JP7020393B2 - ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール - Google Patents
ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール Download PDFInfo
- Publication number
- JP7020393B2 JP7020393B2 JP2018243115A JP2018243115A JP7020393B2 JP 7020393 B2 JP7020393 B2 JP 7020393B2 JP 2018243115 A JP2018243115 A JP 2018243115A JP 2018243115 A JP2018243115 A JP 2018243115A JP 7020393 B2 JP7020393 B2 JP 7020393B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- value
- polypropylene
- resin
- polypropylene film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Storage Of Web-Like Or Filamentary Materials (AREA)
Description
特許文献1には、上述した構成のコンデンサ用二軸延伸ポリプロピレンフィルムの効果として、薄いフィルムであっても加工適性に優れ、低温(-40℃)から高温(150℃)までの広範囲の雰囲気温度条件下でも高耐電圧性を発揮することが記載されている(段落[0023]参照)。加工適性に関しては、具体的に、素子巻き加工を行った際に、しわやずれの発生割合が少ないことが記載されている(段落[0122]、段落[0123]参照)。
特許文献2には、上述した構成の二軸配向ポリプロピレンフィルムの効果として、フィルムの両面に高さの低い突起を多数もった表面を有することにより、特に交流電圧用コンデンサ用途において、高い耐電圧性、好適な素子加工性および優れた鳴き特性を有することが記載されている(段落[0025]参照)。素子加工性に関しては、具体的に、素子巻き加工を行った際に、しわやずれの発生割合が少ないことが記載されている(段落[0098]、段落[0099]参照)。
第1の面と第2の面とを有するポリプロピレンフィルムであって、
主成分としてポリプロピレン樹脂を含有し、
前記第1の面のSpk値(SpkA)と前記第2の面のSpk値(SpkB)との比率SpkB/SpkAが0.490以上0.730以下であり、
前記第1の面のSvk値(SvkA)と前記第2の面のSvk値(SvkB)との比率SvkB/SvkAが0.735以上1.250以下である
ことを特徴とする。
前記構成によれば、ポリプロピレンフィルムの両面の粗面化が同程度であるため、二軸延伸された後のポリプロピレンフィルムをロール状に巻回する際に、搬送用ロールに対する滑り性が両面ともに好適である。その結果、好適な搬送性が得られ、シワや巻きずれが抑制され、素子巻き加工性が良好となる。
一般的に、フィルムの厚さは、表面に凹凸が存在する場合には、凸部の頂点が厚さの端部である。つまり、第1の面と第2の面との両方に凹凸が存在する場合には、第1の面に存在する凸部の頂点から第2の面に存在する凸部の頂点までの距離がフィルムの厚さである。
ここで、コア部の厚さは、第1の面の凸部高さと第2の面の凸部高さとを差し引いた厚さである。従って、両面が共に粗面化されたポリプロピレンフィルムとすると、コア部の厚さは薄くなり、漏れ電流が発生し易くなり、耐電圧性が低下することとなる。
そこで、本発明では、(1)第1の面のSvk値(SvkA)と第2の面のSvk値(SvkB)とについては同程度、すなわち、谷部の深さについては第1の面と第2の面とで同程度としつつ、(2)粗大突起については第2の面のSpk値(SpkB)を第1の面のSpk値(SpkA)よりも小さくしてコア部の厚さを確保する構成とした。以上により、耐電圧性を維持しつつ、粗面化による搬送性を兼ね備えることとした。
前記ポリプロピレン樹脂は、
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(Log(M)=6.0のときの微分分布値を100%(基準)としたときの差、以下、「微分分布値差DM」ともいう)が8.0%以上である直鎖ポリプロピレン樹脂Aと、
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差(微分分布値差DM)が8.0%未満である直鎖ポリプロピレン樹脂Bと、
メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cとを含むことが好ましい。
