JP7048314B2 - Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
JP7048314B2
JP7048314B2 JP2017503643A JP2017503643A JP7048314B2 JP 7048314 B2 JP7048314 B2 JP 7048314B2 JP 2017503643 A JP2017503643 A JP 2017503643A JP 2017503643 A JP2017503643 A JP 2017503643A JP 7048314 B2 JP7048314 B2 JP 7048314B2
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
crystal display
display element
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017503643A
Other languages
Japanese (ja)
Other versions
JPWO2017130786A1 (en
Inventor
大輝 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2017130786A1 publication Critical patent/JPWO2017130786A1/en
Application granted granted Critical
Publication of JP7048314B2 publication Critical patent/JP7048314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element, which has excellent curability of a light-shielding portion and can suppress liquid crystal contamination. The present invention also relates to a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

近年、液晶表示セル等の液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
In recent years, as a method for manufacturing a liquid crystal display element such as a liquid crystal display cell, a curable resin and light as disclosed in Patent Document 1 and Patent Document 2 are used from the viewpoint of shortening the tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermally combined curing type sealing agent containing a polymerization initiator and a thermosetting agent is used.
In the dropping method, first, a rectangular seal pattern is formed on one of the two transparent substrates with electrodes by dispensing. Next, in a state where the sealant is uncured, fine droplets of liquid crystal are dropped on the entire surface of the frame of the transparent substrate, the other transparent substrate is immediately overlapped, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. .. After that, it is heated at the time of liquid crystal annealing to perform main curing to produce a liquid crystal display element. If the substrates are bonded under reduced pressure, the liquid crystal display element can be manufactured with extremely high efficiency, and this dropping method is currently the mainstream method for manufacturing the liquid crystal display element.

ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。 By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and handheld game machines are widespread, miniaturization of devices is the most sought after issue. As a method for reducing the size of the device, a narrowing of the frame of the liquid crystal display unit is mentioned. For example, the position of the seal portion is arranged under the black matrix (hereinafter, also referred to as a narrow frame design).

しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、溶出したシール剤成分による硬化反応が液晶中において進行することで液晶汚染が発生するという問題があった。
液晶汚染を抑制する方法として、特許文献3には、シール剤に高感度の光重合開始剤を配合することが開示されている。しかしながら、高感度の光重合開始剤を配合しただけでは、遮光部において充分に液晶汚染を抑制することができなかった。
However, in the narrow frame design, the sealant is placed directly under the black matrix, so if the dropping method is used, the light emitted when the sealant is photo-cured is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. When the sealant is not sufficiently cured in this way, the uncured sealant component is eluted in the liquid crystal display, and the curing reaction by the eluted sealant component proceeds in the liquid crystal display, resulting in liquid crystal contamination. there were.
As a method for suppressing liquid crystal contamination, Patent Document 3 discloses that a highly sensitive photopolymerization initiator is added to a sealant. However, it was not possible to sufficiently suppress liquid crystal contamination in the light-shielded portion only by blending a highly sensitive photopolymerization initiator.

特開2001-133794号公報Japanese Unexamined Patent Publication No. 2001-133794 国際公開第02/092718号International Publication No. 02/02718 国際公開第2012/002028号International Publication No. 2012/20228

本発明は、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a sealant for a liquid crystal display element, which has excellent curability of a light-shielding portion and can suppress liquid crystal contamination. Another object of the present invention is to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

本発明は、硬化性樹脂と光ラジカル重合開始剤とを含有する液晶表示素子用シール剤であって、上記硬化性樹脂は、分子量が100以上500未満の化合物と、分子量が500~2500の化合物とを含有し、上記分子量が100以上500未満の化合物は、エポキシ化合物を含み、上記分子量が100以上500未満の化合物と上記分子量が500~2500の化合物との合計100重量部中における上記分子量が500~2500の化合物の含有量が10重量部以上30重量部以下であり、上記光ラジカル重合開始剤は、カルバゾール骨格を有する化合物である液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention is a sealant for a liquid crystal display element containing a curable resin and a photoradical polymerization initiator, wherein the curable resin is a compound having a molecular weight of 100 or more and less than 500, and a compound having a molecular weight of 500 to 2500. The compound having a molecular weight of 100 or more and less than 500 contains an epoxy compound, and the molecular weight of the compound having a molecular weight of 100 or more and less than 500 and the compound having a molecular weight of 500 to 2500 is 100 parts by weight in total. The content of the compound of 500 to 2500 is 10 parts by weight or more and 30 parts by weight or less, and the photoradical polymerization initiator is a sealing agent for a liquid crystal display element which is a compound having a carbazole skeleton.
The present invention will be described in detail below.

本発明者は、シール剤の遮光部硬化性を向上させるため、特に高感度である光ラジカル重合開始剤としてカルバゾール骨格を有する化合物を用いることを検討した。しかしながら、このような光ラジカル重合開始剤を用いても、遮光部硬化性が充分でなく、液晶汚染が生じやすいという問題があった。
本発明者は、光ラジカル重合開始剤として用いたカルバゾール骨格を有する化合物は高感度であるものの、硬化性樹脂に対する溶解性が低かったために遮光部硬化性を充分に向上させることができなかったと考えた。そこで本発明者は、光ラジカル重合開始剤としてカルバゾール骨格を有する化合物を用いるだけでなく、更に、硬化性樹脂として特定の分子量の化合物を組み合わせて用いることにより、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。
The present inventor has studied the use of a compound having a carbazole skeleton as a photoradical polymerization initiator having particularly high sensitivity in order to improve the curability of the light-shielding portion of the sealant. However, even if such a photoradical polymerization initiator is used, there is a problem that the curability of the light-shielding portion is not sufficient and liquid crystal contamination is likely to occur.
The present inventor considers that the compound having a carbazole skeleton used as the photoradical polymerization initiator has high sensitivity, but its solubility in a curable resin is low, so that the curability of the light-shielding portion cannot be sufficiently improved. rice field. Therefore, the present inventor not only uses a compound having a carbazole skeleton as a photoradical polymerization initiator, but also by using a compound having a specific molecular weight as a curable resin in combination, the light-shielding portion has excellent curability and is excellent in curability. We have found that it is possible to obtain a sealant for a liquid crystal display element capable of suppressing liquid crystal contamination, and have completed the present invention.

