JP7034803B2 - 測距ユニット及び光照射装置 - Google Patents

測距ユニット及び光照射装置 Download PDF

Info

Publication number
JP7034803B2
JP7034803B2 JP2018067405A JP2018067405A JP7034803B2 JP 7034803 B2 JP7034803 B2 JP 7034803B2 JP 2018067405 A JP2018067405 A JP 2018067405A JP 2018067405 A JP2018067405 A JP 2018067405A JP 7034803 B2 JP7034803 B2 JP 7034803B2
Authority
JP
Japan
Prior art keywords
light
reflected light
optical path
reflected
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067405A
Other languages
English (en)
Other versions
JP2019178923A (ja
Inventor
惇治 奥間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018067405A priority Critical patent/JP7034803B2/ja
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to US17/040,800 priority patent/US11428520B2/en
Priority to DE112018007421.8T priority patent/DE112018007421T5/de
Priority to PCT/JP2018/047348 priority patent/WO2019187422A1/ja
Priority to KR1020207024077A priority patent/KR20200135944A/ko
Priority to CN201880092060.7A priority patent/CN111936817B/zh
Priority to TW108100173A priority patent/TW201942543A/zh
Publication of JP2019178923A publication Critical patent/JP2019178923A/ja
Application granted granted Critical
Publication of JP7034803B2 publication Critical patent/JP7034803B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer

