JP7070266B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP7070266B2
JP7070266B2 JP2018172683A JP2018172683A JP7070266B2 JP 7070266 B2 JP7070266 B2 JP 7070266B2 JP 2018172683 A JP2018172683 A JP 2018172683A JP 2018172683 A JP2018172683 A JP 2018172683A JP 7070266 B2 JP7070266 B2 JP 7070266B2
Authority
JP
Japan
Prior art keywords
voltage
vehicle
charging
power supply
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172683A
Other languages
English (en)
Other versions
JP2020048262A (ja
Inventor
智員 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018172683A priority Critical patent/JP7070266B2/ja
Publication of JP2020048262A publication Critical patent/JP2020048262A/ja
Priority to JP2022074528A priority patent/JP7306529B2/ja
Application granted granted Critical
Publication of JP7070266B2 publication Critical patent/JP7070266B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本開示は、車両外部の電源から供給される電力を用いた車載の蓄電装置の充電を制御する制御装置に関する。
特開2016-201915号公報(特許文献1)には、車両外部の電源から充電ケーブルを介して供給される電力を受けて車載の蓄電装置を充電可能な車両の制御装置が開示されている。この制御装置は、車両のインレットと充電ケーブルに設けられた充電コネクタとの接続を検出するための接続信号線から取得した信号に基づいて、インレットと充電コネクタとの接続の状態を検出する。
特開2016-201915号公報
近年、車両外部のDC(直流)電源に接続可能に構成され、DC電源から直流電力の供給を受けて車載の蓄電装置を充電する処理(以下「DC充電」ともいう)が実行可能に構成された車両が普及してきている。DC充電に関しては、異なった複数の充電規格が存在する。
上記複数の充電規格のなかには、DC充電時において、車両側の接地線が接続されているインレットの接地端子(以下「車両側接地端子」ともいう)と、DC電源側の接地線が接続されている充電コネクタの接地端子(以下「電源側接地端子」ともいう)との接続が断絶したことを車両側で検出するように規定されている充電規格(以下「所定の充電規格」ともいう)がある。
ここで、本発明者は、DC充電時において車両側接地端子と電源側接地端子との接続が断絶した状態(以下「断絶状態」ともいう)において検出される接続信号線の電圧は、DC充電時においてインレットと充電コネクタとが正常に接続されている状態(以下「正常状態」ともいう)において検出される接続信号線の電圧よりも高くなることに着目した。さらに、本発明者は、接続信号線に電圧を供給する車両側の電源電圧(たとえば、補機電池の出力電圧)が高いほど、正常状態における接続信号線の電圧と断絶状態における接続信号線の電圧との差が大きくなることに着目した。
上記の実験結果に鑑みると、車両において、接続信号線の電圧に基づいて、正常状態と断絶状態とを検出することが考えられる。しかしながら、所定の充電規格においては、車両側の接続信号線に電圧を供給するための電源電圧が例示されている(たとえば、12V)。当該例示された電源電圧は、比較的低い電圧であるため、正常状態および断絶状態の両者の状態における接続信号線の電圧差が微小なものとなり得る。そのため、各種センサなどの検出誤差を考慮すると、両者の取り得る値同士に重なりが生じ得る。ゆえに、接続信号線の電圧に基づいて、両者の状態を適切に判別することができない可能性がある。
上記の電源電圧を昇圧させて正常状態および断絶状態の両者の状態における接続信号線の電位差を大きくすることも考えられるが、たとえば、充電コネクタに用いられる抵抗などの電子部品は、所定の充電規格において例示された電源電圧が用いられることを想定して選定され得る。そのため、電源電圧を単に昇圧させると、上記電子部品に悪影響を与えてしまう可能性がある。
本開示は、上記課題を解決するためになされたものであり、その目的は、車両側接地端子と電源側接地端子との接続が断絶した状態を適切に検出することである。
本開示に係る制御装置は、車両外部の電源から充電ケーブルを介して供給される電力を用いた車載の蓄電装置の充電を制御する。充電ケーブルの充電コネクタは、車両のインレットに接続される。車両は、充電コネクタとインレットとの接続を検出するための接続信号線に電圧を供給する電力供給手段を含む。制御装置は、電力供給手段の出力電圧を予め定められている基準電圧よりも高くなるように昇圧する昇圧回路と、昇圧回路と接続信号線との間に設けられ、昇圧回路によって昇圧された電圧を分圧する分圧抵抗と、接続信号線の電圧を検出するように構成された制御部とを備える。制御部は、接続信号線の電圧に基づいて、インレットの接地端子と充電コネクタの接地端子とが断絶した断絶状態を検出する。断絶状態における接続信号線の電圧は、断絶状態でない場合における接続信号線の電圧よりも高く、かつ、昇圧回路によって昇圧された電圧が高くなるほど断絶状態でない場合における接続信号線の電圧との差分が大きくなる。分圧抵抗は、分圧後の電圧が基準電圧となるような抵抗値に設定される。
