JP7027233B2 - 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法 - Google Patents

波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法 Download PDF

Info

Publication number
JP7027233B2
JP7027233B2 JP2018075222A JP2018075222A JP7027233B2 JP 7027233 B2 JP7027233 B2 JP 7027233B2 JP 2018075222 A JP2018075222 A JP 2018075222A JP 2018075222 A JP2018075222 A JP 2018075222A JP 7027233 B2 JP7027233 B2 JP 7027233B2
Authority
JP
Japan
Prior art keywords
current
value
voltage
power
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018075222A
Other languages
English (en)
Other versions
JP2019184417A (ja
Inventor
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2018075222A priority Critical patent/JP7027233B2/ja
Publication of JP2019184417A publication Critical patent/JP2019184417A/ja
Application granted granted Critical
Publication of JP7027233B2 publication Critical patent/JP7027233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、電力ラインを流れている電流の電流波形を特定可能な電流波形データを生成する波形データ生成装置および波形データ生成方法、並びに、電力ラインを介して供給されている電力の電力値を電流波形データ等に基づいて演算する電力演算システムおよび電力演算方法に関するものである。
例えば、下記の特許文献には、CAN通信用のシリアルバス(車内LAN)を介して伝送されている各種CANフレーム(制御データ)を収集して記録可能に構成された車両データ収集装置(以下、単に「収集装置」ともいう)の発明が開示されている。この収集装置は、故障診断やメンテナンスなどを目的として外部機器を接続可能にシリアルバスに設けられているダイアグコネクタ(診断機器接続用コネクタ:以下、単に「コネクタ」ともいう)に接続可能に構成されている。また、この収集装置は、収集したCANフレームをパーソナルコンピュータや分析装置などの解析装置にUSBケーブル等を介して出力することができるように構成されている。
この収集装置では、上記のコネクタに接続することでコネクタを介して供給される電源によって動作し、イグニッションスイッチの操作に連動してシリアルバスからのCANフレームの収集の開始/停止を自動的に実行する構成が採用されている。また、この収集装置では、USBケーブルを介して解析装置(パーソナルコンピュータ等)が接続されたときに、収集済のCANフレームを解析装置に対して自動的に出力する構成が採用されている。これにより、収集装置によって収集した各種CANフレームを解析装置に転送して解析装置においてCANフレームの内容を解析することにより、走行時等における各種機器の動作状態を評価することが可能となる。
特開2008-70133号公報(第4-11頁、第1-17図)
ところが、上記特許文献に開示の収集装置には、以下のような解決すべき問題点が存在する。具体的には、上記の収集装置では、コネクタを介して接続したシリアルバスから各種のCANフレームを収集し、収集したCANフレームを外部の解析装置に出力することが可能な構成が採用されている。
この場合、自動車におけるCAN通信では、車両に搭載されている各種コントローラによって電子機器を制御するのに必要な各種の情報が、CANフレームとしてシリアルバスを介して伝送されている。このCANフレームのなかには、バッテリからの出力電流(バッテリに接続されている電力ケーブルを流れている電流)の電流値(直流電流値)を特定可能なCANフレームが存在する。したがって、それらのCANフレームを上記特許文献に開示の収集装置によって収集して解析装置に出力することで、バッテリの状態等を把握することが可能となる。
一方、上記特許文献に開示の収集装置を接続する自動車では、バッテリ周辺の直流の電力だけでなく、バッテリから供給される電力をDC/AC変換した交流の電力が各所で使用されている。例えば、電気自動車では、バッテリから供給される直流の電力をインバータによって交流に変換して走行用モータ(交流モータ)に供給することで動輪を回転させる構成が採用されている。この場合、走行用モータとインバータとを接続する電力ラインを流れる電流は、インバータの動作状態、モータの回転数、およびモータに加わる負荷の大きさなどに応じてその電流波形に歪みが生じ、歪み方も逐次変化する。したがって、電気自動車における走行性能の評価や、動力源の検査に際しては、電力ラインを流れる電流の電流値(交流電流値)をモニタリングする必要がある。
しかしながら、上記のような評価や検査を目的とする交流電流のモニタリングを行おうとしても、CAN通信では、交流電流の最大値や実効値を特定可能なCANフレームを伝送できるものの、値が逐次変動する交流電流の電流波形を特定可能にCANフレームを短い時間間隔で次々と伝送可能な伝送レートを有していない。また、仮に、電流波形を再現可能に電流値を示すCANフレームを短い時間間隔で伝送させた場合には、そのCANフレーム以外の重要なCANフレームの伝送が妨げられるおそれがある。したがって、CANフレームを収集して解析装置に出力する上記特許文献に開示の収集装置では、交流電流の電流値に基づく評価を行うのが困難となっている。
この場合、CANフレーム、すなわち、自動車の搭載機器による測定値の収集に代えて、電流波形の特定が可能な程度に高精度な電流測定処理を実行し得る測定装置(外部装置)を電力ラインに接続して測定処理を行うことにより、走行用モータ用の電力ラインを流れている電流の電流値(交流電流値)をモニタリングすることが可能となる。しかしながら、そのような測定装置が高価なことから、走行性能の評価や、動力源の検査に要するコストが高騰してしまう。
また、例えば走行用モータに対して電力を供給する電力ラインは、非常に高い電圧値の電圧が印加され、走行時に流れる電流の電流値も大きいため、漏電事故を回避するために厳重に絶縁されている。したがって、そのような電力ラインに測定装置を接続すること自体が困難となっている。さらに、電力ラインの絶縁体(電力ケーブルの絶縁被覆や、接続端子を覆っている絶縁ケース等)を除去して測定装置を接続した場合には、電力ラインの絶縁状態が測定装置を接続する前の状態とは相違してしまうため、正当な評価や検査が困難となるだけでなく、作業完了後に絶縁状態を復元するのが困難となるおそれがある。
さらに、例えば、電気自動車においては、バッテリの蓄電残量に応じた走行可能距離を特定するために、走行用モータによって消費される電力の電力値を特定する必要がある。この場合、ドライバに対して走行可能距離を報知するだけであれば、車両搭載機器からシリアルバスに出力される電流値(最大値や実効値を示すCANフレーム)に基づいて電力値を簡易に演算するだけでも十分である。しかしながら、車両の評価や検査に際しては、正確な電流波形に基づいて高精度な電力値を演算するのが好ましいが、上記したように、正確な電流波形を得るのが困難な現状では、高精度な電力値の演算も困難となっている。
なお、自動車の分野における問題点について例示したが、自動車以外の分野、例えば、工場内の機械設備の分野においても、交流電流の電流波形の取得や電力値の演算に際して、上記の問題と同様の問題が生じている現状がある。
本発明は、かかる解決すべき問題点に鑑みてなされたものであり、高価な測定装置を必要とせず、かつ電力ラインの絶縁性を低下させずに交流電流の電流波形を特定可能な情報を提供し得る波形データ生成装置および波形データ生成方法を提供することを主目的とする。また、高精度な電力値を演算し得る電力演算システムおよび電力演算方法を提供することを他の目的とする。
上記目的を達成すべく、請求項1記載の波形データ生成装置は、電力ラインを流れている電流の電流値の変化を示す電流波形を特定可能な電流波形データを生成する第1の処理部を備えた波形データ生成装置であって、CAN通信用のシリアルバスを介して伝送されるCANフレームを当該シリアルバスから読み取る読取部と、前記電力ラインの電力供給用導体に対して非接触で前記電流を検出可能な非接触式電流センサを有する電流検出部とを備え、前記読取部は、前記電流値における予め規定された周期内の代表値である代表電流値を特定可能な前記CANフレームとしての電流値データフレームを前記シリアルバスから読み取って前記第1の処理部に出力し、前記電流検出部は、前記非接触式電流センサを介して前記電流を周期的に検出して当該電流の電流レベルの変化を特定可能な電流レベルデータを前記第1の処理部に出力し、前記第1の処理部は、前記電流レベルデータに基づいて特定される前記電流レベルの変化を前記電流波形の波形形状として、前記電流値データフレームに基づいて特定される前記代表電流値および当該波形形状に基づいて前記電流波形データを生成する。
請求項2記載の波形データ生成装置は、請求項1記載の波形データ生成装置において、前記電流検出部は、前記非接触式電流センサとして、磁気光学効果素子、ホール素子、フラックスゲートセンサ、磁気インピーダンスセンサ、フレキシブル電流センサ、およびオープンコアタイプのクランプ式電流センサのいずれかで構成された磁界センサを備えて前記電流を検出可能に構成されている。
請求項3記載の波形データ生成装置は、請求項1または2記載の波形データ生成装置において、前記読取部は、前記CANフレームの伝送時に前記シリアルバスのフレーム伝送用導体に印加される第1の電圧を当該フレーム伝送用導体に対して非接触で検出可能な第1の非接触式電圧センサを有する電圧検出部と、当該電圧検出部によって検出された前記第1の電圧の電圧レベルの変化に基づいて前記シリアルバスを介して伝送された前記CANフレームを特定するフレーム特定部とを備えている。
請求項4記載の電力演算システムは、請求項1から3のいずれかに記載の波形データ生成装置と、前記波形データ生成装置によって生成された前記電流波形データに基づいて前記電流値を特定し、かつ前記電流波形データに対応する前記電流が前記電力ラインを流れていたときに当該電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データに基づいて当該第2の電圧値を特定すると共に、特定した前記電流値および前記第2の電圧値に基づき、前記電力ラインを介して供給された電力の電力値を演算する第2の処理部を有する電力演算装置とを備えている。
請求項5記載の電力演算システムは、請求項4記載の電力演算システムにおいて、前記電力演算装置は、前記電力供給用導体に対して非接触で前記第2の電圧を検出可能な第2の非接触式電圧センサを介して当該第2の電圧の前記第2の電圧値を周期的に測定して当該第2の電圧値の変化を特定可能な前記電圧値データを出力する電圧測定部を備えている。
請求項6記載の電力演算システムは、請求項4記載の電力演算システムにおいて、前記波形データ生成装置における前記読取部は、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレーム、および前記第2の電圧と前記電流との間の位相差を特定可能な前記CANフレームとしての位相差データフレームを前記シリアルバスからそれぞれ読み取り、前記電力演算装置における前記第2の処理部は、前記電流波形データに基づいて特定される前記電流値、前記電圧値データフレームに基づいて特定される前記代表電圧値、および前記位相差データフレームに基づいて特定される前記位相差に基づいて前記電力値を演算する。
請求項7記載の電力演算システムは、請求項4記載の電力演算システムにおいて、前記波形データ生成装置における前記読取部は、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレームを前記シリアルバスから読み取り、前記電力演算装置における前記第2の処理部は、前記電流波形データに基づいて特定される前記電流値、前記電流波形データに基づいて特定される前記電流の波高率、および前記電圧値データフレームに基づいて特定される前記代表電圧値に基づいて前記電力値を演算する。
請求項8記載の電力演算システムは、請求項4から7のいずれかに記載の電力演算システムにおいて、前記電力演算装置は、前記CANフレームを前記シリアルバスに出力するCANフレーム出力部を備え、前記第2の処理部は、演算した前記電力値を特定可能な前記CANフレームとしての電力値データフレームを生成すると共に、当該電力値データフレームを前記CANフレーム出力部から前記シリアルバスに出力させる。
請求項9記載の波形データ生成方法は、電力ラインを流れている電流の電流値の変化を示す電流波形を特定可能な電流波形データを生成する波形データ生成方法であって、CAN通信用のシリアルバスを介して伝送されるCANフレームのうちの前記電流値における予め規定された周期内の代表値である代表電流値を特定可能な電流値データフレームを当該シリアルバスから読み取り、かつ前記電力ラインの電力供給用導体に対して非接触で前記電流を検出可能な非接触式電流センサを介して当該電流を周期的に検出して当該電流の電流レベルの変化を特定可能な電流レベルデータを生成すると共に、前記電流レベルデータに基づいて特定される前記電流レベルの変化を前記電流波形の波形形状として、前記電流値データフレームに基づいて特定される前記代表電流値および当該波形形状に基づいて前記電流波形データを生成する。