本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、分子量が100以上500未満の化合物と、分子量が500~3000の化合物とを含有する。上記分子量が100以上500未満の化合物と、上記分子量が500~3000の化合物とを組み合わせて用いることにより、光ラジカル重合開始剤であるカルバゾール骨格を有する化合物を充分に溶解させることができ、その結果、本発明の液晶表示素子用シール剤が遮光部硬化性に優れ、かつ、液晶汚染を抑制することができるものとなる。
なお、本明細書において、上記「分子量」は、分子構造が特定される化合物については、構造式から求められる分子量であるが、重合度の分布が広い化合物及び変性部位が不特定な化合物については、重量平均分子量を用いて表す場合がある。本明細書において、上記「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The sealant for a liquid crystal display element of the present invention contains a curable resin.
The curable resin contains a compound having a molecular weight of 100 or more and less than 500, and a compound having a molecular weight of 500 to 3000. By using the compound having a molecular weight of 100 or more and less than 500 and the compound having a molecular weight of 500 to 3000 in combination, a compound having a carbazole skeleton as a photoradical polymerization initiator can be sufficiently dissolved, and as a result, the compound has a carbazole skeleton. The sealant for a liquid crystal display element of the present invention has excellent curability of a light-shielding portion and can suppress liquid crystal contamination.
In the present specification, the above-mentioned "molecular weight" is the molecular weight obtained from the structural formula for a compound whose molecular structure is specified, but for a compound having a wide distribution of degree of polymerization and a compound having an unspecified modification site. , Weight average molecular weight may be used. In the present specification, the above-mentioned "weight average molecular weight" is a value obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene. Examples of the column used when measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.

上記硬化性樹脂は、上記分子量が100以上500未満の化合物を含有する。
上記分子量が100以上500未満の化合物は、カルバゾール骨格を有する化合物の溶解性の観点から、分子量が300以上500未満であることが好ましい。
The curable resin contains a compound having a molecular weight of 100 or more and less than 500.
The compound having a molecular weight of 100 or more and less than 500 is preferably having a molecular weight of 300 or more and less than 500 from the viewpoint of solubility of the compound having a carbazole skeleton.

上記硬化性樹脂は、上記分子量が100以上500未満の化合物として、(メタ)アクリル化合物を含有することが好ましい。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。なかでも、エポキシ(メタ)アクリレートが好ましい。また、上記(メタ)アクリル化合物は、反応性の高さから1分子中に(メタ)アクリロイル基を2個以上有するものが好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル化合物」とは、アクリロイル基又はメタクリロイル基(以下、「(メタ)アクリロイル基」ともいう)を有する化合物を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。更に、上記「エポキシ(メタ)アクリレート」とは、エポキシ化合物中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The curable resin preferably contains a (meth) acrylic compound as a compound having a molecular weight of 100 or more and less than 500.
The (meth) acrylic compound may be, for example, a (meth) acrylic acid ester compound obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, or by reacting (meth) acrylic acid with an epoxy compound. Examples thereof include the obtained epoxy (meth) acrylate and urethane (meth) acrylate obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group. Of these, epoxy (meth) acrylate is preferable. Further, the (meth) acrylic compound preferably has two or more (meth) acryloyl groups in one molecule due to its high reactivity.
In the present specification, the above-mentioned "(meth) acrylic" means acrylic or methacrylic, and the above-mentioned "(meth) acrylic compound" means an acryloyl group or a methacryloyl group (hereinafter, "(meth) acryloyl group"). Also referred to as). Further, the above-mentioned "(meth) acrylate" means acrylate or methacrylate. Further, the above-mentioned "epoxy (meth) acrylate" refers to a compound in which all the epoxy groups in the epoxy compound are reacted with (meth) acrylic acid.

上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexyl ( Meta) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, ethylcarbitol (meth) acrylate, 2,2,2-trifluoroethyl ( Meta) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (Meta) Acrylate, 2- (Meta) Acryloyloxyethyl Succinic Acid, 2- (Meta) Acryloyloxyethyl Hexahydrophthalic Acid, 2- (Meta) Acryloyloxyethyl 2-Hydroxypropylphthalate, 2- (Meta) ) Acryloyloxyethyl phosphate, glycidyl (meth) acrylate and the like can be mentioned.

また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート等が挙げられる。 Among the above (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Didioldi (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meta) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di ( Meta) acrylate, dimethyloldicyclopentadienyldi (meth) acrylate, ethylene oxide-modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonatediol di (meth) acrylate ) Acrylate and the like can be mentioned.

また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 Among the (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate with ethylene oxide, glycerintri (meth) acrylate, and penta. Examples thereof include erythritol tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, pentaerythritol tetra (meth) acrylate and the like.

上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.

上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールEジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールEジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ビフェニル-4,4’-ジイルビス(グリシジルエーテル)、1,6-ナフタレンジイルビス(グリシジルエーテル)、エチレングリコールジグリシジルエーテル、1,3-プロパンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル等が挙げられる。 Examples of the epoxy compound as a raw material for synthesizing the above epoxy (meth) acrylate include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol E diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, and hydrogenated bisphenol. F diglycidyl ether, hydrogenated bisphenol E diglycidyl ether, resorcinol diglycidyl ether, biphenyl-4,4'-diyl bis (glycidyl ether), 1,6-naphthalenedyl bis (glycidyl ether), ethylene glycol diglycidyl ether, 1 , 3-Propanediol diglycidyl ether, 1,4-butanediol diglycidyl ether and the like.

上記イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate obtained by reacting the isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group includes, for example, (meth) acrylic having a hydroxyl group with respect to one equivalent of the isocyanate compound having two isocyanate groups. It can be obtained by reacting 2 equivalents of an acid derivative in the presence of a catalytic amount of a tin-based compound.

上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、テトラメチルキシリレンジイソシアネート等が挙げられる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. ′ -Diisocyanate (MDI), hydrogenated MDI, 1,5-naphthalenedi isocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, tetramethylxylylene diisocyanate and the like can be mentioned.

上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール等の二価のアルコールのモノ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylates and 4-hydroxybutyl (meth) acrylates, and divalents such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butanediol. Alcohol mono (meth) acrylate and the like can be mentioned.

上記硬化性樹脂は、上記分子量が100以上500未満の化合物として、接着性及びカルバゾール骨格を有する化合物の溶解性の観点から、エポキシ化合物を含有することが好ましい。
上記エポキシ化合物としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物や、部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する化合物を意味し、例えば、2つ以上のエポキシ化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
The curable resin preferably contains an epoxy compound as a compound having a molecular weight of 100 or more and less than 500 from the viewpoint of adhesiveness and solubility of a compound having a carbazole skeleton.
Examples of the epoxy compound include an epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate, a partially (meth) acrylic-modified epoxy resin, and the like.
In the present specification, the partially (meth) acrylic-modified epoxy resin means a compound having one or more epoxy groups and one or more (meth) acryloyl groups in one molecule, and for example, two or more epoxy compounds. It can be obtained by reacting a part of the epoxy group with (meth) acrylic acid.

