JP7080478B2 - Dry room for gas replacement - Google Patents

Dry room for gas replacement Download PDF

Info

Publication number
JP7080478B2
JP7080478B2 JP2018132005A JP2018132005A JP7080478B2 JP 7080478 B2 JP7080478 B2 JP 7080478B2 JP 2018132005 A JP2018132005 A JP 2018132005A JP 2018132005 A JP2018132005 A JP 2018132005A JP 7080478 B2 JP7080478 B2 JP 7080478B2
Authority
JP
Japan
Prior art keywords
air
airtight container
dew point
supply device
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018132005A
Other languages
Japanese (ja)
Other versions
JP2019052835A (en
Inventor
仁美 西國原
和彦 河口
寛明 江島
麻由 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to TW107128138A priority Critical patent/TWI763906B/en
Priority to KR1020180098381A priority patent/KR102539338B1/en
Priority to US16/123,562 priority patent/US10850232B2/en
Publication of JP2019052835A publication Critical patent/JP2019052835A/en
Application granted granted Critical
Publication of JP7080478B2 publication Critical patent/JP7080478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Description

本発明は、有機ELディスプレイ製造装置が設置されたブースなどの低活性ガス濃度(以下、活性ガス濃度を可能な限り0ppmに近づけた濃度のことを「低活性ガス濃度」という)の乾燥室、チャンバ内において、低露点(以下、露点温度が0度以下のことを「低露点」という)の環境下で、比較的短時間で製造装置のメンテナンスや調整などを行なうことができる除湿装置、ガス精製機を含めたガス置換システムに関するものである。 The present invention is a drying chamber having a low active gas concentration (hereinafter, a concentration in which the active gas concentration is as close to 0 ppm as possible is referred to as "low active gas concentration") such as a booth in which an organic EL display manufacturing apparatus is installed. In a chamber, a dehumidifying device and gas that can perform maintenance and adjustment of manufacturing equipment in a relatively short time in an environment with a low dew point (hereinafter, a dew point temperature of 0 degrees or less is called a "low dew point"). It relates to a gas replacement system including a refiner.

従来、液晶表示装置に代わる次世代フラットパネルディスプレイとして期待される有機EL表示装置などに用いられる有機EL素子は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されており、活発な研究開発が進められている。しかし、有機EL素子に用いられる有機発光材料等の有機物質や電極等は水分に弱く空気中の水分で性能や特性が急激に劣化する。従って、これらの開発に伴う実験の際にも、極めて低い露点の空気や、液体窒素を気化させた窒素などの不活性ガスで空気をパージしたブースの中で製造や実験を行う必要がある。 Conventionally, organic EL elements used in organic EL display devices, which are expected as next-generation flat panel displays to replace liquid crystal displays, are promising for use as solid-state light-emitting inexpensive large-area full-color display devices and write light source arrays. It has been actively researched and developed. However, organic substances such as organic light emitting materials used for organic EL devices and electrodes and the like are vulnerable to moisture, and their performance and characteristics are rapidly deteriorated by the moisture in the air. Therefore, even during the experiments associated with these developments, it is necessary to carry out manufacturing and experiments in a booth where air is purged with air with an extremely low dew point or an inert gas such as nitrogen vaporized from liquid nitrogen.

また現在、有機ELディスプレー(OLED)の製造には、インクジェット技術などの印刷技術を利用して、液状の有機EL用材料を基板上で均一な薄膜にし、生産効率や性能を高めた素子を作成する技術の開発が行われている。このような製造技術の開発のためには、製造装置の環境を湿度1ppm以下、酸素1ppm以下などの低湿度で低活性ガス濃度にする必要がある。ただし、ブース内において製造装置のメンテナンスや調整などを行なう場合、低湿度の窒素環境を大気環境に戻す(以下、「大気ブレーク」という)必要がある。 At present, in the production of organic EL displays (OLEDs), printing technology such as inkjet technology is used to make liquid organic EL materials into uniform thin films on a substrate to create elements with improved production efficiency and performance. Technology is being developed. In order to develop such a manufacturing technique, it is necessary to set the environment of the manufacturing apparatus to a low humidity such as humidity of 1 ppm or less and oxygen of 1 ppm or less and a low active gas concentration. However, when performing maintenance or adjustment of manufacturing equipment in the booth, it is necessary to return the low humidity nitrogen environment to the atmospheric environment (hereinafter referred to as "atmospheric break").

このとき、通常の大気で窒素環境を置換すると内部にある装置の様々な部品が水分を吸着し、窒素環境に戻す際、部品が吸着した水分を脱着するのに非常に時間がかかっている。 At this time, when the nitrogen environment is replaced with a normal atmosphere, various parts of the internal device adsorb water, and when returning to the nitrogen environment, it takes a very long time for the parts to desorb the adsorbed water.

この大気ブレークした大気環境から再度窒素環境に戻すための不活性ガス量を最小にし、休止時間を最小限化するため、ガスエンクロージャアセンブリの内部容積を最小限化する技術として特許文献1に記載のものがある。 Patent Document 1 describes a technique for minimizing the internal volume of a gas enclosure assembly in order to minimize the amount of inert gas for returning from the atmospheric break to the nitrogen environment and to minimize the downtime. There is something.