また、本発明者らは、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cを含ませると、上記特定のキャストシートにβ晶が多量に形成されることを発見した。そして、β晶を含むキャストシートを延伸することによりβ晶がα晶に転移することから、β晶とα晶との密度の差に起因して、延伸により得られるポリプロピレンフィルムに(略)円弧形状の凹凸が形成され、好適に表面を粗面化することができることを発見した。
なお、微分分布値の差が異なる直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとを含むことに加えて、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cを含むことにより、フィルムを構成する樹脂成分の配置が複雑化することによる延伸フィルムの耐電圧性の向上とともに、微細化された(略)円弧形状の凹凸が形成され、より好適な粗面化を実現することが可能である。
このように、ポリプロピレンフィルムに直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bと長鎖分岐ポリプロピレン樹脂Cとを含ませると、高温での耐電圧性をより好適なものとしつつ、より好適な粗面化を実現することが可能となる。
なお、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cではなく、過酸化物による架橋変性により得られる長鎖分岐ポリプロピレン樹脂を用いると、過酸化物による架橋変性により得られる長鎖分岐ポリプロピレン樹脂の有するα晶造核効果によって、キャストシートにはα晶の形成が促進され、β晶の形成が大きく抑制されることになる。α晶を含むキャストシートを延伸しても結晶子の転移は起こらないため、凹凸は形成され難い。従って、ポリプロピレンフィルムを粗面化するためには、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cが好適である。
前記ポリプロピレンフィルムと、
前記ポリプロピレンフィルムの片面又は両面に積層された金属層とを有することを特徴とする。
本明細書において、「素子」、「コンデンサ」、「コンデンサ素子」、「フィルムコンデンサ」は同じものを意味する。
本実施形態の二軸延伸ポリプロピレンフィルムは、2層以上の複数層で構成されていてもよいが、単層で構成されていることが好ましい。
主成分としてポリプロピレン樹脂を含有し、
前記第1の面のSpk値(SpkA)と前記第2の面のSpk値(SpkB)との比率SpkB/SpkAが0.490以上0.730以下であり、
前記第1の面のSvk値(SvkA)と前記第2の面のSvk値(SvkB)との比率SvkB/SvkAが0.735以上1.250以下である。
比率SvkB/SvkAは、0.750以上が好ましく、0.760以上がより好ましく、0.780以上がさらに好ましい。また、比率SvkB/SvkAは、1.240以下が好ましく、1.200以下がより好ましく、1.150以下がさらに好ましい。
前記第1の面のSvk値(SvkA)は、限定的ではないが、0.005μm以上が好ましく、0.007μm以上がより好ましく、0.008μm以上がさらに好ましく、0.009μm以上が特に好ましい。また、前記第1の面のSvk値(SvkA)は、限定的ではないが、0.050μm以下が好ましく、0.040μm以下がより好ましく、0.035μm以下がさらに好ましい。
前記第2の面のSvk値(SvkB)は、限定的ではないが、0.005μm以上が好ましく、0.007μm以上がより好ましく、0.008μm以上がさらに好ましく、0.009μm以上が特に好ましい。また、前記第2の面のSvk値(SvkB)は、限定的ではないが、0.050μm以下が好ましく、0.040μm以下がより好ましく、0.035μm以下がさらに好ましく、0.030μmが特に好ましい。
前記第1の面のSpk値(SpkA)は、限定的ではないが、0.030μm以上が好ましく、0.040μm以上がより好ましく、0.043μm以上がさらに好ましく、0.045μm以上が特に好ましい。また、前記第1の面のSpk値(SpkA)は、限定的ではないが、0.090μm以下が好ましく、0.080μm以下がより好ましく、0.075μm以下がさらに好ましい。
前記第2の面のSpk値(SpkB)は、限定的ではないが、0.010μm以上が好ましく、0.015μm以上がより好ましく、0.020μm以上がさらに好ましく、0.025μm以上が特に好ましい。また、前記第2の面のSpk値(SpkB)は、限定的ではないが、0.060μm以下が好ましく、0.055μm以下がより好ましく、0.050μm以下がさらに好ましい。
