に含まれる第2キャパシタンス要素群22の全ての下位ビットスイッチ223をオフ状態にする。全ての下位ビットスイッチ223をオフ状態にすることで、第2キャパシタンス要素群22の全ての下位ビットキャパシタ222は機能しなくなり、第2キャパシタンス要素群22による静電容量は0pFになる。全ての下位ビットスイッチ223をオフ状態にすることによって、下位ビットスイッチ223の発熱を抑制することができる。なお、全ての下位ビットスイッチ223をオフ状態にするのではなく、他の状態にしてもよい。例えば、前回のインピーダンスの整合動作が完了した時点の下位ビットスイッチ223の状態を記憶しておき、その記憶した状態とすることもできる。
制御部4は、更新周期を第1周期に設定する(S12)。制御部4は、記憶部40に予め記憶してある第1周期を参照し、第1周期を更新周期として設定する。後述するS16の処理は、この第1周期によって行われる。
制御部4は、インピーダンスに関する情報を取得し、インピーダンス及び反射係数を演算(導出)する(S13)。制御部4は、高周波検出部7が検出し出力した高周波電源6から負荷8側を見たインピーダンスに関する情報(パラメータ)を取得し、高周波電源6から負荷8側を見たインピーダンスを負荷側インピーダンスとして演算する。又、制御部4は、当該パラメータに基づき反射係数を演算(導出)する。
制御部4は、静電容量を演算する(S14)。制御部4は、演算した負荷側インピーダンスを、高周波電源6の出力インピーダンスに整合させるため、可変キャパシタ2に要求される静電容量を演算する。
制御部4は、目標スイッチの状態を決定する(S15)。制御部4は、可変キャパシタ2の静電容量を、静電容量演算部42によって演算された静電容量にするために、可変キャパシタ2に含まれる上位ビットスイッチ213及び下位ビットスイッチ223夫々のオン又はオフの状態を、目標スイッチの状態として決定する。又は、制御部4は、上位ビットスイッチ213のみのオン又はオフの状態を決定してもよい。
制御部4は、上位ビットスイッチ213の状態を更新する(S16)。制御部4は、決定した目標スイッチの状態において、上位ビットスイッチ213の状態を抽出し、上位ビットスイッチ213夫々のオン・オフ状態を第1周期で更新する。制御部4は、更新した上位ビットスイッチ213夫々のオン又はオフ状態を、更新を行った更新時点と関連づけて、記憶部40に記憶する。
制御部4は、反射係数が所定値未満であるかを判定する(S17)。制御部4は、S13で演算した反射係数(現時点の反射係数)と、記憶部40に予め記憶してある反射係数の所定値とを比較し、現時点の反射係数が、所定値未満であるかを判定する。反射係数の所定値は例えば0.1であり、反射係数の所定値を0.1とすることで、整合状態に概ね近接している状態であるか否かを判定する閾値として用いることができる。
反射係数が所定値未満でない場合(S17:No)、すなわち反射係数が所定値以上である場合、制御部4は、再度S13からの処理を実行すべくループ処理を行う。従って、第一周期による更新が、継続される。
反射係数が所定値未満である場合(S17:Yes)、制御部4は、更新周期を第2周期に設定する(S18)。制御部4は、記憶部40に予め記憶してある第2周期を参照し、第2周期を更新周期として設定する。後述するS22の処理は、この第2周期によって行われる。第2周期は、第1周期よりも長い周期であり、例えば第1周期の2倍以上の周期とすることで、更新に伴うスイッチング回数を低減させ、効率的に発熱を抑制することができる。
制御部4は、S13からS15の処理と同様にS19からS21の処理を行う。なお、S21の処理において、制御部4は、上位ビットスイッチ213及び下位ビットスイッチ223の状態を目標スイッチの状態として決定する。
制御部4は、上位ビットスイッチ213及び下位ビットスイッチ223の状態を更新する(S22)。制御部4は、決定した目標スイッチの状態に基づき、上位ビットスイッチ213及び下位ビットスイッチ223夫々のオン・オフ状態を第2周期で更新する。制御部4は、更新した上位ビットスイッチ213及び下位ビットスイッチ223夫々のオン又はオフ状態を、更新を行った更新時点と関連づけて、記憶部40に記憶する。
制御部4は、反射係数が所定値未満であるかを判定する(S23)。制御部4は、S17の処理と同様に、S19で演算した反射係数(現時点の反射係数)と、記憶部40に予め記憶してある反射係数の所定値とを比較し、現時点の反射係数が、所定値未満であるかを判定する。