上記硬化性樹脂は、上記分子量が500~3000の化合物を含有する。
上記分子量が500~3000の化合物の分子量の好ましい下限は600、好ましい上限は2500である。上記分子量が500~3000の化合物の分子量が600以上であることにより、カルバゾール骨格を有する化合物の溶解性により優れるものとなる。上記分子量が500~3000の化合物の分子量が2500以下であることにより、得られる液晶表示素子用シール剤が低液晶汚染性により優れるものとなる。上記分子量が500~3000の化合物の分子量のより好ましい下限は1000、より好ましい上限は2000である。
The curable resin contains a compound having a molecular weight of 500 to 3000.
The preferable lower limit of the molecular weight of the compound having a molecular weight of 500 to 3000 is 600, and the preferable upper limit is 2500. When the molecular weight of the compound having a molecular weight of 500 to 3000 is 600 or more, the solubility of the compound having a carbazole skeleton becomes more excellent. When the molecular weight of the compound having a molecular weight of 500 to 3000 is 2500 or less, the obtained sealant for a liquid crystal display element becomes more excellent in low liquid crystal contamination. The more preferable lower limit of the molecular weight of the compound having a molecular weight of 500 to 3000 is 1000, and the more preferable upper limit is 2000.

上記分子量が500~3000の化合物としては、オリゴマー化合物が好ましく、重合度が3~6のオリゴマー化合物であることがより好ましい。
また、上記分子量が500~3000の化合物は、エポキシ基及び/又は(メタ)アクリロイル基を1分子中に合計2個以上有する多官能化合物であることが好ましく、架橋密度が高まり、溶出をより抑制できることから、ノボラック型構造のような櫛形構造を有する多官能化合物であることがより好ましい。
As the compound having a molecular weight of 500 to 3000, an oligomer compound is preferable, and an oligomer compound having a degree of polymerization of 3 to 6 is more preferable.
Further, the compound having a molecular weight of 500 to 3000 is preferably a polyfunctional compound having a total of two or more epoxy groups and / or (meth) acryloyl groups in one molecule, and the crosslink density is increased to further suppress elution. Therefore, it is more preferable to use a polyfunctional compound having a comb-shaped structure such as a novolak-type structure.

上記分子量が500~3000の化合物としては、具体的には例えば、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2'-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂等のオリゴマー型エポキシ樹脂や、これらのオリゴマー型エポキシ樹脂と(メタ)アクリル酸とを反応させてなるオリゴマー型エポキシ(メタ)アクリレートやオリゴマー型部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。なかでも、オリゴマー型エポキシ(メタ)アクリレートが好ましい。 Specific examples of the compound having a molecular weight of 500 to 3000 include a phenol novolac type epoxy resin, an orthocresol novolac type epoxy resin, a dicyclopentadiene novolac type epoxy resin, a biphenyl novolac type epoxy resin, and a naphthalenephenol novolac type epoxy resin. , Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, 2,2'-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type Epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified type Examples thereof include an oligomer-type epoxy resin such as an epoxy resin, an oligomer-type epoxy (meth) acrylate obtained by reacting these oligomer-type epoxy resins with (meth) acrylic acid, and an oligomer-type partially (meth) acrylic-modified epoxy resin. .. Of these, oligomer-type epoxy (meth) acrylates are preferable.

上記分子量が100以上500未満の化合物と上記分子量が500~3000の化合物との合計100重量部中における上記分子量が500~3000の化合物の含有量の好ましい下限は10重量部、好ましい上限は30重量部である。上記分子量が500~3000の化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が遮光部硬化性及び液晶汚染を抑制する効果により優れるものとなる。上記分子量が500~3000の化合物の含有量のより好ましい下限は12重量部、より好ましい上限は20重量部である。 The preferable lower limit of the content of the compound having a molecular weight of 500 to 3000 in a total of 100 parts by weight of the compound having a molecular weight of 100 or more and less than 500 and the compound having a molecular weight of 500 to 3000 is 10 parts by weight, and the preferable upper limit is 30 parts by weight. It is a department. When the content of the compound having a molecular weight of 500 to 3000 is in this range, the obtained sealant for a liquid crystal display element becomes more excellent in the light-shielding portion curability and the effect of suppressing liquid crystal contamination. The more preferable lower limit of the content of the compound having a molecular weight of 500 to 3000 is 12 parts by weight, and the more preferable upper limit is 20 parts by weight.

本発明の液晶表示素子用シール剤は、光ラジカル重合開始剤を含有する。
上記光ラジカル重合開始剤は、カルバゾール骨格を有する化合物である。上記光ラジカル重合開始剤として上記カルバゾール骨格を有する化合物を用いることにより、本発明の液晶表示素子用シール剤は遮光部硬化性に優れるものとなる。
The sealant for a liquid crystal display element of the present invention contains a photoradical polymerization initiator.
The photoradical polymerization initiator is a compound having a carbazole skeleton. By using the compound having a carbazole skeleton as the photoradical polymerization initiator, the sealant for a liquid crystal display element of the present invention has excellent curability in a light-shielding portion.

上記カルバゾール骨格を有する化合物の分子量の好ましい下限は300、好ましい上限は1000である。上記カルバゾール骨格を有する化合物の分子量がこの範囲であることにより、上記硬化性樹脂に対する溶解性により優れるものとなる。上記カルバゾール骨格を有する化合物の分子量のより好ましい下限は400、より好ましい上限は700である。 The preferable lower limit of the molecular weight of the compound having a carbazole skeleton is 300, and the preferable upper limit is 1000. When the molecular weight of the compound having a carbazole skeleton is in this range, the solubility in the curable resin becomes more excellent. The more preferable lower limit of the molecular weight of the compound having a carbazole skeleton is 400, and the more preferable upper limit is 700.

上記カルバゾール骨格を有する化合物は、上記硬化性樹脂に対する溶解性の観点から、カルバゾール骨格に含まれる芳香環以外の芳香環を有することが好ましい。
また、上記カルバゾール骨格を有する化合物は、遮光部硬化性により優れることから、カルバゾール骨格に含まれる窒素原子以外の窒素原子を有することが好ましく、オキシムエステル結合を有することがより好ましい。
The compound having a carbazole skeleton preferably has an aromatic ring other than the aromatic ring contained in the carbazole skeleton from the viewpoint of solubility in the curable resin.
Further, since the compound having a carbazole skeleton is more excellent in curability in a light-shielding portion, it is preferable to have a nitrogen atom other than the nitrogen atom contained in the carbazole skeleton, and it is more preferable to have an oxime ester bond.