請求項10記載の波形データ生成方法は、請求項9記載の波形データ生成方法において、前記非接触式電流センサとして、磁気光学効果素子、ホール素子、フラックスゲートセンサ、磁気インピーダンスセンサ、フレキシブル電流センサ、およびオープンコアタイプのクランプ式電流センサのいずれかで構成された磁界センサを介して前記電流を検出する。
請求項11記載の波形データ生成方法は、請求項9または10記載の波形データ生成方法において、前記CANフレームの伝送時に前記シリアルバスのフレーム伝送用導体に印加される第1の電圧を当該フレーム伝送用導体に対して非接触で検出可能な第1の非接触式電圧センサを介して当該第1の電圧を検出し、検出した当該第1の電圧の電圧レベルの変化に基づいて前記シリアルバスを介して伝送された前記CANフレームを特定する。
請求項12記載の電力演算方法は、請求項9から11のいずれかに記載の波形データ生成方法に従って前記電流波形データを生成し、生成した前記電流波形データに基づいて前記電流値を特定し、かつ前記電流波形データに対応する前記電流が前記電力ラインを流れていたときに当該電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データに基づいて当該第2の電圧値を特定すると共に、特定した前記電流値および前記第2の電圧値に基づき、前記電力ラインを介して供給された電力の電力値を演算する。
請求項13記載の電力演算方法は、請求項12記載の電力演算方法において、前記電力供給用導体に対して非接触で前記第2の電圧を検出可能な第2の非接触式電圧センサを介して当該第2の電圧の前記第2の電圧値を周期的に測定して当該第2の電圧値の変化を特定可能な前記電圧値データを生成する。
請求項14記載の電力演算方法は、請求項12記載の電力演算方法において、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレーム、および前記第2の電圧と前記電流との間の位相差を特定可能な前記CANフレームとしての位相差データフレームを前記シリアルバスからそれぞれ読み取り、前記電流波形データに基づいて特定される前記電流値、前記電圧値データフレームに基づいて特定される前記代表電圧値、および前記位相差データフレームに基づいて特定される前記位相差に基づいて前記電力値を演算する。
請求項15記載の電力演算方法は、請求項12記載の電力演算システムにおいて、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレームを前記シリアルバスから読み取り、前記電流波形データに基づいて特定される前記電流値、前記電流波形データに基づいて特定される前記電流の波高率、および前記電圧値データフレームに基づいて特定される前記代表電圧値に基づいて前記電力値を演算する。
請求項16記載の電力演算方法は、請求項12から15のいずれかに記載の電力演算システムにおいて、演算した前記電力値を特定可能な前記CANフレームとしての電力値データフレームを生成して前記シリアルバスに出力する。
請求項1記載の波形データ生成装置、および請求項9記載の波形データ生成方法では、シリアルバスを介して伝送されるCANフレームのうちの電力ラインを流れている電流の電流値における予め規定された周期内の代表電流値を特定可能な電流値データフレームをシリアルバスから読み取り、かつ、電力ラインの電力供給用導体に対して非接触で電流を検出可能な非接触式電流センサを介して電流を周期的に検出して電流の電流レベルの変化を特定可能な電流レベルデータを生成すると共に、電流レベルデータに基づいて特定される電流レベルの変化を、電流値の変化を示す電流波形の波形形状として、電流値データフレームに基づいて特定される代表電流値および波形形状に基づいて電流波形データを生成する。
したがって、請求項1記載の波形データ生成装置、および請求項9記載の波形データ生成方法によれば、電力ラインの電力伝送用導体を流れている電流の電流値を短いサンプリング周期で高精度に測定可能な高価な測定装置を使用することなく、電流の電流レベルの変化を特定可能な程度の簡易な構成の測定装置(波形データ生成装置では電流検出部)を使用して電流レベルデータを生成して電流波形の波形形状を特定し、特定した波形形状に、シリアルバスから読み取った電流値データフレームに基づいて特定される代表電流値に基づいて値付けを行うことで、電力伝送用導体を流れている電流の電流値の変化を特定可能な高精度な電流波形の電流波形データを生成することができる。これにより、電流波形データの生成に要するコストを十分に低減することができる。また、非接触式電流センサを使用した電流の検出により、電力ラインの絶縁性を低下させることなく電流レベルの変化を特定可能な電流レベルデータを生成することができるため、電流波形データの生成のために電力ラインの絶縁性が低下した状態となるのを好適に回避することができる。
請求項2記載の波形データ生成装置、および請求項10記載の波形データ生成方法によれば、非接触式電流センサとして、磁気光学効果素子、ホール素子、フラックスゲートセンサ、磁気インピーダンスセンサ、フレキシブル電流センサ、およびオープンコアタイプのクランプ式電流センサのいずれかで構成された磁界センサを介して電流を検出することにより、簡易な構成で故障が生じ難いため、長期に亘って使用可能で、しかも部品コストも比較的安価なこれらの磁界センサによって電力ラインを流れている電流の電流レベルに応じた磁界の強度を特定して電流レベルデータを生成することができるため、電流波形データの生成に要するコストを十分に低減することができる。
請求項3記載の波形データ生成装置、および請求項11記載の波形データ生成方法によれば、CANフレームの伝送時にシリアルバスのフレーム伝送用導体に印加される第1の電圧をフレーム伝送用導体に対して非接触で検出可能な第1の非接触式電圧センサを介して第1の電圧を検出し、検出した第1の電圧の電圧レベルの変化に基づいてシリアルバスを介して伝送されたCANフレームを特定することにより、シリアルバスの各信号線におけるフレーム伝送用導体を覆っている絶縁被覆を剥がすことなくCANフレームを読み出すことができるため、電流波形データの生成のためにフレーム伝送用導体の絶縁性が低下した状態となるのを好適に回避することができる。
請求項4記載の電力演算システム、および請求項12記載の電力演算方法によれば、上記の波形データ生成方法に従って電流波形データを生成し、生成した電流波形データに基づいて電流値を特定し、かつ電流波形データに対応する電流が電力ラインを流れていたときに電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データに基づいて第2の電圧値を特定すると共に、特定した電流値および第2の電圧値に基づき、電力ラインを介して供給された電力の電力値を演算することにより、高精度な電流波形データに基づいて高精度な電力値を演算することができるだけでなく、電力ラインの電力供給用導体を流れている電流の電流値を高精度に測定可能な高価な測定装置が不要となる分だけ、電力値を低コストで演算することができる。
請求項5記載の電力演算システム、および請求項13記載の電力演算方法によれば、電力供給用導体に対して非接触で第2の電圧を検出可能な第2の非接触式電圧センサを介して第2の電圧の第2の電圧値を周期的に測定して第2の電圧値の変化を特定可能な電圧値データを生成することにより、電力ラインの絶縁性を低下させることなく第2の電圧の第2の電圧値を特定可能な電圧値データを生成することができるため、電力値の演算のために電力ラインの絶縁性が低下した状態となるのを好適に回避することができる。
請求項6記載の電力演算システム、および請求項14記載の電力演算方法では、第2の電圧値における予め規定された周期内の代表電圧値を特定可能な電圧値データフレーム、および第2の電圧と電流との間の位相差を特定可能な位相差データフレームをシリアルバスからそれぞれ読み取り、電流波形データに基づいて特定される電流値、電圧値データフレームに基づいて特定される代表電圧値、および位相差データフレームに基づいて特定される位相差に基づいて電力値を演算する。
また、請求項7記載の電力演算システム、および請求項15記載の電力演算方法では、第2の電圧値における予め規定された周期内の代表電圧値を特定可能な電圧値データフレームをシリアルバスから読み取り、電流波形データに基づいて特定される電流値、電流波形データに基づいて特定される電流の波高率、および電圧値データフレームに基づいて特定される代表電圧値に基づいて電力値を演算する。
したがって、請求項6,7記載の電力演算システム、および請求項14,15記載の電力演算方法によれば、電力ラインの電力供給用導体に印加されている第2の電圧の第2の電圧値を測定するための測定装置が不要となる分だけ、電力値を低コストで演算することができる。
請求項8記載の電力演算システム、および請求項16記載の電力演算方法によれば、演算した電力値を特定可能な電力値データフレームを生成してシリアルバスに出力することにより、演算した電力値が供給されている設備側で、電力値を演算するための構成を備えることなく、電力演算システムから出力した電力値データフレームに基づいて特定される電力値を利用して各種の処理を実行させることができる。
電気自動車100および電力演算システム10の構成の一例を示す構成図である。 電力演算装置1の構成を示す構成図である。 記録装置2の構成を示す構成図である。 中継器3の構成を示す構成図である。 電圧検出部50の構成を示す構成図である。
以下、波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法の実施の形態について、添付図面を参照して説明する。
本件発明に係る波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法については、電源から負荷に電力ラインを介して交流の電力が供給される構成を備え、かつ電力ラインを流れている電流の電流値における予め規定された周期内の代表値についてのCANフレーム等がシリアルバスを介して伝送される構成を備えた各種の設備において使用することができる。以下、一例として、図1に示す電気自動車100において使用する例について説明する。
この場合、電気自動車100は、駆動用バッテリ101、補機用バッテリ102、バッテリ制御ユニット103、電圧制御部104、充電機構105、インバータユニット106、モータ107、主制御部108およびシリアルバスSB1を備えると共に、後述の電力演算システム10が取り外し可能に取り付けられている。なお、電気自動車100において、後述の電力演算システム10による「電流波形データの生成」や「電力値の演算」とは直接的に関連のない構成要素については、図示および詳細な説明を省略する。
駆動用バッテリ101は、主として電気自動車100の走行によって消費される電力を蓄電可能な二次電池で構成されている。補機用バッテリ102は、バッテリ制御ユニット103、電圧制御部104および主制御部108や、後述する電力演算システム10の中継器3などの電子機器の動作に必要な電力を蓄電可能な二次電池で構成されている。バッテリ制御ユニット103は、主制御部108の制御下で駆動用バッテリ101の状態をモニタリングすると共に、駆動用バッテリ101からの電力の出力を制御する。
電圧制御部104は、DC/DCコンバータを備えて電圧値の変換が可能に構成されると共に、商用交流から、電力ラインL0、充電機構105および電力ラインL1を介して供給される電力や、図示しない発電機構から供給される電力を駆動用バッテリ101に電力ラインL2を介して伝送する処理(駆動用バッテリ101を充電する処理)、および駆動用バッテリ101から供給される電力、商用交流から充電機構105を介して供給される電力、および図示しない発電機構から供給される電力を補機用バッテリ102に電力ラインL3を介して供給する処理(補機用バッテリ102を充電する処理)を主制御部108の制御下で実行可能に構成されている。
また、電圧制御部104は、駆動用バッテリ101から供給される電力をインバータユニット106に電力ラインL4を介して伝送する処理などを主制御部108の制御下で実行可能に構成されている。充電機構105は、商用交流から電力ラインL0を介して供給される電力をAC/DC変換して電圧制御部104に電力ラインL1を介して伝送する。
インバータユニット106は、電圧制御部104から供給される電力をDC/AC変換してモータ107に電力ラインL5を介して伝送する処理を主制御部108の制御下で実行可能に構成されている。モータ107は、インバータユニット106を介して供給される電力によって電気自動車100の駆動輪を回転させる(電気自動車100を走行させる)。なお、電気自動車100では、インバータユニット106からモータ107に供給する交流電力の周波数や電流量を変化させることでモータ107による動輪の回転速度(すなわち、車速)を変化させる構成が採用されているが、「波形データ生成装置」および「電力演算システム」や、「波形データ生成方法」および「電力演算方法」についての理解を容易とするために、インバータユニット106におけるDC/AC変換の手順に関する詳細な説明を省略する。
主制御部108は、電気自動車100の各電子機器を総括的に制御する。この場合、本例の電気自動車100では、電気自動車100の各部の動作状態を検出するための検出器(センサユニット等:図示せず)や、主制御部108の制御下で各種の処理を実行する電子機器(バッテリ制御ユニット103、電圧制御部104およびインバータユニット106など)がシリアルバスSB1(「CAN通信用のシリアルバス」に相当する車両内通信ネットワークの一例)に接続されている。この場合、シリアルバスSB1や、後述の電力演算システム10におけるシリアルバスSB2を構成する信号線(「CANH(CAN high)」、「CANL(CAN low )」および「SG」などの信号線)は、絶縁被覆された導線(「フレーム伝送用導体」の一例)を備えて構成されている。