Description

本発明は、測距ユニット及び光照射装置に関する。
対象物の表面の高さを測定するための測距ユニットとして、非点収差法を用いたものが知られている(例えば、特許文献1参照)。非点収差法においては、光源から出射されたレーザ光が、対物レンズによって集光されて、対象物の表面に照射される。そして、対象物の表面で反射されたレーザ光の反射光が、対物レンズの光軸上を進行し、非点収差を与えられて、例えば4分割フォトダイオードによって検出される。
特許第5743123号公報
上述した非点収差法では、例えば、ウェハの表側主面の高さを測定する場合に、ウェハの表側主面で反射されたレーザ光の反射光に、ウェハの裏側主面で反射されたレーザ光の反射光が重畳され、その結果、ウェハの表側主面の高さを精度良く測定できないおそれがある。
本発明は、対象物の被測定面の高さを精度良く測定できる測距ユニット及び光照射装置を提供することを目的とする。
本発明の測距ユニットは、レーザ光である測距光を出力する測距光源と、測距光、及び、対象物の被測定面で反射された測距光の反射光を透過させる対物レンズと、反射光を透過させ、対物レンズによる測距光又は反射光の集光位置における像を結像位置に結像する結像レンズと、反射光の光路を調整する光路調整部と、反射光を検出する光検出部と、を備え、対物レンズは、測距光の光路が対物レンズの中心軸から離れた状態で、測距光を対象物側に透過させ、光路調整部は、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、反射光の光路を調整し、光検出部の受光面は、所定面に沿うように位置している。
この測距ユニットでは、測距光の光路が対物レンズの中心軸から離れた状態で、対物レンズが測距光を対象物側に透過させる。そのため、対象物の被測定面で反射された反射光が光検出部の受光面に入射する位置が、対象物の被測定面の高さに応じて変化する。したがって、光検出部の受光面における反射光の入射位置に基づいて、対象物の被測定面の高さを測定できる。このとき、対象物の他の面で測距光の一部が反射されたとしても、対象物の他の面で反射された反射光が、対象物の被測定面で反射された反射光から空間的に分離されるため、検出すべき反射光に不要な反射光が重畳するのを抑制できる。また、この測距ユニットでは、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、光路調整部が反射光の光路を調整し、当該所定面に沿うように光検出部の受光面が位置している。これにより、対象物の被測定面の高さを均一な状態で測定できる。仮に、光路調整部が設けられていないと、反射光が対物レンズ及び結像レンズのそれぞれを透過する位置が対象物の被測定面の高さに応じて変化するため、結像レンズによる反射光の結像位置が対象物の被測定面の高さに応じて大きく変化し、その結果、対象物の被測定面の高さによっては当該高さを精度良く測定できないおそれがある。以上により、この測距ユニットによれば、対象物の被測定面の高さを精度良く測定できる。
本発明の測距ユニットでは、光路調整部は、結像レンズと光検出部との間において反射光の光路を調整してもよい。これによれば、各構成を効率良く配置できる。
本発明の測距ユニットでは、光路調整部は、受光面に平行且つ一方向に垂直な方向に沿って延在する複数の溝を有する反射型グレーティングであってもよい。これによれば、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置を、当該入射方向と交差する所定面に容易且つ確実に近付けられる。
本発明の測距ユニットでは、光検出部は、一方向に平行な方向に沿って配列された複数の光検出チャネルを有してもよい。これによれば、反射光がその入射方向に垂直な少なくとも一方向において結像されているため、反射光が入射した光検出チャネルの位置に基づいて、対象物の被測定面の高さを精度良く測定できる。
本発明の測距ユニットでは、対物レンズ及び結像レンズは、結像レンズから出射される反射光の光路の方向が一定となるように構成されていてもよい。これによれば、対象物の被測定面の高さと反射光が入射する光検出チャネルの位置との関係に線形性を持たせられる。
本発明の測距ユニットでは、受光面における反射光の像は、一方向に垂直な方向を長手方向とする長尺状を呈していてもよい。これによれば、反射光の像の長手方向への光検出部の受光面のずれを許容できるため、各構成の配置の精度を緩和しつつも、対象物の被測定面の高さを精度良く測定できる。
本発明の光照射装置は、対象物を支持する支持部と、照射光を出力する照射光源と、レーザ光である測距光を出力する測距光源と、照射光及び測距光の一方を透過させ、照射光及び測距光の他方を反射する光学素子と、照射光、測距光、及び、対象物の被測定面で反射された測距光の反射光を透過させる対物レンズと、反射光を透過させ、対物レンズによる測距光又は反射光の集光位置における像を結像位置に結像する結像レンズと、反射光の光路を調整する光路調整部と、反射光を検出する光検出部と、対物レンズをその中心軸に沿って移動させる駆動部と、光検出部から出力される電気信号に基づいて駆動部を駆動させる制御部と、を備え、対物レンズは、測距光の光路が対物レンズの中心軸から離れた状態で、測距光を対象物側に透過させ、光路調整部は、光検出部に入射する反射光の入射方向に垂直な少なくとも一方向において結像される反射光の結像位置が、入射方向と交差する所定面に近付くように、反射光の光路を調整し、光検出部の受光面は、所定面に沿うように位置している。
この光照射装置では、上述したように、対象物の被測定面の高さを精度良く測定できる。加えて、対象物の被測定面の高さに応じて対物レンズをその中心軸に沿って移動させることで、照射光の集光点を対象物における所望の位置に合わせられる。しかも、対物レンズによる測距光の集光点が対象物の被測定面上に位置している状態に限定されずに、対象物の被測定面の高さの測定、及び対象物に対する照射光の集光点の位置合せを実施できる。
本発明によれば、対象物の被測定面の高さを精度良く測定できる測距ユニット及び光照射装置を提供することが可能となる。
一実施形態の光照射装置であるレーザ加工装置の構成図である。 図1に示されるレーザ加工装置に設けられた測距ユニットの構成図である。 図2に示される測距ユニットの一部分の構成図である。 比較例の測距ユニットの構成図である。 比較例の測距ユニットの一部分の構成図である。 図2に示される測距ユニットにおける測距光の光路を説明するための図である。 変形例の測距ユニットにおける測距光の光路を説明するための図である。 変形例の測距ユニットにおける測距光の光路を説明するための図である。 変形例の測距ユニットにおける測距光の光路を説明するための図である。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[レーザ加工装置の構成]
図1に示されるように、レーザ加工装置200は、加工対象物(対象物)1の内部に集光点Pを合わせて切断予定ライン5に沿ってレーザ光(照射光)ILを照射することで、切断予定ライン5に沿って加工対象物1に改質領域7を形成する光照射装置である。加工対象物1は、例えば、複数の機能素子がマトリックス状に形成された半導体ウェハである。その場合、切断予定ライン5は、隣り合う機能素子間を通るように格子状に設定される。改質領域7は、密度、屈折率、機械的強度等の物理的特性が周囲とは異なる領域である。
切断予定ライン5に沿って加工対象物1に改質領域7を形成することで、改質領域7から加工対象物1の厚さ方向に亀裂を伸展させて、切断予定ライン5に沿って加工対象物1を切断できる。なお、加工対象物1の内部に改質領域7を形成するためには、レーザ光ILが加工対象物1の表面(被測定面)3を透過して集光点Pの近傍で特に吸収される条件でレーザ光ILを照射すればよい。