前述のとおり、全ての下位ビットキャパシタ222の静電容量の合計値(例えば、15pF)は、単一の上位ビットキャパシタ212の静電容量(例えば、16pF)よりも小さい。従って、要求される可変キャパシタ2の静電容量が、一回の更新において例えば31pFから32pFに変化する場合、オンにする上位ビットスイッチ213を1つから2つに増加すると共に、全てオン状態であった下位ビットスイッチ223を全てオフ状態にする。このように1つの上位ビットスイッチ213の状態が変化する現象を桁上がり(又は桁下がり)と呼ぶ。すなわち、1回の更新において、1つの上位ビットスイッチ213の状態が変化するものであるが、要求される可変キャパシタ2の静電容量の変化量は小さい値であり、負荷側インピーダンスは整合点に近接した状態である。これに対し2つ以上の上位ビットスイッチ213の状態が変更された場合は、要求される可変キャパシタ2の静電容量の変化量は大きい値であり、負荷側インピーダンスは整合点から乖離した状態である。このように桁上がり又は桁下がりにより、一旦整合状態に近づいてから再度非整合状態(整合点から乖離した状態)になったか否かを判定するにあたり、前述のとおり第1キャパシタンス要素群21の複数の上位ビットキャパシタ212の静電容量夫々は同じ値にしてある。
反射係数が所定値未満でない場合(S23:No)、再度S12の処理を実行すべくループ処理を行う。従って、更新周期は第1周期に変更されて、上位ビットスイッチ213夫々の更新が行われる。反射係数が所定値未満でない場合、すなわち反射係数が所定値以上となった場合は、整合点から乖離した状態(不整合状態)となっているため、大まかな調整が優先されるため、上位ビットスイッチ213(第1キャパシタンス要素群21)によってインピーダンスを調整する。すなわち、制御部4は、更新周期が短い第1周期に設定(戻し)し、下位ビットスイッチ223の状態を固定すると共に、上位ビットスイッチ213の状態を更新することにより、静電容量の大きい上位ビットキャパシタ212によって早期に負荷側インピーダンスを整合点に近接させることができる。更新周期が第1周期の間は、下位ビットスイッチ223の状態が固定(維持)されるため、下位ビットスイッチ223のスイッチングロスをなくし、発熱を低減させることができる。
反射係数が所定値未満である場合(S23:Yes)、制御部4は、再度S19の処理を実行すべくループ処理を行う。従って、第2周期による更新が継続される。
本実施形態において、反射係数が所定値未満であるか否かに基づき、更新周期を変更するとしたが、これに限定されない。制御部4は、反射電力、反射電圧又は反射電流が所定値未満であるか否かに基づき、更新周期を変更するものであってもよい。反射係数が小さくなるにつれて、反射電力、反射電圧又は反射電流も小さくなる。従って、反射電力、反射電圧又は反射電流が所定値未満である場合、制御部4は第2周期で更新を行い、反射電力、反射電圧又は反射電流が所定値以上である場合、制御部4は第1周期で更新を行うものであってもよい。
(変形例1)
図8は、変形例1に係る駆動回路3の一構成例を略示した回路図である。なお、図8では、第1キャパシタンス要素211を基に図示している。実施形態1では、制御回路451は、ハイ側スイッチ31及びロー側スイッチ32夫々に互いに反転した2つの電圧信号を出力するとしたが、これに限定されない。制御回路451は、ハイ側スイッチ31及びロー側スイッチ32夫々に共通の電圧信号(共通入力信号)を出力するものであってもよい。
変形例1の駆動回路3は、実施形態1の駆動回路3と同様にハイ側スイッチ31とロー側スイッチ32とを備える。ハイ側スイッチ31は、フォトカプラで構成してある。ロー側スイッチ32は、実施形態1と同様にn型MOSFET等で構成してある。
実施形態1と同様にハイ側スイッチ31(フォトカプラ)のエミッタとロー側スイッチ32のドレインとを直列に接続し、ハイ側スイッチ31(フォトカプラ)とロー側スイッチ32との接続節点と、PINダイオード(上位ビットスイッチ213又は下位ビットスイッチ223)と上位ビットキャパシタ212又は下位ビットキャパシタ222との接続節点とは、電線(出力線)により接続されている。この出力線には、コンデンサFC及びコイルFLからなるフィルタ回路33(ローパスフィルタ)が設けられている。
実施形態1と同様にハイ側スイッチ31(フォトカプラ)のコレクタは駆動電源(V)の正極側出力端子34に接続され、ロー側スイッチ32(FET)のソースには、駆動電源(V)の負極側出力端子35が接続されている。
ハイ側スイッチ31(フォトカプラ)のフォトダイオードのアノードは、例えば5Vを出力する直流電源に接続され、カソードは、ロー側スイッチ32(FET)のゲートに接続されている。
スイッチ制御部45に含まれる制御回路451と、フォトダイオードのカソードとロー側スイッチ32(FET)のゲートとの接続節点とは、1つ信号線によって接続されている。スイッチ制御部45は、ハイレベル(H)の電圧信号として、フォトダイオードに接続された直流電源の出力電圧以上の電圧信号(例えば、5V以上)を出力することによって、ハイ側スイッチ31(フォトカプラ)をオフ状態にし、ロー側スイッチ32(FET)をオン状態にする。スイッチ制御部45は、ローレベル(L)の電圧信号として0Vの電圧信号を出力することにより、ハイ側スイッチ31(フォトカプラ)をオン状態にし、ロー側スイッチ32(FET)をオフ状態にする。
ハイ側スイッチ31(フォトカプラ)がオン状態となることにより、PINダイオードはオン状態となる。ロー側スイッチ32(FET)がオン状態となることにより、PINダイオードはオフ状態となる。