本開示は、上述した、(1)断絶状態において検出される接続信号線の電圧は、正常状態において検出される接続信号線の電圧よりも高くなる、(2)接続信号線に電圧を供給する車両側の電源電圧が高いほど、正常状態における接続信号線の電圧と断絶状態における接続信号線の電圧との差分が大きくなる、という実験結果を鑑みる。上記構成によれば、昇圧回路によって昇圧された電圧は、予め定められた基準電圧よりも高く設定される。基準電圧は、たとえば、所定の規格において例示されている電源電圧である。車両側の電源電圧、つまり、電力供給手段の出力電圧を昇圧回路によって昇圧することによって、正常状態における接続信号線の電圧と、断絶状態における接続信号線の電圧との差分が大きくなる。そのため、各種センサなどの検出誤差に起因して、正常状態および断絶状態において検出される接続信号線の電圧が取り得る値同士に重なりが生じることを防ぐことができる。ゆえに、制御装置で検出される接続信号線の電圧に基づいて、車両側接地端子と電源側接地端子との接続が断絶された状態を適切に検出することができる。
また、上記のように、昇圧回路によって昇圧された電圧は基準電圧よりも大きく設定されるが、分圧抵抗によって、分圧抵抗を介した後の電圧が基準電圧となるように昇圧後の電圧が分圧される。これによって、充電コネクタに用いられている各種の電子部品に悪影響を与えることを抑制することができる。
本開示によれば、車両側接地端子と電源側接地端子との接続が断絶された状態を適切に検出することができる。
実施の形態に係る制御装置が搭載された車両の全体構成を概略的に示す図である。 DC充電時における車両およびDC充電器を説明するための概略図である。 DC充電器の制御装置および車両のECUで実行されるDC充電を開始するための処理の手順を示すフローチャートである。 正常状態および断絶状態において検出ポイントP2の電圧を検出した実験結果を示す図である。 実施の形態に係る制御装置を備えた車両における正常状態を説明するための図である。 車両側の電源電圧を昇圧した場合における断絶状態の検出ポイントP2の電圧を検出した実験結果を示す図である。 断絶状態を説明するための図である。
以下、本実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<全体構成>
図1は、本実施の形態に係る制御装置が搭載された車両1の全体構成を概略的に示す図である。本実施の形態においては、車両1は電気自動車である例について説明する。車両1は、DC充電器200に接続可能に構成される。車両1は、DC充電器200から供給される直流電力によって車載の蓄電装置を充電する「DC充電」を実行可能に構成される。なお、車両1は、外部の電源によって蓄電装置を充電可能な車両であればよく、たとえば、プラグインハイブリッド自動車および燃料電池自動車などであってもよい。
車両1は、蓄電装置10と、メインリレー装置20と、パワーコントロールユニット(以下「PCU(Power Control Unit)」ともいう)40と、モータジェネレータ50と、駆動輪60と、ECU(Electronic Control Unit)100とを備える。
蓄電装置10は、積層された複数の電池を含んで構成される。電池は、たとえば、ニッケル水素電池、リチウムイオン電池等の二次電池である。また、電池は、正極と負極との間に液体電解質を有する電池であってもよいし、固体電解質を有する電池(全固体電池)であってもよい。
メインリレー装置20は、メインリレー21およびメインリレー22を含む。メインリレー21は、電力線PLと蓄電装置10の正極との間に接続される。メインリレー22は、電力線NLと蓄電装置10の負極との間に接続される。メインリレー21,22が閉状態であると、蓄電装置10からPCU40に電力が供給される。メインリレー21,22が開状態であると、蓄電装置10からPCU40に電力が供給されない。
PCU40は、蓄電装置10から電力を受けてモータジェネレータ50を駆動するための電力変換装置を総括して示したものである。たとえば、PCU40は、モータジェネレータ50を駆動するためのインバータや、蓄電装置10から出力される電力を昇圧してインバータへ供給するコンバータなどを含む。
モータジェネレータ(Motor Generator:MG)50は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。モータジェネレータ50のロータは、動力伝達ギア(図示せず)を介して駆動輪60に機械的に接続される。モータジェネレータ50は、車両1の回生制動動作時には、駆動輪60の回転力によって発電することができ、その発電された電力をPCU40へ出力する。
さらに、車両1は、DC/DCコンバータ81と補機電池80とを備える。補機電池80は、車両1に搭載される複数の補機負荷を作動するための電力を蓄える。補機電池は80は、たとえば、鉛蓄電池を含んで構成される。補機電池80の電圧は、蓄電装置10の電圧よりも低く、たとえば、12V程度である。
DC/DCコンバータ81は、電力線PL,NLに電気的に接続され、電力線PL,NLから供給される電力を降圧して電力線ELに供給する。すなわち、DC/DCコンバータ81は、蓄電装置10の出力電圧を降圧して、補機電池80および補機負荷への供給電力を生成する。DC/DCコンバータ81は、ECU100によって制御される。
ECU100は、CPU(Central Processing Unit)100aと、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory))100bと、各種信号が入出力される入出力ポート(図示せず)とを含んで構成される。ECU100は、各センサなどからの信号の入力および各機器への制御信号の出力を行なうとともに、各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で構築して処理することも可能である。なお、本実施の形態に係るECU100は、本開示の「制御装置」に相当する。また、本実施の形態に係るCPU100aは、本開示の「制御部」に相当する。
ECU100は、さらに昇圧回路110を含む。昇圧回路110は、電力線ELから供給される電圧を所定の電圧に昇圧して出力する。
さらに、車両1は、DC充電を行なうための構成として、充電リレー装置30と、インレット90とを備える。