前記ポリプロピレンフィルムによれば、ポリプロピレンフィルムの両面の粗面化が同程度であるため、二軸延伸された後のポリプロピレンフィルムをロール状に巻回する際に、搬送用ロールに対する滑り性が両面ともに好適である。その結果、好適な搬送性が得られ、シワや巻きずれが抑制され、素子巻き加工性が良好となる。
一般的に、フィルムの厚さは、表面に凹凸が存在する場合には、凸部の頂点が厚さの端部である。つまり、第1の面と第2の面との両方に凹凸が存在する場合には、第1の面に存在する凸部の頂点から第2の面に存在する凸部の頂点までの距離がフィルムの厚さである。
ここで、コア部の厚さは、第1の面の凸部高さと第2の面の凸部高さとを差し引いた厚さである。従って、両面が共に粗面化されたポリプロピレンフィルムとすると、コア部の厚さは薄くなり、漏れ電流が発生し易くなり、耐電圧性が低下することとなる。
そこで、本実施形態では、(1)第1の面のSvk値(SvkA)と第2の面のSvk値(SvkB)とについては同程度、すなわち、粗面化の指標ともいえる谷部の深さについては第1の面と第2の面とで同程度としつつ、(2)粗大突起については第2の面のSpk値(SpkB)を第1の面のSpk値(SpkA)よりも小さくしてコア部の厚さを確保する構成とした。以上により、耐電圧性を維持しつつ、粗面化による搬送性を兼ね備えることとした。
以下、測定方法の詳細について説明する。
まず、WAVEモードを用い、530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μmの計測を行う。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行う。
次に、得られたデータに対して、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去する。これにより、粗面化表面の状態を適切に計測できる状態とする。
次に、「VertScan2.0」の解析ソフトウェア「VS-Viewer」のプラグイン機能「ベアリング」にある、「ISOパラメータ」を用いて解析を行う。
最後に、上記10箇所で得られた各値(SvkA、SpkA、SvkB、SpkB、SqA、SqB、SaA、SaB、SkA、SkB)について、それぞれ平均値を算出する。以上により、前記第1の面のSvk値(SvkA)、前記第1の面のSpk値(SpkA)、前記第2の面のSvk値(SvkB)、及び、前記第2の面のSpk値(SpkB)が得られる。また、SqA、SqB、SaA、SaB、SkA、SkBも同様にして得られる。
より詳細には、実施例に記載の方法による。
前記SqAは、0.020μm~0.080μmであることが好ましく、0.025μm~0.070μmであることがより好ましい。
前記SqBは、0.005μm~0.030μmであることが好ましく、0.010μm~0.025μmであることがより好ましい。
前記第1の面のSq値(SqA)、前記第2の面のSq値(SqB)、前記比率SqB/SqAの詳細な測定方法は、実施例に記載の方法による。
前記SaAは、0.005μm~0.025μmであることが好ましく、0.009μm~0.020μmであることがより好ましい。
前記SaBは、0.005μm~0.025μmであることが好ましく、0.007μm~0.015μmであることがより好ましい。
前記第1の面のSa値(SaA)、前記第2の面のSa値(SaB)、前記比率SaB/SaAの詳細な測定方法は、実施例に記載の方法による。
前記SkAは、0.030μm~0.070μmであることが好ましく、0.035~0.060であることがより好ましい。
前記SkBは、0.010μm~0.050μmであることが好ましく、0.020μm~0.040μmであることがより好ましい。
前記第1の面のSk値(SkA)、前記第2の面のSk値(SkB)、前記比率SkB/SkAの詳細な測定方法は、実施例に記載の方法による。
クレーター状の微細凹凸の多くは、例えば光学顕微鏡等により、互いに逆向きに湾曲した対をなす2つの円弧形状又は略円弧形状(以下、円弧形状および略円弧形状を纏めて、「(略)円弧形状」ともいう)として観察される。観察された対をなす2つの(略)円弧形状部分を補完(補間)して繋いだ場合、楕円形状又は略楕円形状(以下、楕円形状および略楕円形状を纏めて、「(略)楕円形状」ともいう)となる。
この対をなす2つの(略)円弧形状部分は、突起と、突起間における窪みとを形成する(図1(a)参照)。この突起および窪みにより、上記クレーター状の微細な凹凸を形成する(図1(b)および図1(c)参照)。なお、2つの(略)円弧形状は合わさって円形状若しくは略円形状(以下、円形状および略円形状を纏めて、「(略)円形状」ともいう)又は(略)楕円形状をなしている場合もある。この場合の突起の横断面は円環状若しくは略円環状(以下、円環状および略円環状を纏めて、「(略)円環状」ともいう)又は楕円環状若しくは略楕円環状(以下、楕円環状および略楕円環状を纏めて、「(略)楕円環状」ともいう)となる。また、対をなさずに単独の(略)円弧形状として観察される場合もある。