変形例1及び図3に示す実施形態1において、PINダイオード(上位ビットスイッチ213、下位ビットスイッチ223)のアノードを上位ビットキャパシタ212又は下位ビットキャパシタ222に接続し、カソードを接地(グランドに接続)するとしたがこれに限定されない。PINダイオード(上位ビットスイッチ213、下位ビットスイッチ223)のアノードを接地し、カソードを上位ビットキャパシタ212又は下位ビットキャパシタ222に接続してもよい。この場合、PINダイオードと、上位ビットキャパシタ212又は下位ビットキャパシタ222との接続接点(PINダイオードのカソード)に
駆動電源の正極側(V+)が接続(ハイ側スイッチ31がオン状態かつロー側スイッチ32がオフ状態)された場合、PINダイオードはオフとなる。PINダイオードのカソードに駆動電源の負極側(V-)が接続(ハイ側スイッチ31がオフ状態かつロー側スイッチ32がオン状態)された場合、PINダイオードはオンとなる。
このように制御回路451から1つ信号線を介して、ハイ側スイッチ31(フォトカプラ)及びロー側スイッチ32に対し、同じ電圧信号である共通入力信号を出力することにより、ハイ側スイッチ31(フォトカプラ)及びロー側スイッチ32を相補的にオン・オフ制御することができる。制御回路451から1つ信号線を介して共通入力信号を出力することにより、実施形態1における分岐回路452を不要とすることができる。
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 インピーダンス整合装置
11 整合回路
2 可変キャパシタ
21 第1キャパシタンス要素群
211 第1キャパシタンス要素(キャパシタンス要素)
212 上位ビットキャパシタ(キャパシタ)
213 上位ビットスイッチ(半導体スイッチ)
22 第2キャパシタンス要素群
221 第2キャパシタンス要素(キャパシタンス要素)
222 下位ビットキャパシタ(キャパシタ)
223 下位ビットスイッチ(半導体スイッチ)
3 駆動回路
31 ハイ側スイッチ
32 ロー側スイッチ
33 フィルタ回路
34 正極側出力端子
35 負極側出力端子
4 制御部
40 記憶部
41 インピーダンス演算部
42 静電容量演算部
43 目標スイッチ状態決定部
44 更新周期決定部
45 スイッチ制御部
451 制御回路
452 分岐回路
5 インダクタ
6 高周波電源
7 高周波検出部(インピーダンス検出部)
8 負荷

Claims (5)

  1. 高周波電源と負荷との間に設けられ、
    前記高周波電源の出力端又は該出力端と同等の箇所から前記負荷側を見たインピーダンスに関する情報を取得して、該高周波電源と負荷とのインピーダンスの整合を図るインピーダンス整合装置であって、
    前記高周波電源に一端が接続されるキャパシタと、該キャパシタに直列に接続される半導体スイッチとを含むキャパシタンス要素を複数個有し、該複数のキャパシタンス要素が互いに並列に接続された可変キャパシタと、
    取得した前記インピーダンスに関する情報に基づいて、前記高周波電源と前記負荷との間のインピーダンスが整合するように前記複数の半導体スイッチ夫々をオンオフ制御する制御部とを備え、
    前記制御部は、取得した前記高周波電源から前記負荷側を見たインピーダンスに関する情報に基づいて反射係数を導出し、
    前記反射係数が所定値以上の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期にて更新し、
    前記反射係数が所定値未満の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を前記第1周期よりも長い第2周期で更新する
    インピーダンス整合装置。
  2. 前記反射係数の所定値は、0.1である
    請求項1に記載のインピーダンス整合装置。
  3. 前記複数のキャパシタンス要素は、第1キャパシタンス要素群と、前記第1キャパシタンス要素群を構成する一つのキャパシタの静電容量よりも小さい静電容量のキャパシタを有する第2キャパシタンス要素群とを含み、
    前記制御部は、
    前記第1周期にて更新する場合、前記第1キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新し、前記第2キャパシタンス要素群の前記半導体スイッチの状態を維持し、
    前記第2周期にて更新する場合、前記第1キャパシタンス要素群及び前記第2キャパシタンス要素群が含む半導体スイッチ夫々の状態を更新する
    請求項1又は請求項2に記載のインピーダンス整合装置。
  4. 前記第1キャパシタンス要素群のいずれかのキャパシタの静電容量は、前記第2キャパシタンス要素群の全てのキャパシタの静電容量の合計値よりも大きい
    請求項3のインピーダンス整合装置。
  5. 高周波電源と負荷との間に設けられる可変キャパシタによって、前記高周波電源と前記負荷とのインピーダンスの整合を図るインピーダンス整合方法であって、
    前記可変キャパシタは、キャパシタ及び半導体スイッチを含むキャパシタンス要素を複数個有し、
