JP7102819B2 - ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法 - Google Patents

ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法 Download PDF

Info

Publication number
JP7102819B2
JP7102819B2 JP2018052582A JP2018052582A JP7102819B2 JP 7102819 B2 JP7102819 B2 JP 7102819B2 JP 2018052582 A JP2018052582 A JP 2018052582A JP 2018052582 A JP2018052582 A JP 2018052582A JP 7102819 B2 JP7102819 B2 JP 7102819B2
Authority
JP
Japan
Prior art keywords
operation mode
mode
hot water
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052582A
Other languages
English (en)
Other versions
JP2019163910A (ja
Inventor
泰二 森
吉成 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018052582A priority Critical patent/JP7102819B2/ja
Publication of JP2019163910A publication Critical patent/JP2019163910A/ja
Application granted granted Critical
Publication of JP7102819B2 publication Critical patent/JP7102819B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、工場排水等から排熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置、蒸気生成システムおよび該ヒートポンプ式蒸気生成装置の運転方法に関する。
蒸気生成装置の一つとして、ヒートポンプ装置を利用したヒートポンプ式蒸気生成装置がある。ヒートポンプ式蒸気生成装置は、工場排水や使用済冷却水等の排水(熱源温水)から排熱を回収して蒸気を生成する。つまり、ヒートポンプ式蒸気生成装置は、ヒートポンプ装置の蒸発器を排熱回収器として機能させ、熱源温水から排熱を冷媒に回収し、回収した熱を利用して凝縮器で被加熱水を加熱して蒸気を生成する。このため、ボイラ設備等を利用して蒸気を発生させる燃焼系蒸気生成装置に比べてランニングコストやCO排出量を低減できるメリットがある。
このようなヒートポンプ式蒸気生成装置では、圧縮機の吸入側や吐出側での冷媒の温度や圧力を測定し、圧縮機の吸入側や吐出側での過熱度が常に一定以上の値を保つようにヒートポンプ装置を制御することが一般的に行われている。また、利用側である蒸気の使用負荷の変化に対応するため、生成される蒸気の圧力に基づき圧縮機を制御するヒートポンプ式蒸気生成装置も提案されている(特許文献1参照)。
特開2011-257122号公報
上記のように、排水を熱源として使用したヒートポンプ式蒸気生成装置では、熱源温水として工場排水や蒸気ドレンなどの排水を利用するため、工場設備や蒸気使用設備の稼働状況により供給量や温度が大きく変動する場合がある。そのため、熱源温水の熱流量、つまり供給量や温度が通常時に比べて大幅に低下した場合には、蒸発器で十分な熱量を回収できず冷媒が蒸発できなくなり、液相の冷媒が圧縮機に吸入される液バックと呼ばれる状態となり、最悪の場合圧縮機の破損に至る。
このような圧縮機の破損を避けるため、上記のように冷媒の過熱度を監視し、例えば圧縮機吐出側の過熱度がゼロとなった場合に装置(圧縮機)を緊急停止する方法がある。ところが、一旦圧縮機を停止してしまうと、冷媒回路内の温度や圧力が均等になるまで待機する必要があり、再起動が可能となるまでに相当な時間を要する。その結果、緊急停止後に熱源温水の供給量や温度が速やかに回復した場合であっても、安定して蒸気を生成するまでには時間が必要となり、蒸気の利用設備に影響を及ぼす懸念がある。また、圧縮機をはじめとした装置の発停を繰り返すこととなるため、機器の寿命低下に繋がる。
本発明は、上記従来技術の課題を考慮してなされたものであり、熱源温水の一時的な熱流量低下に対応することができ、運転を安定して継続することができるヒートポンプ式蒸気生成装置及び該ヒートポンプ式蒸気生成装置の運転方法を提供することを目的とする。
本発明にかかるヒートポンプ式蒸気生成装置は、前記圧縮機の吐出側と前記圧縮機の吸入側とをバイパス弁を介して接続するバイパス管路と、
前記バイパス弁を閉制御しつつ外部に蒸気を送出する蒸気生成運転モードと、前記バイパス弁が開いた状態で前記蒸気生成部から外部への蒸気送出量を前記蒸気生成運転モードの定格量よりも減少させるアイドリング運転モードと、装置起動時に前記蒸気生成運転モードに移行するための準備を行う起動運転モードと、前記アイドリング運転モード終了後、前記バイパス弁が閉じた状態で前記蒸気生成運転モードに移行するための準備を行う復帰運転モードを有する制御部とを備え、