インレット90は、車両1に直流電力を供給するためのDC充電器200の充電コネクタ300と接続可能に構成される。インレット90は、DC充電が行なわれない場合には、図示しない充電リッドに覆われている。DC充電が行なわれる場合には、充電リッドが開かれてインレット90に充電コネクタ300が接続される。そして、インレット90は、DC充電器200から供給される直流電力を受ける。
充電リレー装置30は、充電リレー31および充電リレー32を含む。充電リレー31の一端は、インレット90と電気的に接続され、他端は、電力線PLを介して蓄電装置10と電気的に接続される。充電リレー32の一端は、インレット90と電気的に接続され、他端は、電力線NLを介して蓄電装置10と電気的に接続される。充電リレー装置30は、ECU100からの制御信号に従って開閉状態が切り替えられる。
<<DC充電器>>
図2は、DC充電時における車両1およびDC充電器200を説明するための概略図である。DC充電器200は、充電コネクタ300と、直流供給回路210と、第1リレー装置230と、補助電源240と、第2リレー装置250と、制御装置260とを含む。
充電コネクタ300は、充電ケーブルの先端に取り付けられている。充電コネクタ300は、充電ケーブルに収容された各ライン(電力線L21,L22、通信信号線L23,L24、第1接続信号線L25、補助電源信号線L26,L27、接地線L28、および第2接続信号線L29)の端子を備えている。具体的には、電力線L21,L22がそれぞれ接続されているDC+端子,DC-端子と、通信信号線L23,L24がそれぞれ接続されているS+端子,S-端子と、第1接続信号線L25が接続されているCC1端子と、補助電源信号線L26,L27がそれぞれ接続されているA+端子,A-端子と、接地線L28が接続されているPE端子と、第2接続信号線L29が接続されているCC2端子とを備える。なお、上記の各端子に対応する車両1のインレット90の各端子(後述)についても、同様の端子名を付する。
電力線L21,L22は、DC充電器200と車両1との間で電力の授受するための電力線である。通信信号線L23,L24は、車両1と通信を行なうための通信線である。第1接続信号線L25は、充電コネクタ300がインレット90に接続されたことを検出するための信号線である。補助電源信号線L26,L27は、車両1のECU100に補助電源240から電圧を供給し、DC充電器200による充電が開始されること、および、充電が継続されていることを示す起動信号を車両1に出力するための信号線である。接地線L28は、接地G1に接続される接地線である。
充電コネクタ300には、抵抗R2,R3およびスイッチSWが内蔵されている。抵抗R2の一端は第1接続信号線L25に接続され、他端はスイッチSWを介して接地線L28に接続される。スイッチSWは、たとえば、ノーマリークローズ型のスイッチであり、充電コネクタ300に設けられた押しボタン(図示せず)のプッシュ操作に連動して開閉するように構成される。押しボタンは、充電コネクタ300をインレット90に接続する際、および、充電コネクタ300をインレット90から抜き出す際にユーザによってプッシュ操作される。すなわち、スイッチSWは、プッシュ操作されているときには開状態となり、プッシュ操作されていないときには閉状態となる。DC充電時においては、スイッチSWは閉状態となる。
第1接続信号線L25は、DC充電器200において、インレット90に充電コネクタ300が接続されたことを検出するための信号線である。第1接続信号線L25には、プルアップ抵抗R1を介して補助電源240から電源電圧U1(たとえば12V)が供給される。
第2接続信号線L29は、車両1において、インレット90に充電コネクタ300が接続されたことを検出するための信号線である。第2接続信号線L29は、充電コネクタ300内部において、抵抗R3を介して接地線L28に接続される。
直流供給回路210は、商用電源400から供給される交流電力を直流電力に変換する。たとえば、直流供給回路210は、AC/DCコンバータ、トランスおよびDC/DCコンバータなどを含む絶縁型のAC/DCコンバータである。
第1リレー装置230は、リレー231およびリレー232を含む。リレー231は、直流供給回路210と電力線L21との間に接続される。リレー232は、直流供給回路210と電力線L22との間に接続される。第1リレー装置230は、蓄電装置10のDC充電が行なわれる場合に閉状態にされ、蓄電装置10のDC充電が行なわれない場合には開状態にされる。第1リレー装置230は、制御装置260によって開閉状態が制御される。
電圧計270は、充電コネクタ300がインレット90に接続されたときに、蓄電装置10の電圧を検出し、検出した電圧を制御装置260に出力する。
第2リレー装置250は、リレー251およびリレー252を含む。リレー251は、補助電源240と補助電源信号線L26との間に接続される。リレー252は、補助電源240と補助電源信号線L27との間に接続される。第2リレー装置250は、制御装置260によって開閉状態が制御される。
制御装置260は、CPUと、メモリ(ROMおよびRAM)と、各種信号が入出力される入出力ポートとを含んで構成される(いずれも図示せず)。制御装置260は、CAN(Controller Area Network)の通信プロトコルに従い、通信信号線L23,L24を介して車両1と通信を行なう。また、制御装置260は、車両1から通信信号線L23,L24を介して受信した信号、および、図示しないDC充電器200の充電開始ボタンのユーザ操作などに基づいて、第1リレー装置230、第2リレー装置250および直流供給回路210などを制御する。
制御装置260は、検出ポイントP1における電圧を監視し、検出ポイントP1の電圧に基づいて、インレット90と充電コネクタ300との接続状態を判定する。
<<車両>>
インレット90は、電力線PL,NLがそれぞれ接続されているDC+端子,DC-端子と、通信信号線L13,L14がそれぞれ接続されているS+端子,S-端子と、第1接続信号線L15が接続されているCC1端子と、補助電源信号線L16,L17がそれぞれ接続されているA+端子,A-端子と、接地線L18が接続されているPE端子と、第2接続信号線L19が接続されているCC2端子とを備える。
インレット90に充電コネクタ300が接続されると、DC充電器200側の電力線L21,L22、通信信号線L23,L24、第1接続信号線L25、補助電源信号線L26,L27、接地線L28、および第2接続信号線L29が、それぞれ、車両1側の電力線PL,NL、通信信号線L13,L14、第1接続信号線L15、補助電源信号線L16,L17、接地線L18、および第2接続信号線L19と電気的に接続される。