上記カルバゾール骨格を有する化合物は、濃度が0.1mg/mLとなるように該カルバゾール骨格を有する化合物混合したアセトニトリル中で測定した波長365nmにおける吸光係数が50mL/g・cm以上であることが好ましい。上記カルバゾール骨格を有する化合物の吸光係数が50mL/g・cm以上であることにより、得られる液晶表示素子用シール剤が遮光部硬化性により優れるものとなる。上記カルバゾール骨格を有する化合物の吸光係数は、100mL/g・cm以上であることがより好ましい。
また、上記カルバゾール骨格を有する化合物の吸光係数の好ましい上限は特にないが、実質的な上限は1000mL/g・cmである。
The compound having a carbazole skeleton preferably has an extinction coefficient of 50 mL / g · cm or more at a wavelength of 365 nm measured in acetonitrile in which the compound having the carbazole skeleton is mixed so that the concentration becomes 0.1 mg / mL. When the absorption coefficient of the compound having a carbazole skeleton is 50 mL / g · cm or more, the obtained sealant for a liquid crystal display element becomes more excellent in curability of a light-shielding portion. The extinction coefficient of the compound having a carbazole skeleton is more preferably 100 mL / g · cm or more.
Further, the upper limit of the absorption coefficient of the compound having a carbazole skeleton is not particularly preferable, but the practical upper limit is 1000 mL / g · cm.

上記カルバゾール骨格を有する化合物としては、具体的には例えば、O-アセチル-1-(6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル)エタノンオキシム、3,6-ビス-(2メチル-2モルホリノ-プロピオニル)-9-N-オクチルカルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-ベンゾイルカルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ブチルカルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、2-(N-n-ブチル-3’-カルバゾリル)-4,6-ビス(トリクロロメチル)-s-トリアジン等が挙げられる。 Specific examples of the compound having a carbazole skeleton include O-acetyl-1- (6- (2-methylbenzoyl) -9-ethyl-9H-carbazole-3-yl) etanone oxime, 3,6. -Bis- (2-methyl-2morpholino-propionyl) -9-N-octylcarbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-benzoylcarbazole, 3,6-bis (2-methyl) -2-Molholinopropionyl) -9-n-butylcarbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 2- (Nn-butyl-3'-carbazolyl) ) -4,6-bis (trichloromethyl) -s-triazine and the like.

上記カルバゾール骨格を有する化合物のうち市販されているものとしては、例えば、IRGACURE OXE02(BASF社製)等が挙げられる。 Examples of commercially available compounds having a carbazole skeleton include IRGACURE OXE02 (manufactured by BASF).

上記カルバゾール骨格を有する化合物の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が10重量部である。上記カルバゾール骨格を有する化合物の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が遮光部硬化性、耐候性、保存安定性、及び、液晶汚染を抑制する効果により優れるものとなる。上記カルバゾール骨格を有する化合物の含有量のより好ましい下限は1重量部、より好ましい上限は3重量部である。 Regarding the content of the compound having a carbazole skeleton, the preferable lower limit is 0.5 parts by weight and the preferable upper limit is 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the compound having a carbazole skeleton is in this range, the obtained sealant for a liquid crystal display element is excellent in the light-shielding portion curability, weather resistance, storage stability, and the effect of suppressing liquid crystal contamination. Become. The more preferable lower limit of the content of the compound having a carbazole skeleton is 1 part by weight, and the more preferable upper limit is 3 parts by weight.

本発明の液晶表示素子用シール剤は、上記光ラジカル重合開始剤として、上記カルバゾール骨格を有する化合物に加えて、その他の光ラジカル重合開始剤を含有してもよいが、遮光部硬化性と液晶汚染を抑制する効果とを両立する観点から、その他の光ラジカル重合開始剤は含有しないことが好ましい。 The sealant for a liquid crystal display element of the present invention may contain other photoradical polymerization initiators in addition to the compound having a carbazole skeleton as the photoradical polymerization initiator. From the viewpoint of achieving both the effect of suppressing contamination, it is preferable not to contain other photoradical polymerization initiators.

本発明の液晶表示素子用シール剤は、増感剤を含有してもよい。
本発明の液晶表示素子用シール剤は、上記増感剤を含有することにより、より高感度で遮光部硬化性に優れる液晶表示素子用シール剤を得ることができる。
The sealant for a liquid crystal display element of the present invention may contain a sensitizer.
By containing the above-mentioned sensitizer, the sealant for a liquid crystal display element of the present invention can obtain a sealant for a liquid crystal display element having higher sensitivity and excellent curability of a light-shielding portion.

上記増感剤は、紫外・可視領域に充分な光吸収帯を有することが好ましいことから、ベンゾフェノン骨格を有する化合物、アントラセン骨格を有する化合物、アントラキノン骨格を有する化合物、クマリン骨格を有する化合物、チオキサントン骨格を有する化合物、及び、フタロシアニン骨格を有する化合物からなる群より選択される少なくとも一種の化合物であることが好ましく、アントラセン骨格を有する化合物、アントラキノン骨格を有する化合物、及び、チオキサントン骨格を有する化合物からなる群より選択される少なくとも一種の化合物であることがより好ましい。 Since the sensitizer preferably has a sufficient light absorption band in the ultraviolet / visible region, a compound having a benzophenone skeleton, a compound having an anthracene skeleton, a compound having an anthracene skeleton, a compound having a coumarin skeleton, and a thioxanthone skeleton. It is preferable that the compound is at least one selected from the group consisting of a compound having an anthracene skeleton and a compound having a phthalocyanine skeleton, and a group consisting of a compound having an anthracene skeleton, a compound having an anthracene skeleton, and a compound having a thioxanthone skeleton. More preferably, it is at least one compound more selected.

上記ベンゾフェノン骨格を有する化合物としては、例えば、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
上記アントラセン骨格を有する化合物としては、例えば、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9,10-ジブトキシアントラセン等が挙げられる。
上記アントラキノン骨格を有する化合物としては、例えば、1-メチルアントラキノン、2-エチルアントラキノン、1,4-ジヒドロキシアントラキノン、2-(2-ヒドロキシエトキシ)アントラキノン等が挙げられる。
上記クマリン骨格を有する化合物としては、例えば、7-ジエチルアミノ-4-メチルクマリン等が挙げられる。
上記チオキサントン骨格を有する化合物としては、例えば、2,4-ジエチルチオキサントン、2-クロロチオキサントン、4-イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン等が挙げられる。
上記フタロシアニン骨格を有する化合物としては、例えば、フタロシアニン等が挙げられる。
これらの増感剤のなかでも、得られる液晶表示素子用シール剤が遮光部硬化性に特に優れるものとなることから、4,4’-ビス(ジメチルアミノ)ベンゾフェノン及び4,4’-ビス(ジエチルアミノ)ベンゾフェノンの少なくともいずれかが好ましい。
Examples of the compound having a benzophenone skeleton include benzophenone, 2,4-dichlorobenzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone and the like.
Examples of the compound having an anthracene skeleton include 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9,10-dibutoxyanthracene and the like.
Examples of the compound having an anthraquinone skeleton include 1-methylanthraquinone, 2-ethylanthraquinone, 1,4-dihydroxyanthraquinone, 2- (2-hydroxyethoxy) anthraquinone and the like.
Examples of the compound having a coumarin skeleton include 7-diethylamino-4-methylcoumarin and the like.
Examples of the compound having a thioxanthone skeleton include 2,4-diethylthioxanthone, 2-chlorothioxanthone, 4-isopropylthioxanthone, 1-chloro-4-propylthioxanthone and the like.
Examples of the compound having a phthalocyanine skeleton include phthalocyanine and the like.
Among these sensitizers, 4,4'-bis (dimethylamino) benzophenone and 4,4'-bis (4,4'-bis (dimethylamino) benzophenone) and 4,4'-bis ( At least one of diethylamino) benzophenone is preferred.