前記楕円密度DAは、85~120個/mm2であることがより好ましく、90~105個/mm2であることがさらに好ましい。
前記楕円密度DBは、1~12個/mm2であることがより好ましく、3~11個/mm2であることがさらに好ましく、4~10個/mm2であることが特に好ましい。
なお、一方の軸の長さLμmと他方の軸の長さSμmとしたきにS≦L且つ1≦L≦300を満たすものを、楕円密度を算出する際に考慮する「楕円」とする。これを満たさないものは、楕円密度を算出する際に考慮しない(楕円密度を算出する際の「楕円」としてカウントしない)。
(X)上記対をなす2つの(略)円弧形状の突起が合わさって構成される(略)円形状または(略)楕円形状。
(Y)上記対をなす2つの(略)円弧形状を補間して繋いで構成される(略)楕円形状。
具体的に、前記第1の面の楕円密度DAが50~120個/mm2である場合、「楕円」の数は比較的多いといえる。従って、より大きく粗面化されている。一方、前記第2の面の楕円密度DBが1~90個/mm2であると、「楕円」の数は比較的少ないといえる。従って、粗面化はされているものの、その程度は小さい。
このように、第1の面の楕円密度DAを50~120個/mm2とするともに、前記第2の面の楕円密度DBを1~90個/mm2とすれば、スリット工程加工においてフィルムが左右へ蛇行し、小巻取の端面が不揃いになることを抑制できる。その結果、実施例からも分かるように、スリット工程加工性を良好とすることができる。
前記平均長軸長さLAは、30~70μmであることがより好ましく、40~68μmであることがさらに好ましい。
前記平均長軸長さLBは、35~90μmであることがより好ましく、40~80μmであることがさらに好ましい。
前記平均長軸長さLBは、前記楕円密度DBの測定において観測された「楕円」の長軸の平均値である。
前記楕円完全度PAは、35~65%であることがより好ましく、40~60%であることがさらに好ましい。
前記楕円完全度PBは、20~45%であることがより好ましく、25~40%であることがさらに好ましい。
まず、光干渉式非接触表面形状測定機として、(株)菱化システム製の「VertScan2.0(型式R5500GML)」を使用し、WAVEモードにて530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μmの表面形状データを得る。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行う。
次に、得られたデータについて、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去する。
上述のようにして得られた10箇所の各表面形状データの投影画像(図2参照)から、対をなす円弧からなるクレーター投影画像を3個ずつ抽出する。
図2は、光干渉式非接触表面形状測定機を用いて、微細凹凸のうちの高さが0.02μm以上の部分をフィルム表面へ投影した投影画像の一例を示す図である。なお、図2は、「投影画像」について、視覚的に理解を容易にするために示した画像であり、後述する実施例に係るポリプロピレンフィルム等の投影画像ではない。
クレーター投影画像を抽出するにあたっては、異なるβ型球晶に基づく円弧同士の重なり合いが認められないクレーター投影画像を3個ずつ抽出する。3個の抽出方法は、目視による楕円の面積で四分位数(第1四分位数、第2四分位数(すなわち中央値)および第3四分位数)となる楕円を抽出することとする。例えば、N個のクレーター投影画像を確認した場合、第1四分位数として[(3+N)/4]番目、第2四分位数として[(1+N)/2]番目、第3四分位数として[(1+3N)/4]番目に大きい面積のクレーター投影画像を抽出する。Nを代入して得られた第1四分位数~第3四分位数が小数点を有する場合は、当該第1四分位数~第3四分位数が整数となるように小数点以下を四捨五入する。具体的には、例えば、9個のクレーター投影画像を確認した場合、3番目、5番目および7番目の面積のクレーター投影画像を抽出する。また、例えば、12個のクレーター投影画像を確認した場合、4番目、7番目および9番目の面積のクレーター投影画像を抽出する。
次に、抽出した3個のクレーター投影画像のそれぞれについて、対をなす円弧の合計長さLtと、対をなす円弧を含む仮想円環の全周長さをLcとを計測し、比(Lt/Lc)を求める。そして、得られた合計30個の前記比の値を平均し、比(Lt/Lc)の平均値αを得る。
図3(a)~図3(c)は、仮想円環の決定方法を説明するための模式平面図である。