    取得した前記高周波電源から前記負荷側を見たインピーダンスに関する情報に基づいて反射係数を導出し、
    前記反射係数が所定値以上の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を第1周期にて更新し、
    前記反射係数が所定値未満の場合、前記複数のキャパシタンス要素が含む半導体スイッチ夫々の状態を前記第1周期よりも長い第2周期で更新する
    インピーダンス整合方法。
JP2018243192A 2018-12-26 2018-12-26 インピーダンス整合装置及びインピーダンス整合方法 Active JP7112952B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018243192A JP7112952B2 (ja) 2018-12-26 2018-12-26 インピーダンス整合装置及びインピーダンス整合方法
US16/719,358 US11050400B2 (en) 2018-12-26 2019-12-18 Impedance matching device and impedance matching method
KR1020190170563A KR20200080168A (ko) 2018-12-26 2019-12-19 임피던스 정합 장치 및 임피던스 정합 방법
US17/328,121 US11356074B2 (en) 2018-12-26 2021-05-24 Impedance matching device and impedance matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243192A JP7112952B2 (ja) 2018-12-26 2018-12-26 インピーダンス整合装置及びインピーダンス整合方法

Publications (2)

Publication Number Publication Date
JP2020107431A JP2020107431A (ja) 2020-07-09
JP7112952B2 true JP7112952B2 (ja) 2022-08-04

Family

ID=71122085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243192A Active JP7112952B2 (ja) 2018-12-26 2018-12-26 インピーダンス整合装置及びインピーダンス整合方法

Country Status (3)

Country Link
US (2) US11050400B2 (ja)
JP (1) JP7112952B2 (ja)
KR (1) KR20200080168A (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US11107661B2 (en) * 2019-07-09 2021-08-31 COMET Technologies USA, Inc. Hybrid matching network topology
US11424105B2 (en) * 2019-08-05 2022-08-23 Hitachi High-Tech Corporation Plasma processing apparatus
JP7465657B2 (ja) * 2019-12-27 2024-04-11 株式会社ダイヘン インピーダンス調整装置
WO2021211582A1 (en) * 2020-04-13 2021-10-21 Advanced Energy Industries, Inc. Input impedance networks with power recovery
US11538663B2 (en) 2021-02-23 2022-12-27 Applied Materials, Inc. Methods and apparatus for processing a substrate
US11749505B2 (en) 2021-02-23 2023-09-05 Applied Materials, Inc. Methods and apparatus for processing a substrate
CN115622533B (zh) * 2022-12-01 2023-03-21 深圳市恒运昌真空技术有限公司 一种阻抗匹配系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142285A (ja) 2010-12-30 2012-07-26 Semes Co Ltd 可変キャパシター、プラズマインピーダンスマッチング装置、及び基板処理装置
JP2017069823A (ja) 2015-09-30 2017-04-06 株式会社ダイヘン インピーダンス整合装置