特表2015-510254号公報Special Table 2015-510254A

特許文献1に開示されたものは、ガスエンクロージャをフレーム化し、内部容積をできるだけ小さくすることにより、ガスエンクロージャア内の不活性ガス量を最小にして保守等による休止時間を最小限化するとともに、種々のOLED製造装置の設置面積に適応するように作業空間を最適化できるものであるが、休止中に付随する不活性ガス精製と湿分除去を同時に行うためのガス精製システムも停止しているため、再度、ブース内を低湿度で低アウトガス濃度環境にするための時間が掛かり過ぎるという問題があった。また、ガス精製装置と除湿装置が同一機構内にあり、酸素と水分では精製速度が異なり、酸素の除去と比較して水分の除去に時間がかかるため、同時に除去するのは難しいという課題もある。 In Patent Document 1, the gas enclosure is framed and the internal volume is made as small as possible to minimize the amount of inert gas in the gas enclosure and to minimize the downtime due to maintenance and the like. Although the work space can be optimized to adapt to the installation area of various OLED manufacturing equipment, the gas purification system for simultaneously purifying the inert gas and removing the moisture that accompanies the pause is also stopped. Therefore, there is a problem that it takes too much time to make the inside of the booth a low humidity and low outgas concentration environment again. In addition, since the gas purification device and the dehumidifying device are in the same mechanism, the purification rate differs between oxygen and water, and it takes longer to remove water than the removal of oxygen, so there is also the problem that it is difficult to remove them at the same time. ..

本発明は以上のような課題を解決するため、乾燥室内部に気密容器を設け、この気密容器に低活性ガスと低露点ガスを供給するようにし、不活性ガス精製装置と低露点ガス供給装置それぞれ独立して制御できるようにしているため、調整などで気密容器内部に人が入る場合に、低露点空気の供給を維持しながら低活性ガスの供給を停止するようにすると、大気ブレークによる休止時間を大幅に短縮させることができる。つまり水の分子は極性物質であり、低露点に維持する必要のある気密容器に大気を導入すると、気密容器の壁面やフィルタ内部に水分子が付着する。この付着した水分子を排出するために、低露点空気を長時間供給する必要があるが、本発明の場合は低活性ガスの供給を停止した状態で、低露点ガスの供給を維持する事ができ、大気ブレークの後でも速やかに気密容器内の露点を低い状態に到達させることができる。また、低活性ガスとしてボンベに入った窒素ガスであっても、或いは酸素を除去した空気であってもガスの価格が高く、大気ブレークの時間を短縮しないと費用がかさむ。一方で低露点ガスをデシカントロータで作ると費用が掛からないため、低露点ガスの供給を維持しながら低活性ガスの供給を停止してメンテナンスなど行う事で、総費用を低くする事ができる。 In order to solve the above problems, the present invention provides an airtight container inside the drying chamber, supplies the low active gas and the low dew point gas to the airtight container, and supplies an inert gas purifier and a low dew point gas supply device. Since each can be controlled independently, if a person enters the airtight container due to adjustment etc., if the supply of low active gas is stopped while maintaining the supply of low dew point air, it will be suspended due to an atmospheric break. The time can be greatly reduced. That is, water molecules are polar substances, and when air is introduced into an airtight container that needs to be maintained at a low dew point, water molecules adhere to the wall surface of the airtight container and the inside of the filter. It is necessary to supply low dew point air for a long time in order to discharge the attached water molecules, but in the case of the present invention, it is possible to maintain the supply of the low dew point gas while the supply of the low active gas is stopped. It is possible to quickly reach a low dew point in the airtight container even after an atmospheric break. In addition, even if it is nitrogen gas that has entered a cylinder as a low inert gas, or even if it is air from which oxygen has been removed, the price of the gas is high, and the cost will increase unless the time for atmospheric break is shortened. On the other hand, since it is not costly to make low dew point gas with a desiccant rotor, the total cost can be reduced by stopping the supply of low active gas while maintaining the supply of low dew point gas and performing maintenance.

また、通常は水分と酸素を除去する機構は同一装置内にあるため、水分除去装置と酸素除去装置に流れる気体の流量が同一となるが、これを別々の機器とすることでそれぞれの流量を自由に変えることができるため、低湿度と低活性ガス濃度の両方を同時に実現するような最適な運転条件で低活性ガス濃度のドライルームを作ることができるようになった。 In addition, since the mechanism for removing water and oxygen is usually in the same device, the flow rate of the gas flowing through the water removal device and the oxygen removal device is the same, but by using different devices, the respective flow rates can be adjusted. Since it can be changed freely, it has become possible to create a dry room with a low active gas concentration under optimum operating conditions that realize both low humidity and low active gas concentration at the same time.