レーザ加工装置200は、ステージ(支持部)201と、レーザ光源(照射光源)202と、反射型空間光変調器203と、4f光学系204と、対物レンズ205と、を備えている。以下の説明では、水平方向の一方向をX軸方向といい、X軸方向に垂直な水平方向の一方向をY軸方向といい、鉛直方向をZ軸方向という。
ステージ201は、加工対象物1を支持する。ステージ201は、加工対象物1を保持した状態で、X軸方向、Y軸方向及びZ軸方向のそれぞれの方向に移動可能である。レーザ光源202は、レーザ光ILを出力する。レーザ光源202は、筐体206の天板に取り付けられている。レーザ光源202は、例えば、ファイバレーザである。ここでは、レーザ光源202は、X軸方向に沿って一方の側にレーザ光ILを出射する。
反射型空間光変調器203は、レーザ光源202から出力されたレーザ光ILを変調する。反射型空間光変調器203は、筐体206内に設けられている。反射型空間光変調器203は、例えば、LCOS(Liquid Crystal on Silicon)-SLM(Spatial Light Modulator)である。ここでは、反射型空間光変調器203は、X軸方向に沿って入射するレーザ光ILを斜め上側に反射する。
4f光学系204は、反射型空間光変調器203によって変調されたレーザ光ILの波面形状が空間伝播によって変化するのを抑制する。4f光学系204は、筐体206内に設けられている。
4f光学系204は、第1レンズ204a及び第2レンズ204bを有している。4f光学系204では、反射型空間光変調器203と第1レンズ204aとの間の光路長が第1レンズ204aの焦点距離となり、対物レンズ205と第2レンズ204bとの間の光路長が第2レンズ204bの焦点距離となり、第1レンズ204aと第2レンズ204bとの間の光路長が第1レンズ204aの焦点距離と第2レンズ204bの焦点距離との和となり、更に、第1レンズ204a及び第2レンズ204bが両側テレセントリック光学系となっている。
対物レンズ205は、反射型空間光変調器203によって変調されたレーザ光ILを集光する。対物レンズ205は、複数のレンズによって構成されている。対物レンズ205は、圧電素子等を含む駆動部207を介して、筐体206の底板に取り付けられている。駆動部207は、対物レンズ205をその中心軸(ここでは、Z軸方向)に沿って移動させる。なお、対物レンズ205は、1つのレンズによって構成されていてもよい。
レーザ加工装置200では、レーザ光源202から出力されたレーザ光ILは、ミラー208によってZ軸方向に沿って下側に反射され、筐体206内に進入する。筐体206内に進入したレーザ光ILは、アッテネータ209によって強度が調整され、ミラー211によってX軸方向に沿って他方の側に反射される。ミラー211によって反射されたレーザ光ILは、ビームエキスパンダ212によってビーム径が拡大され、反射型空間光変調器203によって変調されると共に反射される。
反射型空間光変調器203によって変調されると共に反射されたレーザ光ILは、ミラー213によってZ軸方向に沿って上側に反射され、λ/2波長板214によって偏光方向が調整される。偏光方向が調整されたレーザ光ILは、ミラー215によってX軸方向に沿って一方の側に反射されて、4f光学系204の第1レンズ204aを透過し、ミラー216によってZ軸方向に沿って下側に反射される。ミラー216によって反射されたレーザ光ILは、4f光学系204の第2レンズ204bを透過し、対物レンズ205に入射する。
レーザ加工装置200では、可視光源221、光検出部222、ミラー223、ダイクロイックミラー224、ダイクロイックミラー225及び対物レンズ205によって、加工対象物1の表面3を観察するための観察ユニット220が構成されている。可視光源221、光検出部222、ミラー223、ダイクロイックミラー224及びダイクロイックミラー225は、筐体206内に設けられている。
可視光源221から出力された可視光VL1は、ミラー223、ダイクロイックミラー224及びダイクロイックミラー225によって順次に反射され、対物レンズ205に入射する。対物レンズ205に入射した可視光VL1は、対物レンズ205によって集光され、加工対象物1の表面3に照射される。加工対象物1の表面3で反射された可視光VL1の反射光VL2は、対物レンズ205を透過し、ダイクロイックミラー225によって反射される。ダイクロイックミラー225によって反射された反射光VL2は、ダイクロイックミラー224を透過し、光検出部222に入射して光検出部222によって検出される。なお、ダイクロイックミラー225は、4f光学系204の第2レンズ204bと対物レンズ205との間に配置されており、レーザ光ILを透過させる。
レーザ加工装置200では、測距ユニット100が構成されている(詳細については後述する)。測距ユニット100は、ステージ201に支持された加工対象物1の表面3の高さを測定する。加工対象物1の表面3の高さとは、対物レンズ205の中心軸に平行な方向(ここでは、Z軸方向)における加工対象物1の表面3の位置であり、例えば、対物レンズ205と加工対象物1の表面3との距離に対応する。
レーザ加工装置200は、制御部230を備えている。制御部230は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を含むコンピュータによって構成されている。制御部230は、コンピュータにおいて所定のプログラムを実行することにより、種々の制御を実行する。
一例として、制御部230は、レーザ光源202から出力されるレーザ光ILのパルス幅等が所定値となるようにレーザ光源202を制御する。また、制御部230は、改質領域7を形成する際に、レーザ光ILの集光点Pが加工対象物1の表面3から所定距離だけ内側に位置し且つレーザ光ILの集光点Pが切断予定ライン5に沿って相対的に移動するようにステージ201を制御する。また、制御部230は、レーザ光ILの波面形状が所定形状となるように反射型空間光変調器203を制御する。
更に、制御部230は、改質領域7を形成する際に、測距ユニット100によって測定された加工対象物1の表面3の高さに基づいて(すなわち、後述する光検出部107(図2参照)から出力される電気信号に基づいて)、レーザ光ILの集光点Pが加工対象物1の表面3から所定距離だけ内側に位置するように駆動部207を制御し、対物レンズ205をその中心軸に沿って移動させる。これにより、切断予定ライン5に沿って加工対象物1の表面3の高さが変化したとしても、加工対象物1の表面3から所定距離だけ内側に改質領域7を形成できる。
[測距ユニットの構成]
図2に示されるように、測距ユニット100は、測距光源101、コリメートレンズ102、ハーフミラー103、ダイクロイックミラー(光学素子)104、結像レンズ105、反射型グレーティング(光路調整部)106、光検出部107及び対物レンズ205によって、構成されている。測距光源101、コリメートレンズ102、ハーフミラー103、ダイクロイックミラー104、結像レンズ105、反射型グレーティング106及び光検出部107は、筐体206内に設けられている。
測距光源101は、レーザ光である測距光RL1を出力する。測距光源101は、例えば、レーザダイオードである。ここでは、測距光源101は、Z軸方向に沿って下側に測距光RL1を出射する。コリメートレンズ102は、測距光源101から出力された測距光RL1をコリメートする。
ハーフミラー103は、コリメートレンズ102によってコリメートされた測距光RL1をダイクロイックミラー104側に反射する。また、ハーフミラー103は、後述する反射光RL2をダイクロイックミラー104側から結像レンズ105側に透過させる。ここでは、ハーフミラー103は、Z軸方向に沿って上側から入射した測距光RL1をX軸方向に沿って一方の側に反射し、反射光RL2をX軸方向に沿って一方の側から他方の側に透過させる。