前記制御部は、前記蒸気生成運転モード時に前記熱源温水の熱流量が第1モード移行値未満となった場合に、前記アイドリング運転モードへ移行し、前記起動運転モード時に前記圧縮機の吸入側における冷媒過熱度が第1吸入過熱度所定値以上、または前記圧縮機の吐出側における冷媒過熱度が第1吐出過熱度所定値以上となった場合に前記蒸気生成運転モードに移行し、前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された第2モード移行値以上となった場合に前記起動運転モードへ移行し、前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された第3モード移行値以上となった場合に前記復帰運転モードへ移行し、前記圧縮機の吸入側における冷媒過熱度が前記第1吸入過熱度所定値よりも小さく設定された第2吸入過熱度所定値以上、または前記圧縮機の吐出側における冷媒過熱度が前記第1吐出過熱度所定値よりも小さく設定された第2吐出過熱度所定値以上となった場合に前記復帰運転モードから前記蒸気生成運転モードに移行することを特徴とする。
本発明によれば、ヒートポンプ部の熱源となる熱源温水の熱流量が低下した場合に蒸気および冷媒の少なくとも一方の流通量を制御するとともに、圧縮機前後で冷媒の一部をバイパスさせることで、蒸発器に供給する熱源温水の熱流量不足に基づく圧縮機での液バック発生を長時間回避しつつ、装置の発停回数を減らすことができるため、装置およびシステム全体の長寿命化、
運転の効率化が可能となる。
本発明の第1の実施形態に係るヒートポンプ式蒸気生成装置の全体構成図である。 本発明で使用される冷媒のP-h線図である。 本発明の第1の実施形態に係るヒートポンプ式蒸気生成装置の起動制御フロー図である。 本発明の第1の実施形態に係るヒートポンプ式蒸気生成装置の蒸気生成とアイドリングの制御フロー図である。
以下、本発明に係るヒートポンプ式蒸気生成装置及びその運転方法について好適な実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。
図1は、本発明の第1の実施形態に係るヒートポンプ式蒸気生成装置100の構成図である。ヒートポンプ式蒸気生成装置100は、工場排水や使用済冷却水等の熱源温水から排熱を回収し、回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の外部の蒸気利用設備50に送られる。
図1に示すように、ヒートポンプ式蒸気生成装置100は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成部10と、熱源温水から熱を回収し、この熱を蒸気生成部10での蒸気生成のための熱源として供給するヒートポンプ部20と、ヒートポンプ部20へ熱源温水を供給する温水供給部30と、制御部40とを備える。
ヒートポンプ部20は、熱源温水から熱を回収して冷媒を加熱する蒸発器(排熱回収器)21と、蒸発器21を出た冷媒を圧縮する圧縮機22と、圧縮機22で圧縮された冷媒を放熱させて凝縮させる凝縮器23と、凝縮器23を出た冷媒を膨張させる膨張機構である絞り膨張器25とを順に冷媒配管L1で環状に接続し、冷媒を循環させる冷凍サイクル装置(ヒートポンプサイクル)である。また、凝縮器21と圧縮機22の前後にはバイパス弁27を介し圧縮機22と凝縮器23の間から蒸発器21と圧縮機22の間へ冷媒の一部をバイパスさせることができるバイパス配管L7が接続されている。
圧縮機22で圧縮されて高温高圧となった冷媒は、凝縮器23で蒸気生成部10を循環する水(被加熱水)と熱交換して冷却され凝縮する。凝縮器23を出た冷媒は絞り膨張器25で絞り膨張され、蒸発器21で温水供給部30の温水配管L2を流れる熱源温水から吸熱して蒸発し、再び圧縮機22へと戻る。
ヒートポンプ部20は制御部40の制御下に、例えば通常運転時、圧縮行程中の冷媒が所定の過熱度以上になるように圧縮機22の駆動回転数及び絞り膨張器25の開度を調整する過熱度制御(蒸気生成モード)で運転される。この過熱度制御は、例えば圧縮機22の吐出側に設けられた図示しない圧力センサ及び温度センサの検出値(吐出圧及び吐出温度)に基づき実行される。
ヒートポンプ部に流れる冷媒は、図2に示すように、P-h線図上での等エントロピー線L11が低圧側で過熱域にあり、高圧側で飽和ガス線L12と等エントロピー線L11とが2点以上の交点もしくは接点を有する特性を持つ冷媒である。この冷媒は、例えば、1,1,1,3,3-ペンタフルオロプロパン(構造式:CHFCHCF、R245fa)である。図2は、R245faのP-h線図を示しており、飽和ガス線L12と等エントロピー線L11とが交点PP1,PP2の2点で交わっている。
蒸気生成部10は、容器内部に水を貯留する気液分離器12と、ヒートポンプ部20を循環する冷媒を熱源として水を蒸発させる蒸気生成器として機能する凝縮器23と、気液分離器12から送り出される水蒸気を制御する蒸気制御弁18とを備える。気液分離器12と凝縮器23との間は、気液分離器12の下部壁から凝縮器23を介して気液分離器12の上部壁までを接続する循環配管L3によって連通されている。
気液分離器12の上端壁には、当該ヒートポンプ式蒸気生成装置100で生成した水蒸気を蒸気制御弁18を介して外部の蒸気利用設備50側へと送り出す蒸気送出配管L6が接続されている。凝縮器23を出た水と水蒸気とが混在した気液二相流は、凝縮器23の出口側の循環配管L3から気液分離器12内に導入され、ここで水が分離された後の水蒸気が蒸気送出配管L6へと送り出される。
気液分離器12の下部壁から凝縮器23に導入される循環配管L3には、給水配管L4が接続され、被加熱水である供給水が補給される。給水ポンプP1は、制御部40の制御下に、供給水の質量流量Q1が、蒸気送出配管L6から取出される蒸気の質量流量Q2及び気液分離器12から循環配管L3へ導入される循環水の質量流量Q3との合計量(Q2+Q3)となるように駆動回転数が制御される場合が多い。また、気液分離器12内に貯留された水の水位を測定する図示しない水位センサの検出値(水位)に基づき、駆動回転数を制御してもよく、両方の制御を併用してもよい。
凝縮器23から気液分離器12の上部壁までを接続する循環配管L3には、蒸気生成部10を流通する循環水を外部に排出する排水配管L5が接続されている。排水配管L5はは排水弁16を介して外部に接続されている。また、循環配管L3と排水配管L5の接続点と気液分離器12の間には逆止弁14が設けられている。