(1)まず、図3(a)に示すように、円弧30aおよび円弧30b上における、互いに最も離れた2点をP1、P2とし、P1とP2を結んだ直線(以下、直線(P1-P2)という。)を決定する。
(2)ついで、図3(b)に示すように、直線(P1-P2)の一方側(図3中では、直線(P1-P2)よりも上方側。)に位置する部分の円弧30a、30bの形状(位置データ)から、最小二乗法により、直線(P1-P2)が長軸となるような楕円(E0)を導き出す。そして、この楕円(E0)を構成する曲線(楕円(E0)の周の一部)により、上記一方側における円弧30aと円弧30bとの間の部分を補完して補完線40aとする。なお、図3では、楕円(E0)のうち、補完線40aに相当する部分以外を図示略としている。
(3)ついで、図3(c)に示すように、直線(P1-P2)の他方側(図3では、直線(P1-P2)よりも下方側。)に位置する部分の円弧30a、30bの形状(位置データ)から、最小二乗法により、直線(P1-P2)が長軸となるような楕円(E1)を導き出す。そして、この楕円(E1)を構成する曲線(楕円(E1)の周の一部)により、上記他方側における円弧30aと円弧30bとの間の部分を補完して補完線40bとする。なお、図3では、楕円(E1)のうち、補完線40bに相当する部分以外を図示略としている。
(4)このように決定された補完線40a、40bと、円弧30a、30bとで連結された図3(c)に示される円環が仮想円環である。
(5)そして、この仮想円環の周における各位置(周のある点を基準とした際の距離。)に対する、各位置における微細凹凸20の高さを示す、微細凹凸20の高さプロファイルを描く。この高さプロファイルから、高さ0.02μm以上の部分に対応するクレーター投影画像GにおけるLtおよびLcを読み取る。
なお、最小二乗法の実施に際しては、それぞれ30個(n=30)の位置データを用いる。
<直鎖ポリプロピレン樹脂A>
(直鎖ポリプロピレン樹脂A-1)
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差が、Log(M)=6.0のときの微分分布値を100%(基準)とすると、8.0%以上である直鎖ポリプロピレン樹脂。
(直鎖ポリプロピレン樹脂A-2)
ヘプタン不溶分(HI)が98.5%以下である直鎖ポリプロピレン樹脂。
(直鎖ポリプロピレン樹脂A-3)
230℃におけるメルトフローレート(MFR)が4.0~10.0g/10minである直鎖ポリプロピレン樹脂。
(直鎖ポリプロピレン樹脂A-4)
重量平均分子量Mwが34万以下である直鎖ポリプロピレン樹脂。
<直鎖ポリプロピレン樹脂B>
(直鎖ポリプロピレン樹脂B-1)
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差が、Log(M)=6.0のときの微分分布値を100%(基準)とすると、8.0%未満である直鎖ポリプロピレン樹脂。
(直鎖ポリプロピレン樹脂B-2)
ヘプタン不溶分(HI)が98.5%を超える直鎖ポリプロピレン樹脂。
(直鎖ポリプロピレン樹脂B-3)
230℃におけるメルトフローレート(MFR)が4.0g/10min未満である直鎖ポリプロピレン樹脂(特に0.1~3.9g/10minである直鎖ポリプロピレン樹脂)。
(直鎖ポリプロピレン樹脂B-4)
重量平均分子量Mwが34万超えである直鎖ポリプロピレン樹脂。
つまり、例えば、分子量分布Mw/Mnが7.0~12.0である場合を例にすると、分子量分布Mw/Mnが7.0~12.0であるといっても単に分子量分布幅の広さを表しているに過ぎず、その中の高分子量成分、低分子量成分の量的な関係までは分からない。そこで、前記直鎖ポリプロピレン樹脂Aは、分子量1万から10万の成分を、分子量100万の成分と比較して、8.0%以上18.0%以下の割合で多く含むこととしている。
ポリプロピレンのような崩壊型ポリマーに過酸化物を添加すると、ポリマーからの水素引抜き反応が起こり、生じたポリマーラジカルは一部再結合し架橋反応も起こすが、殆どのラジカルは二次分解(β開裂)を起こし、より分子量の小さな二つのポリマーに分かれる。すなわち、高分子量成分ほど高い確率で分解が進行する。これにより、低分子量成分が増大し、分子量分布の構成を調整することができる。
なかでも、前記ポリプロピレン樹脂に前記直鎖ポリプロピレン樹脂Aと前記長鎖分岐ポリプロピレン樹脂Cが含まれることがより好ましい。