また、主制御部108は、検出器による検出結果を特定可能に検出器からシリアルバスSB1に出力されるCANフレームFcや、電子機器の動作状態を特定可能に電子機器からシリアルバスSB1に出力されるCANフレームFcを取得して電気自動車100の各部の動作状態を特定する。さらに、主制御部108は、特定した動作状態に応じて、動作プログラムに従い、各電子器機器を制御するための制御コマンドを特定可能なCANフレームFcをシリアルバスSB1に出力する。これにより、CANフレームFcに基づいて特定される制御コマンドに応じて、各電子機器によって予め規定された処理が実行される。なお、シリアルバスSB1(CAN通信用の通信網)に接続された検出器および電子機器などの各種ノードによるCAN通信(CANフレームの伝送)については公知のため、詳細な説明を省略する。
一方、電力演算システム10は、「電力演算方法」に従って「電力値」を演算する「電力演算システム」の一例であって、図1に示すように、電力演算装置1、記録装置2、中継器3およびシリアルバスSB2を備えて構成されている。
また、電力演算装置1は、「波形データ生成方法」に従って「電流波形データ」を生成する「波形データ生成装置」の一例であると共に、中継器3と相俟って「電力演算システム」における「電力演算装置」を構成する装置であって、電気自動車100等に対して着脱可能に構成されている。この電力演算装置1では、図2に示すように、電圧検出部11、電圧測定部12、電流検出部13、操作部14、表示部15、信号出力部16、処理部17および記憶部18を備えている。
電圧検出部11は、「電圧検出部」に相当し、「第1の非接触式電圧センサ」の一例であるクランプ型の非接触式電圧センサ11aを備えて処理部17と相俟って「CANフレームをシリアルバスから読み取る読取部」を構成する。具体的には、電圧検出部11は、処理部17の制御に従い、後述するように各種機器からのシリアルバスSB1への各種CANフレームFcの伝送時にシリアルバスSB1のフレーム伝送用導体に印加される電圧(「第1の電圧」の一例)を非接触式電圧センサ11aを介してフレーム伝送用導体に対して非接触で周期的に検出し、検出した電圧の電圧レベル(「電圧レベル」の一例)の変化を特定可能な情報を処理部17に出力する。
電圧測定部12は、「電圧測定部」に相当し、「第2の非接触式電圧センサ」の一例であるクランプ型の非接触式電圧センサ12aを備えている。この電圧測定部12は、インバータユニット106からモータ107に電力ラインL5を介して電力が供給されている状態において電力ラインL5の電力供給用導体に印加されている電圧の電圧値(「第2の電圧」の「第2の電圧値」の一例)を非接触式電圧センサ12aを介して電力供給用導体に対して非接触で周期的に測定し、測定結果を示す電圧値データDv(「電流波形データに対応する電流が電力ラインを流れていたときに電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データ」の一例)を処理部17に出力する。
電流検出部13は、「電流検出部」に相当し、「非接触式電流センサ」の一例であるクランプ型の非接触式電流センサ13aを備えている。この電流検出部13は、インバータユニット106からモータ107に電力ラインL5を介して電力が供給されている状態において電力ラインL5の電力供給用導体を流れている電流(「電流」の一例)を非接触式電流センサ13aを介して電力供給用導体に対して非接触で周期的に検出し、検出した電流の電流レベル(「電流レベル」の一例)の変化を特定可能な電流レベルデータDla(「電流レベルデータ」の一例)を処理部17に出力する。
なお、本例の電力演算装置1(電力演算システム10)における電流検出部13は、上記の非接触式電流センサ13aとして、「磁気光学効果素子」、「ホール素子」、「フラックスゲートセンサ」、「磁気インピーダンスセンサ」、「フレキシブル電流センサ」および「オープンコアタイプのクランプ式電流センサ」のいずれかで構成された「磁界センサ」を備え、電力ラインL5を流れる「電流」の「電流レベル」に応じて変化する磁界を検出し、その検出結果に基づいて「電流レベル」を特定可能な電流レベルデータDlaを生成して出力することができるように構成されている。
この場合、「磁気光学効果素子」とは、磁気光学効果を有する素子であって、一例として、光透過性を有するガーネット構造体(ガドリニウムガリウムガーネット(GdGa12))で形成された基体と、光透過性を有する酸化物磁性体であるガーネット構造体の一例としてのビスマス置換イットリウム鉄ガーネット(BiFe12:イットリウム鉄ガーネット(YFe12)におけるイットリウムの一部をビスマスに置換したガーネット構造体)で基体の一面に形成された磁性ガーネット膜と、白金やアルミニウムなどの光を反射させる金属で磁性ガーネット膜の一面(基体とは反対側の面)に形成された反射膜とを備えて構成されている(いずれも図示せず)。なお、「磁気光学効果」とは、光の偏光状態が磁界の強度(磁界強度)に応じて変化する効果をいう。具体的には、磁気光学効果を有する物質を透過した光の偏光面が回転したり偏光が楕円化したりする効果(ファラデー効果)や、磁気光学効果を有する物質の表面に入射した光の反射光の偏光面が回転したり偏光が楕円化したりする効果(磁気カー効果)をいう。
この場合、本例で「非接触式電流センサ」として使用する「磁気光学効果素子」では、基体の一面(磁性ガーネット膜の形成面の裏面)に照射された光が、基体および磁性ガーネット膜を透過するとき、並びに、透過した光が反射膜によって反射されて磁性ガーネット膜および基体を再び透過するときに、磁性ガーネット膜における磁気光学効果によって磁界強度に応じて偏光面が回転したり偏光が楕円化したりする。つまり、「磁気光学効果素子」では、「磁気光学効果素子」に照射した光の磁性ガーネット膜における磁気光学効果による偏光の状態(偏光面の回転角度および偏光の楕円化)が、「磁気光学効果素子」の周囲に発生している磁界の強度に応じて変化する。このため、例えば、反射膜によって反射されて基体から出射される光の出射方向や強度を測定することにより、磁気光学効果の度合い、すなわち、「磁気光学効果素子」の周囲に生じている磁界の強度を特定することができ、これにより、電力ラインL5を流れている「電流値」の「電流レベル」を特定可能な電流レベルデータDlaを出力することができる。
また、「フレキシブル電流センサ」とは、テープ状(帯状)または紐状で可撓性を有する巻芯の周囲に検出用導線が巻回されて構成された電流センサである。さらに、「オープンコアタイプのクランプ式電流センサ」とは、いわゆる「フォーク型クランプセンサ」であって、U字状やC字状の磁性コア(開磁路コア)を備えて構成された電流センサである。この場合、「フレキシブル電流センサ」や「オープンコアタイプのクランプ式電流センサ」は、「導線で構成されたコイルのみ」、「磁性コアのみ」および「コイルおよび磁性コアの組み合わせのみ」のいずれかで磁界を検出可能に構成されている。なお、「ホール素子」、「フラックスゲートセンサ」および「磁気インピーダンスセンサ」の構成については公知のため、詳細な説明を省略する。また、本例の電力演算装置1(電力演算システム10)では、一例として、「磁気光学効果素子」を備えて非接触式電流センサ13aが構成されているものとする。
操作部14は、電力演算装置1の動作条件(「電流波形データ」の生成、「電力値」の演算、およびそれらの処理結果の報知や記録等に関する条件)の設定操作が可能な複数の操作スイッチを備え(図示せず)、スイッチ操作に応じた操作信号を処理部17に出力する。表示部15は、電力演算装置1の動作状態や、処理部17による演算結果(生成された「電流波形」や「電力値」等)を処理部17の制御下で表示する。
信号出力部16は、処理部17および中継器3と相俟って「CANフレーム出力部」を構成し、後述するように、演算した「電力値」を特定可能に処理部17によって生成されるCANフレームFcとしての電力値データフレームFcp(「電力値データフレーム」の一例)をシリアルバスSB2に出力する。これにより、本例の電力演算システム10では、後述するように、中継器3によって電力値データフレームFcpがシリアルバスSB1に中継される(シリアルバスSB1に出力される)。
処理部17は、電力演算装置1を総括的に制御する。具体的には、処理部17は、「フレーム特定部」として機能して、電気自動車100のシリアルバスSB1におけるCANフレームFcの伝送時に電圧検出部11によって検出される「第1の電圧」の「電圧レベル」の変化に基づき、シリアルバスSB1を伝送されているCANフレームFcを特定する処理(「読取部」として機能して「第1の処理部」としての処理部17自身に特定したCANフレームFcを出力する処理)を実行する。
また、処理部17は、「第1の処理部」として機能して、電力ラインL5を流れている「電流」の「電流値」の変化を示す「電流波形」を特定可能な電流波形データDwa(「電流波形データ」の一例)を生成する。
具体的には、処理部17は、電流検出部13から出力される電流レベルデータDlaに基づき、「電流」の「電流レベル」の変化(電流レベルデータDlaに記録されている値の変化)を、「電流」の「電流波形」の「波形形状」として特定する。また、処理部17は、上記のように「読取部」として機能してシリアルバスSB1から読み取った電流値データフレームFca(「電流値データフレーム」の一例)に基づき、電力ラインL5を流れている「電流」の「電流値」における「予め規定された周期」内の代表値である「代表電流値」を特定する。さらに、処理部17は、特定した「波形形状」および「代表電流値」に基づいて電流波形データDwaを生成して記憶部18に記憶させる。
また、処理部17は、「第2の処理部」として機能して、電力ラインL5を介してインバータユニット106からモータ107に供給されている「電力」の「電力値」を演算し、演算した「電力値」を特定可能な電力値データDp、および電力値データDpを記録した電力値データフレームFcpを生成する。
具体的には、処理部17は、上記のように「第1の処理部」として機能して生成した電流波形データDwaに基づき、電力ラインL5を流れていた「電流」の「電流値」を特定する。また、処理部17は、電圧測定部12から出力される電圧値データDvに基づき、電流波形データDwaに対応する「電流」が電力ラインL5を流れていたときに電力ラインL5に印加されていた「第2の電圧」の「第2の電圧値」を特定する。さらに、処理部17は、特定した「電流値」および「第2の電圧値」に基づき、電力ラインL5を介して供給された「電力」の「電力値」を演算し、演算結果を示す電力値データDpを生成する。
また、処理部17は、生成した電力値データDpの内容(演算した「電力値」)を示す電力値データフレームFcpを生成すると共に、生成した電力値データフレームFcpを信号出力部16からシリアルバスSB2に出力させ、後述するように電力値データフレームFcpに基づいて記録装置2において生成される電力値データDpを記録装置2に記録させると共に、中継器3を介してシリアルバスSB1に電力値データフレームFcpを出力させる。また、処理部17は、電流波形データDwaに基づく「電流波形」や、電力値データDpに基づく「電力値」などを表示部15に表示させる。なお、処理部17による上記の各処理の具体的な内容については、後に詳細に説明する。
記憶部18は、処理部17の動作プログラム、およびCANフレームFcを特定するためのフレーム特定用データや、処理部17の演算結果を記憶する。
記録装置2は、図3に示すように、信号入力部21、記録媒体22、データ入出力部23、処理部24および記憶部25を備え、電力演算装置1や中継器3と共にシリアルバスSB2に接続されている。
信号入力部21は、シリアルバスSB2を介して伝送されている各種のCANフレームFcを読み取って処理部24に出力する。記録媒体22は、HDDやSSD等の大容量記録媒体で構成され、処理部24の制御下で各種のデータ(後述の電力値データDp等)を記録する。データ入出力部23は、処理部24の制御に従い、外部装置(携帯型電子端末等)から入力された各データを処理部24に伝送して記録媒体22に記録させたり、記録媒体22に記録されているデータを外部装置(携帯型電子端末等)に出力したりする。
処理部24は、記録装置2を総括的に制御する。具体的には、処理部24は、電力演算装置1(信号出力部16)によってシリアルバスSB2に出力された電力値データフレームFcpを取得すると共に、取得した電力値データフレームFcpに基づいて電力値データDpを生成して記録媒体22に記録させる。また、処理部24は、外部装置からデータ入出力部23を介して各種データが伝送されたときに、そのデータを記録媒体22に記録させると共に、外部装置からの要求に従って記録媒体22から電力値データDp等を読み出してデータ入出力部23を介して外部装置に出力する。記憶部25は、処理部24の動作プログラムや、CANフレームFcを特定するためのフレーム特定用データなどを記憶する。
中継器3は、一例として、電気自動車100のシリアルバスSB1に常設される機器(電気自動車100の構成要素以外の機器から出力されたCANフレームFcをシリアルバスSB1に出力するための機器)であって、「電力演算装置のCANフレーム出力部」を構成する。この中継器3は、図4に示すように、電圧検出部31、信号出力部32、処理部33および記憶部34を備えている。
電圧検出部31は、電力演算装置1における電圧検出部11と同様にして、非接触式電圧センサ11aと同様のクランプ型の非接触式電圧センサ31aを備え、処理部33と相俟って「シリアルバスSB2からCANフレームFcを読み取る[読取部]」を構成する。具体的には、電圧検出部31は、処理部33の制御に従い、電力演算装置1からシリアルバスSB2に電力値データフレームFcpが出力されたときにシリアルバスSB2のフレーム伝送用導体に印加される電圧を非接触式電圧センサ31aを介してフレーム伝送用導体に対して非接触で周期的に検出し、検出した電圧の電圧レベルの変化を特定可能な情報を処理部33に出力する。
信号出力部32は、一例として、シリアルバスSB1に常時接続されており、処理部33の制御下で電力値データフレームFcpをシリアルバスSB1に出力する。処理部33は、中継器3を総括的に制御する。具体的には、処理部33は、電力演算装置1の処理部17と同様に「フレーム特定部」として機能して、電力演算装置1からシリアルバスSB2に電力値データフレームFcpが出力されたときに電圧検出部31によって検出される電圧の電圧レベルの変化に基づき、シリアルバスSB2を伝送されている電力値データフレームFcpを特定する処理を実行する。
