JP7064376B2 - 排気処理装置 - Google Patents

排気処理装置 Download PDF

Info

Publication number
JP7064376B2
JP7064376B2 JP2018092387A JP2018092387A JP7064376B2 JP 7064376 B2 JP7064376 B2 JP 7064376B2 JP 2018092387 A JP2018092387 A JP 2018092387A JP 2018092387 A JP2018092387 A JP 2018092387A JP 7064376 B2 JP7064376 B2 JP 7064376B2
Authority
JP
Japan
Prior art keywords
amount
exhaust
value
upper limit
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092387A
Other languages
English (en)
Other versions
JP2019196759A (ja
Inventor
宏明 遠藤
貴之 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2018092387A priority Critical patent/JP7064376B2/ja
Publication of JP2019196759A publication Critical patent/JP2019196759A/ja
Application granted granted Critical
Publication of JP7064376B2 publication Critical patent/JP7064376B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、エンジンから排出される排気に含まれる粒子状物質を捕集するフィルタ等の排気処理装置に関する。
ディーゼルエンジン等の排気中の粒子状物質(PM:Particulate Matter)を浄化するために、排気管には排気処理装置が設けられる。この排気処理装置は、たとえば、粒子状物質を捕集するPM除去フィルタと、PM除去フィルタよりも排気の流れの上流側に配置された酸化触媒(DOC:Diesel Oxidation Catalyst)とを含む。PM除去フィルタにおける粒子状物質の堆積量が多くなると、フィルタに目詰まりが生じて排気の浄化機能が低下するため、PM除去フィルタを昇温させることによって捕集した粒子状物質を燃焼させてフィルタから除去する、所謂、PM除去フィルタの再生が行なわれる。
PM除去フィルタの再生では、排気に燃料を添加して、添加した燃料を酸化触媒で反応させ、その反応熱によって排気をPM除去フィルタの再生が可能な温度範囲まで昇温させる。そして、高温となった排気がPM除去フィルタを流通することによって、PM除去フィルタ内のPMが燃焼する。
PM除去フィルタにおける粒子状物質の堆積量は、PM除去フィルタの上流側の排気圧力と下流側の排気圧力との差圧に基づいて推定することができる。
たとえば、特許4810922号公報(特許文献1)には、PM除去フィルタの上流側と下流側とにおける排気圧力の差圧と、吸入空気流量と、PM除去フィルタ内の排気温度と、燃料噴射量とからPM除去フィルタ内の排気の流量を算出し、差圧と算出されたPM除去フィルタ内の排気の流量と所定のマップとを用いてPM堆積量を推定する技術が開示される。
特許4810922号公報
しかしながら、PM除去フィルタの上流側と下流側とにおける排気圧力の差圧は、エンジンの運転状態によっては、実際のPM堆積量に比例せずに変化する場合があるため、実際のPM堆積量が少量の状態であるにもかかわらず、排気圧力の差圧がPM除去フィルタの再生を開始するPM堆積量に相当する値になる場合がある。その結果、PM除去フィルタを再生する頻度が増加することによって、再生に要する燃料量が増加し、燃費が悪化する場合がある。
本発明は、上述した課題を解決するためになされたものであって、その目的は、差圧を用いてPMの堆積量を推定する場合において、PM除去フィルタを再生する頻度の増加を抑制する排気処理装置を提供することである。
この発明のある局面に係る排気処理装置は、エンジンの排気通路を流通する排気に含まれる粒子状物質を捕集するフィルタと、フィルタよりも上流側の排気通路内の排気圧力とフィルタの下流側の排気通路内の排気圧力との差圧を検出する検出装置と、フィルタに堆積した粒子状物質の堆積量の推定値を算出し、算出された推定値がしきい値を超える場合にフィルタに堆積した粒子状物質を燃焼させる再生制御を実行する制御装置とを備える。制御装置は、検出装置によって検出された差圧を用いてフィルタに堆積した粒子状物質の第1堆積量を算出する。制御装置は、エンジンの運転状態に基づく粒子状物質の排出量を積算して第1堆積量の上限値を設定する。制御装置は、第1堆積量が上限値よりも大きい場合には、上限値を推定値とする。
このようにすると、第1堆積量が上限値よりも大きい場合には、上限値がPM堆積量の推定値とされるので、排気圧力の差圧が実際のPM堆積量よりも多い量を示す値に変動する場合にも、実際のPM堆積量とPM堆積量の推定値とが大きく乖離することが抑制される。その結果、PM除去フィルタを再生する頻度の増加を抑制することができる。
好ましくは、制御装置は、第1堆積量が上限値よりも小さい場合には、第1堆積量を推定値とする。
このようにすると、第1堆積量に基づいて適切な時期にPM除去フィルタを再生することができる。