ダイクロイックミラー104は、ハーフミラー103によって反射された測距光RL1を対物レンズ205側に反射する。また、ダイクロイックミラー104は、対物レンズ205側から入射した反射光RL2をハーフミラー103側に反射する。ここでは、ダイクロイックミラー104は、X軸方向に沿って他方の側から入射した測距光RL1をZ軸方向に沿って下側に反射し、Z軸方向に沿って下側から入射した反射光RL2をX軸方向に沿って他方の側に反射する。なお、ダイクロイックミラー104は、観察ユニット220のダイクロイックミラー225と対物レンズ205との間に配置されており(図1参照)、レーザ光IL、並びに、可視光VL1及びその反射光VL2を透過させる。
対物レンズ205は、ダイクロイックミラー104によって反射された測距光RL1を集光しつつ加工対象物1側に透過させる。また、対物レンズ205は、加工対象物1の表面3で反射された測距光RL1の反射光RL2をダイクロイックミラー104側に透過させる。ここでは、対物レンズ205は、測距光RL1をZ軸方向に沿って上側から下側に透過させ、反射光RL2をZ軸方向に沿って下側から上側に透過させる。
結像レンズ105は、ダイクロイックミラー104によって反射されてハーフミラー103を透過した反射光RL2を反射型グレーティング106側に透過させる。ここでは、結像レンズ105は、反射光RL2をX軸方向に沿って一方の側から他方の側に透過させる。結像レンズ105は、対物レンズ205による測距光RL1又は反射光RL2の集光位置における像を結像位置に結像する。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点に対して対物レンズ205とは反対側に加工対象物1の表面3が位置している場合には、当該集光位置が測距光RL1に現れる。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点上に加工対象物1の表面3が位置している場合には、当該集光位置が測距光RL1と反射光RL2との境界部に現れる。測距光RL1が対物レンズ205によって空気中に集光される場合の集光点に対して対物レンズ205側に加工対象物1の表面3が位置している場合には、当該集光位置が反射光RL2に現れる。なお、結像レンズ105は、1つのレンズによって構成されていてもよいし、複数のレンズによって構成されていてもよい。
反射型グレーティング106は、結像レンズ105を透過した反射光RL2を光検出部107側に反射する。反射型グレーティング106は、例えば、ブレーズドグレーティングである。ここでは、反射型グレーティング106は、X軸方向に沿って一方の側から入射した反射光RL2をZ軸方向に沿って上側に反射する。反射型グレーティング106は、結像レンズ105と光検出部107との間において反射光RL2の光路を調整する(詳細については後述する)。
光検出部107は、反射型グレーティング106によって反射された反射光RL2を検出する。光検出部107は、例えば、X軸方向に沿って配列された複数の光検出チャネルを有する1次元のフォトダイオードアレイである。光検出部107の受光面107aは、反射型グレーティング106側に向いており、所定面S上に位置している。ここでは、受光面107aは、下側に向いており、Z軸方向に垂直な所定面S上に位置している。なお、光検出部107は、X軸方向に沿って配列された複数の光検出チャネルを有するものであれば、2次元のフォトダイオードアレイ等であってもよい。
図3に示されるように、対物レンズ205は、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れた状態で、測距光RL1を加工対象物1側に透過させる。対物レンズ205に入射する測距光RL1の光路A2は、対物レンズ205の中心軸A1に平行である。対物レンズ205から出射した測距光RL1の光路A2は、対物レンズ205によって集光された測距光RL1の集光点P1が対物レンズ205の中心軸A1上に位置するように傾斜している。ここでは、対物レンズ205に入射する測距光RL1の光路A2は、対物レンズ205の中心軸A1からX軸方向における一方の側に離れている。
これにより、図2及び図3に示されるように、加工対象物1の表面3の高さに応じて、対物レンズ205を透過する反射光RL2の光路が変化し、その結果、加工対象物1の表面3の高さに応じて、光検出部107の受光面107aにおける反射光RL2の入射位置が変化する。したがって、光検出部107の受光面107aにおける反射光RL2の入射位置に基づいて(すなわち、反射光RL2が入射した光検出チャネルの位置に基づいて)、加工対象物1の表面3の高さを測定できる。
例えば、加工対象物1の表面3が測距光RL1の集光点P1(測距光RL1が対物レンズ205によって空気中に集光される場合の集光点)と一致している状態では、反射光RL2の光路は、対物レンズ205の中心軸A1に関して測距光RL1の光路と対称の関係を有するものとなる。加工対象物1の表面3が測距光RL1の集光点P1よりも対物レンズ205側に位置している状態では、反射光RL2の光路は、反射光RL2よりもX軸方向における一方の側で反射されたものとなる。加工対象物1の表面3が測距光RL1の集光点P1よりも更に対物レンズ205側に位置している状態では、反射光RL2の光路は、反射光RL2よりもX軸方向における一方の側で反射されたものとなる。
ここで、図3に示されるように、反射光RL2の収束及び発散状態も、加工対象物1の表面3の高さに応じて変化することから、結像レンズ105による反射光RL2の結像位置も、加工対象物1の表面3の高さに応じて変化する。そのため、図4に示されるように、反射光RL2の光路を調整する反射型グレーティング106が測距ユニット100に設けられていないと、光検出部107の受光面107aにおける反射光RL2のスポットサイズが、加工対象物1の表面3の高さに応じて大きく変化し、その結果、加工対象物1の表面3の高さの測定精度が劣化するおそれがある。また、図5に示されるように、光検出部107の受光面107aが、結像レンズ105による反射光RL2の結像位置に合うように傾斜させられても、受光面107aに対する反射光RL2の入射角が大きくなって、受光面107aで反射光RL2の一部が反射されたり、受光面107aにおける反射光RL2のスポットサイズが大きくなったりし、その結果、加工対象物1の表面3の高さの測定精度が劣化するおそれがある。
例えば、対物レンズ205の焦点距離をf1とし、結像レンズ105の焦点距離をf2とし、対物レンズ205の中心軸A1に平行な方向における加工対象物1の表面3の高さの差をΔZとし、結像レンズ105の中心軸に平行な方向における反射光RL2の結像位置の差をΔXとすると、反射型グレーティング106が測距ユニット100に設けられていない場合には、ΔX/ΔZ=4(f2/f1)の関係が成立する。つまり、対物レンズ205の焦点距離f1が小さくなると、反射光RL2の結像位置の差ΔXが大きくなり、受光面107aにおける反射光RL2のスポットサイズが大きくなる。上述したレーザ加工装置200のように、加工対象物1の内部に改質領域7を形成する場合には、対物レンズ205の開口数が大きくなり、対物レンズ205の焦点距離f1が小さくなるから、加工対象物1の表面3の高さの測定精度が劣化するのを抑制するための対策を実施することが特に重要である。
その対策として、図2に示されるように、反射光RL2の光路を調整する反射型グレーティング106が測距ユニット100に設けられている。反射型グレーティング106は、反射型グレーティング106への反射光RL2の入射位置に応じた光路長を反射光RL2に発生させることで、反射光RL2の光路を調整する。
また、結像レンズ105を透過した反射光RL2の光路(反射光RL2の主光線の光路)は、加工対象物1の表面3の高さに応じて所定平面(ここでは、Y軸方向に垂直な平面)に沿って変化する。そこで、反射型グレーティング106は、複数の溝が当該所定平面に垂直な方向(ここでは、Y軸方向)に沿って延在するように、配置されている。更に、反射型グレーティング106は、結像レンズ105から結像位置までの光路長が長い反射光RL2ほど、結像レンズ105から離れた位置で反射型グレーティング106によって反射されるように、配置されている。