また、処理部33は、特定した電力値データフレームFcpを信号出力部32に出力することで信号出力部32からシリアルバスSB1に電力値データフレームFcpを出力させる。なお、処理部33による上記の各処理の具体的な内容については、後に詳細に説明する。記憶部34は、処理部33の動作プログラムや、CANフレームFcを特定するためのフレーム特定用データを記憶する。
次に、電力演算システム10による電流波形データDwaや電力値データDpの生成、および生成した電力値データフレームFcpのシリアルバスSB1への出力の各処理の一例について説明する。なお、上記したように、中継器3については、電気自動車100のシリアルバスSB1に接続された状態(電気自動車100の装備の1つとして電気自動車100に常設された状態)となっているものとする。また、充電機構105等を介しての駆動用バッテリ101の蓄電については既に完了しているものとする。
例えば、電気自動車100の電力ラインL5を流れている「電流」の「電流値」の変化を示す「電流波形」を特定可能な電流波形データDwaの生成、および電力ラインL5を介して供給されている「電力」の「電力値(モータ107の動作に伴って消費される電力の電力値)」の演算を行う際には、電力演算システム10の各構成要素を電気自動車100に装着する。
具体的には、図1,2に示すように、電力演算装置1の電圧検出部11における非接触式電圧センサ11aを電気自動車100のシリアルバスSB1に装着する(シリアルバスSB1の信号線を非接触式電圧センサ11aによってクランプする)と共に、図1,2,4に示すように、シリアルバスSB1に接続されている中継器3の電圧検出部31における非接触式電圧センサ31aを電力演算システム10のシリアルバスSB2に装着する(シリアルバスSB2の信号線を非接触式電圧センサ31aによってクランプする)。
なお、各図では、シリアルバスSB1に対して1つの非接触式電圧センサ11aを装着すると共に、シリアルバスSB2に対して1つの非接触式電圧センサ31aを装着した状態を図示しているが、実際には、シリアルバスSB1における「CANH」および「CANL」毎の電圧値を検出するために両信号線毎に別個の非接触式電圧センサ11aを装着すると共に、シリアルバスSB2における「CANH」および「CANL」毎の電圧値を検出するために両信号線毎に別個の非接触式電圧センサ31aを装着する。
この際には、シリアルバスSB1に対する非接触式電圧センサ11aの装着により、シリアルバスSB1を構成する上記の信号線のフレーム伝送用導体と非接触式電圧センサ11aの電極とが信号線の絶縁被覆を介して近接した状態となり、フレーム伝送用導体と電極とが容量結合した状態となる。これにより、後述するように電力演算装置1によってシリアルバスSB1から各種のCANフレームFcを読み取る準備が整う。
また、シリアルバスSB2に対する非接触式電圧センサ31aの装着により、シリアルバスSB2を構成する上記の信号線のフレーム伝送用導体と非接触式電圧センサ31aの電極とが信号線の絶縁被覆を介して近接した状態となり、フレーム伝送用導体と電極とが容量結合した状態となる。これにより、後述するように中継器3によってシリアルバスSB2から各種のCANフレームFcを読み取る準備が整う。
次いで、電力演算装置1の電圧測定部12における非接触式電圧センサ12aを電気自動車100の電力ラインL5に装着する(電力ラインL5を非接触式電圧センサ12aによってクランプする)。この際には、電力ラインL5の電力供給用導体と非接触式電圧センサ12aの電極(電圧検出用導体)とが電線の絶縁被覆を介して近接した状態となり、電力供給用導体と電極とが容量結合した状態となる。これにより、後述するように電力演算装置1によって電力ラインL5に印加されている「第2の電圧」の「第2の電圧値」を測定する準備が整う。
続いて、電力演算装置1の電流検出部13における非接触式電流センサ13aを電気自動車100の電力ラインL5に装着する。この際には、非接触式電流センサ13aの「磁気光学効果素子」が電力ラインL5の電力供給用導体に接近した状態となる。これにより、後述するように、電力ラインL5を電流が流れて「電流レベル」に応じた強度の磁界が電力ラインL5の周囲に発生したときに、その磁界の強度、すなわち、磁界の強度に応じた「電流レベル」を特定する準備が整う。
次いで、電力演算装置1の信号出力部16、および記録装置2の信号入力部21を電力演算システム10のシリアルバスSB2にそれぞれ接続する。なお、前述した非接触式電圧センサ11aと同様にして、信号出力部16や信号入力部21についても、1本の信号線をシリアルバスSB2に接続するのではなく、シリアルバスSB2における「CANH」および「CANL」毎に別個の信号線をそれぞれ接続する。以上により、電力演算システム10の構成機器の電気自動車100への設置が完了する。
この状態において、メインスイッチがオン状態に操作されて走行可能状態に移行させられた電気自動車100においてアクセルペダルが操作されたときには、主制御部108が、ポジションセンサ(アクセル開度を検出するセンサ:図示せず)からシリアルバスSB1に出力されたCANフレームFc(アクセル開度を特定可能なCANフレームFc)、および車速センサ(図示せず)からシリアルバスSB1に出力されたCANフレームFc(車速を特定可能なCANフレームFc)などに基づき、モータ107をどのように動作させるかを決定する。また、主制御部108は、決定内容を示す制御データを特定可能なCANフレームFcをシリアルバスSB1に出力する。
これに応じて、インバータユニット106は、主制御部108からシリアルバスSB1に出力されたCANフレームFcに従い、モータ107を任意の回転速度で動作させるための電力の供給を要求するCANフレームFcをシリアルバスSB1に出力する。また、電圧制御部104は、インバータユニット106からシリアルバスSB1に出力されたCANフレームFcに応じて駆動用バッテリ101から電力ラインL2を介して供給される電力を予め規定された電圧値に変換して電力ラインL4を介してインバータユニット106に供給する。
また、インバータユニット106は、主制御部108からのCANフレームFcに従い、電力ラインL4を介して供給される電力(直流電力)をDC/AC変換してモータ107に電力ラインL5を介して供給する。これにより、モータ107がインバータユニット106から供給される電力によって回転して駆動輪が回転させられる結果、車両の走行が開始される。この際に、インバータユニット106は、モータ107に対する上記の電力供給と並行して、電力ラインL5の電力供給用導体を流れている「電流」の「電流値」における「予め規定された周期」内の代表値である「代表電流値(予め規定された期間内の平均値、実効値および最大値のうちの少なくとも1つ)」を特定可能な電流値データフレームFcaなどのCANフレームFcをシリアルバスSB1に出力する。
一方、電力演算システム10では、電力演算装置1が電流波形データDwaや電力値データDpの生成を開始する。具体的には、処理部17が、まず、シリアルバスSB1を介して伝送されているCANフレームFcの読取りを開始する。
なお、シリアルバスSB1を介して伝送されているCANフレームFcは、「CANH」に対応する信号線のフレーム伝送用導体に印加される電圧(「SG」に対応する信号線のフレーム伝送用導体の電位に対する「CANH」に対応する信号線のフレーム伝送用導体の電位)の変動、および「CANL」に対応する信号線のフレーム伝送用導体に印加される電圧(「SG」に対応する信号線のフレーム伝送用導体の電位に対する「CANL」に対応する信号線のフレーム伝送用導体の電位)の変動に基づく「2線差動電圧方式」で伝送される。このCANフレームFcの伝送方式については公知のため詳細な説明を省略するが、以下、理解を容易とするために、主として「CANH」に対応する信号線のフレーム伝送用導体の電圧に着目してCANフレームFcの読取りについて説明する。
この場合、CANフレームFcの伝送時に、「CANH」に対応する信号線のフレーム伝送用導体(以下、単に「伝送用導体」ともいう)の電圧と、「SG」に対応する信号線の伝送用導体の電圧(すなわち、電圧検出部11内の基準電位の電圧)との電位差が増加しているときには、伝送用導体から非接触式電圧センサ11aの電極に結合容量を介して流れ込む電流信号の電流量が増加する。また、CANフレームFcの伝送時に、「CANH」に対応する伝送用導体の電圧と、「SG」に対応する伝送用導体の電圧(電圧検出部11内の基準電位の電圧)との電位差が減少しているときには、伝送用導体から非接触式電圧センサ11aの電極に結合容量を介して流れ込む電流信号の電流量が減少する。
したがって、本例の電力演算システム10における電力演算装置1では、一例として、電圧検出部11が、非接触式電圧センサ11aの電極が「CANH」の伝送用導体と同電位となって上記の電流値が「0」となるように、電極の電位をフィードバック制御する処理を行い、その状態において電極の電位を測定することで、「CANH」の伝送用導体に印加されている電圧の「電圧レベル」を特定(測定)する処理を予め規定された周期で繰り返し実行する。また、電圧検出部11は、特定結果(電圧レベル)示す電圧データを処理部17に順次出力する。
これに応じて、処理部17は、電圧検出部11から出力される電圧データによって示される伝送用導体の電圧レベルの変化に基づき、シリアルバスSB1を介して伝送されているCANフレームFcの内容を特定して記憶部18に記憶させる。具体的には、「CANH」に対応する伝送用導体に容量結合している電極の電圧が予め規定された電圧レベルを超え、かつ「CANL」に対応する伝送用導体に容量結合している電極の電圧が予め規定された電圧レベルを下回っているとき(「CANH」と「CANL」との電位差が予め規定されたレベルを超えているとき)に、デジタル信号の「0」が伝送されていると判別する。また、「CANH」に対応する伝送用導体に容量結合している電極の電圧が予め規定された電圧レベル以下で、かつ「CANL」に対応する伝送用導体に容量結合している電極の電圧が予め規定された電圧レベル以上のとき(「CANH」と「CANL」との電位差が予め規定されたレベル以下のとき)に、デジタル信号の「1」が伝送されていると判別する。
このように、非接触式電圧センサ11aにおける電極の電圧に基づいてデジタル信号の「0」および「1」のいずれが伝送されているかを逐次判定することにより、非接触式電圧センサ11aが装着されているシリアルバスSB1を介して伝送されているCANフレームFcを特定する。なお、電気自動車100のシリアルバスSB1では、インバータユニット106が出力した電流値データフレームFca以外の各種のCANフレームFcが伝送されている。したがって、本例では、処理部17が、電流値データフレームFca以外のCANフレームFcについても上記の方法に従って特定するが、特定したCANフレームFcのうち、電流波形データDwaや電力値データDpの生成には不要なCANフレームFcについては使用せずに、電流値データフレームFcaだけを使用して後述の各処理を実行する。
また、電力演算装置1では、上記のようなシリアルバスSB1からのCANフレームFcの読み取りの処理と並行して、電流検出部13による電流レベルデータDlaの生成、および処理部17による「電流波形」の「波形形状」の特定の処理が実行される。具体的には、本例では、電力ラインL5に対する非接触式電流センサ13aの装着により、前述したように、非接触式電流センサ13aの「磁気光学効果素子」が電力ラインL5の電力供給用導体に接近した状態となっている。したがって、電流検出部13は、電力ラインL5を流れている「電流」の「電流レベル」に応じて電力供給用導体の周囲に発生する磁界の強度を予め規定された周期でサンプリングすることにより、「電流」の「電流レベル」の変化を特定可能な電流レベルデータDlaを生成して処理部17に出力する。
また、処理部17は、電流検出部13から出力された電流レベルデータDlaを記憶部18に記憶させると共に、電流レベルデータDlaに基づいて特定される「電流レベル」の変化を、電力ラインL5を流れている「電流」の「電流波形」の「波形形状」として特定する。この場合、電流レベルデータDlaは、処理部17が「電流波形」の「波形形状」を特定可能であればよく、電力ラインL5を流れている「電流」の「電流値」を正確に特定可能な情報である必要はない。したがって、本例の電力演算装置1(電力演算システム10)では、上記のように「電流レベル」に応じて強度が変化する「磁界」を検出可能な程度の簡易な非接触式電流センサ13a、およびその検出結果に基づいて「電流レベル」を特定可能な程度の簡易な構成の電流検出部13によって「電流レベルデータ」の一例である電流レベルデータDlaを生成することが可能となっている。
次いで、処理部17は、シリアルバスSB1から読み取った電流値データフレームFca、および特定した「波形形状」に基づき、電力ラインL5を流れている「電流」の「電流値」の変化を示す「電流波形」を特定して電流波形データDwaを生成する。具体的には、処理部17は、まず、「読取部」として機能してシリアルバスSB1から読み取った電流値データフレームFcaに基づき、電力ラインL5を流れている「電流」の「電流値」における「予め規定された周期」内の代表値である「代表電流値(平均値、実効値および最大値のうちの予め規定された少なくとも1つ)」を特定する。
次いで、処理部17は、電流レベルデータDlaに基づいて特定した「波形形状」に、電流値データフレームFcaに基づいて特定した「代表電流値」に応じた値付けを行うことにより、電力ラインL5を流れている「電流」の「電流値」の変化を示す電流波形データDwaを生成して記憶部18に記憶させる。具体的には、特定した「波形形状」で「電流値」が変化したときに上記の「予め規定された周期」内の「平均値、実効値および最大値のうちの予め規定された少なくとも1つ(「電流値データフレームFcaに記録されている「代表電流値」と同じパラメータ)が電流値データフレームFcaに基づいて特定した「代表電流値」と同値になるように、その周期内の各「電流値」をそれぞれ特定する。これにより、電流波形データDwaの生成の処理が完了する。