通信信号線L13,L14は、DC充電器200と通信を行なうための通信線である。補助電源信号線L16,L17は、DC充電器200の充電開始操作が行なわれたこと、および、充電が継続されていることを示す起動信号を受信するための信号線である。接地線L18は、接地G2(車体アース)に接続される接地線である。第2接続信号線L19は、インレット90に充電コネクタ300が接続されたことを検出するための信号線である。第1接続信号線L15は、DC充電器200において、インレット90に充電コネクタ300が接続されたことを検出するための信号線である。第1接続信号線L15は、インレット90内部において、抵抗R4を介して接地線L18に接続される。
通信信号線L13,L14、補助電源信号線L16,L17、および第2接続信号線L19の信号は、ECU100(CPU100a)に入力される。第2接続信号線L19には、ECU100の内部において、プルアップ抵抗R5を介して補機電池80から電源電圧U2(たとえば12V)が供給される。ECU100のCPU100aは、検出ポイントP2における電圧を監視し、検出ポイントP2の電圧に基づいて、インレット90と充電コネクタ300との接続状態を判定する。
<DC充電における制御タイミング>
DC充電を開始するためには、まず、インレット90に充電コネクタ300が接続される。充電コネクタ300をインレット90に接続するために、ユーザは、充電コネクタ300に設けられた押しボタンをプッシュ操作する。当該プッシュ操作に連動して、スイッチSWが開状態となる。そして、プッシュ操作を継続したまま(スイッチSWを開状態に維持したまま)、充電コネクタ300をインレット90に接続し、プッシュ操作を終了する。これによって、充電コネクタ300がインレット90に接続されるとともに、スイッチSWが閉状態となる。
インレット90に充電コネクタ300が接続されるときの充電コネクタ300とインレット90との接続状態、および、スイッチSWの開閉状態は、以下の(i)~(iv)のフェーズに分けられる。具体的には、(i)充電コネクタ300とインレット90とが未接続、かつ、スイッチSWが閉状態、(ii)充電コネクタ300とインレット90とが未接続、かつ、スイッチSWが開状態、(iii)充電コネクタ300とインレット90とが接続、かつ、スイッチSWが開状態、(iv)充電コネクタ300とインレット90とが接続、かつ、スイッチSWが閉状態、の各フェーズである。なお、上記(iv)のフェーズ、つまり、充電コネクタ300とインレット90とが接続、かつ、スイッチSWが閉状態となっている状態を、インレット90と充電コネクタ300とが「完全に接続された状態」と定義する。
ここで、(i)~(iv)の各フェーズにおいて、検出ポイントP1および検出ポイントP2でそれぞれ検出される電圧を考える。
検出ポイントP1で検出される電圧V1は、それぞれ、(i)V1=U1×(R2/(R1+R2))、(ii)V1=U1、(iii)V1=U1×(R4/(R1+R4))、(iv)V1=U1×((1/(R2+R4))/(R1+(1/(R2+R4))))の式により算出される電圧となる。
具体的に、一例として、U1=U2=12V、R1=R2=R3=R4=R5=1kΩの場合、充電コネクタ300がインレット90に接続される過程における検出ポイントP1の電圧は、(i)6V→(ii)12V→(iii)6V→(iv)4Vで遷移する。
検出ポイントP2で検出される電圧V2は、それぞれ、(i)V2=U2、(ii)V2=U2、(iii)V2=U2×(R3/(R3+R5))、(iv)V2=U2×(R3/(R3+R5))の式により算出される電圧となる。
具体的に、上記の例と同様に、U1=U2=12V、R1=R2=R3=R4=R5=1kΩの場合、充電コネクタ300がインレット90に接続される過程における検出ポイントP1の電圧は、(i)12V→(ii)12V→(iii)6V→(iv)6Vで遷移する。
図3は、DC充電器200の制御装置260および車両1のECU100で実行されるDC充電を開始するための処理の手順を示すフローチャートである。このフローチャートに示される各ステップは、所定の制御周期毎にメインルーチンから呼び出されて実行される。図3に示すフローチャートの各ステップは、制御装置260およびECU100によるソフトウェア処理によって実現される場合について説明するが、その一部あるいは全部が制御装置260およびECU100内に作製されたハードウェア(電気回路)によって実現されてもよい。
DC充電器200の制御装置260は、検出ポイントP1の電圧を検出する(ステップ201、以下ステップを「S」と略す)。DC充電器200の制御装置260は、充電コネクタ300とインレット90とが完全に接続された状態か否かを判定する(S203)。具体的には、DC充電器200の制御装置260は、検出ポイントP1で検出される電圧V1が上記(iv)のフェーズに相当するV1=U1×((1/(R2+R4))/(R1+(1/(R2+R4)))の式により算出される値であった場合、充電コネクタ300とインレット90とが完全に接続された状態であると判定する。
DC充電器200の制御装置260は、充電コネクタ300とインレット90とが完全に接続された状態でないと判定すると(S203においてNO)、以降の処理をスキップして、処理を終了する。DC充電器200の制御装置260は、充電コネクタ300とインレット90とが完全に接続された状態であると判定すると(S203においてYES)、第2リレー装置250を閉状態にして、補助電源240の電圧(起動信号)を車両1のECU100に供給する(S205)。
DC充電器200の制御装置260は、通信信号線L23,L24を介して、車両1へハンドシェイクメッセージを送信する(S207)。なお、図3には、1回のみ車両1へハンドシェイクメッセージを送信することを記載しているが、DC充電器200の制御装置260は、所定の周期毎に車両1へハンドシェイクメッセージを送信する。後述する車両1のECU100からDC充電器200へ送信されるハンドシェイクメッセージについても同様である。