温水供給部30は、蒸発器21に熱源温水を供給すると共に蒸発器21を出た温水(排温水)を排出する温水配管L2と、蒸発器21上流側の温水配管L2に設けられた温水ポンプ(ポンプ)P2と、温水ポンプP2と蒸発器21との間の温水配管L2に設けられた熱流量計31とを備える。
熱流量計31は、温水配管L2によって蒸発器21に供給される熱源温水の単位時間当たりに流通する熱量(J)である熱流量(W(=J/s))を測定する測定器である。実際は、温水配管L2を流通する熱源温水の温度および流量を測定し、そこから単位時間当たりの熱量を計算している。熱流量計31での測定値は、制御部40に送信され、温水の熱流量として演算される。制御部40は、熱流量計31により測定された熱源温水の熱流量に基づき、蒸発器21に供給する熱源温水の熱流量(J)を制御するために、温水ポンプP2の駆動回転数を制御するインバータ(図示しない)に所定の制御信号を出力する。蒸発器21を通過した排温水は、蒸発器21の下流側の温水配管L2によって系外に排出されるか、或いは別の排熱回収装置によりカスケード利用される。
なお、温水供給部30によって蒸発器21に供給される熱源温水は、常温より高温であり、例えば60℃以上の熱源温水を蒸発器21に供給することでヒートポンプ部20を安定して通常運転させることができる。熱源温水の最低温度及び最適温度は圧縮機22の種類やその他機器構成によって適宜決定される。
制御部40は、当該ヒートポンプ式蒸気生成装置100を統括的に制御するコントローラであり、蒸気生成部10、ヒートポンプ部20及び温水供給部30の運転制御を行う。制御部40は、温水配管L2によって蒸発器21に供給される熱源温水の熱流量を監視し、その監視結果に基づき、温水供給部30による蒸発器21への熱源温水の流通量やヒートポンプ部20での冷媒の流通量を制御する。この機能を熱量監視部として、制御部40とは別体に設けるようにしてもよい。
ここで、図3に示したフローチャートを参照して、制御部40による起動処理の一例について説明する。図3に示すように、まず、制御部40は、起動指示を受けたか否かを判断する(ステップS101)。制御部40は、起動指示を受けなかった場合(ステップS101,No)には、ステップS101の判断処理を繰り返す。一方、制御部40は、起動指示を受けた場合(ステップS101,Yes)には、圧縮機22を起動し(ステップS102)、起動運転モード制御を行わせる。制御部40は、まず、圧縮機22の吸入側における冷媒圧力Pinが下限値Pinlow未満か否かを判断する(ステップS103)。冷媒圧力Pinが下限値Pinlow未満である場合(ステップS103,Yes)には、バイパス弁27を開にして(ステップS104)、圧縮機22を運転する。
その後、制御部40は、冷媒圧力Pinが上限値Pinhigh(>下限値Pinlow)以上であるか否かを判断する(ステップS105)。冷媒圧力Pinが上限値Pinhigh以上でない場合(ステップS105,No)には、バイパス弁27を開にした状態でステップS105の判断処理を繰り返す。一方、冷媒圧力Pinが上限値Pinhigh以上である場合(ステップS105,Yes)には、バイパス弁27を閉にして(ステップS106)、圧縮機22を運転する。
その後、制御部40は、圧縮機22の吐出側における冷媒過熱度が、あらかじめ通常運転移行条件として設定した規定値以上であるか否かを判断する(ステップS107)。規定値以上であった場合(ステップS107,Yes)には、制御部40は起動モードから蒸気生成運転モードに切り替える。規定値未満であった場合(ステップS107,No)には、再度圧縮機22の吸入側における冷媒圧力の判定(ステップS103)を繰り返す。なお、通常運転移行条件としてその他の移行条件(例えば熱源温水の温度条件、圧縮機起動後タイマ条件など)を規定してもよい。また、これらの1以上の条件を組み合わせたAND条件あるいはOR条件とし、AND条件あるいはOR条件を満足した場合に蒸気生成運転モードに移行するようにしてもよい。
制御部40は、冷媒圧力Pinが下限値Pinlow未満でない場合(ステップS103,No)には、さらにバイパス弁27閉制御後の経過時間があらかじめ設定した規定値以内か否かを判断する(ステップS111)。バイパス弁27閉制御後の経過時間があらかじめ設定した規定値を超えた場合(ステップS111,No)には、ステップS104に移行してバイパス弁27を開にする。なお、装置起動時はバイパス弁27が閉状態となっているため、圧縮機22起動後初めて冷媒圧力Pinが下限値Pinlowを超えた場合はバイパス弁27閉制御後の経過時間が規定値以上とみなし、ステップS104に移行しバイパス弁27を開制御する。一方、バイパス弁27閉制御後の経過時間があらかじめ設定した規定値以内である場合(ステップS111,Yes)には、バイパス弁のチャタリングを防止するためにステップS107に移行する。
制御部40は、圧縮機22の吐出側における冷媒過熱度が規定値以上でない場合(ステップS107,No)には、ステップS103に移行して上述した起動運転モードを継続する。一方、制御部40は、圧縮機22の吐出側における冷媒過熱度が規定値以上である場合(ステップS107,Yes)には、起動運転モードを終了し蒸気生成運転モードに移行し(ステップS108)、本処理を終了する。
なお、図3で示した起動運転モードでは、圧縮機22の吸入側における冷媒圧力Pinが下限値Pinlow未満の場合にバイパス弁71を開にするようにしていたが、これに限らず、熱源温水温度Twが下限値Twlow未満、圧縮機22の吸入側における冷媒過熱度ΔTinが下限値ΔTinlow未満、圧縮機22の吐出側における冷媒過熱度ΔToutが下限値ΔToutlow未満、圧縮機22の吸入側における冷媒温度Tinが下限値Tinlow未満、のいずれかの場合にバイパス弁27を開にしてもよい。さらに、これらの条件を組み合わせたAND条件あるいはOR条件とし、条件を満足した場合にバイパス弁27を開にするようにしてもよい。