上記増感剤の含有量は、上記光ラジカル重合開始剤100重量部に対して、好ましい下限が2重量部、好ましい上限が50重量部である。上記増感剤の含有量がこの範囲であることにより、液晶汚染を抑制しつつ、得られる液晶表示素子用シール剤が遮光部硬化性により優れるものとなる。上記増感剤の含有量のより好ましい下限は5重量部、より好ましい上限は40重量部である。 Regarding the content of the sensitizer, the preferable lower limit is 2 parts by weight and the preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the photoradical polymerization initiator. When the content of the sensitizer is in this range, the sealing agent for the liquid crystal display element obtained while suppressing the contamination of the liquid crystal display becomes more excellent in the curability of the light-shielding portion. The more preferable lower limit of the content of the sensitizer is 5 parts by weight, and the more preferable upper limit is 40 parts by weight.

本発明の液晶表示素子用シール剤は、熱ラジカル重合開始剤を含有してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によってラジカルを生成する、数平均分子量が300以上の化合物を意味する。
The sealant for a liquid crystal display element of the present invention may contain a thermal radical polymerization initiator.
Examples of the thermal radical polymerization initiator include those made of an azo compound, an organic peroxide and the like. Of these, an initiator composed of a polymer azo compound (hereinafter, also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and generating radicals by heat and having a number average molecular weight of 300 or more.

上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymer azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo initiator is in this range, it can be easily mixed with the curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymer azo initiator is 5000, the more preferable upper limit is 100,000, the further preferable lower limit is 10,000, and the further preferable upper limit is 90,000.
In the present specification, the number average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene. Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK) and the like.

上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物の例としてはV-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include a polycondensate of 4,4'-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4'-azobis (4-cyanopentanoic acid). Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, and specific examples thereof include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.). Made) and the like.
Examples of non-polymer azo compounds include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).

上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, peroxyesters, diacyl peroxides, peroxydicarbonates and the like.

上記熱ラジカル重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記熱ラジカル重合開始剤この範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記熱ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the thermal radical polymerization initiator has a preferable lower limit of 0.05 parts by weight and a preferable upper limit of 10 parts by weight with respect to 100 parts by weight of the curable resin. Within this range of the thermal radical polymerization initiator, the obtained sealant for a liquid crystal display element is excellent in storage stability and curability while suppressing liquid crystal contamination. The more preferable lower limit of the content of the thermal radical polymerization initiator is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の液晶表示素子用シール剤は、熱硬化剤を含有してもよい。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。
The sealant for a liquid crystal display element of the present invention may contain a thermosetting agent.
Examples of the heat-curing agent include organic acid hydrazide, imidazole derivative, amine compound, polyvalent phenolic compound, acid anhydride and the like. Of these, organic acid hydrazide is preferably used.

上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide and the like.
Commercially available organic acid hydrazides include, for example, SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, and Ajinomoto Fine Techno Co., Ltd. Made) and the like.

上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、より熱硬化性に優れるものとすることができる。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight and a preferable upper limit of 50 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the thermosetting agent is within this range, the thermosetting agent can be made more excellent in thermosetting property without deteriorating the coatability of the obtained sealant for a liquid crystal display element. A more preferable upper limit of the content of the thermosetting agent is 30 parts by weight.

本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の更なる向上等を目的として充填剤を含有することが好ましい。 The sealant for a liquid crystal display element of the present invention may contain a filler for the purpose of improving viscosity, improving adhesiveness by stress dispersion effect, improving linear expansion coefficient, further improving moisture resistance of cured product, and the like. preferable.

上記充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。 Examples of the filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous soil, smectite, bentonite, montmorillonite, sericite, active white clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, and the like. Inorganic fillers such as calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, calcium silicate, and organics such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc. Examples include fillers.

本発明の液晶表示素子用シール剤100重量部中における上記充填剤の含有量の好ましい下限は10重量部、好ましい上限は70重量部である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量部、より好ましい上限は60重量部である。 The preferable lower limit of the content of the filler in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 10 parts by weight, and the preferable upper limit is 70 parts by weight. When the content of the filler is in this range, the effect of improving the adhesiveness and the like is excellent without deteriorating the coatability and the like. The more preferable lower limit of the content of the filler is 20 parts by weight, and the more preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealant for a liquid crystal display element of the present invention preferably contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesive auxiliary for satisfactorily adhering the sealing agent to the substrate or the like.

上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 The silane coupling agent is excellent in the effect of improving the adhesiveness with a substrate or the like, and can suppress the outflow of the curable resin into the liquid crystal by chemically bonding with the curable resin. Therefore, for example, 3 -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.

本発明の液晶表示素子用シール剤100重量部中における上記シランカップリング剤の含有量の好ましい下限は0.1重量部、好ましい上限は10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量部、より好ましい上限は5重量部である。 The preferable lower limit of the content of the silane coupling agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 0.1 parts by weight, and the preferable upper limit is 10 parts by weight. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness while suppressing the occurrence of liquid crystal contamination becomes more excellent. The more preferable lower limit of the content of the silane coupling agent is 0.3 parts by weight, and the more preferable upper limit is 5 parts by weight.

本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealant for a liquid crystal display element of the present invention may contain a light-shielding agent. By containing the above-mentioned light-shielding agent, the sealant for a liquid crystal display element of the present invention can be suitably used as a light-shielding sealant.

上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、絶縁性が高いことから、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable because of its high insulating property.

上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above titanium black exerts a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, and oxidation. Surface-treated titanium black, such as those coated with an inorganic component such as zirconium or magnesium oxide, can also be used. Among them, those treated with an organic component are preferable in that the insulating property can be further improved.
Further, the liquid crystal display element manufactured by using the sealant for a liquid crystal display element of the present invention containing the titanium black as a light shielding agent has sufficient light shielding properties, so that there is no light leakage and a high contrast is obtained. It is possible to realize a liquid crystal display element having excellent image display quality.

上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Among the above titanium blacks, for example, 12S, 13M, 13M-C, 13RN, 14M-C (all manufactured by Mitsubishi Materials), Tilak D (manufactured by Ako Kasei Co., Ltd.) and the like are commercially available. Can be mentioned.

上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferable lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferable upper limit is 3 Ω · cm, the more preferable lower limit is 1 Ω · cm, and the more preferable upper limit is 2.5 Ω · cm.