また、電力演算装置1では、上記のようなCANフレームFcの読み取りや電流波形データDwaの生成の処理と並行して、電圧測定部12による電圧値データDvの生成、および処理部17による電力値データDpの生成の処理が実行される。具体的には、本例の電力演算装置1では、電流検出部13による電流レベルデータDlaの生成および処理部17への出力と並行して、電圧測定部12が電圧値データDvの生成および処理部17への出力を実行している。この際に、電圧測定部12は、電力ラインL5の電力供給用導体に印加されている「第2の電圧」の「第2の電圧値」を予め指定された測定周期(サンプリング周期)で測定して電圧値データDvを生成し、生成した電圧値データDvを処理部17に順次出力する。
また、処理部17は、電圧測定部12から出力される電圧値データDvを記憶部18に記憶させると共に、一例として、記憶させた電圧値データDvに基づき、前述の電流値データフレームFcaの「代表電流値」の周期に対応する周期内の各「第2の電圧値」を特定する。次いで、処理部17は、記憶部18に記憶させた上記の電流波形データDwaにおける「予め規定された周期」内の各「電流値」およびその「波高率」と、対応する周期内の各電圧値データDvに基づく各「第2の電流値」とに基づき、インバータユニット106からモータ107に電力ラインL5を介して供給されている「電力(モータ107の動作に伴って消費されている電力)」の「予め規定された周期」内の「電力値」を演算(測定)する。
また、処理部17は、演算した「電力値」に基づいて電力値データDpを生成して記憶部18に記憶させる。これにより、電力ラインL5を介して供給されている「電力」の「電力値」の演算、および演算した「電力値」を特定可能な電力値データDpの生成の処理が完了する。
次いで、処理部17は、上記の電流波形データDwaに基づく「電流波形」や、電力値データDpに基づく「電力値」などを表示部15に表示させると共に、電力値データDpに基づいて電力値データフレームFcpを生成して記憶部18に記憶させる。また、処理部17は、生成した電力値データフレームFcpを信号出力部16からシリアルバスSB2に出力させる。
この際に、記録装置2では、処理部24が、シリアルバスSB2に出力された電力値データフレームFcpを取得すると共に、取得した電力値データフレームFcpに基づいて特定される「電力値」を示す電力値データDpを生成して記録媒体22に記録させる。これにより、電力演算装置1によって演算された電力値が記録装置2(記録媒体22)に電力値データDpとして記録される。
一方、本例の電力演算システム10では、電力演算装置1による上記の一連の処理、および記録装置2による電力値データDpの記録の処理と並行して、中継器3が、シリアルバスSB2を介して伝送されているCANフレームFc(本例では、電力値データフレームFcp)をシリアルバスSB1に出力する(中継する)処理を実行する。
この場合、前述したシリアルバスSB1でのCANフレームFcの伝送時と同様にして、シリアルバスSB2でのCANフレームFcの伝送時にも、シリアルバスSB2における「CANH」に対応する伝送用導体の電圧と、「SG」に対応する伝送用導体の電圧(すなわち、電圧検出部31内の基準電位の電圧)との電位差が増加しているときには、伝送用導体から非接触式電圧センサ31aの電極に結合容量を介して流れ込む電流信号の電流量が増加する。また、シリアルバスSB2でのCANフレームFcの伝送時に、「CANH」に対応する伝送用導体の電圧と、「SG」に対応する伝送用導体の電圧(電圧検出部31内の基準電位の電圧)との電位差が減少しているときには、伝送用導体から非接触式電圧センサ31aの電極に結合容量を介して流れ込む電流信号の電流量が減少する。
したがって、本例の電力演算システム10における中継器3では、前述した電力演算装置1における電圧検出部11と同様にして、電圧検出部31が、非接触式電圧センサ31aの電極が「CANH」の伝送用導体と同電位となって上記の電流値が「0」となるように、電極の電位をフィードバック制御する処理を行い、その状態において電極の電位を測定することで、「CANH」の伝送用導体に印加されている電圧の電圧値を特定(測定)する処理を予め規定された周期で繰り返し実行する。また、電圧検出部31は、測定結果(電圧値)示す電圧データを処理部33に順次出力する。
これに応じて、処理部33は、電圧検出部31から出力される電圧データによって示される電圧値に基づき、シリアルバスSB2を介して伝送されているCANフレームFc(本例では、電力演算装置1の信号出力部16から出力された電力値データフレームFcp)の内容を特定して信号出力部32からシリアルバスSB1に出力させる。これにより、電力演算システム10から電気自動車100のシリアルバスSB1に対して電力値データフレームFcpが出力される。したがって、例えば、主制御部108が、シリアルバスSB1を介して伝送される電力値データフレームFcpを取得し、電力ラインL5を介して供給されている電力(モータ107の動作に伴って消費されている電力)の電力を把握して、例えばテスト動作モード時の予め規定された処理を実行する。
なお、詳細な説明を省略するが、シリアルバスSB2には、電力演算装置1から出力された電力値データフレームFcp以外の各種のCANフレームFcが出力されることがある。この際に、本例の電力演算システム10(中継器3)では、一例として、処理部33が、各種CANフレームFcを特定し、特定したCANフレームFcのうちの予め規定されたCANフレームFcだけをシリアルバスSB1に出力する。これにより、電気自動車100において利用可能な任意のCANフレームFcが中継器3を介してシリアルバスSB1に出力される。
この後、電力演算装置1の操作部14の操作によって電力値の演算、表示および記録の一連の処理が指示されるまで、電力演算装置1、記録装置2および中継器3は、上記の処理を継続的に繰り返し実行する。
一方、上記のような処理を完了し、電力演算システム10による電流波形データDwaの生成や「電力値」の演算などを継続する必要がなくなったときには、中継器3を除く構成要素(電力演算装置1、記録装置2およびシリアルバスSB2)を電気自動車100から取り外す。
この際に、本例の電力演算システム10では、電力演算装置1における電圧検出部11の非接触式電圧センサ11aをシリアルバスSB1の伝送用導体に対して非接触の状態(信号線を非接触式電圧センサ11aによってクランプした状態)でCANフレームFcの伝送に伴う「電圧レベル」の変化を特定する構成を採用している。したがって、シリアルバスSB1から非接触式電圧センサ11aを取り外した状態において、非接触式電圧センサ11aの装着前の状態から伝送用導体の絶縁性が低下する事態が回避される。
また、シリアルバスSB2からCANフレームFc(電力値データフレームFcp)を読み取ってシリアルバスSB1に出力する中継器3については、電気自動車100の常設機器として電気自動車100に装着した状態が維持される。したがって、シリアルバスSB1にCANフレームFcを出力するための構成要素の存在によってシリアルバスSB1の伝送用導体の絶縁性が低下する事態も回避される。
さらに、本例の電力演算システム10では、電力演算装置1における電圧測定部12の非接触式電圧センサ12aや電流検出部13の非接触式電流センサ13aを電力ラインL5の電力供給用導体に対して非接触の状態(電力ラインL5を非接触式電圧センサ12aによってクランプし、かつ非接触式電流センサ13aを近接させた状態)で「第2の電圧」や「電流」を検出する構成を採用している。したがって、電力ラインL5から非接触式電圧センサ12aや非接触式電流センサ13aを取り外した状態において、これらの装着前の状態から電力ラインL5の絶縁性が低下する事態も回避される。
以上により、電力演算システム10による電流波形データDwaの生成や「電力値」の演算等に関する一連の作業が終了する。また、上記の作業によって電力演算装置1(記憶部18)に記憶された電流波形データDwaについては、図示しない外部装置接続用コネクタを介して外部装置としての各種情報処理端末を電力演算装置1に接続することにより、電力演算装置1から情報処理端末に出力させることができる。また、記録装置2(記録媒体22)に記録された電力値データDpについては、記録装置2のデータ入出力部23に各種情報処理端末を接続することにより、記録装置2から情報処理端末に出力させることができる。これにより、情報処理端末によって電流波形データDwaや電力値データDpを解析したり、電流波形データDwaの「信号波形」や電力値データDpの「電力値」についての任意の情報を表示・印刷したりすることが可能となる。
このように、この電力演算装置1、およびその「波形データ生成方法」では、シリアルバスSB1を介して伝送されるCANフレームFcのうちの電力ラインL5を流れている「電流」の「電流値」における「予め規定された周期」内の「代表電流値」を特定可能な電流値データフレームFcaをシリアルバスSB1から読み取り、かつ、電力ラインL5の電力供給用導体に対して非接触で「電流」を検出可能な非接触式電流センサ13aを介して「電流」を周期的に検出して「電流」の「電流レベル」の変化を特定可能な電流レベルデータDlaを生成すると共に、電流レベルデータDlaに基づいて特定される「電流レベル」の変化を、「電流値」の変化を示す「電流波形」の「波形形状」として、電流値データフレームFcaに基づいて特定される「代表電流値」および「波形形状」に基づいて電流波形データDwaを生成する。
したがって、この電力演算装置1および「波形データ生成方法」によれば、電力ラインL5の電力伝送用導体を流れている「電流」の「電流値」を短いサンプリング周期で高精度に測定可能な高価な「測定装置」を使用することなく、「電流」の「電流レベル」の変化を特定可能な程度の簡易な構成の「測定装置(電力演算システム10の例では、電力演算装置1の電流検出部13)」を使用して電流レベルデータDlaを生成して「電流波形」の「波形形状」を特定し、特定した「波形形状」に、シリアルバスSB1から読み取った電流値データフレームFcaに基づいて特定される「代表電流値」に基づいて値付けを行うことで、電力伝送用導体を流れている「電流」の「電流値」の変化を特定可能な高精度な「電流波形」の電流波形データDwaを生成することができる。これにより、電流波形データDwaの生成に要するコストを十分に低減することができる。また、非接触式電流センサ13aを使用した「電流」の検出により、電力ラインL5の絶縁性を低下させることなく「電流レベル」の変化を特定可能な電流レベルデータDlaを生成することができるため、電流波形データDwaの生成のために電力ラインL5の絶縁性が低下した状態となるのを好適に回避することができる。
また、この電力演算装置1、およびその「波形データ生成方法」によれば、「非接触式電流センサ」として、「磁気光学効果素子」、「ホール素子」、「フラックスゲートセンサ」、「磁気インピーダンスセンサ」、「フレキシブル電流センサ」および「オープンコアタイプのクランプ式電流センサ」のいずれかで構成された「磁界センサ」(本例では、「磁気光学効果素子」)を介して「電流」を検出することにより、簡易な構成で故障が生じ難いため、長期に亘って使用可能で、しかも部品コストも比較的安価なこれらの「磁界センサ」によって電力ラインL5を流れている「電流」の「電流レベル」に応じた「磁界」の強度を特定して電流レベルデータDlaを生成することができるため、電流波形データDwaの生成に要するコストを十分に低減することができる。
また、この電力演算装置1、およびその「波形データ生成方法」によれば、CANフレームFcの伝送時にシリアルバスSB1のフレーム伝送用導体に印加される「第1の電圧」をフレーム伝送用導体に対して非接触で検出可能な非接触式電圧センサ11aを介して「第1の電圧」を検出し、検出した「第1の電圧」の「電圧レベル」の変化に基づいてシリアルバスSB1を介して伝送されたCANフレームFcを特定することにより、シリアルバスSB1の各信号線におけるフレーム伝送用導体を覆っている絶縁被覆を剥がすことなくCANフレームFcを読み出すことができるため、電流波形データDwaの生成のためにフレーム伝送用導体の絶縁性が低下した状態となるのを好適に回避することができる。
また、この電力演算システム10、およびその「電力演算方法」によれば、上記の「波形データ生成方法」に従って電流波形データDwaを生成し、生成した電流波形データDwaに基づいて「電流値」を特定し、かつ電流波形データDwaに対応する「電流」が電力ラインL5を流れていたときに電力ラインL5に印加されていた「第2の電圧」の「第2の電圧値」を特定可能な電圧値データDvに基づいて「第2の電圧値」を特定すると共に、特定した「電流値」および「第2の電圧値」に基づき、電力ラインL5を介して供給された「電力」の「電力値」を演算することにより、高精度な電流波形データDwaに基づいて高精度な「電力値」を演算することができるだけでなく、電力ラインL5の電力供給用導体を流れている「電流」の「電流値」を高精度に測定可能な高価な「測定装置」が不要となる分だけ、「電力値」を低コストで演算することができる。
また、この電力演算システム10、およびその「電力演算方法」によれば、電力供給用導体に対して非接触で「第2の電圧」を検出可能な非接触式電圧センサ12aを介して「第2の電圧」の「第2の電圧値」を周期的に測定して「第2の電圧値」の変化を特定可能な電圧値データDvを生成することにより、電力ラインL5の絶縁性を低下させることなく「第2の電圧」の「第2の電圧値」を特定可能な電圧値データDvを生成することができるため、「電力値」の演算のために電力ラインL5の絶縁性が低下した状態となるのを好適に回避することができる。
また、この電力演算システム10、およびその「電力演算方法」によれば、演算した「電力値」を特定可能な電力値データフレームFcpを生成してシリアルバスSB1に出力することにより、演算した「電力値」が供給されている設備(本例では、電気自動車100)側で、「電力値」を演算するための構成を備えることなく、電力演算システム10から出力した電力値データフレームFcpに基づいて特定される「電力値」を利用して各種の処理を実行させることができる。
次に、電力演算システム10による「電力値の演算」の他の実施の形態について説明する。