さらに、上述した起動運転モードによるバイパス弁27は、開または閉にする開閉制御であったが、これに限らず、バイパス弁27の開度調整を行った制御としてもよい。例えば、制御部40は、冷媒圧力Pinが下限値Pinlow未満の場合に、冷媒圧力Pinが下限値Pinlowよりも小さいほどバイパス弁27の開度を大きくする。さらに、制御部40は、冷媒圧力Pinが一定時間、上限値Pinhigh以上となった場合にバイパス弁27を閉にする。
また、図3で示した起動運転モードでは、圧縮機22の吸入側における冷媒圧力Pinが上限値Pinhigh以上の場合にバイパス弁27を閉にするようにしていたが、これに限らず、熱源温水温度Twが上限値Twhigh以上、圧縮機22の吸入側における冷媒過熱度ΔTinが上限値ΔTinhigh以上、圧縮機22の吐出側における冷媒過熱度ΔToutが上限値ΔTouthigh以上、圧縮機20の吸入側における冷媒温度Tinが上限値Tinhigh以上、のいずれかの場合にバイパス弁27を閉にしてもよい。さらに、これらの条件を組み合わせたAND条件あるいはOR条件とし、条件を満足した場合にバイパス弁27を閉にするようにしてもよい。
例えば、冷媒圧力Pinが上限値(第1設定値)Pinhigh以上であり、かつ、冷媒過熱度ΔTinが上限値(第2設定値)ΔTinhigh以上の場合にバイパス弁27を閉にする。
さらに、バイパス弁27を開にして起動運転モードを行う条件とバイパス弁27を閉にして蒸気生成運転モード制御に移行する条件とを異なるカテゴリの条件で組み合わせてもよい。例えば、冷媒圧力Pinが下限値Pinlow未満の場合にバイパス弁27を開にし、冷媒過熱度ΔToutが上限値ΔTouthigh以上の場合にパイパス弁27を閉にする制御を行ってもよい。
また、図3では、ステップS103において、冷媒圧力Pinが下限値Pinlow未満でない場合(ステップS103,No)に、さらにステップS111で、圧縮機起動後の経過時間があらかじめ設定した規定値以内か否かを判断し、圧縮機22起動後の経過時間があらかじめ設定した規定値を超えた場合(ステップS111,No)にバイパス弁27を開にし(ステップS104)、圧縮機起動後の経過時間があらかじめ設定した規定値以内である場合(ステップS111,Yes)に圧縮機22の吐出側における冷媒過熱度が、あらかじめ通常運転移行条件として設定した規定値以上であるか否かを判断する(ステップS107)ようにしていた。しかし、これに限らず、ステップS111の判断処理を削除し、冷媒圧力Pinが下限値Pinlow未満でない場合(ステップS103,No)に、直ちに圧縮機22の吐出側における冷媒過熱度が、あらかじめ通常運転移行条件として設定した規定値以上であるか否かを判断する(ステップS107)ようにしてもよい。この処理は、圧縮機22の吸入側における冷媒圧力が下限値以上であれば、液バックが生じないと推測されるため、バイパス弁27の閉状態を維持したまま、圧縮機22の吐出側における冷媒過熱度条件のみを基準として蒸気生成運転モードへの切替を行う。
なお、上述した熱源温水の温度Twは、蒸発器21の上流側の温度であってもよいし、蒸発器21の下流側の温度であってもよい。さらに、熱源温水の温度Twに代わり、蒸発器本体の温度を基準としてもよい。また、蒸発器21の上流側の熱源温水温度と下流側の熱源温水温度との温度差を、上述したバイパス弁27の開閉の条件として用いてもよい。
上述した実施の形態では、パイパス配管L7における圧縮機22の吸入側(冷媒の戻り先)は、圧縮機22と蒸発器21との間に接続されていたが、これに限らず、パイパス配管L7における圧縮機22の吸入側を蒸発器21と膨張機構25との間の管路に接続してもよい。この配置では、戻った冷媒によって蒸発器26の蒸発を促進することができる利点を有する。一方、図1に示したバイパス配管L7の配置では、バイパス弁27を開にした場合の応答速度を速くすることができる利点を有する。
本実施の形態では、ヒートポンプ装置の起動時に、圧縮機22の吸入側における冷媒圧力Pin、熱源温水温度Tw、圧縮機22の吸入側における冷媒過熱度ΔTin、圧縮機22の吐出側における冷媒過熱度ΔTout、圧縮機22の吸入側における冷媒温度Tinのうちの少なくとも1つに基づきバイパス弁27を開閉制御するようにしている。この結果、圧縮機22の起動時における液バック状態を確実に回避するとともに圧縮機22の起動時間を短くすることができる。
続いて、図4に示したフローチャートを参照して、制御部40による蒸気生成運転モードおよびアイドリング運転モードの遷移制御について説明する。
起動運転モードから蒸気生成運転モードに移行すると、制御部40は、熱流量計31の測定値を随時取得することで蒸発器21に供給される熱源温水の熱流量を監視する(ステップ201)。なお、熱源温水の熱流量監視は、起動運転モード時から継続して行ってもよい。蒸気生成運転モードでは、ステップS201の監視結果から熱源温水の熱流量の変動に応じた流量となるように温水ポンプP2を制御する。例えばステップS201の監視結果から熱源温水の熱流量が低下したと判定された場合、制御部40はPID制御等によって温水ポンプP2の駆動回転数を増加させ、蒸発器21に供給される熱源温水の流量を増加させて熱量を増加させる。また、例えばステップS201の監視結果から熱源温水の熱流量が増加したと判定された場合、制御部40はPID制御等によって温水ポンプP2の駆動回転数を低下させ、蒸発器21に供給される熱源温水の流量を低下させて熱流量を低減させる。このように、制御部40は、蒸発器21に供給される熱源温水の熱流量を目標値に近づけるように熱源温水の供給流量を制御する。また、その他の制御方法を用いて熱源温水の熱流量を制御する場合は、熱源温水の熱流量が所定の範囲内になるように制御を行ってもよい。なお、蒸発器21に流通する熱源温水量を調節する温水流量調節手段は温水ポンプP2以外であってもよく、例えばその開度で熱源温水流量を制御可能な調節弁(流量制御弁)等が挙げられる。