上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
The primary particle diameter of the light-shielding agent is not particularly limited as long as it is equal to or less than the distance between the substrates of the liquid crystal display element, but the preferable lower limit is 1 nm and the preferable upper limit is 5 μm. When the primary particle size of the light-shielding agent is in this range, the light-shielding property can be improved without deteriorating the coatability of the obtained sealant for a liquid crystal display element. The more preferable lower limit of the primary particle diameter of the light-shielding agent is 5 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 10 nm, and the further preferable upper limit is 100 nm.
The primary particle size of the light-shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICLE SIZING SYSTEMS) to disperse the light-shielding agent in a solvent (water, organic solvent, etc.).

本発明の液晶表示素子用シール剤100重量部中における上記遮光剤の含有量の好ましい下限は5重量部、好ましい上限は80重量部である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の基板に対する密着性や硬化後の強度や描画性を低下させることなくより優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は60重量部である。 The preferable lower limit of the content of the light-shielding agent in 100 parts by weight of the sealant for a liquid crystal display element of the present invention is 5 parts by weight, and the preferable upper limit is 80 parts by weight. When the content of the light-shielding agent is within this range, it is possible to exhibit more excellent light-shielding property without deteriorating the adhesion of the obtained sealant for a liquid crystal display element to the substrate, the strength after curing, and the drawing property. can. A more preferable lower limit of the content of the light-shielding agent is 10 parts by weight, a more preferable upper limit is 70 parts by weight, a further preferable lower limit is 30 parts by weight, and a further preferable upper limit is 60 parts by weight.

本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、光ラジカル重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealant for a liquid crystal display element of the present invention, for example, a curable resin and light are used in a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, and a three-roll. Examples thereof include a method of mixing a radical polymerization initiator and an additive such as a silane coupling agent to be added as needed.

本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 By blending conductive fine particles with the sealant for a liquid crystal display element of the present invention, a vertically conductive material can be manufactured. A vertically conductive material containing such a sealant for a liquid crystal display element of the present invention and conductive fine particles is also one of the present inventions.

上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle having a conductive metal layer formed on the surface thereof, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the excellent elasticity of the resin fine particles enables conductive connection without damaging the transparent substrate or the like.

本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 A liquid crystal display element using the sealant for a liquid crystal display element of the present invention or the vertically conductive material of the present invention is also one of the present inventions.

本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられる。具体的には例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の基板の一方に、本発明の液晶表示素子用シール剤を、スクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で別の基板を重ね合わせる工程、及び、本発明の液晶表示素子用シール剤のシールパターン部分に紫外線等の光を照射してシール剤を光硬化させる工程を有する方法等が挙げられる。また、上記シール剤を光硬化させる工程に加えて、シール剤を加熱して熱硬化させる工程を行ってもよい。 As a method for manufacturing the liquid crystal display element of the present invention, the liquid crystal dropping method is preferably used. Specifically, for example, the sealant for a liquid crystal display element of the present invention is applied to one of two substrates such as a glass substrate with an electrode such as an ITO thin film and a polyethylene terephthalate substrate by screen printing, dispenser coating, or the like. In the process of forming a frame-shaped seal pattern, in a state where the sealant for a liquid crystal display element of the present invention is uncured, fine droplets of liquid crystal are dropped and applied into the frame of the seal pattern of the substrate, and another substrate is stacked under vacuum. Examples thereof include a method having a step of matching and a step of irradiating the seal pattern portion of the sealant for a liquid crystal display element of the present invention with light such as ultraviolet rays to photocure the sealant. Further, in addition to the step of photo-curing the sealant, a step of heating the sealant to thermally cure it may be performed.

本発明によれば、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element, which has excellent curability of a light-shielding portion and can suppress liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(ビスフェノールA型エポキシアクリレートAの合成)
ビスフェノールAジグリシジルエーテル(DIC社製、「EPICLON EXA-850CRP」)340gをトルエン500mLに溶解させた後、トリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸144gを還流撹拌下にて2時間かけて滴下した後、更に、還流撹拌を8時間行った。次に、トルエンを除去することによって、ビスフェノールA型エポキシアクリレートAを得た。
H-NMR、13C-NMR、LC-TOF/MS、及び、IRにより、得られたビスフェノールA型エポキシアクリレートAは、ビスフェノールAジグリシジルエーテルジアクリレート(分子量484)であることを確認した。
(Synthesis of bisphenol A type epoxy acrylate A)
After 340 g of bisphenol A diglycidyl ether (“EPICLON EXA-850CRP” manufactured by DIC Corporation) was dissolved in 500 mL of toluene, 0.1 g of triphenylphosphine was added to prepare a uniform solution. 144 g of acrylic acid was added dropwise to the obtained solution under reflux stirring for 2 hours, and then reflux stirring was further performed for 8 hours. Next, by removing toluene, bisphenol A type epoxy acrylate A was obtained.
It was confirmed by 1 H-NMR, 13 C-NMR, LC-TOF / MS, and IR that the bisphenol A type epoxy acrylate A obtained was bisphenol A diglycidyl ether diacrylate (molecular weight 484).

(ビスフェノールA型エポキシアクリレートBの合成)
ビスフェノールA型エポキシ樹脂(三菱化学社製、「jER834」)500gをトルエン500mLに溶解させた後、トリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸144gを還流撹拌下にて2時間かけて滴下した後、更に、還流撹拌を8時間行った。次に、トルエンを除去することによって、ビスフェノールA型エポキシアクリレートBを得た。
H-NMR、13C-NMR、LC-TOF/MS、及び、IRにより、得られたビスフェノールA型エポキシアクリレートBは、分子量が644のオリゴマー型エポキシアクリレートであることを確認した。
(Synthesis of bisphenol A type epoxy acrylate B)
After dissolving 500 g of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, "jER834") in 500 mL of toluene, 0.1 g of triphenylphosphine was added to prepare a uniform solution. 144 g of acrylic acid was added dropwise to the obtained solution under reflux stirring for 2 hours, and then reflux stirring was further performed for 8 hours. Next, by removing toluene, bisphenol A type epoxy acrylate B was obtained.
It was confirmed by 1 H-NMR, 13 C-NMR, LC-TOF / MS, and IR that the bisphenol A type epoxy acrylate B obtained was an oligomer type epoxy acrylate having a molecular weight of 644.

(実施例1~9、比較例1~5)
表1、2に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~9、比較例1~5の液晶表示素子用シール剤を調製した。
(Examples 1 to 9, comparative examples 1 to 5)
According to the compounding ratios shown in Tables 1 and 2, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., "Awatori Rentaro"), and then further mixed using three rolls. The sealants for liquid crystal display elements of Examples 1 to 9 and Comparative Examples 1 to 5 were prepared.

<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluations were performed on the sealants for each liquid crystal display element obtained in Examples and Comparative Examples. The results are shown in Tables 1 and 2.