これにより、結像レンズ105から結像位置までの光路長が長い反射光RL2ほど、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長が長くなる。例えば、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長は、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長よりも長い。結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長は、結像レンズ105から光検出部107の受光面107aに至る反射光RL2の光路長よりも長い。
ただし、結像レンズ105によって結像されて反射型グレーティング106によって反射された反射光RL2には、非点収差が生じる。具体的には、Y軸方向において結像される反射光RL2の結像位置は、X軸方向において結像される反射光RL2の結像位置よりも、光検出部107の受光面107aが位置する所定面Sから離れる。測距ユニット100では、X軸方向において結像される反射光RL2の結像位置が、光検出部107の受光面107aが位置する所定面Sに近付くように、反射型グレーティング106が反射光RL2の光路を調整する。
このように、反射型グレーティング106は、光検出部107に入射する反射光RL2の入射方向(ここでは、Z軸方向)に垂直な少なくとも一方向(ここでは、X軸方向)において結像される反射光RL2の結像位置が、当該入射方向に垂直な所定面Sに近付くように、反射光RL2の光路を調整する。なお、反射型グレーティング106は、光検出部107の受光面107aに平行且つ上述した一方向(ここでは、X軸方向)に垂直な方向(ここでは、Y軸方向)に沿って延在する複数の溝を有している。また、光検出部107は、上述した一方向(ここでは、X軸方向)に平行な方向に沿って配列された複数の光検出チャネルを有している。
ここで、「光検出部107に入射する反射光RL2の入射方向」とは、基準となる反射光RL2(例えば、反射光RL2)の入射方向を意味する。また、「反射光RL2の結像位置が、光検出部107に入射する反射光RL2の入射方向に垂直な所定面Sに近付くように」とは、反射型グレーティング106が測距ユニット100に設けられていない場合に比べて、反射光RL2の結像位置が所定面Sに近付くことを意味する。つまり、光検出部107に入射する反射光RL2の入射方向における反射光RL2の結像位置の差が、所定面Sを含む領域で、上述したΔX未満(好ましくは、ΔXの10%未満)となることを意味する。
また、対物レンズ205及び結像レンズ105は、結像レンズ105から出射される反射光RL2の光路(反射光RL2の主光線の光路)の方向が一定となるように構成されている。ここでは、図6の(a)に示されるように、対物レンズ205と結像レンズ105との間の光路長が、対物レンズ205の焦点距離f1と結像レンズ105の焦点距離f2との和となっている。つまり、対物レンズ205の結像レンズ105側の焦点位置と結像レンズ105の対物レンズ205側の焦点位置とが一致している。これにより、加工対象物1の表面3の高さが変化しても、結像レンズ105から出射される反射光RL2の光路の方向が一定となり、その結果、図6の(b)に示されるように、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置とが、線形な関係となる。なお、図6の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
これに対し、図7の(a)に示されるように、対物レンズ205と結像レンズ105との間の光路長が、対物レンズ205の焦点距離f1と結像レンズ105の焦点距離f2との和よりも大きいと(又は小さいと)、加工対象物1の表面3の高さに応じて、結像レンズ105から出射される反射光RL2の光路の方向が変化し、その結果、図7の(b)に示されるように、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置とが、非線形な関係となる。ただし、この場合にも、例えば、制御部230が加工対象物1の表面3と光検出チャンネルの位置との関係を予め保持しておき、制御部230が当該関係を参照することで、加工対象物1の表面3の高さを十分に精度良く測定できる。なお、図7の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
また、図6の(b)に示されるように、光検出部107の受光面107aにおける反射光RL2の像は、上述した一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向(ここでは、Y軸方向)を長手方向とする長尺状(ここでは、楕円形状)を呈している。これにより、反射光RL2の像の長手方向への光検出部107の受光面107aのずれが許容され、各構成の配置の精度が緩和される。なお、光検出部107の受光面107aにおける反射光RL2の像が、上述した一方向に垂直な方向を長手方向とする長尺状を呈するのは、上述したように、結像レンズ105によって結像されて反射型グレーティング106によって反射された反射光RL2に非点収差が生じるからである。
これに対し、例えば、図8の(a)に示されるように、結像レンズ105と反射型グレーティング106との間の光路長を長くし、反射型グレーティング106と光検出部107との間の光路長を短くすると、図8の(b)に示されるように、光検出部107の受光面107aにおける反射光RL2の像は、ドット状になる。ただし、この場合にも、加工対象物1の表面3の高さを十分に精度良く測定できる。このように、結像レンズ105と反射型グレーティング106との間の光路長、及び、反射型グレーティング106と光検出部107との間の光路長の少なくとも1つを調整することで、光検出部107の受光面107aにおける反射光RL2の像の形状を調整できる。なお、図8の(a)では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
以上のように構成された測距ユニット100では、次のように、反射光RL2が検出される。図2に示されるように、測距光源101から出力された測距光RL1は、コリメートレンズ102によってコリメートされる。コリメートされた測距光RL1は、ハーフミラー103及びダイクロイックミラー104によって順次に反射され、対物レンズ205に入射する。対物レンズ205に入射した測距光RL1は、対物レンズ205によって集光され、加工対象物1の表面3に照射される。加工対象物1の表面3で反射された測距光RL1の反射光RL2は、対物レンズ205を透過し、ダイクロイックミラー104によって反射される。ダイクロイックミラー104によって反射された反射光RL2は、ハーフミラー103を透過し、結像レンズ105によって結像されると共に、反射型グレーティング106によって反射される。反射型グレーティング106によって反射された反射光RL2は、光検出部107に入射して光検出部107によって検出される。
[作用及び効果]