さらに好ましくは、制御装置は、排出量を積算して粒子状物質の第2堆積量を算出し、第2堆積量に1よりも大きい予め定められた係数を乗算した値を第1堆積量の上限値とする。
このようにすると、第1堆積量の上限値を適切に設定することができるため、PM除去フィルタを再生する頻度の増加を抑制することができる。
さらに好ましくは、制御装置は、排出量を積算して粒子状物質の第2堆積量を算出し、第2堆積量が第1堆積量よりも大きい場合には、第2堆積量を推定値とし、第2堆積量が第1堆積量よりも小さい場合には、第1堆積量が上限値よりも大きいか否かを判定する。
このようにすると、第1堆積量、第2堆積量および上限値のうちのいずれかに基づいて適切な時期にPM除去フィルタを再生することができる。
さらに好ましくは、制御装置は、エンジンにおける空燃比がリッチ側の値である場合には、空燃比がリーン側の値である場合よりも上限値を大きい値に設定する。
このようにすると、エンジンおけるPMの排出量の大きさに応じて上限値を設定することができるため、PM除去フィルタの再生を適切な時期に実行することができる。
この発明によると、差圧を用いてPMの堆積量を推定する場合において、PM除去フィルタを再生する頻度の増加を抑制する排気処理装置を提供することができる。
本実施の形態に係る排気処理装置を備えたエンジンの概略構成を示す図である。 実PM堆積量と差圧との関係を説明するための図である。 制御装置で実行される制御処理を示すフローチャートである。 制御装置の動作を説明するためのタイミングチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
図1は、本実施の形態におけるエンジン1の概略構成を示す図である。本実施の形態において、エンジン1は、たとえば、コモンレール式のディーゼルエンジンを一例として説明する。しかしながら、エンジン1としては、その他の形式のディーゼルエンジンであってもよい。
エンジン1は、エンジン本体10と、エアクリーナ20と、インタークーラ26と、吸気マニホールド28と、過給機30と、排気マニホールド50と、排気処理装置56と、第1排気再循環装置(以下、第1EGR(Exhaust Gas Recirculation)装置と記載する)60と、第2排気再循環装置(以下、第2EGR装置と記載する)70と、制御装置200と、エンジン回転数センサ202と、エアフローメータ208と、燃料ポンプ210と、燃料フィルタ212と、燃料タンク214とを備える。
エンジン本体10は、複数の気筒12と、コモンレール14と、複数のインジェクタ16とを含む。本実施の形態においては、エンジン1は、直列4気筒エンジンを一例として説明するが、その他の気筒レイアウト(たとえば、V型あるいは水平型)のエンジンであってもよい。
複数のインジェクタ16は、複数の気筒12の各々に設けられ、その各々がコモンレール14に接続されている燃料噴射装置である。燃料タンク214に貯留された燃料は、燃料フィルタ212を経由して燃料ポンプ210によって所定圧まで加圧されてコモンレール14へ供給される。コモンレール14に供給された燃料は複数のインジェクタ16の各々から所定のタイミングで噴射される。複数のインジェクタ16は、制御装置200からの制御信号IJ1~IJ4に基づいて動作する。
エアクリーナ20は、エンジン1の外部から吸入される空気から異物を除去する。エアクリーナ20には、第1吸気管22の一方端が接続される。
第1吸気管22の他方端には、過給機30のコンプレッサ32の入口に接続される。コンプレッサ32の出口には、第2吸気管24の一方端が接続される。コンプレッサ32は、第1吸気管22から流通する空気を過給して第2吸気管24に供給する。コンプレッサ32の詳細な動作については後述する。
第2吸気管24の他方端には、インタークーラ26の一方端が接続される。インタークーラ26は、第2吸気管24を流通する空気を冷却する空冷式あるいは水冷式の熱交換器である。
インタークーラ26の他方端には、第3吸気管27の一方端が接続される。第3吸気管27の他方端には、吸気マニホールド28が接続される。吸気マニホールド28は、エンジン本体10の複数の気筒12の各々の吸気ポートに連結される。なお、吸気マニホールド28の上流には、たとえば、排気マニホールド50から第1EGR装置60を経由して還流する排気(以下、吸気通路に還流される排気をEGRガスとも記載する)を吸気マニホールドに流通させるための吸気絞り弁が設けられていてもよい。また、第1吸気管22、第2吸気管24、第3吸気管27、吸気マニホールド28および吸気ポートによって「吸気通路」が構成される。
排気マニホールド50は、エンジン本体10の複数の気筒12の各々の排気ポートに連結される。排気マニホールド50には、第1排気管52の一方端が接続される。第1排気管52の他方端は、過給機30のタービン36に接続される。そのため、各気筒の排気ポートから排出される排気は、排気マニホールド50に集められた後、第1排気管52を経由してタービン36に供給される。
タービン36には、第2排気管54の一方端が接続される。第2排気管54の他方端は、排気処理装置56の入口部分に接続される。排気処理装置56は、酸化触媒(DOC:Diesel Oxidation Catalyst)56aと、PM除去フィルタ56bと、燃料添加装置56cと、排気温度センサ56dと、差圧センサ56eとを含む。
PM除去フィルタ56bは、酸化触媒56aよりも排気の流路(排気通路)における下流側に設けられる。燃料添加装置56cは、酸化触媒56aよりも排気の流路における上流側に設けられる。排気温度センサ56dは、酸化触媒56aとPM除去フィルタ56bとの間の排気の流路に設けられる。差圧センサ56eは、PM除去フィルタ56bの上流側の排気管に接続される第1連通路と下流側の排気管に接続される第2連通路との接続部分に設けられる。