さらに、前記ポリプロピレン樹脂に前記直鎖ポリプロピレン樹脂Aと前記直鎖ポリプロピレン樹脂Bとが含まれ、且つ、前記長鎖分岐ポリプロピレン樹脂Cが含まれることがより好ましい。直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとは、微分分布値差DM、ヘプタン不溶分(HI)、及び/又は、メルトフローレート(MFR)等が異なり、微細混合状態(相分離状態)となっているため、そのような未延伸ポリプロピレンフィルムを延伸することによりフィルムを構成する樹脂成分の配置が複雑化する。従って、微分分布値差DM、ヘプタン不溶分(HI)、及び/又は、メルトフローレート(MFR)等が異なる直鎖ポリプロピレン樹脂Aと直鎖ポリプロピレン樹脂Bとを含むことに加えて、長鎖分岐ポリプロピレン樹脂Cを含むことにより、フィルムを構成する樹脂成分の配置が複雑化することによる延伸フィルムの耐電圧性の向上とともに、微細化された(略)円弧形状の凹凸が形成され、より好適な粗面化を実現することが可能である。
なお、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cではなく、過酸化物による架橋変性により得られる長鎖分岐ポリプロピレン樹脂を用いると、過酸化物による架橋変性により得られる長鎖分岐ポリプロピレン樹脂の有するα晶造核効果によって、キャストシートにはα晶の形成が促進され、β晶の形成が大きく抑制されることになる。α晶を含むキャストシートを延伸しても結晶子の転移は起こらないため、凹凸は形成され難い。従って、ポリプロピレンフィルムを粗面化するためには、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cが好適である。
造核剤としては、α晶を優先的に造核させるα晶造核剤とβ晶を優先的に造核させるβ晶造核剤とが挙げられる。
α晶造核剤のうち有機系造核剤としては、分散型造核剤と溶解型造核剤とが挙げられる。分散型造核剤としては、リン酸エステル金属塩系造核剤、カルボン酸金属塩系造核剤、ロジン金属塩系造核剤等が挙げられる。溶解型造核剤としては、ソルビトール系造核剤、ノニトール系造核剤、キシリトール系造核剤、アミド系造核剤等が挙げられる。
β晶造核剤としては、アミド系造核剤、ジまたはポリカルボン酸金属塩系造核剤、キナクリドン系造核剤、芳香族スルホン酸系造核剤、フタロシアニン系造核剤、テトラオキサスピロ化合物系造核剤等が挙げられる。
造核剤は、ポリプロピレン原料とドライブレンド又はメルトブレンドし、ペレット化して用いることもできるし、ポリプロピレンペレットと共に押出機に投入して用いることもできる。造核剤を用いることによりフィルムの表面粗さを所望の粗さに調節することができる。造核剤の代表的市販品の例としては、例えばβ晶造核剤として、新日本理化株式会社製のエヌジェスターNU-100が挙げられる。前記ポリプロピレンフィルムがβ晶造核剤を含む場合、その含有量は、樹脂成分の質量に対して(樹脂成分を全体としたときに質量で)好ましくは1~1000質量ppm、より好ましくは50~600質量ppmである。
前記ポリプロピレン樹脂組成物を調製する方法としては、特に制限はないが、直鎖ポリプロピレン樹脂A、直鎖ポリプロピレン樹脂B、及び、長鎖分岐ポリプロピレン樹脂Cの重合粉あるいはペレットを、必要に応じて他の樹脂、添加剤等と共に、ミキサー等を用いてドライブレンドする方法や、直鎖ポリプロピレン樹脂A、直鎖ポリプロピレン樹脂B、及び、長鎖分岐ポリプロピレン樹脂Cの重合粉あるいはペレットを、必要に応じて他の樹脂、添加剤等と共に、混練機に供給し、溶融混練してメルトブレンド樹脂組成物を得る方法などが挙げられる。
ポリプロピレン樹脂組成物が1次剤を含む場合、その含有量は、好ましくは樹脂成分の質量に対して(樹脂成分を全体としたときに質量で)1000質量ppm~5000質量ppmである。この目的の酸化防止剤は、押出機内での成形工程にてほとんどが消費され、製膜成形後のフィルム中には、ほとんど残存しない。
ポリプロピレン樹脂組成物がカルボニル基を有するヒンダードフェノール系酸化防止剤を含む場合、その含有量は、樹脂成分の質量に対して(樹脂成分を全体としたときに質量で)好ましくは100質量ppm~10000質量ppm、より好ましくは5500質量ppm~7000質量ppmである。押出機内では少なからず、カルボニル基を有するヒンダードフェノール系酸化防止剤も消費される。
ポリプロピレン樹脂組成物が1次剤を含まない場合、カルボニル基を有するヒンダードフェノール系酸化防止剤をより多く使用することができる。これは、押出機内で、カルボニル基を有するヒンダードフェノール系酸化防止剤の消費量が増えるためである。ポリプロピレン樹脂組成物が1次剤を含まず、カルボニル基を有するヒンダードフェノール系酸化防止剤を含む場合、その含有量は、樹脂成分の質量に対して(樹脂成分を全体としたときに質量で)6000質量ppm~8000質量ppm以下である。