DC充電器200の制御装置260は、車両1からハンドシェイクメッセージを受信するのを待ち(S208においてNO)、車両1からハンドシェイクメッセージを受信すると(S208においてYES)、通信信号線L23,L24を介して、所定の周期毎に車両1へ通信メッセージを送信する(S209)。DC充電器200から送信する通信メッセージには、供給電圧や供給電流などの情報が含まれる。
DC充電器200の制御装置260は、車両1から通信メッセージを取得すると(S210においてYES)、電圧計270を用いて蓄電装置10の電圧を監視する。車両1から取得する通信メッセージには、たとえば、蓄電装置10の電圧などの情報が含まれる。DC充電器200の制御装置260は、通信により車両1から取得した蓄電装置10の電圧と、電圧計270により検出した蓄電装置10の電圧との差が所定の誤差範囲に収まっているか否かを判定する(S211)。また、DC充電器200の制御装置260は、通信により車両1から取得した蓄電装置10の電圧が、DC充電器200の最小出力電圧以上、かつ、最大出力電圧以下であるか否かを判定する(S211)。S211の双方の条件が満たされる場合(S211においてYES)、DC充電器200の制御装置260は、第1リレー装置230を閉状態にして、直流供給回路210を車両1に導通させる(S213)。これにより、DC充電が開始される。なお、図3には、1回のみ車両1へ通信メッセージを送信することを記載しているが、DC充電器200の制御装置260は、所定の周期毎に車両1へ通信メッセージを送信する。車両1のECU100についても、同様である。2回目以降に車両1から受信する通信メッセージには、たとえば、要求充電電圧や要求充電電流などの情報が含まれる。
一方、車両1のECU100は、補助電源信号線L16,L17を介して、DC充電器200から補助電源240の電圧(起動信号)が供給されると(S100においてYES)、検出ポイントP2の電圧を検出する(S101)。なお、本実施の形態においては、起動信号の供給をトリガにS101が開始される例について説明するが、起動信号をトリガにしてS101が開始されることに限られるものではない。たとえば、S103までは、DC充電器200の処理に関わらず処理を進め、S104以降の処理については、S104においてDC充電器200からハンドシェイクメッセージを受信するのを待ってもよい。ただし、ECU100が、DC充電器200の補助電源240の電力供給を受けて駆動する場合には、補助電源240から電力供給を受けた後(S205の後)にS101が実行される。
車両1のECU100は、充電コネクタ300とインレット90とが完全に接続されたか否かを判定する(S103)。具体的には、車両1のECU100は、検出ポイントP2で検出される電圧V2が上記(iv)のフェーズに相当するV2=U2×(R3/(R3+R5))の式により算出される値であった場合、充電コネクタ300とインレット90とが完全に接続されたと判定する(S103においてYES)。
車両1のECU100は、充電コネクタ300とインレット90とが完全に接続されていないと判定すると(S103においてNO)、以降の処理をスキップして、処理を終了する。車両1のECU100は、充電コネクタ300とインレット90とが完全に接続されたと判定すると(S103においてYES)、DC充電器200からハンドシェイクメッセージを受信するのを待つ(S104においてNO)。
車両1のECU100は、通信信号線L13,L14を介してハンドシェイクメッセージを受信すると(S104においてYES)、その後、所定の周期毎にDC充電器200にハンドシェイクメッセージを送信する(S105)。また、車両1のECU100は、通信信号線L13,L14を介して通信メッセージを受信すると(S106においてYES)、その後、所定の周期毎にDC充電器200に通信メッセージを送信する(S107)。通信メッセージには、上述のとおり、要求充電電圧や要求充電電流などの情報が含まれる。
そして、車両1のECU100は、充電リレー装置30を閉状態にして、充電経路を導通させる(S109)。なお、車両1のECU100は、DC充電開始後には、補助電源信号線L16,L17を介して、DC充電器200から補助電源240の電圧(起動信号)に基づいて、DC充電中、および、DC充電の終了を判定する。具体的には、車両1のECU100は、補助電源240の電圧が供給されていることを検出した場合には、DC充電中(DC充電が継続されている)と判定し、補助電源240の電圧が供給されていないことを検出した場合には、DC充電が終了したと判定する。
<DC充電時における車両側接地端子と電源側接地端子との接続の断絶の検出>
DC充電に関しては、異なった複数の充電規格が存在している。複数の充電規格のなかには、DC充電時において、車両1側の接地線L18が接続されているインレット90のPE端子(車両側接地端子)と、DC充電器200側の接地線L28が接続されている充電コネクタ300のPE端子(電源側接地端子)との接続が断絶したことを車両1側で検出するように規定されている充電規格(所定の充電規格)がある。
本実施の形態に係る車両1は、所定の充電規格に対応するために、DC充電時においてインレット90と充電コネクタ300とが正常に接続されている状態(正常状態)と、車両側接地端子と電源側接地端子との接続が断絶した状態(断絶状態)とを車両1側で検出する。具体的には、車両1のECU100は、ECU100のCPU100aに入力される第2接続信号線L19の信号レベル、つまり、検出ポイントP2の電圧V2に基づいて、インレット90と充電コネクタ300とが正常状態であるか断絶状態であるかを検出する。
図4は、正常状態および断絶状態において検出ポイントP2の電圧V2を検出した実験結果を示す図である。図4および後述する図6の横軸には、点N(電源電圧U2と抵抗R5との間:図2参照)における電圧が示され、縦軸には、CPU100aで検出される検出ポイントP2の電圧V2が示されている。実線L1は、正常状態における点Nの電圧と検出ポイントP2の電圧V2との関係を示す。実線L2は、断絶状態における点Nの電圧と検出ポイントP2の電圧V2との関係を示す。点Nの電圧は、たとえば、補機電池80の出力電圧U2を示している。電圧Vp0は、補機電池80の出力電圧U2の使用下限値を示す電圧であり、たとえば、8Vなどである。電圧Vp1は、補機電池80の出力電圧U2の使用上限値を示す電圧であり、たとえば、14Vなどである。つまり、補機電池80は、電圧Vp0からVp1の間で使用されるように充放電が制御される。