PM除去フィルタ56bは、排気管内を流通する排気に含まれる粒子状物質(以下、PM(Particulate Matter)と記載する。)を捕集する。PM除去フィルタ56bは、たとえば、セラミックやステンレス等によって形成される。捕集されたPMは、PM除去フィルタ56b内に堆積する。
酸化触媒56aと燃料添加装置56cとは、PM除去フィルタ56bに堆積したPMを燃焼させ、除去する(再生する)再生機構として機能する。酸化触媒56aは、排気が流通する場合に、流通する排気中の窒素酸化物(NOx)および炭素酸化物(COx)などを酸化するとともに、排気中に燃料添加装置56cから添加された燃料が含まれる場合には燃料を酸化する。燃料の酸化によって生じる反応熱により酸化触媒56aを通過する排気の温度が上昇する。高温の排気がPM除去フィルタ56bを通過することによってPM除去フィルタ56bの温度が上昇し、PM除去フィルタ56b内に堆積したPMが酸化除去される(燃焼させられる)。これにより、PM除去フィルタ56bが再生される。
排気処理装置56の出口部分には、第3排気管58の一方端が接続される。第3排気管58の他方端には、触媒などの排気から特定の成分を除去する追加の排気処理装置やマフラー等が接続される。そのため、タービン36から排出された排気は、第2排気管54、排気処理装置56、第3排気管58、各種触媒およびマフラー等を経由して車外に排出される。排気ポート、排気マニホールド50、第1排気管52、タービン36および第2排気管54によって「排気通路」が構成される。
第3吸気管27と排気マニホールド50とは、エンジン本体10を経由せずに第1EGR装置60によって接続される。第1EGR装置60は、第1EGRバルブ62と、第1EGRクーラ64と、第1EGR通路66とを含む。第1EGR通路66は、第3吸気管27と排気マニホールド50とを接続する。第1EGRバルブ62と、第1EGRクーラ64とは、第1EGR通路66の途中に設けられる。
第1EGRバルブ62は、制御装置200からの制御信号に応じて、第1EGR通路66を流通するEGRガスの流量を調整する。第1EGRクーラ64は、たとえば、第1EGR通路66を流通するEGRガスを冷却する水冷式あるいは空冷式の熱交換器である。排気マニホールド50内の排気が第1EGR装置60を経由してEGRガスとして吸気側に戻されることによって気筒内の燃焼温度が低下され、NOxの生成量が低減される。
第1吸気管22と第3排気管58とは、エンジン本体10を経由せずに第2EGR装置70によって接続される。第2EGR装置70は、第2EGRバルブ72と、第2EGRクーラ74と、第2EGR通路76とを含む。第2EGR通路76は、第1吸気管22と第3排気管58とを接続する。第2EGRバルブ72と、第2EGRクーラ74とは、第2EGR通路76の途中に設けられる。
第2EGRバルブ72は、制御装置200からの制御信号に応じて、第2EGR通路76を流通するEGRガスの流量を調整する。第2EGRクーラ74は、たとえば、第2EGR通路76を流通するEGRガスを冷却する水冷式または空冷式の熱交換器である。第3排気管58内の排気が第2EGR装置70を経由してEGRガスとして吸気側に戻されることによって気筒内の燃焼温度が低下され、NOxの生成量が低減される。
過給機30は、コンプレッサ32と、タービン36とを含む。コンプレッサ32のハウジング内にはコンプレッサホイール34が収納され、タービン36のハウジング内にはタービンホイール38が収納される。コンプレッサホイール34とタービンホイール38とは、連結軸42によって連結され、一体的に回転する。そのため、コンプレッサホイール34は、タービンホイール38に供給される排気の排気エネルギーによって回転駆動される。
エンジン1の動作は、制御装置200によって制御される。制御装置200は、各種処理を行なうCPU(Central Processing Unit)と、プログラムおよびデータを記憶するROM(Read Only Memory)およびCPUの処理結果等を記憶するRAM(Random Access Memory)等を含むメモリと、外部との情報のやり取りを行なうための入・出力ポート(いずれも図示せず)とを含む。入力ポートには、上述したセンサ類(たとえば、排気温度センサ56d、差圧センサ56e、エンジン回転数センサ202、エアフローメータ208等)接続される。出力ポートには、制御対象となる機器(たとえば、複数のインジェクタ16、燃料添加装置56cおよび燃料ポンプ210等)が接続される。
制御装置200は、各センサおよび機器からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、エンジン1が所望の運転状態となるように各種機器を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。また、制御装置200には、時間の計測を行うためのタイマー回路(図示せず)が内蔵されている。
排気温度センサ56dは、酸化触媒56aから流出する排気の温度、すなわち、PM除去フィルタ56bに流入する排気の温度(以下、排気温度と記載する)Texを検出する。排気温度センサ56dは、検出した排気温度Texを示す信号を制御装置200に送信する。なお、排気温度Texは、PM除去フィルタ56b近傍に設置した温度センサで直接検出する以外に、エンジン1の運転状態や別の場所に設けられた温度センサから推定によって求めてもよい。