本発明のガス置換用ドライルームは前述の如く構成したもので、大気ブレーク中も容器内上部に設置されたHEPAフィルタやULPAフィルタなどの空気浄化フィルタから循環させることなく一方向(以下「ワンパス」という)で低露点空気を供給することにより、最も水分を保持しやすいフィルタが水分を保持しないようにして、メンテナンスや保守、段取り替え等を実施する。また、容器の循環路に不活性ガス精製装置とデシカント除湿機を直列に設置し、その循環路と切り離した循環路を別途設け、大気ブレーク中に別途設けた循環路を循環させることにより、循環空気が大気環境に近づかないようにした。このようにすることにより、容器の大気ブレーク後の大気環境から、低湿度で低活性ガス濃度な環境へ戻す復帰時間を大幅に短縮することができた。さらに、この除湿装置と不活性ガス精製装置に流れる気体の流量をそれぞれ個別に制御することにより、容易に短時間で低湿度、低活性ガス濃度な環境へ最適化できるようなドライルームとすることができた。 The gas replacement dry room of the present invention is configured as described above, and is unidirectional (hereinafter referred to as "one pass") without circulating from an air purification filter such as a HEPA filter or ULPA filter installed in the upper part of the container even during an air break. By supplying low dew point air, maintenance, maintenance, setup change, etc. are carried out so that the filter that most easily retains moisture does not retain moisture. In addition, an inert gas purifier and a desiccant dehumidifier are installed in series in the circulation path of the container, a circulation path separated from the circulation path is separately provided, and the circulation path separately provided during the atmospheric break is circulated to circulate. The air was kept away from the atmospheric environment. By doing so, it was possible to significantly shorten the recovery time from the atmospheric environment after the atmospheric break of the container to the environment with low humidity and low active gas concentration. Furthermore, by individually controlling the flow rates of the gas flowing through this dehumidifying device and the inert gas refining device, it is possible to create a dry room that can be easily optimized for an environment with low humidity and low active gas concentration in a short time. Was done.

図1は本発明のドライルームの実施例1におけるフロー図である。FIG. 1 is a flow chart in Example 1 of the dry room of the present invention.

以下に本発明を実施するための形態について図面を用いて説明する。本実施形態では、内部を低露点、低活性ガス濃度で清浄に保つ必要のある容器のガス置換除湿装置およびガス置換方法として、インクジェット技術などの印刷技術を利用した有機ELディスプレー(OLED)の製造あるいは研究開発装置の容器を例に説明する。なお、本発明は、有機ELディスプレー(OLED)の製造あるいは研究開発装置に限らず、保管空間内を低露点、低活性ガス濃度で清浄に保つ必要のある、リチウムイオン電池材料や半導体分野を開発するために用いるグローブボックスなどの収納容器、または閉鎖空間に対しても用いることができる。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present embodiment, a gas replacement dehumidifier for a container whose inside needs to be kept clean with a low dew point and a low active gas concentration, and an organic EL display (OLED) using a printing technique such as an inkjet technique as a gas replacement method are manufactured. Alternatively, the container of the research and development device will be described as an example. The present invention is not limited to the manufacture of organic EL displays (OLEDs) or research and development equipment, but develops the fields of lithium-ion battery materials and semiconductors that need to keep the storage space clean with low dew point and low active gas concentration. It can also be used for storage containers such as glove boxes used for this purpose, or for closed spaces.

以下、本発明のガス置換用ドライルームの実施例1について図1に沿って詳細に説明する。1は内部を低露点、低活性ガス濃度で清浄に保つ必要のある気密性容器であり、有機ELディスプレー(OLED)の製造や研究開発に用いる製造装置2を収納しており、内部にガス循環路4及びHEPAフィルタやULPAフィルタなどの空気浄化フィルタ3を有している。なお、空気浄化フィルタ3については、複数のファンフィルタユニットとしてもよい。容器1には配管Aにより窒素ガスと除湿機38からの乾燥空気が供給される。 Hereinafter, Example 1 of the gas replacement dry room of the present invention will be described in detail with reference to FIG. 1 is an airtight container that needs to keep the inside clean with a low dew point and low active gas concentration, and houses the manufacturing equipment 2 used for manufacturing and research and development of organic EL display (OLED), and gas circulation inside. It has a road 4 and an air purification filter 3 such as a HEPA filter and a ULPA filter. The air purification filter 3 may be a plurality of fan filter units. Nitrogen gas and dry air from the dehumidifier 38 are supplied to the container 1 by the pipe A.

容器1内の被処理空気は、配管Bを通って不活性ガス精製装置としての窒素精製機40に送られ、被処理空気中の活性ガスである酸素が除去される。5は窒素精製用の触媒容器で、銅触媒や白金触媒などが収納されており、触媒が破過した場合、窒素ガスと水素ガスを流しながらヒータ6で温度を上げて触媒を再生する。7は窒素精製機40に被処理空気を送るためのポンプで、精製された被処理空気は、冷却器8を通って送風機9によって低露点ガス供給装置としてのデシカント除湿機39に送られる。なお、本実施例では、銅触媒や白金触媒などの触媒としたが、これらに限定されるものではなく、銅及び/又は白金を主成分とする他の触媒を用いてもよい。 The air to be treated in the container 1 is sent to the nitrogen purifier 40 as an inert gas purifier through the pipe B, and oxygen, which is an active gas in the air to be treated, is removed. Reference numeral 5 is a catalyst container for purifying nitrogen, which contains a copper catalyst, a platinum catalyst, and the like. If the catalyst breaks down, the temperature is raised by the heater 6 while flowing nitrogen gas and hydrogen gas to regenerate the catalyst. Reference numeral 7 is a pump for sending the air to be processed to the nitrogen purifier 40, and the purified air to be processed is sent to the desiccant dehumidifier 39 as a low dew point gas supply device by the blower 9 through the cooler 8. In this embodiment, a catalyst such as a copper catalyst or a platinum catalyst is used, but the present invention is not limited to these, and other catalysts containing copper and / or platinum as a main component may be used.