測距ユニット100では、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れた状態で、対物レンズ205が測距光RL1を加工対象物1側に透過させる。そのため、加工対象物1の表面3で反射された反射光RL2が光検出部107の受光面107aに入射する位置が、加工対象物1の表面3の高さに応じて変化する。したがって、光検出部107の受光面107aにおける反射光RL2の入射位置に基づいて、加工対象物1の表面3の高さを測定できる。このとき、加工対象物1の他の面(加工対象物1における光出射側の表面等)で測距光RL1の一部が反射されたとしても、加工対象物1の他の面で反射された反射光が、加工対象物1の表面3で反射された反射光RL2から空間的に分離されるため、検出すべき反射光RL2に不要な反射光が重畳するのを抑制できる。また、測距ユニット100では、光検出部107に入射する反射光RL2の入射方向に垂直な一方向(ここでは、X軸方向)において結像される反射光RL2の結像位置が、当該入射方向に垂直な所定面Sに近付くように、反射型グレーティング106が反射光RL2の光路を調整し、当該所定面S上に光検出部107の受光面107aが位置している。これにより、加工対象物1の表面3の高さを均一な状態で測定できる。仮に、反射型グレーティング106が設けられていないと、反射光RL2が対物レンズ205及び結像レンズ105のそれぞれを透過する位置が加工対象物1の表面3の高さに応じて変化するため、結像レンズ105による反射光RL2の結像位置が加工対象物1の表面3の高さに応じて大きく変化し、その結果、加工対象物1の表面3の高さによっては当該高さを精度良く測定できないおそれがある。以上により、測距ユニット100によれば、加工対象物1の表面3の高さを精度良く測定できる。
また、測距ユニット100では、反射型グレーティング106が、結像レンズ105と光検出部107との間において反射光RL2の光路を調整する。これにより、各構成を効率良く配置できる。
また、測距ユニット100では、反射型グレーティング106が、光検出部107の受光面107aに平行且つ一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向に沿って延在する複数の溝を有している。これにより、光検出部107に入射する反射光RL2の入射方向に垂直な少なくとも一方向において結像される反射光RL2の結像位置を、当該入射方向に垂直な所定面Sに容易且つ確実に近付けられる。
また、測距ユニット100では、光検出部107が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に平行な方向に沿って配列された複数の光検出チャネルを有している。これにより、反射光RL2がその入射方向に垂直な一方向において結像されているため、反射光RL2が入射した光検出チャネルの位置に基づいて、加工対象物1の表面3の高さを精度良く測定できる。
また、測距ユニット100では、対物レンズ205及び結像レンズ105が、結像レンズ105から出射される反射光RL2の光路の方向が一定となるように構成されている。これにより、加工対象物1の表面3の高さと、光検出部107において反射光RL2が入射する光検出チャネルの位置との関係に線形性を持たせられる。
また、測距ユニット100では、光検出部107の受光面107aにおける反射光RL2の像が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向を長手方向とする長尺状を呈していている。これにより、反射光RL2の像の長手方向への光検出部107の受光面107aのずれを許容できるため、各構成の配置の精度を緩和しつつも、加工対象物1の表面3の高さを精度良く測定できる。
また、レーザ加工装置200では、上述したように、加工対象物1の表面3の高さを精度良く測定できる。加えて、加工対象物1の表面3の高さに応じて対物レンズ205をその中心軸A1に沿って移動させることで、レーザ光ILの集光点Pを加工対象物1における所望の位置に合わせられる。しかも、対物レンズ205による測距光RL1の集光点P1が加工対象物1の表面3上に位置している状態に限定されずに、加工対象物1の表面3の高さの測定、及び加工対象物1に対するレーザ光ILの集光点Pの位置合せを実施できる。
[変形例]
本発明は、上述した実施形態に限定されない。例えば、上記実施形態では、ダイクロイックミラー104が、レーザ光ILを透過させ且つ測距光RL1(その反射光RL2を含む)を反射したが、ダイクロイックミラー104に代えて、レーザ光IL及び測距光RL1の一方を透過させ且つレーザ光IL及び測距光RL1の他方を反射する光学素子が用いられてもよい。
また、上記実施形態では、反射光RL2の光路を調整する光路調整部として、結像レンズ105と光検出部107との間に配置された反射型グレーティング106が用いられたが、反射光RL2の結像位置が所定面Sに近付くように反射光RL2の光路を調整できるものであれば、他の構成であってもよい。そのような構成の例としては、空間光変調器、デジタルミラーデバイス、透過型グレーティング、プリズム等がある。光検出部107の受光面107aにおける反射光RL2の像が、一方向(所定面Sに近付くように反射光RL2を結像する一方向)に垂直な方向を長手方向とする長尺状を呈するように、シリンドリカルレンズが設けられてもよい。
また、図9に示されるように、対物レンズ205と結像レンズ105との間の光路上にリレーレンズ108が配置されることで、対物レンズ205及び結像レンズ105が、結像レンズ105から出射される反射光RL2の光路(反射光RL2の主光線の光路)の方向が一定となるように構成されていてもよい。この場合、リレーレンズ108及び結像レンズ105によって結像レンズが構成されていると捉えることもできる。リレーレンズ108は、1つのレンズによって構成されていてもよいし、複数のレンズによって構成されていてもよい。なお、図9では、測距光源101、コリメートレンズ102、ハーフミラー103及びダイクロイックミラー104等の図示が省略され、測距ユニット100の構成が簡略化されている。
また、測距光RL1が対物レンズ205を透過する際に、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れる距離は、調整可能であってもよい。一例として、図2に示されるハーフミラー103の位置を調整することで、測距光RL1の光路A2が対物レンズ205の中心軸A1から離れる距離を調整できる。当該距離を調整することで、加工対象物1の表面3の高さの測定レンジ、及び、光検出部107における検出感度を調整できる。
また、上記実施形態では、光照射装置及び対象物が、それぞれ、レーザ加工装置200及び加工対象物1であり、照射光を出力する照射光源が、レーザ光ILを出力するレーザ光源202であった。ただし、光照射装置がレーザ加工装置である場合、内部加工を実施するものに限定されず、表面加工等を実施するものであってもよい。また、光照射装置及び対象物は、それぞれ、観察装置(顕微鏡等)及び観察対象物であってもよい。その場合、照射光を出力する照射光源は、観察光を出力する観察光源であってもよい。
また、上記実施形態では、光検出部107の受光面107aが所定面S上に位置していたが、光検出部107の受光面107aは、所定面Sに沿うように位置していればよい。例えば、光検出部107の受光面107aと所定面Sとが角度を成していても、当該角度が5°未満であれば、加工対象物1の表面3の高さを十分に精度良く測定できる。
また、上記実施形態では、加工対象物1の表面3の高さを測定したが、加工対象物1の裏面等の高さを測定することも可能である。つまり、本発明によれば、対象物における測距光の入射側の表面に限定されず、対象物の様々な面を被測定面とすることが可能である。各面で反射された反射光が互いに空間的に分離されるためである。
また、上記実施形態では、所定面Sが、光検出部107に入射する反射光RL2の入射方向に垂直な面であったが、所定面Sは、当該入射方向に対して例えば30°以下の角度で傾斜する等、当該入射方向と交差する面であればよい。
1…加工対象物(対象物)、3…表面(被測定面)、100…測距ユニット、101…測距光源、104…ダイクロイックミラー(光学素子)、105…結像レンズ、106…反射型グレーティング(光路調整部)、107…光検出部、107a…受光面、200…レーザ加工装置(光照射装置)、201…ステージ(支持部)、202…レーザ光源(照射光源)、205…対物レンズ、207…駆動部、230…制御部、IL…レーザ光(照射光)、RL1…測距光、RL2…反射光。