差圧センサ56eは、PM除去フィルタ56bの上流側の排気管に接続される第1連通路内の圧力と、下流側の排気管に接続される第2連通路内の圧力との差圧を、PM除去フィルタ56bの上流側の排気管内の排気圧力P1と、PM除去フィルタ56bの下流側の排気管内の排気圧力P2との差圧ΔP(=P1-P2)として検出する。差圧センサ56eは、検出した差圧ΔPを示す信号を制御装置200に送信する。
エンジン回転数センサ202は、エンジン1のクランクシャフトの回転数をエンジン回転数NEとして検出する。エンジン回転数センサ202は、検出したエンジン回転数NEを示す信号を制御装置200に送信する。
エアフローメータ208は、第1吸気管22に導入される新気の流量(吸入空気量)Qinを検出する。エアフローメータ208は、検出した吸入空気量Qinを示す信号を制御装置200に送信する。
燃料タンク214は、複数のインジェクタ16および燃料添加装置56cに供給するための燃料を貯留する。燃料ポンプ210は、制御装置200からの制御信号に応じて動作し、燃料タンク214に貯留される燃料をコモンレール14に圧送したり、燃料添加装置56cに供給したりする。燃料ポンプ210と燃料タンク214との間の燃料が流通する通路には燃料フィルタ212が設けられる。燃料フィルタ212は、流通する燃料に含まれる異物を捕集する。
以上のような構成を有するエンジン1においては、PM除去フィルタ56bにおけるPMの堆積量が多くなると、PM除去フィルタ56bのフィルタ部分が目詰まりを起こして排気の浄化機能が低下する場合がある。そのため、制御装置200は、PM除去フィルタ56bを再生するための再生制御を実行する。
制御装置200は、再生制御が実行されると、燃料添加装置56cから燃料添加を開始する。制御装置200は、たとえば、排気温度Texを、目標温度に昇温するための指令添加量を設定し、設定された指令添加量に従って燃料添加装置56cを制御する。ここで、排気の目標温度は、PM除去フィルタ56bの温度をPM除去フィルタ56bの再生が可能な温度まで昇温することができる排気温度として設定される。
上述のような再生制御により、排気処理装置56では、燃料添加装置56cから排気に燃料が添加され、添加された燃料が酸化触媒56aで反応し、その反応熱によって排気が昇温する。そして、高温となった排気がPM除去フィルタ56bに流れることによって、PM除去フィルタ56bの温度が、PM除去フィルタ56bの再生が可能な温度範囲内の温度まで昇温し、PM除去フィルタ56内のPMが燃焼される。制御装置200は、PM除去フィルタ56bの温度がPM除去フィルタ56bの再生が可能な温度範囲内の温度になった状態での経過時間をカウントし、カウントした経過時間の合計が所定の再生終了時間を超えた場合に、PM除去フィルタ56bの再生が完了したと判定する。
制御装置200は、PMの堆積量の推定値が再生を開始するための判定値(以下、再生判定値と記載する)を超える場合に上述の再生制御を実行する。再生判定値は、たとえば、予め定められた値であってもよいし、エンジン1の運転状態に基づいて設定される値であってもよい。
制御装置200は、たとえば、PM除去フィルタ56bの上流側と下流側とにおける排気圧力の差圧ΔPと、差圧とPM堆積量との関係を示す所定のマップとを用いてPM堆積量を推定することができる。
図2は、実PM堆積量と差圧ΔPとの関係を説明するための図である。図2の縦軸は、差圧ΔPを示す。図2の横軸は、実PM堆積量を示す。図2の一点鎖線に示すように、差圧ΔPと実PM堆積量とは、実質的に比例関係にあるため、このような関係を予め所定のマップとして制御装置200のメモリに記憶しておき、記憶された所定のマップを利用することによって差圧ΔPからPM堆積量を推定することができる。
そして、制御装置200は、たとえば、差圧ΔPがしきい値ΔP(0)を超えることによって、差圧ΔPに基づいて推定されるPM堆積量がPM除去フィルタ56bの再生を開始するための再生判定値PMa(1)を超える場合に、上述の再生制御を実行することによって、PM除去フィルタ56bに堆積したPMを適切に除去することができる。
しかしながら、図2の実線や二点鎖線に示すように、実際のPM堆積量が少量の状態である場合において、差圧ΔPは、エンジン1の運転状態によっては、実際のPM堆積量に比例せずに図2の一点鎖線に沿った値から変動する場合がある。その結果、実際のPM堆積量PMa(0)が再生判定値よりも少ないにもかかわらず、差圧ΔPがΔP(0)まで変動することによって、差圧ΔPに基づいて推定されるPM堆積量が再生判定値よりも大きいことによってPM除去フィルタ56bの再生が行なわれる。このようにPM堆積量が少量の状態でも再生が行なわれると、PM除去フィルタ56bの再生の頻度が増加することになり、その結果、燃費が悪化する場合がある。
そこで、本実施の形態においては、制御装置200が以下のように動作するものとする。すなわち、制御装置200は、差圧センサ56eによって検出された差圧ΔPを用いて第1PM堆積量を算出するとともに、エンジン1の運転状態に基づくPM排出量を積算して第1PM堆積量の上限値を設定する。制御装置200は、第1PM堆積量が設定された上限値よりも大きい場合には、上限値をPM堆積量の推定値として算出する。
このようにすると、第1PM堆積量が上限値よりも大きい場合には、上限値がPM堆積量の推定値とされるので、排気圧力の差圧が実際のPM堆積量よりも多い量を示す値に変動する場合にも、実際のPM堆積量とPM堆積量の推定値とが大きく乖離することが抑制される。その結果、PM除去フィルタ56bを再生する頻度の増加を抑制することができる。