11はデシカント除湿機39用のハニカムロータで処理ゾーン12、パージゾーン13、再生ゾーン14に分割されている。17はハニカムロータを回転駆動させるためのギヤードモータなどのロータ駆動モータである。処理ゾーン12には被処理空気がプレクーラ10を通って送風機9で供給される。被処理空気の一部は、処理ゾーン12の前で分岐され、パージゾーン13を通った後、再生ヒータ36を通って再生ゾーン14へ送られる。再生ゾーン14を出た空気は冷却器15で冷却され、ハニカムロータから脱着した再生空気中の湿分から凝縮した水がドレンとして除去され送風機9の前に戻される。デシカント除湿機39を出た被処理空気は、必要に応じてアフターヒータ16で温められて、配管Dを通って容器1に戻される。なお、窒素ガス供給設備に余力がある場合は、デシカント除湿機39を気密性のある部屋内に設置し、その部屋へ窒素ガスを供給するようにして、デシカント除湿機39からの活性ガス侵入を抑制するような構成としてもよい。 Reference numeral 11 is a honeycomb rotor for the desiccant dehumidifier 39, which is divided into a processing zone 12, a purge zone 13, and a regeneration zone 14. Reference numeral 17 denotes a rotor drive motor such as a geared motor for rotationally driving the honeycomb rotor. The air to be processed is supplied to the processing zone 12 by the blower 9 through the precooler 10. A part of the air to be processed is branched in front of the processing zone 12, passes through the purge zone 13, and then is sent to the regeneration zone 14 through the regeneration heater 36. The air leaving the regeneration zone 14 is cooled by the cooler 15, and the condensed water from the moisture in the regeneration air desorbed from the honeycomb rotor is removed as a drain and returned to the front of the blower 9. The air to be processed leaving the desiccant dehumidifier 39 is heated by the afterheater 16 as needed, and is returned to the container 1 through the pipe D. If the nitrogen gas supply facility has spare capacity, install the desiccant dehumidifier 39 in an airtight room and supply nitrogen gas to the room to prevent the active gas from entering from the desiccant dehumidifier 39. It may be configured to suppress it.

34は容器1を収納している気密性の乾燥室で、調整などの場合に人が入れる大きさであり、配管Gから乾燥空気供給装置37からの乾燥空気が供給され、配管Hから乾燥室34の空気が乾燥空気供給装置37に戻される。なお、配管Eは容器1内の空気を乾燥室34外へ排気するための排気路である。なお、本実施例では、パージゾーン13を有するハニカムロータ11を使用したが、これに限定されるものではなく、処理ゾーンと再生ゾーンに2分割されたハニカムロータを使った構成としてもよい。 Reference numeral 34 is an airtight drying chamber for accommodating the container 1, which is large enough for a person to enter in the case of adjustment or the like. Dry air is supplied from the dry air supply device 37 from the pipe G, and the drying chamber is supplied from the pipe H. The air of 34 is returned to the dry air supply device 37. The pipe E is an exhaust passage for exhausting the air in the container 1 to the outside of the drying chamber 34. In this embodiment, the honeycomb rotor 11 having the purge zone 13 is used, but the present invention is not limited to this, and a honeycomb rotor divided into a processing zone and a regeneration zone may be used.

以上の構成の本発明のガス置換用ドライルームの動作をまず、容器1の窒素置換及び循環運転について説明する。バルブ18、19、21、22、23、24、25、27、28、29、30、31、33、35を開き、配管Aより窒素ガスと乾燥空気を容器1に送る。容器1内の酸素濃度が100ppm以下に低下したら、バルブ30、33、35を閉じて、窒素精製機40とデシカント除湿機39及び配管Gから低露点の乾燥空気を乾燥室34に供給するため、乾燥空気を循環させる乾燥空気供給装置37の運転を開始する。なお、必要に応じてバルブ24、25を調整することにより、容器1から配管Bを通って循環する空気の窒素精製機40へ行く風量と直接デシカント除湿機39へ行く風量を調節する。例えば、酸素濃度1ppm以下、水分濃度1ppm以下などの規定の濃度になるまで循環を続け、その後、製造装置2の運転を開始しOLEDの製造や研究開発のための試験を開始する。 First, the operation of the gas replacement dry room of the present invention having the above configuration will be described with respect to nitrogen replacement and circulation operation of the container 1. Valves 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35 are opened, and nitrogen gas and dry air are sent from the pipe A to the container 1. When the oxygen concentration in the container 1 drops to 100 ppm or less, the valves 30, 33, and 35 are closed to supply the dry air having a low dew point to the drying chamber 34 from the nitrogen purifier 40, the desiccant dehumidifier 39, and the pipe G. The operation of the dry air supply device 37 that circulates the dry air is started. By adjusting the valves 24 and 25 as necessary, the air volume of the air circulating from the container 1 through the pipe B to the nitrogen purifier 40 and the air volume directly to the desiccant dehumidifier 39 are adjusted. For example, circulation is continued until a specified concentration such as an oxygen concentration of 1 ppm or less and a water concentration of 1 ppm or less is reached, and then the operation of the manufacturing apparatus 2 is started to start a test for manufacturing or research and development of an OLED.