Claims (7)

  1. レーザ光である測距光を出力する測距光源と、
    前記測距光、及び、対象物の被測定面で反射された前記測距光の反射光を透過させる対物レンズと、
    前記反射光を透過させ、前記対物レンズによる前記測距光又は前記反射光の集光位置における像を結像位置に結像する結像レンズと、
    前記反射光の光路を調整する光路調整部と、
    前記反射光を検出する光検出部と、を備え、
    前記対物レンズは、前記測距光の光路が前記対物レンズの中心軸から離れた状態で、前記測距光を前記対象物側に透過させ、
    前記光路調整部は、前記光検出部に入射する前記反射光の入射方向に垂直な少なくとも一方向において結像される前記反射光の前記結像位置が、前記入射方向と交差する所定面に近付くように、前記反射光の前記光路を調整し、
    前記光検出部の受光面は、前記所定面に沿うように位置している、測距ユニット。
  2. 前記光路調整部は、前記結像レンズと前記光検出部との間において前記反射光の前記光路を調整する、請求項1に記載の測距ユニット。
  3. 前記光路調整部は、前記受光面に平行且つ前記一方向に垂直な方向に沿って延在する複数の溝を有する反射型グレーティングである、請求項2に記載の測距ユニット。
  4. 前記光検出部は、前記一方向に平行な方向に沿って配列された複数の光検出チャネルを有する、請求項3に記載の測距ユニット。
  5. 前記対物レンズ及び前記結像レンズは、前記結像レンズから出射される前記反射光の光路の方向が一定となるように構成されている、請求項3又は4に記載の測距ユニット。
  6. 前記受光面における前記反射光の像は、前記一方向に垂直な方向を長手方向とする長尺状を呈している、請求項3~5のいずれか一項に記載の測距ユニット。
  7. 対象物を支持する支持部と、
    照射光を出力する照射光源と、
    レーザ光である測距光を出力する測距光源と、
    前記照射光及び前記測距光の一方を透過させ、前記照射光及び前記測距光の他方を反射する光学素子と、
    前記照射光、前記測距光、及び、前記対象物の被測定面で反射された前記測距光の反射光を透過させる対物レンズと、
    前記反射光を透過させ、前記対物レンズによる前記測距光又は前記反射光の集光位置における像を結像位置に結像する結像レンズと、
    前記反射光の光路を調整する光路調整部と、
    前記反射光を検出する光検出部と、
    前記対物レンズをその中心軸に沿って移動させる駆動部と、
    前記光検出部から出力される電気信号に基づいて前記駆動部を駆動させる制御部と、を備え、
    前記対物レンズは、前記測距光の光路が前記対物レンズの前記中心軸から離れた状態で、前記測距光を前記対象物側に透過させ、
    前記光路調整部は、前記光検出部に入射する前記反射光の入射方向に垂直な少なくとも一方向において結像される前記反射光の前記結像位置が、前記入射方向と交差する所定面に近付くように、前記反射光の前記光路を調整し、
    前記光検出部の受光面は、前記所定面に沿うように位置している、光照射装置。
JP2018067405A 2018-03-30 2018-03-30 測距ユニット及び光照射装置 Active JP7034803B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018067405A JP7034803B2 (ja) 2018-03-30 2018-03-30 測距ユニット及び光照射装置
DE112018007421.8T DE112018007421T5 (de) 2018-03-30 2018-12-21 Entfernungsmesseinheit und lichtbestrahlungsvorrichtung
PCT/JP2018/047348 WO2019187422A1 (ja) 2018-03-30 2018-12-21 測距ユニット及び光照射装置
KR1020207024077A KR20200135944A (ko) 2018-03-30 2018-12-21 측거 유닛 및 광 조사 장치
US17/040,800 US11428520B2 (en) 2018-03-30 2018-12-21 Distance measurement unit and light irradiation device
CN201880092060.7A CN111936817B (zh) 2018-03-30 2018-12-21 测距单元及光照射装置
TW108100173A TW201942543A (zh) 2018-03-30 2019-01-03 測距單元及光照射裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067405A JP7034803B2 (ja) 2018-03-30 2018-03-30 測距ユニット及び光照射装置