キャストシートは、予め作製したドライブレンド樹脂組成物および/またはメルトブレンド樹脂組成物のペレット類を押出機に供給して、加熱溶融し、ろ過フィルターを通した後、好ましくは170℃~320℃、より好ましくは200℃~300℃に加熱溶融してTダイから溶融押し出し、好ましくは40℃~140℃、より好ましくは80℃~140℃、さらに好ましくは90~140℃、特に好ましくは90~120℃、より特に好ましくは90~105℃の温度(キャスト温度)に保持された少なくとも1個以上の金属ドラムで、冷却、固化させることにより得ることができる。この際、溶融押し出しされた樹脂組成物をエアーナイフで金属ドラムに押さえつけることが好ましい。なお、金属ドラムに接触する側の面が第1の面となり、反対側の面(エアーナイフ側の面)が第2の面となる。
前記二軸延伸ポリプロピレンフィルムは、前記キャストシートに延伸処理を施すことによって製造することができる。延伸方法としては逐次二軸延伸方法が好ましい。逐次二軸延伸方法としては、まずキャストシートを好ましくは100~180℃、より好ましくは140~160℃の温度に保ち、速度差を設けたロール間に通して流れ方向に3~7倍に延伸し、直ちに室温に冷却する。この縦延伸工程の温度を適切に調整することにより、β晶は融解しα晶に転移し、凹凸が顕在化する。引き続き、当該延伸フィルムをテンターに導いて好ましくは160℃以上、より好ましくは160~180℃の温度で幅方向に3~11倍に横延伸した後、緩和、熱固定を施して、ロール状に巻回する。
ここで、前記ポリプロピレンフィルムは、第1の面のSpk値(SpkA)、第1の面のSpk値(SpkA)、第2の面のSvk値(SvkB)、及び、第2の面のSpk値(SpkB)を用いた前記比率が所定の数値範囲内であるため、ブロッキングが抑制されている。従って、上記のスリット加工時に、ポリプロピレンフィルムがブロッキングし、フィルムに流れ方向のしわが発生することを防止できる。
次に、左マージンの巻取リールと右マージンの巻取リールを用い、幅方向に蒸着部分がマージン部よりもはみ出すように2枚重ね合わせて巻回する(素子巻き加工)。次に、巻回体から芯材を抜いてプレスする。次に、両端面に外部電極を形成し、さらに、外部電極にリード線を設ける。以上により、巻回型のフィルムコンデンサが得られる。
実施例及び比較例のポリプロピレンフィルムを製造するために使用したポリプロピレン樹脂を、表1に示す。
表1に示す樹脂A1は、プライムポリマー株式会社製の製品である。樹脂A2は、プライムポリマー株式会社製の製品である。樹脂B1は、大韓油化社製のS802Mである。樹脂B2は、大韓油化社製のHPT-1である。樹脂B3は、大韓油化社製である。樹脂C1は、日本ポリプロ株式会社製のMFX6である。樹脂X1は、ボレアリス社製のWB135HMS(Daploy HMS-PP)である。なお、MFX6は、メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂である。WB135HMSは、過酸化物による架橋変性により得られた長鎖分岐ポリプロピレン樹脂である。樹脂A1、樹脂A2は、直鎖ポリプロピレン樹脂Aに相当する。樹脂B1、樹脂B2、樹脂B3は、直鎖ポリプロピレン樹脂Bに相当する。樹脂C1は、長鎖分岐ポリプロピレン樹脂Cに相当する。樹脂A1、樹脂A2、樹脂B1、樹脂B2、樹脂B3は、いずれもホモポリプロピレン樹脂である。樹脂X2はプライムポリマー株式会社製の製品であり、直鎖状のホモポリプロピレンである。
表1に、各樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、分子量分布(Mw/Mn)、及び、分子量分布(Mz/Mn)を示した。これらの値は、原料樹脂ペレットの形態での値である。測定方法は以下の通りである。
GPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の条件で、各樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、分子量分布(Mw/Mn)、及び、分子量分布(Mz/Mn)を測定した。
具体的に、東ソー株式会社製、示差屈折計(RI)内蔵高温GPC装置であるHLC-8121GPC-HT型を使用した。カラムとして、東ソー株式会社製のTSKgel GMHHR-H(20)HTを3本連結して使用した。140℃のカラム温度で、溶離液として、トリクロロベンゼンを、1.0ml/minの流速で流して測定した。東ソー株式会社製の標準ポリスチレンを用いてその分子量Mに関する検量線を作成し、測定値をQ-ファクターを用いてポリプロピレンの分子量へ換算して、数平均分子量(Mn)、重量平均分子量(Mw)、及び、z平均分子量(Mz)を得た。このMwとMnの値を用いて分子量分布(Mw/Mn)を得た。また、このMzとMnの値を用いて分子量分布(Mz/Mn)を得た。
GPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の条件で、ポリプロピレンの数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、分子量分布(Mw/Mn)、分子量分布(Mz/Mn)を測定した。