以下に、図3を参照して、本実施の形態における制御装置200で実行される制御処理について説明する。図3は、制御装置200で実行される制御処理を示すフローチャートである。このフローチャートに示される処理は、所定の制御周期毎にメインルーチン(図示せず)から呼び出されて実行される。
ステップ(以下、ステップをSと記載する。)100にて、制御装置200は、差圧センサ56eを用いてPM除去フィルタ56bの上流側の排気圧力と下流側の排気圧力との差圧ΔPを取得する。
S102にて、制御装置200は、取得した差圧ΔPを用いて第1PM堆積量を算出する。制御装置200は、たとえば、取得した差圧ΔPと所定のマップとを用いて第1PM堆積量を算出する。所定のマップは、差圧ΔPと第1PM堆積量との関係を示すマップであって、実験等によって予め作成される。所定のマップは、たとえば、図2の一点鎖線で示されるような差圧ΔPと実PM堆積量との関係に基づいて作成される。
S104にて、制御装置200は、PM排出量を算出する。具体的には、制御装置200は、エンジン1の運転条件(たとえば、エンジン回転数NEや燃料噴射量の指令値や吸入空気量Qin等)から複数の気筒12からの1回の制御周期におけるPM排出量の推定値を算出する。
S106にて、制御装置200は、算出されたPM排出量の推定値を用いて第2PM堆積量を算出する。具体的には、制御装置200は、算出されたPM排出量の推定値を前回の計算における積算値(前回値)に加算することによって今回の計算における積算値(今回値)を算出し、算出された積算値(今回値)を第2PM堆積量とする。なお、制御装置200は、PM除去フィルタ56bの再生制御が開始してから完了するまでの間の所定の時点に、積算値を初期値(たとえば、ゼロ)にリセットする。
S108にて、制御装置200は、第1PM堆積量と第2PM堆積量とのうちのいずれか大きい方をPM堆積量の推定値として選択する。
S110にて、制御装置200は、PM堆積量の上限値を算出する。制御装置200は、第2PM堆積量に1よりも大きい予め定められた係数を乗算した値をPM堆積量(実質的に第1PM堆積量)の上限値として算出する。予め定められた係数は、特に限定されるものではないが、たとえば、第2PM堆積量が数十%程度増加する値が設定される。
S112にて、制御装置200は、PM堆積量の推定値と、PM堆積量の上限値とのうちのいずれか小さい方を再生判定用PM堆積量として選択する。
S114にて、制御装置200は、再生判定用PM堆積量が再生判定値(PMa(1))以上であるか否かを判定する。再生判定用PM堆積量が再生判定値以上であると判定される場合(S114にてYES)、処理はS116に移される。
S116にて、制御装置200は、再生制御を実行する。なお、再生制御については、上述したとおりであるため、その詳細な説明は繰り返さない。また、再生判定用PM堆積量が再生判定値よりも小さい場合(S114にてNO)、処理はS100に戻される。
以上のような構造およびフローチャートに基づく制御装置200の動作について図4を参照しつつ説明する。図4は、制御装置200の動作を説明するためのタイミングチャートである。図4の上段のグラフの縦軸は、差圧ΔPを示す。図4の下段のグラフの縦軸は、PM堆積量の推定値を示す。図4の上段および下段のグラフの横軸は、時間を示す。さらに、図4のLN1(実線)は、差圧ΔPの変化(変動あり(その1))を示す。図4のLN2(一点鎖線)は、差圧ΔPの変化(変動なし)を示す。図4のLN3(二点鎖線)は、差圧ΔPの変化(変動あり(その2))を示す。図4のLN4(実線)は、差圧ΔP(変動あり(その1))に基づくPM堆積量の変化を示す。図4のLN5(一点鎖線)は、差圧ΔP(変動なし)に基づくPM堆積量の変化を示す。図4のLN6(二点鎖線)は、差圧ΔP(変動あり(その2))に基づくPM堆積量の変化を示す。図4のLN7(破線)は、PM堆積量の上限値の変化を示す。また、たとえば、PM除去フィルタ56bの再生が完了した直後を想定するものとする。なお、以下の説明においては、説明の便宜上、特に言及しない限り、各時点における第1PM堆積量は、第2PM堆積量よりも大きいものとして説明する。
差圧センサ56eの検出結果を用いて差圧ΔPが取得されると(S100)、取得された差圧ΔPから第1PM堆積量が算出される(S102)。その一方で、エンジン1の運転条件から前回の計算から今回の計算までのPM排出量が算出される(S104)。算出されたPM排出量が前回の計算における積算値に加算されることによって第2PM堆積量が算出される(S106)。
第1PM堆積量および第2PM堆積量のうちの大きい方が推定値として選択されるとともに(S108)、第2PM堆積量に所定の係数が乗算されることによってPM堆積量の上限値が算出される(S110)。
推定値として選択された値とPM堆積量の上限値とのうちのいずれか小さい方が再生判定用PM堆積量として選択される(S112)。
<実PM堆積量に対する差圧ΔPの変化に変動がない場合>
実PM堆積量に対する差圧ΔPの変化に変動がない場合には、図4のLN2に示すように、差圧ΔPが時間の経過とともに増加していくことになるため、差圧ΔPから算出されるPM堆積量についても図4のLN5に示すように、時間の経過とともに増加していくことになる。その結果、時間t(3)にて、差圧ΔPがΔP(0)以上となり、再生判定用PM堆積量が再生判定値PMa(1)以上となるため(S114にてYES)、再生制御が実行される(S116)。
<実PM堆積量に対する差圧ΔPの変化に変動がある場合(その1)>