なお、演算に際して使用する電流レベルデータDlaの生成の処理については、上記の実施の形態と同様のため、詳細な説明を省略する。また、以下に説明する実施の形態においては、電力演算装置1における電圧測定部12および非接触式電圧センサ12aを使用しないため、これらの構成要素を不要として「電力演算システム」を構成することもできるが、その他の構成要素については、上記の実施の形態における電力演算装置1の各構成要素と同様の機能を要するため、以下、一例として、電力演算装置1の電圧測定部12(非接触式電圧センサ12a)を使用せずに「電力値」の演算(測定)を行う例について説明する。
上記の電力演算システム10(電力演算装置1)では、前述のような「電力値」の演算処理に代えて、電力ラインL5に印加されている「第2の電圧」の「第2の電圧値」などについて、電気自動車100の構成要素によって測定された値を使用して「電力値」を演算可能に構成されている。具体的には、電気自動車100において、インバータユニット106からモータ107への電力ラインL5を介しての電力の供給時に、前述の電流値データフレームFcaに加え、電圧値データフレームFcvや位相差データフレームFcdなどがシリアルバスSB1を介して伝送されているときには、これらのCANフレームFcを読み取って「電力値」を演算することができる。
この場合、電圧値データフレームFcvは、「電圧値データフレーム」の一例であって、電力ラインL5の電力供給用導体に印加されている「第2の電圧」の「第2の電圧値」における「予め規定された周期」内の代表値である「代表電圧値(平均値、実効値および最大値のうちの少なくとも1つ)」を特定可能なデータで構成されている。また、位相差データフレームFcdは、「位相差データフレーム」の一例であって、電力ラインL5の電力供給用導体に印加されている「第2の電圧」と電力ラインL5の電力供給用導体を流れている「電流」との間の「位相差」を特定可能なデータで構成されている。
インバータユニット106からモータ107への電力ラインL5を介しての電力供給時に上記のような各CANフレームFcがシリアルバスSB1を介して伝送されている状態において、電力ラインLを介して供給されている電力(モータ107の動作に伴って消費されている電力)の「電力値」を演算する際に、この実施形態に係る電力演算装置1(電力演算システム10)の「電力演算方法」では、まず、前述の実施形態と同様にして電流波形データDwaを生成する。また、電力演算装置1では、処理部17が、電流波形データDwaの生成時にシリアルバスSB1から読み取った電流値データフレームFcaの他に、電圧値データフレームFcvおよび位相差データフレームFcdの2種類のCANフレームFcと、電圧値データフレームFcvの1種類とのいずれか予め規定された一方をシリアルバスSB1から読み取る。なお、シリアルバスSB1からのCANフレームFcの読み取りに関する具体的な処理については前述の例と同様のため、詳細な説明を省略する。
次いで、処理部17は、電流波形データDwaに基づいて「予め規定された周期」内の各「電流値」を特定すると共に、電圧値データフレームFcvに基づいて「代表電圧値」を特定し、かつ位相差データフレームFcdに基づいて「位相差」を特定する処理と、電流波形データDwaに基づいて「予め規定された周期」内の各「電流値」を特定すると共に、その周期内の「電流値」の「波高率」を特定し、かつ電圧値データフレームFcvに基づいて「代表電圧値」を特定する処理との予め規定された少なくとも一方を実行する。
続いて、処理部17は、各「電流値」、「代表電圧値」および「位相差」を特定する処理を実行したときには、特定した各「電流値」、「代表電圧値」および「位相差」に基づいて「電力値」を演算する演算処理を実行し、各「電流値」、「波高率」および「代表電圧値」を特定する処理を実行したときには、特定した各「電流値」、「波高率」および「代表電圧値」に基づいて「電力値」を演算する演算処理を実行する。これにより、電気自動車100のインバータユニット106からモータ107に電力ラインL5を介して供給されている「電力」の「電力値」が演算され、演算された「電力値」を示す電力値データDpが生成されて記憶部18に記憶される。
また、処理部17は、演算した「電力値」を特定可能な電力値データフレームFcpを生成すると共に、生成した電力値データフレームFcpを信号出力部16からシリアルバスSB2に出力させる。この際に、前縦した実施形態のときと同様にして、記録装置2において電力値データフレームFcpに対応する電力値データDpが生成されて記録媒体22に記録されると共に、中継器3によって電力値データフレームFcpがシリアルバスSB1に出力される。この後、一連の処理を終了する指示が行われるまで、電力演算装置1、記録装置2および中継器3は、上記の処理を継続的に繰り返し実行する。
このように、この電力演算システム10、およびその「電力演算方法」では、「第2の電圧値」における「予め規定された周期」内の「代表電圧値」を特定可能な電圧値データフレームFcv、および「第2の電圧」と「電流」との間の「位相差」を特定可能な位相差データフレームFcdをシリアルバスSB1からそれぞれ読み取り、電流波形データDwaに基づいて特定される「電流値」、電圧値データフレームFcvに基づいて特定される「代表電圧値」、および位相差データフレームFcdに基づいて特定される「位相差」に基づいて「電力値」を演算する。
また、この電力演算システム10、およびその「電力演算方法」では、「第2の電圧値」における「予め規定された周期」内の「代表電圧値」を特定可能な電圧値データフレームFcvをシリアルバスSB1から読み取り、電流波形データDwaに基づいて特定される「電流値」、電流波形データDwaに基づいて特定される「電流」の「波高率」、および電圧値データフレームFcvに基づいて特定される「代表電圧値」に基づいて電力値を演算する。
したがって、この電力演算システム10および「電力演算方法」によれば、電力ラインL5の電力供給用導体に印加されている「第2の電圧」の「第2の電圧値」を測定するための「測定装置」が不要となる分だけ、「電力値」を低コストで演算することができる。
なお、「波形データ生成装置」および「電力演算システム」の構成や、その「波形データ生成方法」および「電力演算方法」の手順については、上記の電力演算システム10(電力演算装置1)の構成や、その「波形データ生成方法」および「電力演算方法」の手順の例に限定されない。
例えば、電気自動車100のシリアルバスSB1からの非接触式電圧センサ11aを介してのCANフレームFcの読み取りに際して、「CANH」に対応する信号線のフレーム伝送用導体の電圧、および「CANL」に対応する信号線のフレーム伝送用導体の電圧を電圧検出部11によってそれぞれ検出し、処理部17が、検出された両フレーム伝送用導体の電圧の差に基づいて、シリアルバスSB1を介して伝送されているCANフレームFcの内容を特定する構成・方法の例について説明したが、次の構成を採用することもできる。
具体的には、「2線差動電圧方式」で伝送されるCANフレームFcの読み取りに際しては、前述の例の電力演算装置1における電圧検出部11に代えて、図5に示す電圧検出部50を備えて「電力演算装置」を構成することにより、処理部17によるCANフレームFcの読み取り(内容の特定)を正確かつ容易に行うことが可能となる。この電圧検出部50は、同図に示すように、増幅器51h,51l、差分回路(一例として、トランス)52、増幅器53およびA/D変換器54を備えて構成されている。
前述の電圧検出部11に代えて上記の電圧検出部50を備えた電力演算装置1によってシリアルバスSB1からCANフレームFcを読み取る際には、「CANH」に対応する信号線、および「CANL」に対応する信号線に非接触式電圧センサ11aをそれぞれ装着する。この状態においてシリアルバスSB1にCANフレームFcが伝送されたときには、「CANH」に対応する信号線のフレーム伝送用導体(以下、「「CANH」の伝送用導体」ともいう)と非接触式電圧センサ11aの検出用電極との間の結合容量を介して、「CANH」の伝送用導体の電位に応じて流れる電流に応じた電圧が増幅器51hによって増幅されると共に、「CANL」に対応する信号線のフレーム伝送用導体(以下、「「CANL」の伝送用導体」ともいう)と非接触式電圧センサ11aの検出用電極との間の結合容量を介して、「CANL」の伝送用導体の電位に応じて流れる電流に応じた電圧が増幅器51lによって増幅される。
また、増幅器51hからの出力電圧と増幅器51lからの出力電圧の差分に対応する電圧が差分回路52から出力され、この出力電圧が増幅器53によって増幅されてA/D変換器54によってA/D変換されて電圧値データとして処理部17に出力される。一方、処理部17は、A/D変換器54から出力された電圧値データの値が予め規定された電圧値レベル以上のときに、デジタル信号の「0」が伝送されていると判別する。また、処理部17は、A/D変換器54から出力された電圧値データの値が予め規定された電圧値レベルを下回っているときに、デジタル信号の「1」が伝送されていると判別する。これにより、前述した電圧検出部11を備えた電力演算装置1におけるCANフレームFcの読み取り時と同様にして、シリアルバスSB1を伝送されているCANフレームFcの内容が特定される。
なお、詳細な説明を省略するが、上記の電圧検出部50の構成については、中継器3の電圧検出部31に対して適用することもできる。また、電力演算システム10のシリアルバスSB2からのCANフレームFcの読み取りに際して、フレーム伝送用導体に対して非接触で非接触式電圧センサ31aを介して「電圧」を検出し、その「電圧レベル」の変化に基づいてCANフレームFcを特定する中継器3を備えた電力演算システム10の例について説明したが、シリアルバスSB2のフレーム伝送用導体に対して直接接触(直接接続)した信号線を介してシリアルバスSB2からCANフレームFcを読み取る構成の中継器3を備えて「電力演算システム」を構成することもできる(図示せず)。
また、演算した「電力値」を特定可能な電力値データDpを記録する記録装置2を備えた電力演算システム10の例について説明したが、「電力値データ」を記録する構成は「電力演算システム」に必須の構成要素ではないため、「電力値データ」を記録しない構成を採用することもできる。さらに、演算した「電力値」を特定可能な電力値データフレームFcpを中継器3からシリアルバスSB1に出力する構成の電力演算システム10を例に挙げて説明したが、「シリアルバス」に「電力値データフレーム」を出力する構成は「電力演算システム」に必須の構成要素ではないため、「電力値データフレーム」を出力しない構成を採用することもできる。
また、インバータユニット106からモータ107に電力ラインL5を介して供給されている交流電力を対象として「電流波形」の「波形データ」を生成したり「電力値」を演算したりする例について説明したが、「波形データ生成装置」および「波形データ生成方法」によって「波形データ」を生成する対象や、「電力演算システム」および「電力演算方法」によって「電力値」を演算する対象は、これに限定されず、例えば、図示しない空調機器制御部から空調機器(コンプレッサ用の三層交流モータ等)に電力ラインを介して供給されている交流電力を対象として上記の例と同様の構成・方法に従って「波形データ」を生成したり「電力値」を演算したりすることもできる。
さらに、電力演算装置1の処理部17を「第1の処理部」および「第2の処理部」として機能させる構成を例に挙げて説明したが、「波形データ生成装置」および「電力演算装置」を一体的に構成したときに、「電流波形データ」を生成する「第1の処理部」と、「電力値」を演算する「第2の処理部」とを別個に設けることもできる。また、「波形データ生成装置」および「電力演算装置」を一体的に構成した電力演算装置1を備えた電力演算システム10を例に挙げて説明したが、「波形データ生成装置」および「電力演算装置」を別個に構成して「電力演算システム」を構成することもできる。
また、電気自動車100の「電力ライン(本例では、電力ラインL5)」を介して電力が供給されているときに「電力ライン」を流れている「電流」の「電流値」の変化を特定可能な「電流波形」の電流波形データDwaを生成したり、生成した電流波形データDwaに基づいて「電力値」を演算したりする形態を例に挙げて説明したが、電気自動車100などの車両以外の各種の分野(工場内設備用のネットワークや、耕作地内ネットワーク等の分野)における任意の「電流波形」を特定可能な「電流波形データ」を生成したり「電力値」を演算したりする際に、上記の電力演算システム10の構成と同様の構成や、電力演算システム10における「波形データ生成方法」および「電力演算方法」と同様の方法を採用することができる。
また、生成した電流波形データDwaに基づいて「電力値」を演算する構成および方法を例に挙げて説明したが、「波形データ生成装置」および「波形データ生成方法」によって生成した「電流波形データ」の用途は、「電力値」の演算に限定されず、「電力ライン」の状態(電力源や負荷の状態)の分析等のために、「電流波形」の表示や印刷を目的として「電流波形データ」を生成することもできる。
加えて、「シリアルバス」から読み取る「電圧値データフレーム」等は、CANフレームFc等の「CANフレーム」に限定されず、「CAN FD」、「FlexRay(登録商標)」および「LIN」などの各種通信規格に準ずるフレーム(デジタルデータ)や、「LVDS」による小振幅低消費電力通信が可能な各種通信規格に準ずるフレーム(デジタルデータ)を利用して「電力値」を演算する構成・方法を採用することができる。
10 電力演算システム
1 電力演算装置
2 記録装置
3 中継器
11,31,50 電圧検出部
11a,12a,31a 非接触式電圧センサ
12 電圧測定部
13 電流検出部
13a 非接触式電流センサ
14 操作部
15 表示部
16,32 信号出力部
17,24,33 処理部
18,25,34 記憶部
21 信号入力部
22 記録媒体
23 データ入出力部
51h,51l 増幅器
52 差分回路
53 増幅器
54 A/D変換器
100 電気自動車
106 インバータユニット
107 モータ
Dla 電流レベルデータ
Dp 電力値データ
Dv 電流値データ
Dwa 電流波形データ
Fc CANフレーム
Fca 電流値データフレーム
Fcd 位相差データフレーム
Fcp 電力値データフレーム
Fcv 電圧値データフレーム
L5 電力ライン
SB1,SB2 シリアルバス