Publications (2)

Publication Number Publication Date
JP2019178923A JP2019178923A (ja) 2019-10-17
JP7034803B2 true JP7034803B2 (ja) 2022-03-14

Family

ID=68061182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067405A Active JP7034803B2 (ja) 2018-03-30 2018-03-30 測距ユニット及び光照射装置

Country Status (7)

Country Link
US (1) US11428520B2 (ja)
JP (1) JP7034803B2 (ja)
KR (1) KR20200135944A (ja)
CN (1) CN111936817B (ja)
DE (1) DE112018007421T5 (ja)
TW (1) TW201942543A (ja)
WO (1) WO2019187422A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098398A1 (en) * 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
JP7034621B2 (ja) * 2017-07-25 2022-03-14 浜松ホトニクス株式会社 レーザ加工装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045164A (ja) 2003-07-25 2005-02-17 Toshiba Corp 自動焦点合わせ装置
CN1844847A (zh) 2006-05-18 2006-10-11 清华大学 测量硬盘磁头飞行高度的系统及共光路双频激光干涉测量方法
WO2007018118A1 (ja) 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
JP2008170366A (ja) 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
JP4221705B2 (ja) 2003-03-27 2009-02-12 日本コントロール工業株式会社 電磁ポンプ、電磁ポンプの製造方法及び電磁ポンプの製造に用いられる装置
JP2010223822A (ja) 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd 分光エリプソメータおよび偏光解析方法
JP6288835B2 (ja) 2013-07-18 2018-03-07 株式会社藤商事 遊技機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544208A (en) 1977-06-13 1979-01-12 Daido Steel Co Ltd Swelling preventing method of fired composite papts
JPS59188931A (ja) * 1983-04-11 1984-10-26 Nippon Telegr & Teleph Corp <Ntt> ウエハの高さ測定器
JPH04221705A (ja) * 1990-12-25 1992-08-12 Fujitsu Ltd 外観検査装置
JPH06288835A (ja) * 1993-03-30 1994-10-18 Shimadzu Corp エリプソメータ
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus
JP2004188422A (ja) 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
US7021794B2 (en) * 2003-06-05 2006-04-04 Seiko Epson Corporation Lighting unit and projector including the same
JP4947774B2 (ja) * 2006-08-18 2012-06-06 富士フイルム株式会社 光波干渉測定装置および光波干渉測定方法
JP5634138B2 (ja) * 2010-06-17 2014-12-03 Dmg森精機株式会社 変位検出装置
JP2012078152A (ja) * 2010-09-30 2012-04-19 Omron Corp 投光ビームの調整方法
JP6148075B2 (ja) * 2013-05-31 2017-06-14 株式会社ディスコ レーザー加工装置
CN103471725B (zh) * 2013-09-27 2015-10-28 东南大学 基于调制光源及正负衍射级分开探测结构的波前检测装置
JP5743123B1 (ja) 2014-03-14 2015-07-01 株式会社東京精密 レーザーダイシング装置及びダイシング方法
JP2016017755A (ja) * 2014-07-04 2016-02-01 アズビル株式会社 距離測定装置および方法
AU2015101099A6 (en) * 2015-08-10 2016-03-10 Wisetech Global Limited Volumetric estimation methods, devices, & systems
JP6695699B2 (ja) * 2016-01-28 2020-05-20 浜松ホトニクス株式会社 レーザ加工装置
JP6743788B2 (ja) * 2017-09-14 2020-08-19 横河電機株式会社 変位センサ
CN112805530B (zh) * 2018-11-14 2022-08-02 株式会社村田制作所 测定装置以及使用了测定装置的投光系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221705B2 (ja) 2003-03-27 2009-02-12 日本コントロール工業株式会社 電磁ポンプ、電磁ポンプの製造方法及び電磁ポンプの製造に用いられる装置
JP2005045164A (ja) 2003-07-25 2005-02-17 Toshiba Corp 自動焦点合わせ装置
WO2007018118A1 (ja) 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
CN1844847A (zh) 2006-05-18 2006-10-11 清华大学 测量硬盘磁头飞行高度的系统及共光路双频激光干涉测量方法
JP2008170366A (ja) 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd チャックテーブルに保持された被加工物の計測装置およびレーザー加工機
JP2010223822A (ja) 2009-03-24 2010-10-07 Dainippon Screen Mfg Co Ltd 分光エリプソメータおよび偏光解析方法
JP6288835B2 (ja) 2013-07-18 2018-03-07 株式会社藤商事 遊技機

Also Published As

Publication number Publication date
TW201942543A (zh) 2019-11-01
JP2019178923A (ja) 2019-10-17
CN111936817A (zh) 2020-11-13
US11428520B2 (en) 2022-08-30
US20210010803A1 (en) 2021-01-14
DE112018007421T5 (de) 2020-12-31
KR20200135944A (ko) 2020-12-04
CN111936817B (zh) 2023-07-18
WO2019187422A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6284629B2 (ja) 高エネルギービームの焦点位置を決定する装置および方法
JP6462140B2 (ja) 溶接シームの深さをリアルタイムで測定するための装置
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
JP6645960B2 (ja) 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
TWI668469B (zh) 用於使用光源配置之改進的聚焦追蹤的系統和方法
TWI571180B (zh) 用於監視雷射束的裝置及方法
JP2018151624A5 (ja)
KR20170120098A (ko) 레이저 다이싱 장치
CN112684572B (zh) 一种兼具自动调平功能的自动对焦方法及装置
CN112748510A (zh) 一种兼具自动调平功能的扫描式自动对焦方法及装置
TWI659201B (zh) 識別一光學系統之一焦點之一位置之方法,測試其中之每一者包含一或多個元件之複數個裝置之方法,以及量測包括一或多個元件之一光學系統之特徵之系統
KR100939679B1 (ko) 자동 초점 조절 장치 및 그 방법
JP7034803B2 (ja) 測距ユニット及び光照射装置
KR101279578B1 (ko) 레이저 가공용 오토포커싱 장치 및 이를 이용한 오토포커싱 방법
US10088298B2 (en) Method of improving lateral resolution for height sensor using differential detection technology for semiconductor inspection and metrology
WO2016031935A1 (ja) 表面形状測定装置
JP4224472B2 (ja) 共焦点型検査装置
JP2012194085A (ja) エッジ検出装置
US9945656B2 (en) Multi-function spectroscopic device
JP2008256689A (ja) 表面傾斜センサおよび検出方法
JP2003177292A (ja) レンズの調整装置および調整方法
KR20200019859A (ko) 스캐너를 위한 빔을 반사 또는 투과시키기 위한 스캔 헤드 장치 및 방법, 스캔 헤드 장치를 갖는 스캐닝 장치 및 스캔 헤드 장치를 갖는 스캐너
JP7064606B2 (ja) レーザ加工システムの焦点位置を特定する装置、それを備えたレーザ加工システム、および、レーザ加工システムの焦点位置の特定方法
RU2279151C1 (ru) Способ регистрации отклонения консоли зонда сканирующего микроскопа с оптическим объективом
CN113624456A (zh) 多波长激光干涉装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7034803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150