たとえば、図4のLN1に示すように、実PM堆積量に対する差圧ΔPの変化に変動がある場合には、差圧ΔPは、図4のLN2に示す差圧ΔPに対して大きく乖離し、時間t(0)にて、ΔP(0)以上となる。そのため、PM堆積量の上限値としては、図4のLN7に沿った値が選択されることになる。したがって、時間t(1)になるまでの間は、図4のLN7に沿った値が再生判定用PM堆積量として選択される。差圧ΔPは、時間t(0)の後において、時間の経過とともに低下していくものとする。この場合、時間t(1)において、図4のLN4およびLN7に示すように、第1PM堆積量が上限値を下回るため、時間t(1)の後において、第1PM堆積量が再生判定用PM堆積量として選択される。その結果、時間t(3)にて、差圧ΔPがΔP(0)以上となり、再生判定用PM堆積量が再生判定値PMa(1)以上となるため(S114にてYES)、再生制御が実行される(S116)。
<実PM堆積量に対する差圧ΔPの変化に変動がある場合(その2)>
たとえば、図4のLN6に示すように、実PM堆積量に対する差圧ΔPの変化に変動がある場合には、差圧ΔPは、図4のLN2に示す差圧ΔPに対して大きく乖離し、時間t(0)にて、ΔP(0)以上となる。そのため、PM堆積量の上限値としては、図4のLN7に沿った値が選択されることになる。したがって、図4のLN7に沿った値が再生判定用PM堆積量として選択される。差圧ΔPは、時間t(0)の後において、図4のLN5に示す差圧ΔPに対して一定の間隔を空けた状態で時間の経過とともに増加するものとする。この場合、時間t(2)において、図4のLN7に示すように、再生判定用PM堆積量として選択された上限値が再生判定値PMa(1)以上となるため(S114にてYES)、再生制御が実行される(S116)。
以上のようにして、本実施の形態に係る排気処理装置によると、第1PM堆積量が上限値よりも大きい場合には、上限値が再生判定用PM堆積量とされるので、排気圧力の差圧ΔPが実際のPM堆積量よりも多い量を示す値に変動する場合にも、実際のPM堆積量と再生判定用PM堆積量とが大きく乖離することが抑制される。その結果、PM除去フィルタ56bを再生する頻度の増加を抑制することができる。したがって、差圧を用いてPMの堆積量を推定する場合において、PM除去フィルタを再生する頻度の増加を抑制する排気処理装置を提供することができる。
また、第1PM堆積量が上限値よりも小さい場合には、第1PM堆積量が再生判定用PM堆積量とされるので、第1PM堆積量に基づいて適切な時期にPM除去フィルタ56bを再生することができる。
さらに、第2PM堆積量に1よりも大きい予め定められた係数を乗算した値が実質的に第1堆積量の上限値とされるので、第1PM堆積量の上限値を適切に設定することができるため、PM除去フィルタ56bを再生する頻度の増加を抑制することができる。
さらに、第2PM堆積量が第1堆積量よりも大きい場合には、第2PM堆積量が再生判定用PM堆積量とされる。そのため、第2PM堆積量に基づいて適切な時期にPM除去フィルタ56bを再生することができる。
さらに、第2PM堆積量は、時間が経過するほど実PM堆積量からずれる場合があるため、第2PM堆積量が実際のPM堆積量よりも低く見積もられる場合でも差圧ΔPを利用することによって適切な時期にPM除去フィルタ56bを再生することができる。
以下、変形例について説明する。
上述の実施の形態では、第2PM堆積量に予め定められた係数を乗算することによって上限値を算出するものとして説明したが、たとえば、再生制御の完了直後からのエンジン1の運転時間に応じて上限値を変化させてもよい。たとえば、再生制御の完了直後から予め定められた時間が経過するまでの間の係数を、予め定められた時間が経過した後の係数よりも小さい値に設定してもよい。このようにすると、予め定められた係数を乗算することによって上限値を算出する場合よりも上限値が再生判定値を超える時点を遅い時点にずらすことができる。
上述の実施の形態では、第2PM堆積量に予め定められた係数を乗算することによって上限値を算出するものとして説明したが、たとえば、再生制御の完了以降のエンジン1の運転状態に基づいて上限値を設定してもよい。たとえば、エンジン1の空燃比、エンジン1の回転数の大きさ、負荷の大きさ、過給圧の大きさによってPM排出量が異なる場合があるのでそれらの大きさに対応した上限値を設定することによって適切な時期にPM除去フィルタ56bを再生することができる。
たとえば、エンジン1の空燃比を用いてPM堆積量の上限値を設定する場合には、空燃比がリッチ側の値であるほどPM排出量が増加する傾向があるため、空燃比がリーン側の値である場合よりも上限値を大きい値に設定し、空燃比がリーン側の値であるほどPM排出量が減少する傾向があるため、空燃比がリッチ側の値である場合よりも上限値を小さい値に設定してもよい。このようにすると、エンジン1の空燃比に対応した上限値を設定することができるため、適切な時期にPM除去フィルタ56bを再生することができる。
なお、上記した変形例は、その全部または一部を組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 エンジン、10 エンジン本体、12 気筒、14 コモンレール、16 インジェクタ、20 エアクリーナ、22,24,27 吸気管、26 インタークーラ、28 吸気マニホールド、30 過給機、32 コンプレッサ、34 コンプレッサホイール、36 タービン、38 タービンホイール、42 連結軸、50 排気マニホールド、52,54,58 排気管、56 排気処理装置、56a 酸化触媒、56b PM除去フィルタ、56c 燃料添加装置、56d 排気温度センサ、56e 差圧センサ、60,70 EGR装置、62,72 EGRバルブ、64,74 EGRクーラ、66,76 EGR通路、200 制御装置、202 エンジン回転数センサ、208 エアフローメータ、210 燃料ポンプ、212 燃料フィルタ、214 燃料タンク。