Claims (16)

  1. 電力ラインを流れている電流の電流値の変化を示す電流波形を特定可能な電流波形データを生成する第1の処理部を備えた波形データ生成装置であって、
    CAN通信用のシリアルバスを介して伝送されるCANフレームを当該シリアルバスから読み取る読取部と、
    前記電力ラインの電力供給用導体に対して非接触で前記電流を検出可能な非接触式電流センサを有する電流検出部とを備え、
    前記読取部は、前記電流値における予め規定された周期内の代表値である代表電流値を特定可能な前記CANフレームとしての電流値データフレームを前記シリアルバスから読み取って前記第1の処理部に出力し、
    前記電流検出部は、前記非接触式電流センサを介して前記電流を周期的に検出して当該電流の電流レベルの変化を特定可能な電流レベルデータを前記第1の処理部に出力し、
    前記第1の処理部は、前記電流レベルデータに基づいて特定される前記電流レベルの変化を前記電流波形の波形形状として、前記電流値データフレームに基づいて特定される前記代表電流値および当該波形形状に基づいて前記電流波形データを生成する波形データ生成装置。
  2. 前記電流検出部は、前記非接触式電流センサとして、磁気光学効果素子、ホール素子、フラックスゲートセンサ、磁気インピーダンスセンサ、フレキシブル電流センサ、およびオープンコアタイプのクランプ式電流センサのいずれかで構成された磁界センサを備えて前記電流を検出可能に構成されている請求項1記載の波形データ生成装置。
  3. 前記読取部は、前記CANフレームの伝送時に前記シリアルバスのフレーム伝送用導体に印加される第1の電圧を当該フレーム伝送用導体に対して非接触で検出可能な第1の非接触式電圧センサを有する電圧検出部と、当該電圧検出部によって検出された前記第1の電圧の電圧レベルの変化に基づいて前記シリアルバスを介して伝送された前記CANフレームを特定するフレーム特定部とを備えている請求項1または2記載の波形データ生成装置。
  4. 請求項1から3のいずれかに記載の波形データ生成装置と、
    前記波形データ生成装置によって生成された前記電流波形データに基づいて前記電流値を特定し、かつ前記電流波形データに対応する前記電流が前記電力ラインを流れていたときに当該電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データに基づいて当該第2の電圧値を特定すると共に、特定した前記電流値および前記第2の電圧値に基づき、前記電力ラインを介して供給された電力の電力値を演算する第2の処理部を有する電力演算装置とを備えている電力演算システム。
  5. 前記電力演算装置は、前記電力供給用導体に対して非接触で前記第2の電圧を検出可能な第2の非接触式電圧センサを介して当該第2の電圧の前記第2の電圧値を周期的に測定して当該第2の電圧値の変化を特定可能な前記電圧値データを出力する電圧測定部を備えている請求項4記載の電力演算システム。
  6. 前記波形データ生成装置における前記読取部は、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレーム、および前記第2の電圧と前記電流との間の位相差を特定可能な前記CANフレームとしての位相差データフレームを前記シリアルバスからそれぞれ読み取り、
    前記電力演算装置における前記第2の処理部は、前記電流波形データに基づいて特定される前記電流値、前記電圧値データフレームに基づいて特定される前記代表電圧値、および前記位相差データフレームに基づいて特定される前記位相差に基づいて前記電力値を演算する請求項4記載の電力演算システム。
  7. 前記波形データ生成装置における前記読取部は、前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレームを前記シリアルバスから読み取り、
    前記電力演算装置における前記第2の処理部は、前記電流波形データに基づいて特定される前記電流値、前記電流波形データに基づいて特定される前記電流の波高率、および前記電圧値データフレームに基づいて特定される前記代表電圧値に基づいて前記電力値を演算する請求項4記載の電力演算システム。
  8. 前記電力演算装置は、前記CANフレームを前記シリアルバスに出力するCANフレーム出力部を備え、
    前記第2の処理部は、演算した前記電力値を特定可能な前記CANフレームとしての電力値データフレームを生成すると共に、当該電力値データフレームを前記CANフレーム出力部から前記シリアルバスに出力させる請求項4から7のいずれかに記載の電力演算システム。
  9. 電力ラインを流れている電流の電流値の変化を示す電流波形を特定可能な電流波形データを生成する波形データ生成方法であって、
    CAN通信用のシリアルバスを介して伝送されるCANフレームのうちの前記電流値における予め規定された周期内の代表値である代表電流値を特定可能な電流値データフレームを当該シリアルバスから読み取り、かつ前記電力ラインの電力供給用導体に対して非接触で前記電流を検出可能な非接触式電流センサを介して当該電流を周期的に検出して当該電流の電流レベルの変化を特定可能な電流レベルデータを生成すると共に、前記電流レベルデータに基づいて特定される前記電流レベルの変化を前記電流波形の波形形状として、前記電流値データフレームに基づいて特定される前記代表電流値および当該波形形状に基づいて前記電流波形データを生成する波形データ生成方法。
  10. 前記非接触式電流センサとして、磁気光学効果素子、ホール素子、フラックスゲートセンサ、磁気インピーダンスセンサ、フレキシブル電流センサ、およびオープンコアタイプのクランプ式電流センサのいずれかで構成された磁界センサを介して前記電流を検出する請求項9記載の波形データ生成方法。
  11. 前記CANフレームの伝送時に前記シリアルバスのフレーム伝送用導体に印加される第1の電圧を当該フレーム伝送用導体に対して非接触で検出可能な第1の非接触式電圧センサを介して当該第1の電圧を検出し、検出した当該第1の電圧の電圧レベルの変化に基づいて前記シリアルバスを介して伝送された前記CANフレームを特定する請求項9または10記載の波形データ生成方法。
  12. 請求項9から11のいずれかに記載の波形データ生成方法に従って前記電流波形データを生成し、
    生成した前記電流波形データに基づいて前記電流値を特定し、かつ前記電流波形データに対応する前記電流が前記電力ラインを流れていたときに当該電力ラインに印加されていた第2の電圧の第2の電圧値を特定可能な電圧値データに基づいて当該第2の電圧値を特定すると共に、特定した前記電流値および前記第2の電圧値に基づき、前記電力ラインを介して供給された電力の電力値を演算する電力演算方法。
  13. 前記電力供給用導体に対して非接触で前記第2の電圧を検出可能な第2の非接触式電圧センサを介して当該第2の電圧の前記第2の電圧値を周期的に測定して当該第2の電圧値の変化を特定可能な前記電圧値データを生成する請求項12記載の電力演算方法。
  14. 前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレーム、および前記第2の電圧と前記電流との間の位相差を特定可能な前記CANフレームとしての位相差データフレームを前記シリアルバスからそれぞれ読み取り、
    前記電流波形データに基づいて特定される前記電流値、前記電圧値データフレームに基づいて特定される前記代表電圧値、および前記位相差データフレームに基づいて特定される前記位相差に基づいて前記電力値を演算する請求項12記載の電力演算方法。
  15. 前記第2の電圧値における予め規定された周期内の代表値である代表電圧値を特定可能な前記CANフレームとしての電圧値データフレームを前記シリアルバスから読み取り、
    前記電流波形データに基づいて特定される前記電流値、前記電流波形データに基づいて特定される前記電流の波高率、および前記電圧値データフレームに基づいて特定される前記代表電圧値に基づいて前記電力値を演算する請求項12記載の電力演算方法。
  16. 演算した前記電力値を特定可能な前記CANフレームとしての電力値データフレームを生成して前記シリアルバスに出力する請求項12から15のいずれかに記載の電力演算方法。
JP2018075222A 2018-04-10 2018-04-10 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法 Active JP7027233B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018075222A JP7027233B2 (ja) 2018-04-10 2018-04-10 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018075222A JP7027233B2 (ja) 2018-04-10 2018-04-10 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法