ステップS202では、ステップS201で制御された熱流量が第1モード移行値未満であるか否かを判定する。蒸発器21に供給される熱源温水の熱流量があらかじめ設定した第1モード移行値以上である場合には、蒸気生成運転を継続する(ステップS202、No)。ここで、第1モード移行値とは、例えばヒートポンプ部20での熱源温水からの回収熱量が不足することなく、ヒートポンプ部20を蒸気生成運転モードで安定して運転継続できる程度の熱量である。換言すれば、第1モード移行値とは、ヒートポンプ部20が熱源温水から回収する熱量により、圧縮機22の吐出側の過熱度を所定値以上に維持することができる程度の熱流量である。
一方、ステップS202において、蒸発器21に供給される熱源温水の熱流量が第1モード移行値未満となった場合には(ステップS202のYes)、ステップS203が実行される。熱源温水の熱流量が第1モード移行値未満となる要因は、例えば熱源温水の温度が大きく低下した場合や、熱源温水の供給が減少した場合、温水ポンプP2の回転数を増大させたとしても十分な熱量を確保できなくなる状態が挙げられる。
アイドリング運転モードでは、制御部40はヒートポンプ部20内の冷媒循環量を蒸気生成運転モードよりも抑制した状態、あるいは実行可能な最低の冷媒循環量とした状態に制御するとともに、蒸気制御弁18を閉制御し、蒸気利用設備50への蒸気送出を停止させる。具体的には、アイドリング運転モードでヒートポンプ部20での冷媒循環量を最低とする場合には、膨張機構25の開度を制御可能な範囲で最小の開度まで閉じ、同時に圧縮機22の駆動回転数を制御可能な最低回転数まで減速させる。なお、圧縮機22は、一般的には潤滑油給油機構の関係で最低回転数が規定されているため、例えばこの最低回転数まで減速させる。あるいは、一定の余裕係数を設け、最低回転数よりも若干高い回転数としてもよい。また、アイドリング運転モードでヒートポンプ部20での冷媒循環量を蒸気生成運転モードよりも抑制する場合には、膨張機構25の開度を通常運転モード時よりも閉じ、同時に圧縮機22の駆動回転数を蒸気生成運転モードよりも減速させる。
このようなアイドリング運転モードが実行されると、例えば最小開度まで絞られた膨張機構25から供給される液冷媒が蒸発器21内に存在する僅かな熱量を回収して蒸発し、最低回転数まで減速された圧縮機22に吸入されることで、ヒートポンプ部20の運転が継続される。この際、蒸発器21に導入される液冷媒は、蒸発器21に存在する僅かな熱量で蒸発を継続できれば圧縮機22に液バックが生じることがない。なお、アイドリング運転モードでは、蒸気生成部10の運転を停止し、凝縮器23での蒸気生成を中断することが望ましいが、蒸気生成部10の運転を完全に停止せず、蒸気生成部10から外部に送出される蒸気量が蒸気生成運転モード時よりも低減されていれば運転継続効果は期待される。この場合は、定格運転時よりも蒸気制御弁18の開度を小さくすればよい。
さらに、アイドリング運転モードでは、制御部40はバイパス弁27を開制御し、圧縮機22の吐出側から吸入側へ冷媒をバイパスさせる。これにより、ヒートポンプ部20内の最低冷媒循環量を圧縮機22が最低回転数で運転された場合よりもさらに低減させることができるとともに、圧縮機22の吸入側における冷媒過熱度を上昇させることができるため、バイパス弁27を設けない場合に比べアイドリング運転モードの継続可能時間を大きく延ばすことが可能となる。
続いてステップS204において、制御部40は、当該ヒートポンプ式蒸気生成装置100が所定の緊急停止条件を満たしているか否かを判定し、緊急停止条件を満たしている場合(S204、Yes)、ヒートポンプ式蒸気生成装置100を緊急停止させる(S205)。この緊急停止条件とは、ヒートポンプ部20の運転を緊急に停止するか否かを判断するための条件であり、例えばヒートポンプ部20での冷媒の過熱度、蒸発器21での入口側と出口側での温水の温度差、蒸発器21に供給される熱源温水の温度若しくは流量の状態、およびアイドリング運転モードの継続時間のうちの1又は2以上を利用する。なお、2以上の条件を利用する場合には、いずれか1の条件を満たした際に緊急停止を行うとよい。
緊急停止条件として冷媒の過熱度を用いる場合、制御部40は、ヒートポンプ部20での圧縮機22の吐出側又は吸入側の過熱度を求め、求めた過熱度が一定時間所定値未満となった場合、液バックを生じる懸念があると判断し、圧縮機22の運転を緊急停止する。
緊急停止条件として温水の温度差を用いる場合、制御部40は、蒸発器21の入口側及び出口側での温水の温度差を求め、求めた温度差が一定時間所定値未満となった場合、冷媒が回収する熱源温水の熱流量が十分ではなく、圧縮機22の吐出側の過熱度がゼロとなり液バックを生じる懸念があると判断し、圧縮機22の運転を緊急停止する。従って、この制御を行う場合には、蒸発器21の上流側、下流側共に温度センサ(図示せず)を設ける必要がある。なお、蒸発器21本体の熱源温水入口近傍に温度センサを設け、蒸発器21本体の温度を測定することで、蒸発器21上流側温度の代替としてもよい。
緊急停止条件として熱源温水の温度又は流量を用いる場合、制御部40は、蒸発器21に供給される熱源温水の温度又は流量を測定し、測定した温度又は流量が一定時間所定値未満となった場合、冷媒が回収する熱源温水の熱流量が十分ではなく、圧縮機22の吐出側の過熱度がゼロとなり液バックを生じる懸念があると判断し、圧縮機22の運転を緊急停止する。
このように、ステップS204において、当該ヒートポンプ式蒸気生成装置100が所定の緊急停止条件範囲内にあると判定された場合(ステップS204のYes)、圧縮機22の運転が緊急停止される(ステップS205)。その後は、ヒートポンプ部20の冷媒配管内の冷媒の温度や圧力が低下して均温・均圧となり、再起動が可能な条件となった場合には、再びステップS101に戻って起動処理が行われる。