Claims (4)

  1. エンジンの排気通路を流通する排気に含まれる粒子状物質を捕集するフィルタと、
    前記フィルタよりも上流側の前記排気通路内の排気圧力と前記フィルタの下流側の前記排気通路内の排気圧力との差圧を検出する検出装置と、
    前記フィルタに堆積した粒子状物質の堆積量の推定値を算出し、算出された前記推定値がしきい値を超える場合に前記フィルタに堆積した前記粒子状物質を燃焼させる再生制御を実行する制御装置とを備え、
    前記制御装置は、
    前記検出装置によって検出された前記差圧を用いて前記フィルタに堆積した前記粒子状物質の第1堆積量を算出し、
    前記エンジンの運転状態に基づく前記粒子状物質の排出量を積算して前記第1堆積量の上限値を設定し、
    前記第1堆積量が前記上限値よりも大きい場合には、前記上限値を前記推定値とし、
    前記第1堆積量が前記上限値よりも大きい状態から前記上限値よりも小さい状態になる場合には、前記第1堆積量を前記推定値とする、排気処理装置。
  2. 前記制御装置は、前記排出量を積算して前記粒子状物質の第2堆積量を算出し、前記第2堆積量に1よりも大きい予め定められた係数を乗算した値を前記第1堆積量の上限値とする、請求項1に記載の排気処理装置。
  3. 前記制御装置は、前記排出量を積算して前記粒子状物質の第2堆積量を算出し、前記第2堆積量が前記第1堆積量よりも大きい場合には、前記第2堆積量を前記推定値とし、前記第2堆積量が前記第1堆積量よりも小さい場合には、前記第1堆積量が前記上限値よりも大きいか否かを判定する、請求項1に記載の排気処理装置。
  4. 前記制御装置は、前記エンジンにおける空燃比がリッチ側の値である場合には、前記空燃比がリーン側の値である場合よりも前記上限値を大きい値に設定する、請求項1に記載の排気処理装置。
JP2018092387A 2018-05-11 2018-05-11 排気処理装置 Active JP7064376B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092387A JP7064376B2 (ja) 2018-05-11 2018-05-11 排気処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092387A JP7064376B2 (ja) 2018-05-11 2018-05-11 排気処理装置