本実施例1では、容器1への窒素の供給を配管Aから行なっているが、これに限定されるものではなく、窒素精製機40の入口から供給するようにしてもよく、窒素精製機40とデシカント除湿機39の間から供給するようにしてもよい。 In the first embodiment, the nitrogen is supplied to the container 1 from the pipe A, but the present invention is not limited to this, and the nitrogen may be supplied from the inlet of the nitrogen refiner 40. It may be supplied from between the desiccant dehumidifier 39 and the desiccant dehumidifier 39.

次に容器1のメンテナンス、段取り替え、調整などを行なうための大気ブレークについて説明する。バルブ18、19、21、23、31を閉じ、バルブ30、32、33を開けることにより容器1と配管Bから配管Dまでの窒素循環ラインを隔離する。容器1の密閉を開放し、配管Aから乾燥空気を容器1の上部から入れることで、窒素を空気に置換する。また、配管Fのバルブ32も開いて、配管Gを経由して乾燥空気供給装置37から供給される低露点の乾燥空気が容器1の上部からワンパスで供給されるようにすることにより、大量の空気を一度に安全に供給できるため、窒素と空気の置換スピードを大幅に短縮できる。容器1の中で最も湿分を保持しやすい空気浄化フィルタ3の上部から、容器1内部を循環させることなくワンパスで乾燥空気を供給することで、内部で人が作業しても湿分は容器1内に残らず外に排出される。なお、配管Fと配管Gを接続させ、バルブ操作などで乾燥室34に供給する低露点の乾燥空気を直接、容器1の上部から全量供給するようにしてもよい。 Next, an atmospheric break for performing maintenance, setup change, adjustment, etc. of the container 1 will be described. By closing the valves 18, 19, 21, 23, 31 and opening the valves 30, 32, 33, the container 1 and the nitrogen circulation line from the pipe B to the pipe D are isolated. Nitrogen is replaced with air by opening the airtightness of the container 1 and injecting dry air from the upper part of the container 1 through the pipe A. Further, the valve 32 of the pipe F is also opened so that the dry air having a low dew point supplied from the dry air supply device 37 via the pipe G is supplied from the upper part of the container 1 in one pass, whereby a large amount of air is supplied. Since air can be safely supplied at one time, the replacement speed between nitrogen and air can be significantly reduced. By supplying dry air in one pass from the upper part of the air purification filter 3 which is the easiest to hold the moisture in the container 1 without circulating the inside of the container 1, the moisture can be kept in the container even if a person works inside. Everything in 1 is discharged to the outside. The pipe F and the pipe G may be connected to directly supply the entire amount of the low dew point dry air supplied to the drying chamber 34 by operating a valve or the like from the upper part of the container 1.

窒素循環ラインではバルブ30を開けることにより、循環路としての配管Cを空気が通るため、窒素濃度が高く低湿度の乾燥空気が循環することとなる。なお、窒素精製機40の触媒容器5内にある触媒を再生する場合は、バルブ35を開いて、窒素精製機40をバイパスさせてデシカント除湿機39へ空気を送り循環させる。このように除湿装置と酸素除去装置を分割してバルブを操作することにより、それぞれの装置に流れる気体の流量や循環回数を変えることで最適な運転環境を整えることができる。なお、バルブについては、これに限定されるものではなく、ダンパやVAV(Variable Air Volume)などの風量調整装置を用いてもよい。 By opening the valve 30 in the nitrogen circulation line, air passes through the pipe C as a circulation path, so that dry air having a high nitrogen concentration and low humidity circulates. When regenerating the catalyst in the catalyst container 5 of the nitrogen purifier 40, the valve 35 is opened to bypass the nitrogen purifier 40 and send air to the desiccant dehumidifier 39 for circulation. By operating the valve by dividing the dehumidifying device and the oxygen removing device in this way, the optimum operating environment can be prepared by changing the flow rate and the number of circulations of the gas flowing through each device. The valve is not limited to this, and an air volume adjusting device such as a damper or a VAV (Variable Air Volume) may be used.

本実施例1では、一台の窒素精製機40を用いたが、二台以上複数台の窒素精製機を並列に設置し、一台の窒素精製機の触媒を再生している間、他の窒素精製機において窒素精製処理を行なうような構成としてもよい。 In the first embodiment, one nitrogen purifier 40 was used, but while two or more nitrogen purifiers were installed in parallel and the catalyst of one nitrogen purifier was regenerated, another nitrogen purifier was used. The structure may be such that the nitrogen refining treatment is performed in the nitrogen purifier.