一方、ステップS204において、当該ヒートポンプ式蒸気生成装置100が所定の緊急停止条件範囲内にないと判定された場合(ステップS204のNo)、つまりアイドリング状態を継続可能と判断された場合には、ヒートポンプ式蒸気生成装置100が蒸気生成運転に復帰可能かどうかを判断する(ステップS211)。ステップS211では、熱流量計31で測定された熱源温水の熱流量が第2モード移行値以上であるか否かを判定する。この第2モード移行値は、第1モード移行値よりも高く設定される。蒸発器21に供給される熱源温水の熱流量が第2モード移行値以上である場合(ステップS211、Yes)、起動運転モードに移行し(ステップS212)、復帰処理を終了する。なお、起動運転モードに移行後は、通常の起動制御を行った上で、蒸気生成運転モードへの移行条件を満たし次第、蒸気生成運転モードへ移行する。蒸発器21に供給される熱源温水の熱流量が第2モード移行値未満である場合(ステップS211、No)、ステップS204に戻り、再び緊急停止条件の判定を行う。
本実施の形態では、蒸発器21に供給される熱源温水の熱流量が第2モード移行値以上である場合(ステップS211、Yes)に起動運転モードに移行しているが、第2モード移行値による起動運転モードへの移行を行わずに、さらに所定の条件を満たしている場合、例えばヒートポンプ部20での冷媒の過熱度が所定値以上、蒸発器21での入口側と出口側での温水の温度差が所定値未満、またはアイドリング運転モードの継続時間が所定時間未満、などの場合に直接蒸気生成運転モードに移行するようにしてもよい。
また、別途バイパス弁27が閉の状態で蒸気生成運転モードに復帰するための復帰運転モードを設け、蒸発器21に供給される熱源温水の熱流量が第3モード移行値以上である場合、復帰運転モードに移行し、所定の条件を満たした場合に蒸気生成運転モードに移行してもよい。この第3モード移行値は、第1モード移行値よりも高く設定される。復帰運転モードから蒸気生成運転モードに移行する条件は、起動運転モードから蒸気生成運転モードに移行する条件とは異なる条件が設定される。例えば、起動運転モードで起動後に蒸気生成運転モードに移行する条件の1つとしてタイマが設定されている場合、復帰運転モードではその条件を含まないような移行条件としてもよく、移行条件となる所定値を起動運転モードとは異ならせてもよい。これは、起動運転モードでは長時間停止後の起動(コールドスタート)を考慮しているのに対し、復帰運転モードでは、すでに装置が十分に加温されている状態からの起動(ホットスタート)となるため、個別機器の起動スタンバイ時間や、機器本体に奪われる熱量分などを考慮する必要がないからである。なお、起動運転モードとして、装置を常温から起動させるコールドスタートモードと、ヒートポンプ部20を流通する冷媒温度が一定以上の状態から起動させるホットスタートモードの2モードが個別に設けられている場合は、復帰運転モードとしてホットスタートモードを選択してもよい。なお、アイドリング運転モードから起動運転モードを介して蒸気生成運転モードになる装置と、アイドリング運転モードから復帰運転モードを介して蒸気生成運転モードになる装置とが同じ熱源温水から並列で熱の供給を受けている場合は、前者における第2モード移行値よりも後者における第3モード移行値を低く設定するのが望ましい。このような制御とすることで、復帰運転モードを有する装置、つまり蒸気生成運転モードへの移行条件が起動運転モードよりも緩和されている装置をいち早く蒸気生成運転モードに移行させ、段階的に蒸気生成運転を再開することが可能である。
また、蒸発器21に供給される熱源温水の熱流量が第3モード移行値よりも高く設定される第4モード移行値以上となることを復帰運転モードから蒸気生成運転モードに移行する条件としてもよく、第3モード移行値以上の温度を継続している時間もしくは第4モード移行値以上の温度を継続している時間が所定時間以上となった場合に復帰運転モードから蒸気生成運転モードに移行してもよい。
ステップS202の蒸発器21へ供給される熱源温水の熱流量は、熱流量計31を用いた方法以外で求めることもできる。例えば、温水ポンプP2と蒸発器21との間の温水配管L2に熱源温水の温度を測定する温度センサを設ける方法が挙げられる。つまり、制御部40は、温水ポンプP2の駆動回転数(制御回転数)を把握しているため、この駆動回転数から推定される熱源温水の流量と、温度センサによって測定される熱源温水温度とから蒸発器21に供給される熱源温水の熱流量を演算し、この演算結果に基づき、ステップS201,S202の制御ステップを行ってもよい。このように熱流量測定手段として、熱流量計31に代えて温度センサを用いることで、比較的コストが高い熱流量計を比較的コストが低い温度センサで代替でき、装置のコストを低減することができる。なお、この場合の温度センサは蒸発器21の上流側に設けられていればよく、蒸発器21に供給される熱源温水の温度が分かる範囲であれば温水ポンプP2より上流側に設けてもよい。
また、熱源温水の温度が略一定の場合は、温水ポンプP2と蒸発器21との間の温水配管L2に熱源温水の流量を測定する流量計を設ける方法が挙げられる。つまり、制御部40は、熱源温水の温度をあらかじめ把握しているため、この温度と、流量計によって測定される熱源温水の流量とから蒸発器21に供給される熱源温水の熱流量を演算し、この演算結果に基づき、ステップS201,S202の制御ステップを行ってもよい。このように熱流量測定手段として、熱流量計31に代えて流量計を用いることで、比較的コストが高い熱流量計を比較的コストが低い流量計で代替でき、装置のコストを低減することができる。なお、この場合の流量計は蒸発器21に供給される熱源温水の流量が分かる位置であれば、蒸発器21より下流側に設けてもよい。
また、本実施の形態において、起動運転モードと復帰運転モードとを両方備え、それぞれ圧縮機の吸入過熱度もしくは圧縮機の吐出過熱度が所定値以上となったときに蒸気生成運転モードに移行する場合、起動運転モード時に設定される吸入過熱度の所定値よりも、復帰運転モード時に設定される吸入過熱度の所定値の方が小さく設定することができる。同様に、起動運転モード時に設定される吐出過熱度の所定値よりも、復帰運転モード時に設定される吐出過熱度の所定値の方が小さく設定することができる。これは、起動運転モード時は装置本体が十分に加熱されていないため、過熱度の余裕係数をより大きく取る必要があるからである。このように、復帰運転モードを別途設けることで、アイドリング運転モード後に起動運転モードを経由するよりもより効率的に蒸気生成運転モードに移行することが可能となる。