図4に示されるように、(1)断絶状態における検出ポイントP2の電圧V2は、正常状態における検出ポイントP2の電圧V2よりも高くなるという実験結果が得られた。また、(2)電源電圧U2が大きくなるほど、断絶状態における検出ポイントP2の電圧V2と正常状態における検出ポイントP2の電圧V2との差分(L2とL1との差分)の大きさが大きくなるという実験結果が得られた。これらの実験結果に基づけば、検出ポイントP2の電圧V2を監視することによって、車両側接地端子と電源側接地端子との接続の状態を判別することができる。
しかしながら、検出ポイントP2の電圧V2の監視に用いられる各種のセンサなどには検出誤差が存在し得る。実線L1および実線L2に示されているそれぞれの矢印AR1,AR2の大きさは、各種のセンサの検出誤差などに起因する検出ばらつきを表わしている。
補機電池80の使用範囲であるVp0とVp1との間には、断絶状態における検出ポイントP2の電圧V2と正常状態における検出ポイントP2の電圧V2との差分が小さいために、上記検出ばらつきの影響によって検出された検出ポイントP2の電圧V2が、正常状態および断絶状態のどちらの値を示すかが判別できない領域が存在し得る。たとえば、点Nの電圧(補機電池80の出力電圧)がVp(Vp0<Vp<Vp1)である場合、正常状態における検出ポイントP2の電圧V2はVxであり、断絶状態における検出ポイントP2の電圧V2はVyである。図4から認識し得るように、電圧Vyの取り得る下限より電圧Vxの取り得る上限が大きくなっている。換言すると、電圧Vyと電圧Vxの取り得る値に重なりが生じている。このような場合、検出された検出ポイントP2の電圧V2が、正常状態および断絶状態のどちらの状態を示すか適切に判別できない可能性がある。そのため、検出される検出ポイントP2の電圧V2に基づいて、正常状態と断絶状態とを適切に判別することができない可能性がある。なお、視認容易化のため、図4においては、電圧Vx,Vyがそれぞれの取り得る範囲(検出誤差)を示す矢印同士が重ならないようにずらせて示している。
ここで、電源電圧U2が大きくなるほど断絶状態と正常状態とにおける検出ポイントP2の電圧V2の差分が大きくなる、という実験結果に鑑みれば、電源電圧U1に対する電源電圧U2の大きさによって、断絶状態と正常状態とにおける検出ポイントP2の電圧V2の差分の大きさも変化すると考えられる。すなわち、DC充電器200側の電源電圧U1に対して車両1側の電源電圧U2を大きくするほど、断絶状態と正常状態とにおける検出ポイントP2の電圧V2の差分が大きくなる。ゆえに、断絶状態における検出ポイントP2の電圧V2が取り得る値と、正常状態における検出ポイントP2の電圧V2が取り得る値に重なりが生じることを防ぐことができるので、検出される検出ポイントP2の電圧V2に基づいて、正常状態と断絶状態とを適切に判別することができるようになる。そこで、たとえば、ECU100の昇圧回路110によって電源電圧U2を昇圧することで、充電器200側の電源電圧(U1)に対して車両1側の電源電圧を大きくすることができる。なお、補機電池80は、本開示の「電力供給手段」に相当する。
ただし、所定の充電規格においては、車両1側の第2接続信号線L19に電圧を供給するための電源電圧U2が例示されている(以下、所定の充電規格において例示されている電源電圧を「基準電圧」ともいう)。たとえば、充電コネクタ300に内蔵されている抵抗R2,R3などの電子部品は、車両1側の電源電圧に基準電圧が用いられることを想定して選定され得る。そのため、単に車両1側の電源電圧U2を昇圧させると、上記電子部品に悪影響を与えてしまう可能性がある。
図5は、本実施の形態に係る制御装置を備えた車両1における正常状態を説明するための図である。本実施の形態に係る制御装置を備えた車両1においては、昇圧回路110を用いて電源電圧U2を電圧Ux(>U2)に昇圧しつつも、分圧抵抗Rxを用いて、点Nにおける電圧が基準電圧となるようにする。つまり、検出ポイントP2における電圧は、電源電圧U2を電圧Uxに昇圧した場合においても、電源電圧U2に基準電圧を用いた場合(つまり、電圧Uxに昇圧しない場合)と同程度の電圧となる。これによって、DC充電器200側の電源電圧(U1)に対して車両1側の電源電圧を高くしつつも、点Nにおける電圧は基準電圧にすることができる。なお、分圧抵抗Rxは、以下の式(1)により算出することができる。
U2=Ux×(R3+R5)/(R3+R5+Rx)…(1)
式(1)を変形すると、式(2)を得ることができる。
Rx=(Ux/U2)×(R3+R5)-(R3+R5)…(2)
たとえば、一例として、U2=12V、Ux=24V、R3=R5=1kΩの場合を考えると、Rx=2kΩと算出することができる。U2=12V、Ux=36V、R3=R5=1kΩの場合を考えると、Rx=4kΩと算出することができる。
図6は、車両1側の電源電圧を昇圧した場合における断絶状態の検出ポイントP2の電圧V2を検出した実験結果を示す図である。図6に示される実線L1および実線L2は、図4に示された実線L1および実線L2と同様である。実線L3は、車両1側の電源電圧U2を電圧Uxに昇圧した場合の断絶状態における点Nの電圧と検出ポイントP2の電圧V2との関係を示す。
図6を参照して理解し得るように、車両1側の電源電圧U2を電圧Uxに昇圧した場合の断絶状態における検出ポイントP2の電圧V2は、車両1側の電源電圧U2を昇圧しない場合(実線L2)の検出ポイントP2の電圧V2よりも大きくなっている。たとえば、点Nの電圧がVpである場合、車両1側の電源電圧U2を電圧Uxに昇圧した場合の断絶状態における検出ポイントP2の電圧V2はVz(>Vy)となっている。これによって、断絶状態における検出ポイントP2の電圧V2が取り得る値と、正常状態における検出ポイントP2の電圧V2が取り得る値に重なりが生じることを防ぐことができる。ゆえに、検出される検出ポイントP2の電圧V2に基づいて、正常状態と断絶状態とを適切に判別することができる。
図7は、断絶状態を説明するための図である。図7を用いて、上述の実験結果(1),(2)について説明する。