(遮光部硬化性)
まず、厚さ0.7mmのコーニングガラスの半面をクロム蒸着した基板Aと、前面をクロム蒸着した基板Bとを準備した。次に、実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたシール剤を基板Aの中央部(クロム蒸着部と非蒸着部との境界)に塗布し、基板Bを貼り合わせてからシール剤を充分に押し潰し、基板A側からメタルハライドランプを用いて100mW/cmの紫外線を30秒照射した。
その後、カッターを用いて基板A及びBを剥がし、紫外線直接照射部の際から50μm離れた点(クロム蒸着により遮光されていた部分)上のシール剤について顕微IR法によってスペクトルを測定し、シール剤中の(メタ)アクリロイル基の転化率を以下の方法により求めた。即ち、815~800cm-1のピーク面積を(メタ)アクリロイル基のピーク面積とし、845~820cm-1のピーク面積をリファレンスピーク面積として、下記式により(メタ)アクリロイル基の転化率を算出し、転化率が90%以上であったものを「◎」、70%以上90%未満であったものを「○」、50%以上70%未満であったものを「△」、50%未満であったものを「×」として遮光部硬化性を評価した。
(メタ)アクリロイル基の転化率=(1-(紫外線照射後の(メタ)アクリロイル基のピーク面積/紫外線照射後のリファレンスピーク面積)/(紫外線照射前の(メタ)アクリロイル基のピーク面積/紫外線照射前のリファレンスピーク面積))×100
(Curing the light-shielding part)
First, a substrate A having a chrome-deposited half surface of a 0.7 mm-thick Corning glass and a substrate B having a chrome-deposited front surface were prepared. Next, 1 part by weight of spacer fine particles (“Micropearl SI-H050” manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 5 μm with respect to 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples. Is uniformly dispersed by a planetary stirrer, the obtained sealant is applied to the central portion of the substrate A (the boundary between the chrome-deposited portion and the non-deposited portion), and the substrate B is bonded to the substrate B, and then the sealant is sufficiently applied. It was crushed and irradiated with ultraviolet rays of 100 mW / cm 2 for 30 seconds from the substrate A side using a metal halide lamp.
After that, the substrates A and B are peeled off using a cutter, and the spectrum of the sealant on the point 50 μm away from the UV direct irradiation part (the part shaded by chromium vapor deposition) is measured by the micro-IR method, and the sealant is used. The conversion rate of the (meth) acryloyl group in the medium was determined by the following method. That is, the conversion rate of the (meth) acryloyl group was calculated by the following formula, with the peak area of 815 to 800 cm -1 as the peak area of the (meth) acryloyl group and the peak area of 845 to 820 cm -1 as the reference peak area. The conversion rate was 90% or more as "◎", 70% or more and less than 90% as "○", 50% or more and less than 70% as "△", and less than 50%. The curability of the light-shielding portion was evaluated by setting the value as "x".
Conversion rate of (meth) acryloyl group = (1- (Peak area of (meth) acryloyl group after UV irradiation / Reference peak area after UV irradiation) / (Peak area of (meth) acryloyl group before UV irradiation / UV light Reference peak area before irradiation))) x 100

(液晶表示素子の表示性能(低液晶汚染性))
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行ってから、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にて、2枚のITO薄膜付きの透明電極基板の一方にシール剤を枠状に塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にてシール剤の枠内に滴下塗布し、他方の透明電極基板を、真空貼り合わせ装置にて5Paの真空下にて貼り合わせ、セルを得た。得られたセルに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱してシール剤を硬化させ、液晶表示素子を得た。
得られた液晶表示素子について、シール部周辺の液晶(特にコーナー部)に生じる表示むらを目視にて観察し、表示むらが確認されなかった場合を「◎」、わずかな表示むらが確認された場合を「○」、はっきりと表示むらが確認された場合を「△」、酷い表示むらが確認された場合を「×」として液晶表示素子の表示性能(低液晶汚染性)を評価した。
なお、評価が「◎」、「○」の液晶表示素子は、実用に全く問題のないレベルである。
(Display performance of liquid crystal display element (low liquid crystal contamination))
1 part by weight of spacer particles (“Micropearl SI-H050” manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of 5 μm for 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples is a planetary type. Disperse evenly with a stirrer, fill the obtained sealant into a syringe for dispensing (Musashi Engineering Co., Ltd., "PSY-10E"), perform defoaming treatment, and then dispenser (Musashi Engineering Co., Ltd., "PSY-10E"). SHOTMASTER 300 ”), a sealant was applied in a frame shape to one of the transparent electrode substrates with two ITO thin films. Subsequently, minute droplets of TN liquid crystal display (manufactured by Chisso, "JC-5001LA") are dropped and applied into the frame of the sealant by a liquid crystal dropping device, and the other transparent electrode substrate is applied to a vacuum bonding device at 5 Pa. The cells were obtained by laminating under vacuum. The obtained cell was irradiated with ultraviolet rays of 100 mW / cm 2 for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant to obtain a liquid crystal display element.
Regarding the obtained liquid crystal display element, the display unevenness generated in the liquid crystal (particularly the corner part) around the seal portion was visually observed, and when the display unevenness was not confirmed, "◎" was confirmed, and a slight display unevenness was confirmed. The display performance (low liquid crystal contamination) of the liquid crystal display element was evaluated as "○" for the case, "Δ" for the case where the display unevenness was clearly confirmed, and "x" for the case where the severe display unevenness was confirmed.
The liquid crystal display elements having evaluations of "◎" and "○" are at a level where there is no problem in practical use.

Figure 0007048314000001
Figure 0007048314000001

Figure 0007048314000002
Figure 0007048314000002

本発明によれば、遮光部硬化性に優れ、かつ、液晶汚染を抑制することができる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 According to the present invention, it is possible to provide a sealant for a liquid crystal display element, which has excellent curability of a light-shielding portion and can suppress liquid crystal contamination. Further, according to the present invention, it is possible to provide a vertically conductive material and a liquid crystal display element using the sealant for a liquid crystal display element.