なお、従来、圧縮機の吐出側から吸入側に冷媒をバイパスするバイパス管路(ホットガスバイパス)を設けているものがあるが、このバイパス管路は、通常運転時における、急激な負荷変動に対応するための容量制御を行う機能を有するものであり、本実施の形態における、圧縮機起動時に確実に液バック状態を回避するとともに圧縮機の起動時間を短縮するために用いるバイパス管路、および蒸気生成運転中に熱源温水の熱流量低下に対するアイドリング運転継続時間の延長とは異なる機能を有するものである。なお、蒸気生成運転時に、従来のバイパス管路を用いた長期間にわたる容量制御では、圧縮機吸入側の冷媒過熱度が上昇しすぎてしまう問題をもたらす。
本実施の形態ではバイパス弁27に開閉弁を用いた場合の制御を記載しているが、それには限定されない。例えばバイパス弁27を調節弁とし、所定の範囲でバイパス弁の開度を調節するような制御としてもよい。
その他、本発明は上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できる。
100 ヒートポンプ式蒸気生成装置
200 蒸気生成システム
10 蒸気生成部
12 気液分離器
14 逆止弁
16 排水弁
18 蒸気制御弁
20 ヒートポンプ部
21 蒸発器
22 圧縮機
23 凝縮器
25 膨張機構
27 バイパス弁
30 温水供給部
31 熱流量計
40 制御部
50 蒸気利用設備
70 温水タンク
P1 給水ポンプ
P2 温水ポンプ
L1 冷媒配管
L2 温水配管
L3 循環配管
L4 給水配管
L5 排水配管
L6 蒸気送出配管
L7 バイパス配管

Claims (3)

  1. 冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒を凝縮させる凝縮器、前記凝縮器で凝縮された冷媒を減圧する膨張機構、及び熱源温水から熱を回収して冷媒を蒸発させる蒸発器を環状に接続したヒートポンプ部と、前記凝縮器に導入された被加熱水を加熱して蒸気を生成し外部に送出する蒸気生成部と、前記蒸発器に熱源温水を供給する温水供給部とを有するヒートポンプ式蒸気生成装置であって、
    前記圧縮機の吐出側と前記圧縮機の吸入側とをバイパス弁を介して接続するバイパス管路と、
    前記バイパス弁を閉制御しつつ外部に蒸気を送出する蒸気生成運転モードと、前記バイパス弁が開いた状態で前記蒸気生成部から外部への蒸気送出量を前記蒸気生成運転モードの定格量よりも減少させるアイドリング運転モードと、装置起動時に前記蒸気生成運転モードに移行するための準備を行う起動運転モードと、前記アイドリング運転モード終了後、前記バイパス弁が閉じた状態で前記蒸気生成運転モードに移行するための準備を行う復帰運転モードを有する制御部とを備え、
    前記制御部は、前記蒸気生成運転モード時に前記熱源温水の熱流量が第1モード移行値未満となった場合に、前記アイドリング運転モードへ移行し、前記起動運転モード時に前記圧縮機の吸入側における冷媒過熱度が第1吸入過熱度所定値以上、または前記圧縮機の吐出側における冷媒過熱度が第1吐出過熱度所定値以上となった場合に前記蒸気生成運転モードに移行し、前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された第2モード移行値以上となった場合に前記起動運転モードへ移行し、前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された第3モード移行値以上となった場合に前記復帰運転モードへ移行し、前記圧縮機の吸入側における冷媒過熱度が前記第1吸入過熱度所定値よりも小さく設定された第2吸入過熱度所定値以上、または前記圧縮機の吐出側における冷媒過熱度が前記第1吐出過熱度所定値よりも小さく設定された第2吐出過熱度所定値以上となった場合に前記復帰運転モードから前記蒸気生成運転モードに移行することを特徴とするヒートポンプ式蒸気生成装置。
  2. 前記制御部は、装置起動時に前記蒸気生成運転モードに移行するための準備を行う起動運転モードと、前記アイドリング運転モード終了後、前記バイパス弁が閉じた状態で前記蒸気生成運転モードに移行するための準備を行う復帰運転モードとをさらに有し、
    前記起動運転モード時に前記圧縮機の吸入側における冷媒過熱度が吸入過熱度所定値以上、または前記圧縮機の吐出側における冷媒過熱度が吐出過熱度所定値以上となった場合に前記蒸気生成運転モードに移行し、
    前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された前記第3モード移行値以上となった場合に前記復帰運転モードへ移行し、前記熱源温水の熱流量が前記第3モード移行値よりも高い4モード移行値以上となった場合、もしくは熱源温水の熱流量が前記第3モード移行値以上を継続している時間が所定時間以上となった場合に前記復帰運転モードから前記蒸気生成運転モードに移行することを特徴とする請求項1に記載のヒートポンプ式蒸気生成装置。
  3. 前記制御部は、装置起動時に前記蒸気生成運転モードに移行するための準備を行う起動運転モードと、前記アイドリング運転モード終了後、前記バイパス弁が閉じた状態で前記蒸気生成運転モードに移行するための準備を行う復帰運転モードとをさらに有し、
    前記起動運転モード時に前記圧縮機の吸入側における冷媒過熱度が所定値以上、または前記圧縮機の吐出側における冷媒過熱度が吐出過熱度所定値以上となった場合に前記蒸気生成運転モードに移行し、
    前記アイドリング運転モード時に前記熱源温水の熱流量が前記第1モード移行値よりも高く設定された前記第3モード移行値以上となった場合に前記復帰運転モードへ移行し、前記熱源温水の熱流量が前記第3モード移行値よりも高い前記第4モード移行値以上を継続している時間が所定時間以上となった場合に前記復帰運転モードから前記蒸気生成運転モードに移行することを特徴とする請求項1または2に記載のヒートポンプ式蒸気生成装置。