また、デシカント除湿機39の内部に窒素精製機能を有する機構を搭載させ、一体型の装置として、窒素精製機40を無くすような構成としてもよい。この場合、循環路やバイパス路などを設けることにより、容器1内の湿度と不活性ガス濃度を個別に調整できるようにして、低活性ガス濃度で低露点の環境を作ることが可能となるようにする。このようにすることにより、実施例1より省スペースなガス置換システムとすることが可能となり、配管や設置工事などに掛かるイニシャルコストを抑えることが可能となる。 Further, a mechanism having a nitrogen refining function may be mounted inside the desiccant dehumidifier 39, and the nitrogen purifier 40 may be eliminated as an integrated device. In this case, by providing a circulation path, a bypass path, etc., the humidity and the inert gas concentration in the container 1 can be adjusted individually, and an environment with a low dew point can be created with a low active gas concentration. To. By doing so, it becomes possible to make the gas replacement system more space-saving than in the first embodiment, and it is possible to suppress the initial cost required for piping and installation work.

このように内部を低露点、低活性ガス濃度で清浄に保つ必要のある気密性容器1を低露点の乾燥空気を供給する乾燥室34で覆うことにより、外部からの湿分侵入を最小限に抑えることが可能となる。また、特許文献1のような酸素除去と湿分除去を一台のガス精製システムで行なう従来技術と異なり、酸素除去を窒素精製機40で行ない、湿分除去をデシカント除湿機39で別々に行うことにより、酸素除去性能と湿分除去性能を任意に調整することが可能になるため、装置最適化や装置の管理が行いやすくなった。 By covering the airtight container 1 that needs to be kept clean with a low dew point and a low active gas concentration in this way with a drying chamber 34 that supplies dry air with a low dew point, the intrusion of moisture from the outside is minimized. It becomes possible to suppress it. Further, unlike the conventional technique in which oxygen removal and moisture removal are performed by a single gas purification system as in Patent Document 1, oxygen removal is performed by a nitrogen purifier 40 and moisture removal is performed separately by a desiccant dehumidifier 39. This makes it possible to arbitrarily adjust the oxygen removal performance and the moisture removal performance, which makes it easier to optimize the equipment and manage the equipment.

以上のことにより、容器1の大気ブレーク後の大気環境から内部を低露点、低活性ガス濃度で清浄な環境に戻すまでの復帰時間を従来技術の1/5~1/10に短縮することができた。また、容器1内を容易に低湿度で低活性ガス濃度に最適化できるようなガス置換システムを実現できた。 As a result, the recovery time from the atmospheric environment after the atmospheric break of the container 1 to the return to a clean environment with a low dew point and a low active gas concentration can be shortened to 1/5 to 1/10 of the conventional technique. did it. In addition, it was possible to realize a gas replacement system that can easily optimize the inside of the container 1 at low humidity and low active gas concentration.

本発明は、保管空間内を低露点、低活性ガス濃度で清浄に保つ必要のある、リチウムイオン電池材料等を開発するために用いるグローブボックスなどの収納容器に対しても用いることができる。 The present invention can also be used for a storage container such as a glove box used for developing a lithium ion battery material or the like, which needs to keep the storage space clean with a low dew point and a low active gas concentration.

1 容器
2 製造装置
3 空気浄化フィルタ
4 ガス循環路
5 触媒容器
6 ヒータ
7 ポンプ
8 冷却器
9 送風機
10 プレクーラ
11 ハニカムロータ
12 処理ゾーン
13 パージゾーン
14 再生ゾーン
15 冷却器
16 アフターヒータ
17 ロータ駆動モータ
18、19、21、22、23、24、25、27、28、29、30、31、32、33、35 バルブ
20、26 流量計
34 乾燥室
36 再生ヒータ
37 乾燥空気供給装置
38 除湿機
39 デシカント除湿機
40 窒素精製機
1 Container 2 Manufacturing equipment 3 Air purification filter 4 Gas circulation path 5 Catalyst container 6 Heater 7 Pump 8 Cooler 9 Blower 10 Precooler 11 Honeycomb rotor 12 Processing zone 13 Purge zone 14 Regeneration zone 15 Cooler 16 After heater 17 Rotor drive motor 18 , 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35 Valve 20, 26 Flow meter 34 Drying chamber 36 Regenerating heater 37 Dry air supply device 38 Dehumidifier 39 Desicant Dehumidifier 40 Nitrogen Purifier

Claims (5)