Claims (5)

硬化性樹脂と光ラジカル重合開始剤とを含有する液晶表示素子用シール剤であって、
前記硬化性樹脂は、分子量が100以上500未満の化合物と、分子量が500~2500の化合物とを含有し、
前記分子量が100以上500未満の化合物は、エポキシ化合物を含み、
前記分子量が100以上500未満の化合物と前記分子量が500~2500の化合物との合計100重量部中における前記分子量が500~2500の化合物の含有量が10重量部以上30重量部以下であり、
前記光ラジカル重合開始剤は、カルバゾール骨格を有する化合物である
ことを特徴とする液晶表示素子用シール剤。
A sealant for a liquid crystal display element containing a curable resin and a photoradical polymerization initiator.
The curable resin contains a compound having a molecular weight of 100 or more and less than 500, and a compound having a molecular weight of 500 to 2500.
The compound having a molecular weight of 100 or more and less than 500 includes an epoxy compound.
The content of the compound having a molecular weight of 500 to 2500 is 10 parts by weight or more and 30 parts by weight or less in a total of 100 parts by weight of the compound having a molecular weight of 100 or more and less than 500 and the compound having a molecular weight of 500 to 2500.
The photoradical polymerization initiator is a sealant for a liquid crystal display element, which is a compound having a carbazole skeleton.
カルバゾール骨格を有する化合物は、カルバゾール骨格に含まれる芳香環以外の芳香環を有することを特徴とする請求項1記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1, wherein the compound having a carbazole skeleton has an aromatic ring other than the aromatic ring contained in the carbazole skeleton. 遮光剤を含有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealant for a liquid crystal display element according to claim 1 or 2, which contains a light-shielding agent. 請求項1、2又は3記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertically conductive material comprising the sealant for a liquid crystal display element according to claim 1, 2 or 3 and conductive fine particles. 請求項1、2若しくは3記載の液晶表示素子用シール剤又は請求項4記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element according to claim 1, 2 or 3, wherein the sealant for a liquid crystal display element or the vertically conductive material according to claim 4 is used.
JP2017503643A 2016-01-26 2017-01-17 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element Active JP7048314B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016012749 2016-01-26
JP2016012749 2016-01-26
PCT/JP2017/001347 WO2017130786A1 (en) 2016-01-26 2017-01-17 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2017130786A1 JPWO2017130786A1 (en) 2018-11-15
JP7048314B2 true JP7048314B2 (en) 2022-04-05

Family

ID=59398204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017503643A Active JP7048314B2 (en) 2016-01-26 2017-01-17 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7048314B2 (en)
KR (1) KR20180101166A (en)
CN (1) CN107710060B (en)
TW (1) TWI714709B (en)
WO (1) WO2017130786A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474052B2 (en) * 2018-03-30 2024-04-24 積水化学工業株式会社 Sealant for organic EL display devices
KR20220149651A (en) * 2020-03-03 2022-11-08 세키스이가가쿠 고교가부시키가이샤 Curable resin composition, sealing compound for display elements, sealing compound for liquid crystal display elements, vertical conduction material, display element, adhesive for electronic components, and electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041900A1 (en) 2002-11-06 2004-05-21 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and liquid crystal display cell using same
JP2008179797A (en) 2006-12-28 2008-08-07 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009227955A (en) 2008-02-25 2009-10-08 Jsr Corp Curable composition, liquid crystal sealant, and liquid crystal display element
JP2010053330A (en) 2008-08-01 2010-03-11 Jsr Corp Curable composition, liquid crystal sealing agent and liquid crystal display element
JP2010121069A (en) 2008-11-20 2010-06-03 Jsr Corp Curable composition, liquid crystal sealing agent, and liquid crystal display element
WO2015152030A1 (en) 2014-03-31 2015-10-08 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583326B2 (en) 1999-11-01 2004-11-04 協立化学産業株式会社 Sealant for dripping method of LCD panel
WO2002092718A1 (en) 2001-05-16 2002-11-21 Sekisui Chemical Co., Ltd. Curing resin composition and sealants and end-sealing materials for displays
JP4492238B2 (en) * 2004-07-26 2010-06-30 Jsr株式会社 Radiation-sensitive composition for forming colored layer, color filter, and color liquid crystal display panel
TWI403522B (en) * 2005-07-01 2013-08-01 Jsr Corp A hardened resin composition and a hardened film
EP1932894A1 (en) * 2005-09-02 2008-06-18 Dainippon Ink And Chemicals, Inc. Photocurable composition for sealing agent, liquid crystal sealing agent, and liquid crystal panel
KR101060877B1 (en) * 2006-09-07 2011-08-31 미쓰이 가가쿠 가부시키가이샤 Liquid crystal sealing agent, the manufacturing method of the liquid crystal display panel using the same, and a liquid crystal display panel
JP2009007560A (en) * 2007-05-28 2009-01-15 Mitsubishi Chemicals Corp Colored curable resin composition, color filter, liquid crystal display, and organic el display
JP5493422B2 (en) * 2008-05-16 2014-05-14 Jsr株式会社 Curable composition for liquid crystal sealant and liquid crystal display element
CN102439089B (en) 2010-06-28 2015-05-06 株式会社艾迪科 Curable resin composition
KR101958343B1 (en) * 2011-12-16 2019-03-15 쓰리본드 화인 케미칼 가부시키가이샤 Curable resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041900A1 (en) 2002-11-06 2004-05-21 Nippon Kayaku Kabushiki Kaisha Sealing material for liquid crystal and liquid crystal display cell using same
JP2008179797A (en) 2006-12-28 2008-08-07 Jsr Corp Sealing agent for liquid crystal display element, and liquid crystal display element
JP2009227955A (en) 2008-02-25 2009-10-08 Jsr Corp Curable composition, liquid crystal sealant, and liquid crystal display element
JP2010053330A (en) 2008-08-01 2010-03-11 Jsr Corp Curable composition, liquid crystal sealing agent and liquid crystal display element
JP2010121069A (en) 2008-11-20 2010-06-03 Jsr Corp Curable composition, liquid crystal sealing agent, and liquid crystal display element
WO2015152030A1 (en) 2014-03-31 2015-10-08 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2017130786A1 (en) 2018-11-15
KR20180101166A (en) 2018-09-12
TW201739831A (en) 2017-11-16
CN107710060A (en) 2018-02-16
CN107710060B (en) 2021-11-12
WO2017130786A1 (en) 2017-08-03
TWI714709B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP5139735B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2019198631A1 (en) Photopolymerization initiator, sealant for display elements, vertical conduction material, display element, and compound
WO2017119406A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6454217B2 (en) Modified dialkylaminobenzoic acid-based compound, modified thioxanthone derivative, photocurable resin composition, liquid crystal display element sealing agent, vertical conduction material, and liquid crystal display element
JP7000158B2 (en) Sealing agent for liquid crystal display element, vertical conduction material and liquid crystal display element
JP7048314B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5340502B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6046868B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JPWO2015178357A1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JPWO2020013128A1 (en) Liquid crystal element sealant, vertical conduction material, and liquid crystal element
JP6235766B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6918693B2 (en) Light-shielding sealant for liquid crystal display elements, vertical conductive materials, and liquid crystal display elements
WO2016194871A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6725771B1 (en) Sealant for liquid crystal display device, vertical conduction material, and liquid crystal display device
JP7000159B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6609164B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2019013194A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP2013228716A (en) Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
JP6046533B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP7007196B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6031215B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7053262B2 (en) Manufacturing method of sealant for liquid crystal display element
JP5486032B2 (en) Thermosetting liquid crystal dropping method sealing agent, thermosetting vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R151 Written notification of patent or utility model registration

Ref document number: 7048314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151