(1)断絶状態における検出ポイントP2の電圧V2が、正常状態における検出ポイントP2の電圧V2よりも高くなることについて、車両側接地端子と電源側接地端子との接続が断絶すると、車両1側に閉回路(電源電圧U2→プルアップ抵抗R5→抵抗R3→抵抗R2→抵抗R4→接地G2)が形成される。電源電圧U2からの電流の多くは正常状態における電流経路と同様の経路(電源電圧U2→プルアップ抵抗R5→抵抗R3→接地G1(あるいは接地G2))を流れるが(図7中のI1a)、配線抵抗などの影響によって一部の電流I1bが上記閉回路を流れる。そのため、電源電圧U2(点Nの電圧)が同じである場合において、断絶状態における検出ポイントP2の電圧V2は、正常状態における検出ポイントP2の電圧V2よりも高くなる。
(2)電源電圧U2が大きくなるほど、実線L2と実線L1との差分の大きさが大きくなるのは、電源電圧U2が大きくなるにつれて断絶状態における電流I1が大きくなり、閉回路に流れる電流I1bも大きくなるためである。抵抗R2には、電流I1bと逆方向にDC充電器200側の電源電圧U1から接地G1に流れる電流も流れる。この電源電圧U1からの電流の影響を小さくすれば、断絶状態における検出ポイントP2の電圧V2は、正常状態における検出ポイントP2の電圧V2よりもさらに高くなる。ゆえに、電源電圧U1に対して電源電圧U2を大きくするほど、断絶状態における検出ポイントP2の電圧V2が、正常状態における検出ポイントP2の電圧V2よりも高くなる。
以上のように、本実施の形態に係る制御装置を備えた車両1においては、昇圧回路110を用いて電源電圧U2を電圧Ux(>U2)に昇圧するとともに、分圧抵抗Rxを用いて、点Nにおける電圧が基準電圧となるようにする。
電源電圧U2を電圧Uxに昇圧することによって、断絶状態における検出ポイントP2の電圧V2が大きくなる。これによって、断絶状態と正常状態とにおける検出ポイントP2の電圧V2の差分が大きくなるので、断絶状態における検出ポイントP2の電圧V2が取り得る値と、正常状態における検出ポイントP2の電圧V2が取り得る値に重なりが生じることを防ぐことができる。ゆえに、検出される検出ポイントP2の電圧V2に基づいて、正常状態と断絶状態とを適切に判別することができる。
また、分圧抵抗Rxを用いて、点Nにおける電圧が基準電圧となるようにすることによって、所定の充電規格を準拠することができる。これによって、所定の充電規格において例示された電源電圧が用いられることを想定して選定され得る充電コネクタ300に内蔵されている電子部品などに悪影響を与えてしまうことを抑制することができる。
なお、本実施の形態においては、昇圧回路110を用いて電源電圧U2を昇圧する例について説明したが、電源電圧を昇圧することができればよく、上記の例に限られるものではない。たとえば、より高電圧の補機電池(たとえば24V)を用いてもよい。
また、本実施の形態においては、昇圧回路110はECU100内に設けられる例について説明したが、電源電圧U2を昇圧することができればよく、たとえば、ECU100と別に設けられてもよい。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、10 蓄電装置、20 メインリレー装置、21,22 メインリレー、30 充電リレー装置、31,32 充電リレー、50 モータジェネレータ、60 駆動輪、80 補機電池、81 DC/DCコンバータ、90 インレット、100 ECU、100a CPU、100b メモリ、110 昇圧回路、200 DC充電器、210 直流供給回路、230 第1リレー装置、231,232 リレー、240 補助電源、250 第2リレー装置、251,252 リレー、260 制御装置、270 電圧計、300 充電コネクタ、400 商用電源、EL 電力線、G1,G2 接地、L13,L14 通信信号線、L15 第1接続信号線、L16,L17 補助電源信号線、L18 接地線、L19 第2接続信号線、L21,L22 電力線、L23,L24 通信信号線、L25 第1接続信号線、L26,L27 補助電源信号線、L28 接地線、L29 第2接続信号線、NL,PL 電力線、P1,P2 検出ポイント、R1,R2,R3,R4,R5 抵抗、Rx 分圧抵抗、SW スイッチ、U1,U2 電源電圧。

Claims (1)

  1. 車両外部の電源から充電ケーブルを介して供給される電力を用いた車載の蓄電装置の充電を制御する制御装置であって、
    前記充電ケーブルの充電コネクタは、前記車両のインレットに接続され、
    前記車両は、前記充電コネクタと前記インレットとの接続を検出するための接続信号線に電圧を供給する電力供給手段を含み、
    前記制御装置は、
    前記電力供給手段の出力電圧を予め定められている基準電圧よりも高くなるように昇圧する昇圧回路と、
    前記昇圧回路と前記接続信号線との間に設けられ、前記昇圧回路によって昇圧された電圧を分圧する分圧抵抗と、
    前記接続信号線の電圧を検出するように構成された制御部とを備え、
    前記制御部は、前記接続信号線の電圧に基づいて、前記インレットの接地端子と前記充電コネクタの接地端子とが断絶した断絶状態を検出し、
    前記断絶状態における前記接続信号線の電圧は、前記断絶状態でない場合における前記接続信号線の電圧よりも高く、かつ、前記昇圧回路によって昇圧された電圧が高くなるほど前記断絶状態でない場合における前記接続信号線の電圧との差分が大きくなり、
    前記分圧抵抗は、分圧後の電圧が前記基準電圧となるような抵抗値に設定される、制御装置。
JP2018172683A 2018-09-14 2018-09-14 制御装置 Active JP7070266B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018172683A JP7070266B2 (ja) 2018-09-14 2018-09-14 制御装置
JP2022074528A JP7306529B2 (ja) 2018-09-14 2022-04-28 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172683A JP7070266B2 (ja) 2018-09-14 2018-09-14 制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022074528A Division JP7306529B2 (ja) 2018-09-14 2022-04-28 制御装置