乾燥室の内部に収納された気密容器を設け、前記乾燥室に低露点の乾燥空気を供給し循環させる乾燥空気供給装置と、前記乾燥空気供給装置からの前記乾燥空気を前記乾燥室へ供給する配管と、前記乾燥室の前記乾燥空気を前記乾燥空気供給装置に戻す配管と、前記気密容器内の被処理空気中の酸素除去を行う不活性ガス精製装置と、前記被処理空気中の湿分除去を行う低露点ガス供給装置と、前記気密容器に接続された配管であって前記気密容器に接続された前記配管は二つの分岐経路を有し、前記分岐経路の一つは前記気密容器内の前記被処理空気を前記不活性ガス精製装置に送る経路であり、前記分岐経路のもう一つは前記気密容器内の前記被処理空気を前記低露点ガス供給装置に送る経路であり、さらに前記不活性ガス精製装置によって精製された前記被処理空気を前記低露点ガス供給装置に送る経路と、前記低露点ガス供給装置を出た前記被処理空気を空気浄化フィルタを介して前記気密容器に戻す配管と、前記気密容器内の空気を前記乾燥室の外部に排気する排気路とを備え、前記不活性ガス精製装置では前記被処理空気中の酸素除去を行い、前記低露点ガス供給装置では前記被処理空気中の湿分除去を別々に行うことにより、酸素除去性能と湿分除去性能を任意に調整することができるようにしたことを特徴とするドライルーム。
An airtight container housed inside the drying chamber is provided, and a dry air supply device that supplies and circulates dry air having a low dew point to the drying chamber and the dry air from the dry air supply device are supplied to the drying chamber. A pipe, a pipe for returning the dry air in the drying chamber to the dry air supply device, an inert gas purification device for removing oxygen in the air to be treated in the airtight container, and a moisture content in the air to be treated. The low dew point gas supply device for removing and the pipe connected to the airtight container and connected to the airtight container have two branch paths, and one of the branch paths is in the airtight container. The route to send the air to be treated to the inert gas purification device, and the other of the branch paths is a route to send the air to be treated in the airtight container to the low dew point gas supply device, and further. The route for sending the air to be treated purified by the inert gas purification device to the low dew point gas supply device and the air to be treated leaving the low dew point gas supply device are returned to the airtight container via an air purification filter. The inert gas purification apparatus is provided with a pipe and an exhaust passage for exhausting the air in the airtight container to the outside of the drying chamber. A dry room characterized in that oxygen removal performance and moisture removal performance can be arbitrarily adjusted by separately removing moisture in the air to be treated.
気体の流量や循環回数を変える風量調整装置を複数設け、大気ブレーク時には、前記気密容器に接続され前記二つの分岐経路を有する前記配管の途中に設けられた前記風量調整装置としてのバルブ(23)を閉じ、前記低露点ガス供給装置を出た前記被処理空気を前記空気浄化フィルタを介して前記気密容器に戻す前記配管の途中に設けられた前記風量調整装置としてのバルブ(31)を閉じ、前記低露点ガス供給装置を出た前記被処理空気を前記空気浄化フィルタを介して前記気密容器に戻す前記配管の途中に分岐して設けられ、当該分岐の位置は前記低露点ガス供給装置より後であって前記風量調整装置としての前記バルブ(31)より前記低露点ガス供給装置に近く、かつ、前記気密容器内の前記被処理空気を前記低露点ガス供給装置に送る前記経路に接続するように設けられた配管を有し、当該配管の途中に設けられた前記風量調整装置としてのバルブ(30)を開くことにより、前記気密容器と隔離された窒素循環ラインを形成し、前記窒素循環ラインでは窒素濃度が高く低湿度の乾燥空気が循環するようにする一方で、前記気密容器への窒素の供給を停止し、前記乾燥空気供給装置から前記乾燥室へ供給された前記乾燥空気を前記気密容器へ供給する配管を有し、当該配管の途中に設けられた前記風量調整装置としてのバルブ(32)を開き、前記気密容器内の空気を前記乾燥室の外部に排気する前記排気路の途中に設けられた前記風量調整装置としてのバルブ(33)を開き、前記乾燥空気が前記気密容器の上部から前記空気浄化フィルタを介してワンパスで供給されるようにすることにより、前記気密容器の密閉を開放して窒素を空気に置換することを特徴とする請求項1に記載のドライルーム。 A plurality of air volume adjusting devices for changing the gas flow rate and the number of circulations are provided , and at the time of an air break , a valve (23) as the air volume adjusting device provided in the middle of the pipe connected to the airtight container and having the two branch paths. ) Is closed, and the valve (31) as the air volume adjusting device provided in the middle of the pipe for returning the air to be treated from the low dew point gas supply device to the airtight container via the air purification filter is closed. The air to be treated that has left the low dew point gas supply device is branched and provided in the middle of the pipe that returns the air to be processed to the airtight container via the air purification filter, and the position of the branch is from the low dew point gas supply device. Later, it is closer to the low dew point gas supply device than the valve (31) as the air volume adjusting device, and is connected to the path for sending the processed air in the airtight container to the low dew point gas supply device. By opening the valve (30) as the air volume adjusting device provided in the middle of the pipe, a nitrogen circulation line isolated from the airtight container is formed, and the gas is formed. In the circulation line, while allowing the dry air having a high nitrogen concentration and low humidity to circulate, the supply of nitrogen to the airtight container is stopped, and the dry air supplied from the dry air supply device to the drying chamber is used. The exhaust passage having a pipe for supplying to the airtight container, opening a valve (32) as the air volume adjusting device provided in the middle of the pipe, and exhausting the air in the airtight container to the outside of the drying chamber. By opening the valve (33) as the air volume adjusting device provided in the middle of the above, the dry air is supplied from the upper part of the airtight container through the air purification filter in one pass, so that the airtight container is supplied. The dry room according to claim 1, wherein the hermetically sealed air is replaced with air . 前記空気浄化フィルタは、HEPAフィルタ及び/又はULPAフィルタを内蔵したファンフィルタであることを特徴とする請求項1或いは請求項2に記載のドライルーム。 The dry room according to claim 1 or 2, wherein the air purification filter is a fan filter having a built-in HEPA filter and / or ULPA filter. 前記不活性ガス精製装置が銅及び/又は白金を主成分とする触媒を内蔵した窒素精製機である請求項1から請求項3いずれか一項に記載のドライルーム。 The dry room according to any one of claims 1 to 3, wherein the inert gas purifier is a nitrogen purifier containing a catalyst containing copper and / or platinum as a main component. 前記低露点ガス供給装置がデシカント除湿機である請求項1から請求項4いずれか一項に記載のドライルーム。 The dry room according to any one of claims 1 to 4, wherein the low dew point gas supply device is a desiccant dehumidifier.
JP2018132005A 2017-09-14 2018-07-12 Dry room for gas replacement Active JP7080478B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107128138A TWI763906B (en) 2017-09-14 2018-08-13 Drying room for gas replacement
KR1020180098381A KR102539338B1 (en) 2017-09-14 2018-08-23 Dry room for gas replacement
US16/123,562 US10850232B2 (en) 2017-09-14 2018-09-06 Dry room for gas substitution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017176261 2017-09-14
JP2017176261 2017-09-14