Publications (2)

Publication Number Publication Date
JP2019184417A JP2019184417A (ja) 2019-10-24
JP7027233B2 true JP7027233B2 (ja) 2022-03-01

Family

ID=68340775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018075222A Active JP7027233B2 (ja) 2018-04-10 2018-04-10 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法

Country Status (1)

Country Link
JP (1) JP7027233B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344363A (ja) 2001-05-15 2002-11-29 Nippon Telegraph & Telephone East Corp 電源の混入検出方法および装置
JP2006343109A (ja) 2005-06-07 2006-12-21 Hioki Ee Corp 電力測定装置
JP2010261909A (ja) 2009-05-11 2010-11-18 Nippon Soken Inc 電力検知装置
JP2011169833A (ja) 2010-02-19 2011-09-01 Stanley Electric Co Ltd 電流センサ
JP2013052712A (ja) 2011-09-01 2013-03-21 Mitsubishi Motors Corp 通信情報伝達装置
JP2015010849A (ja) 2013-06-26 2015-01-19 日本電信電話株式会社 伝導妨害波源探索装置
JP2016090447A (ja) 2014-11-06 2016-05-23 国立大学法人 東京大学 電力測定装置および電力測定システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120627B2 (ja) * 1993-06-29 2000-12-25 富士電機株式会社 光変流器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344363A (ja) 2001-05-15 2002-11-29 Nippon Telegraph & Telephone East Corp 電源の混入検出方法および装置
JP2006343109A (ja) 2005-06-07 2006-12-21 Hioki Ee Corp 電力測定装置
JP2010261909A (ja) 2009-05-11 2010-11-18 Nippon Soken Inc 電力検知装置
JP2011169833A (ja) 2010-02-19 2011-09-01 Stanley Electric Co Ltd 電流センサ
JP2013052712A (ja) 2011-09-01 2013-03-21 Mitsubishi Motors Corp 通信情報伝達装置
JP2015010849A (ja) 2013-06-26 2015-01-19 日本電信電話株式会社 伝導妨害波源探索装置
JP2016090447A (ja) 2014-11-06 2016-05-23 国立大学法人 東京大学 電力測定装置および電力測定システム

Also Published As

Publication number Publication date
JP2019184417A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
CN107942251B (zh) 电流检测系统、方法和电流检测装置
US7843188B2 (en) Remote sensor network powered inductively from data lines
CN101819256A (zh) 汽轮发电机转子绕组匝间短路测试系统
CN102854372B (zh) 高压母线电流的检测装置和电池管理系统
JP7027233B2 (ja) 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法
CN110873828A (zh) 一种用于铁路客运车辆的直流电路监测系统
CN114200350A (zh) 基于振动信息的三相电力变压器故障诊断与定位方法及装置
CN212903306U (zh) 变压器多物理量同步监测装置
JP4398198B2 (ja) 電線又はケーブルの絶縁劣化領域診断システム及び方法
CN211206604U (zh) 一种移动式电气设备在线监测装置
JP7027232B2 (ja) 波形データ生成装置、電力演算システム、波形データ生成方法および電力演算方法
CN210037946U (zh) 基于tmr隧道磁阻的电流测量装置
CN116381348A (zh) 电缆终端头宽频带阻抗特性测试装置及方法
CN109342889A (zh) 一种在线式高压电缆击穿故障的快速定位方法
CN114236224A (zh) 一种变压器铁芯接地电流测量系统及方法
JP7279009B2 (ja) 電力演算装置および電力演算方法
CN210401594U (zh) 一种新能源汽车用电机电磁寿命评价装置
CN201069469Y (zh) 高压电流互感器计量误差实时在线监测装置
CN103630758B (zh) 一种特高压直流输电线路空间直流电场测量装置
CN113866478A (zh) 杂散电流测量方法及其装置、设备和系统
JP3802028B2 (ja) 光電流センサを用いる保護継電装置
KR102527257B1 (ko) 차량 배터리 전류 감지 시스템
JP2019144246A (ja) 電力演算装置および電力演算方法
CN220855042U (zh) 线束抗干扰测试装置
CN217278057U (zh) 一种手持式感应式磁阻成像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220216

R150 Certificate of patent or registration of utility model

Ref document number: 7027233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150