WO2018062109A1 (ja) 2016-09-29 2018-04-05 株式会社ダイヘン インピーダンス整合装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806944A (en) * 1987-09-14 1989-02-21 General Electric Company Switchable matching network for an element of a steerable antenna array
JPH09134800A (ja) * 1995-11-08 1997-05-20 Jeol Ltd 高周波装置
US6677828B1 (en) 2000-08-17 2004-01-13 Eni Technology, Inc. Method of hot switching a plasma tuner
JP4411282B2 (ja) * 2003-11-27 2010-02-10 株式会社ダイヘン 高周波電力供給システム
JP2005311762A (ja) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd 可変整合回路
JP4975291B2 (ja) 2004-11-09 2012-07-11 株式会社ダイヘン インピーダンス整合装置
KR20070098860A (ko) 2005-01-11 2007-10-05 이노베이션 엔지니어링, 엘엘씨 로드로 전달된 알에프 파워를 검출하는 방법 및 로드의복소 임피던스
KR20070108229A (ko) 2005-03-05 2007-11-08 이노베이션 엔지니어링, 엘엘씨 전자적 가변 커패시터 어레이
KR20130086825A (ko) * 2012-01-26 2013-08-05 세메스 주식회사 가변커패시터, 임피던스매칭장치 및 기판처리장치
JP6084417B2 (ja) * 2012-09-28 2017-02-22 株式会社ダイヘン インピーダンス調整装置
JP6177012B2 (ja) 2013-06-04 2017-08-09 株式会社ダイヘン インピーダンス整合装置
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9728378B2 (en) 2014-05-02 2017-08-08 Reno Technologies, Inc. Method for controlling an RF generator
US9196459B2 (en) 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US10699880B2 (en) 2015-06-29 2020-06-30 Reno Technologies, Inc. Voltage reduction circuit
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US9345122B2 (en) 2014-05-02 2016-05-17 Reno Technologies, Inc. Method for controlling an RF generator
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US10454453B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. RF impedance matching network
US20160065207A1 (en) 2014-01-10 2016-03-03 Reno Technologies, Inc. High voltage control circuit for an electronic switch
US9745660B2 (en) 2014-05-02 2017-08-29 Reno Technologies, Inc. Method for controlling a plasma chamber
US10679824B2 (en) 2015-06-29 2020-06-09 Reno Technologies, Inc. Capacitance variation
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US9591739B2 (en) 2014-05-02 2017-03-07 Reno Technologies, Inc. Multi-stage heterodyne control circuit
US11017983B2 (en) 2015-02-18 2021-05-25 Reno Technologies, Inc. RF power amplifier
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10431424B2 (en) 2015-02-18 2019-10-01 Reno Technologies Inc. Parasitic capacitance compensation circuit