Publications (2)

Publication Number Publication Date
JP2019196759A JP2019196759A (ja) 2019-11-14
JP7064376B2 true JP7064376B2 (ja) 2022-05-10

Family

ID=68538326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092387A Active JP7064376B2 (ja) 2018-05-11 2018-05-11 排気処理装置

Country Status (1)

Country Link
JP (1) JP7064376B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002672A (ja) 2004-06-17 2006-01-05 Denso Corp パティキュレート堆積量推定方法及びパティキュレートフィルタ再生処理装置
DE102011084864A1 (de) 2011-10-20 2013-04-25 Ford Global Technologies, Llc Verfahren zur Regeneration eines Partikelfilters sowie Steuerungseinrichtung
JP2013096320A (ja) 2011-11-01 2013-05-20 Toyota Industries Corp 内燃機関の排気浄化装置
US20150267590A1 (en) 2014-03-18 2015-09-24 GM Global Technology Operations LLC System to monitor regeneration frequency of particulate filter
JP2016011603A (ja) 2014-06-27 2016-01-21 日立建機株式会社 ハイブリッド作業機械

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317529A (ja) * 1994-05-20 1995-12-05 Nippondenso Co Ltd ディーゼルエンジンの排気浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002672A (ja) 2004-06-17 2006-01-05 Denso Corp パティキュレート堆積量推定方法及びパティキュレートフィルタ再生処理装置
DE102011084864A1 (de) 2011-10-20 2013-04-25 Ford Global Technologies, Llc Verfahren zur Regeneration eines Partikelfilters sowie Steuerungseinrichtung
JP2013096320A (ja) 2011-11-01 2013-05-20 Toyota Industries Corp 内燃機関の排気浄化装置
US20150267590A1 (en) 2014-03-18 2015-09-24 GM Global Technology Operations LLC System to monitor regeneration frequency of particulate filter
JP2016011603A (ja) 2014-06-27 2016-01-21 日立建機株式会社 ハイブリッド作業機械

Also Published As

Publication number Publication date
JP2019196759A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP4816739B2 (ja) 内燃機関の排気浄化装置
JP4044908B2 (ja) 内燃機関の排気浄化装置
JP2010196498A (ja) Pm排出量推定装置
JP2020033971A (ja) Dpf再生制御装置及びdpf再生制御方法
JP4305402B2 (ja) 内燃機関の排気浄化装置
JP6939688B2 (ja) 排気処理システム
JP4412218B2 (ja) 内燃機関の制御装置及び内燃機関の排気温度推定方法
US11536209B2 (en) Control device, engine, and control method of engine
JP4185882B2 (ja) 排気浄化装置
JP7064376B2 (ja) 排気処理装置
JP2010090875A (ja) 内燃機関の排気浄化装置
JP5004036B2 (ja) 内燃機関の排気浄化装置
JP2002070619A (ja) 内燃機関の排気浄化装置
JP6962262B2 (ja) 排気処理システム
JP5136465B2 (ja) 内燃機関の排気浄化装置
JP2019120220A (ja) 排気処理装置
JP6772958B2 (ja) 排気処理装置
JP4697286B2 (ja) 内燃機関の排気浄化装置
JP6769415B2 (ja) 排気処理装置
JP7302541B2 (ja) 排気処理システム
JP2018127928A (ja) 内燃機関の排気浄化装置
JP2009250099A (ja) 内燃機関の排気浄化装置
JP2018178775A (ja) フィルタ再生制御装置およびフィルタ再生制御方法
JP2009299652A (ja) 内燃機関の制御装置及び制御方法
WO2020080000A1 (ja) 排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220422

R150 Certificate of patent or registration of utility model

Ref document number: 7064376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150