JP2018052582A 2018-03-20 2018-03-20 ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法 Active JP7102819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052582A JP7102819B2 (ja) 2018-03-20 2018-03-20 ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052582A JP7102819B2 (ja) 2018-03-20 2018-03-20 ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法

Publications (2)

Publication Number Publication Date
JP2019163910A JP2019163910A (ja) 2019-09-26
JP7102819B2 true JP7102819B2 (ja) 2022-07-20

Family

ID=68066170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052582A Active JP7102819B2 (ja) 2018-03-20 2018-03-20 ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法

Country Status (1)

Country Link
JP (1) JP7102819B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161248A (ja) 2015-03-04 2016-09-05 富士電機株式会社 ヒートポンプ式蒸気生成装置及びヒートポンプ式蒸気生成装置の運転方法
JP2017083155A (ja) 2015-10-27 2017-05-18 富士電機株式会社 ヒートポンプ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894191A (ja) * 1994-09-29 1996-04-12 Mitsubishi Denki Bill Techno Service Kk 冷凍機保護方法および装置
JP3741793B2 (ja) * 1996-10-02 2006-02-01 ホシザキ電機株式会社 食器洗浄機の温水生成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161248A (ja) 2015-03-04 2016-09-05 富士電機株式会社 ヒートポンプ式蒸気生成装置及びヒートポンプ式蒸気生成装置の運転方法
JP2017083155A (ja) 2015-10-27 2017-05-18 富士電機株式会社 ヒートポンプ装置

Also Published As

Publication number Publication date
JP2019163910A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5163620B2 (ja) 廃熱回生システム
JP5605991B2 (ja) 蒸気発生装置
KR101600687B1 (ko) 배열 회수 장치 및 배열 회수 장치의 운전 제어 방법
CN110542256B (zh) 防冻控制方法、装置、热泵水系统以及存储介质
WO2015068531A1 (ja) 蒸気生成ヒートポンプ及び蒸気生成ヒートポンプの運転制御方法
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP6119895B1 (ja) ヒートポンプ装置
US10794160B2 (en) Geothermal heat recovery device and geothermal heat recovery device operating method
US8739532B2 (en) Exhaust heat regeneration system
JP2008057874A (ja) 冷凍サイクル装置
JP2018013046A (ja) ランキンサイクルシステム、及び、ランキンサイクルシステムの制御方法
JP7102819B2 (ja) ヒートポンプ式蒸気生成装置、蒸気生成システムおよびその運転方法
JP6686512B2 (ja) ボイラシステム
WO2006112157A1 (ja) 冷凍サイクル装置及びその運転方法
CN114616429A (zh) 热水供给装置
JP6465218B2 (ja) 排熱回収ヒートポンプ装置
JP6497111B2 (ja) ヒートポンプ式蒸気生成装置
JP6528467B2 (ja) ヒートポンプ式蒸気生成装置及びヒートポンプ式蒸気生成装置の運転方法
JP7056246B2 (ja) ヒートポンプ式蒸気生成システム
US11035258B2 (en) Model-based monitoring of the operating state of an expansion machine
WO2022163793A1 (ja) 冷凍装置、冷凍装置の制御方法及び温度制御システム
JP5929464B2 (ja) ヒートポンプ及びヒートポンプの起動方法
JP6184156B2 (ja) 冷凍サイクル装置
JP7056253B2 (ja) ランキンサイクルシステム、及び、ランキンサイクルシステムの制御方法
JP2020045826A (ja) 蒸気システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7102819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150