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US10679823B2 (en) 2015-02-18 2020-06-09 Reno Technologies, Inc. Switching circuit
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US20180076788A1 (en) 2015-06-29 2018-03-15 Reno Technologies, Inc. Impedance matching network using heat pipe inductor
US10692699B2 (en) 2015-06-29 2020-06-23 Reno Technologies, Inc. Impedance matching with restricted capacitor switching
JP6773283B2 (ja) * 2016-11-17 2020-10-21 株式会社ダイヘン インピーダンス整合装置
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142285A (ja) 2010-12-30 2012-07-26 Semes Co Ltd 可変キャパシター、プラズマインピーダンスマッチング装置、及び基板処理装置
JP2017069823A (ja) 2015-09-30 2017-04-06 株式会社ダイヘン インピーダンス整合装置
WO2018062109A1 (ja) 2016-09-29 2018-04-05 株式会社ダイヘン インピーダンス整合装置

Also Published As

Publication number Publication date
US11356074B2 (en) 2022-06-07
KR20200080168A (ko) 2020-07-06
US20200212869A1 (en) 2020-07-02
JP2020107431A (ja) 2020-07-09
US20210281235A1 (en) 2021-09-09
US11050400B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
JP7112952B2 (ja) インピーダンス整合装置及びインピーダンス整合方法
JP7211806B2 (ja) インピーダンス整合装置及びインピーダンス整合方法
US11211930B2 (en) Drive circuit and impedance matching device
US10581318B2 (en) Resonant converter including capacitance addition circuits
JP7105184B2 (ja) インピーダンス整合装置及びインピーダンス整合方法
US8804375B2 (en) PWM-PSM controlled power supply with auxiliary switching circuit for soft-switching
JP7105183B2 (ja) インピーダンス整合装置及びインピーダンス整合方法
US10778087B2 (en) Method and switching arrangement for changing a switching state of a switching half-bridge
JP2015216818A (ja) スイッチング素子の駆動回路
US20150124502A1 (en) Driving apparatus for driving switching elements of power conversion circuit
JP2022524722A (ja) パワーエレクトロニクスハーフブリッジのためのデッドタイムを決定する制御装置
CN114050712B (zh) 栅极驱动装置及方法
CN114070283B (zh) 用于驱动晶体管的方法和栅极驱动器系统
US20180131280A1 (en) Power source apparatus
EP3783789A1 (en) Control method for controlling resonant power converter, and resonant power converter
US20230188026A1 (en) Switching sub-circuits
KR20210084264A (ko) 임피던스 조정장치
JP2012506181A (ja) パワー半導体のスイッチオン過程中の電磁波放出を低減するための方法および装置
KR20240019735A (ko) 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및그 제어방법
JP2023154532A (ja) スイッチング回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150