Publications (2)

Publication Number Publication Date
JP2020048262A JP2020048262A (ja) 2020-03-26
JP7070266B2 true JP7070266B2 (ja) 2022-05-18

Family

ID=69900013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172683A Active JP7070266B2 (ja) 2018-09-14 2018-09-14 制御装置

Country Status (1)

Country Link
JP (1) JP7070266B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097922A (ja) 2008-09-17 2010-04-30 Dai Ichi Kogyo Seiyaku Co Ltd イオン液体を用いたリチウム二次電池
JP2011010420A (ja) 2009-06-24 2011-01-13 Toyota Motor Corp 電動車両の充電システムおよび電動車両の充電制御装置
JP2011091878A (ja) 2009-10-20 2011-05-06 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
JP2011109821A (ja) 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
JP2017229129A (ja) 2016-06-21 2017-12-28 住友電気工業株式会社 充電制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097922A1 (ja) * 2009-02-26 2010-09-02 トヨタ自動車株式会社 プラグ変換アダプタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097922A (ja) 2008-09-17 2010-04-30 Dai Ichi Kogyo Seiyaku Co Ltd イオン液体を用いたリチウム二次電池
JP2011010420A (ja) 2009-06-24 2011-01-13 Toyota Motor Corp 電動車両の充電システムおよび電動車両の充電制御装置
JP2011091878A (ja) 2009-10-20 2011-05-06 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
JP2011109821A (ja) 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
JP2017229129A (ja) 2016-06-21 2017-12-28 住友電気工業株式会社 充電制御装置

Also Published As

Publication number Publication date
JP2020048262A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP5218800B2 (ja) 蓄電部を備えた車両、及び、同車両とエネルギー管理装置とを含む充放電システム
CN102481853B (zh) 车辆的电源系统及具有该系统的电动车辆
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
US20090079389A1 (en) Charging device for electric vehicle
EP2481624B1 (en) Vehicle charging system and electrically powered vehicle provided with the same
US9428064B2 (en) Power supply system and power receiving facility
WO2008146577A1 (ja) 車載機器制御システムおよび車両
US11970070B2 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
CN111332139B (zh) 车辆充电系统
JP5206388B2 (ja) プラグイン車両用充電システム及び充電制御装置
JP2004120871A (ja) 組電池の充電状態調整方法及びその装置
US20140111122A1 (en) Electrical storage system, and control method for electrical storage system
US9038795B2 (en) Cord storage apparatus
JP4941461B2 (ja) 車載充電装置
JP7070266B2 (ja) 制御装置
JP6701976B2 (ja) 電動車両
JP7306529B2 (ja) 制御装置
CN113497282A (zh) 车辆用电池系统
JP7070269B2 (ja) 制御システム
JP2013165610A (ja) 蓄電部を備えた車両に適用される車両外部制御装置、及び、前記車両外部制御装置と前記車両と電力ケーブルとを含む充放電システム
JP2017079537A (ja) 変換アダプタ
JP2015196453A (ja) 車両
US20230278447A1 (en) Vehicle
US20230249579A1 (en) Vehicle, vehicle control device, and charging system
KR100356667B1 (ko) 전기충전식 배터리를 보조 배터리로 가지는 자동차 배터리

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7070266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151