Publications (2)

Publication Number Publication Date
JP2019052835A JP2019052835A (en) 2019-04-04
JP7080478B2 true JP7080478B2 (en) 2022-06-06

Family

ID=65745614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132005A Active JP7080478B2 (en) 2017-09-14 2018-07-12 Dry room for gas replacement

Country Status (3)

Country Link
JP (1) JP7080478B2 (en)
CN (1) CN109499274B (en)
TW (1) TWI763906B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306683B2 (en) 2019-05-29 2023-07-11 株式会社西部技研 Dry room for gas replacement
TWI769463B (en) * 2020-06-05 2022-07-01 日月光半導體製造股份有限公司 Dehumidification system and method for reducing space humidity
JP2023158373A (en) 2022-04-18 2023-10-30 株式会社西部技研 Oxygen removal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149961A (en) 2004-04-06 2011-08-04 Transmolecular Inc Diagnosis and treatment of myeloid and lymphoid cell cancers
JP2012052718A (en) 2010-08-31 2012-03-15 Shin Nippon Air Technol Co Ltd Method for controlling dew point temperature of local low dew point chamber and control system of the same
JP2014181882A (en) 2013-03-21 2014-09-29 Ngk Insulators Ltd Heat treatment device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378711B2 (en) * 2006-03-29 2009-12-09 株式会社日立プラントテクノロジー Humidity management method and humidity management system for organic EL panel manufacturing equipment
JP5631011B2 (en) * 2010-01-25 2014-11-26 高砂熱学工業株式会社 Clean room system and operation method thereof
EP2476475B1 (en) * 2011-01-14 2015-04-22 Alstom Technology Ltd A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
JP6138457B2 (en) * 2012-11-13 2017-05-31 株式会社西部技研 Drying room for glove box
US8940263B2 (en) * 2013-04-10 2015-01-27 Air Products And Chemicals, Inc. Removal of hydrogen and carbon monoxide impurities from gas streams
KR101376551B1 (en) * 2013-10-28 2014-04-01 (주)지비아이 Gas purifier for glove box
CN105169897A (en) * 2014-06-17 2015-12-23 株式会社西部技研 Absorption dehydrating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149961A (en) 2004-04-06 2011-08-04 Transmolecular Inc Diagnosis and treatment of myeloid and lymphoid cell cancers
JP2012052718A (en) 2010-08-31 2012-03-15 Shin Nippon Air Technol Co Ltd Method for controlling dew point temperature of local low dew point chamber and control system of the same
JP2014181882A (en) 2013-03-21 2014-09-29 Ngk Insulators Ltd Heat treatment device

Also Published As

Publication number Publication date
JP2019052835A (en) 2019-04-04
CN109499274A (en) 2019-03-22
TWI763906B (en) 2022-05-11
TW201916427A (en) 2019-04-16
CN109499274B (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP6758745B2 (en) Equipment and techniques for heat treatment of electronic devices
JP7080478B2 (en) Dry room for gas replacement
US10500880B2 (en) Gas enclosure systems and methods utilizing an auxiliary enclosure
JP4644517B2 (en) 4-port automatic switching valve
EP2973676B1 (en) Gas enclosure systems and methods utilizing an auxiliary enclosure
US10434782B2 (en) Ink delivery systems and methods
JP2014507275A5 (en)
JP2010538826A (en) Apparatus and method for in situ high temperature regeneration of a rotor sorption concentrator
KR102539338B1 (en) Dry room for gas replacement
JP6298366B2 (en) Adsorption type dehumidifier capable of controlling carbon dioxide concentration
KR101507024B1 (en) Voc reduction system
JP7306683B2 (en) Dry room for gas replacement
KR20150114410A (en) Heat treatment apparatus, heat treatment method, computer storage medium and substrate processing system
JP6982050B2 (en) Recirculating board container parsing system and method
KR101515379B1 (en) Apparatus for curing thin film
JP3265219B2 (en) Exhaust treatment device
JP2008282780A (en) Gas permutation device and gas permutation method
US9227155B2 (en) Apparatus and method for purifying gas
KR20190096714A (en) Apparatus for processing gas containing volatile organic compounds
JP2013208598A (en) Adsorption system
JP2000254437A (en) Waste gas treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7080478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150