東ソー株式会社製、示差屈折計(RI)内蔵型高温GPC装置であるHLC-8121GPC-HT型を使用した。カラムとして、東ソー株式会社製のTSKgelGMHHR-H(20)HTを3本連結し、さらに、TSKgel guardcolumnHHR(30)1本使用した。140℃のカラム温度で、溶離液として、1,2,4-トリクロロベンゼンに0.05wt%の2,6-ジ-ターシャリー-ブチル-パラ-クレゾール(一般名称:BHT)を、1.0ml/minの流速で流して測定し、数平均分子量(Mn)、重量平均分子量(Mw)及びz平均分子量(Mz)を得た。このMzとMnの値を用いて分子量分布(Mz/Mn)を、また、MwとMnの値を用いて分子量分布(Mw/Mn)を得た。測定条件は、以下の通りである。
GPC装置 :HLC-8121GPC/HT(東ソー製)
光散乱検出器:DAWN EOS(Wyatt Technology社)、
カラム :TSKgel guardcolumnHHR(30)(7.8mmID×7.5cm)×1本+TSKgelGMHHR-H(20)HT(7.8mmID×30cm)×3本(東ソー製)
溶離液 :1,2,4-トリクロロベンゼンに0.05wt%のBHT
流速 :1.0mL/min
試料濃度 :2mg/mL
注入量 :300μL
カラム温度 :140℃
システム温度:40℃
前処理 :試料を精秤し、溶離液を加えて140℃で1時間振とう溶解させ、0.5μmの焼結金属フィルターで熱ろ過を行った。
各樹脂について、対数分子量log(M)=4.5のときの微分分布値、対数分子量log(M)=6.0のときの微分分布値を、次のような方法で得た。まず、RI検出計を用いて検出される強度分布の時間曲線(溶出曲線)を、上記標準ポリスチレンを用いて作製した検量線を用いて標準ポリスチレンの分子量M(Log(M))に対する分布曲線に変換した。次に、分布曲線の全面積を100%とした場合のLog(M)に対する積分分布曲線を得た後、この積分分布曲線をLog(M)で、微分することによってLog(M)に対する微分分布曲線を得た。この微分分布曲線から、Log(M)=4.5およびLog(M)=6.0のときの微分分布値を読んだ。また、Log(M)=4.5のときの微分分布値とLog(M)=6.0のときの微分分布値との差を微分分布値差DMとした。なお、微分分布曲線を得るまでの一連の操作は、使用したGPC測定装置に内蔵されている解析ソフトウェアを用いて行った。結果を表1に示す。
各樹脂について原料樹脂ペレットの形態でのメルトフローレート(MFR)を、東洋精機株式会社のメルトインデックサを用いてJIS K 7210の条件Mに準じて測定した。具体的には、まず、試験温度230℃にしたシリンダ内に、4gに秤りとった試料を挿入し、2.16kgの荷重下で3.5分予熱した。その後、30秒間で底穴より押出された試料の重量を測定し、MFR(g/10min)を求めた。上記の測定を3回繰り返し、その平均値をMFRの測定値とした。結果を表1に示す。
各樹脂について、10mm×35mm×0.3mmにプレス成形して約3gの測定用サンプルを作製した。次に、ヘプタン約150mLを加えてソックスレー抽出を8時間行った。抽出前後の試料質量よりヘプタン不溶分を算出した。結果を表1に示す。
各樹脂の灰分について、下記のように測定した。
試料約200gを秤量し、白金皿へ移して800℃で40分間で灰化した。得られた灰分残渣から灰分の割合(ppm)を測定した。結果を表1に示す。
各樹脂を溶媒に溶解し、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)を用いて、以下の条件で測定した。
高温型核磁気共鳴(NMR)装置:日本電子株式会社製、高温型フーリエ変換核磁気共鳴装置(高温FT-NMR)、JNM-ECP500
観測核:13C(125MHz)
測定温度:135℃
溶媒:オルト-ジクロロベンゼン(ODCB:ODCBと重水素化ODCBの混合溶媒(混合比=4/1))
測定モード:シングルパルスプロトンブロードバンドデカップリング
パルス幅:9.1μsec(45°パルス)
パルス間隔:5.5sec
積算回数:4,500回
シフト基準:CH3(mmmm)=21.7ppm
立体規則性度を表すペンタッド分率は、同方向並びの連子「メソ(m)」と異方向の並びの連子「ラセモ(r)」の5連子(ペンタッド)の組み合わせ(mmmmやmrrm等)に由来する各シグナルの強度積分値より、百分率(%)で算出した。mmmmやmrrm等に由来する各シグナルの帰属に関し、例えば、「T.Hayashi et al.,Polymer,29巻,138頁(1988)」等のスペクトルの記載を参考とした。
(実施例1)
樹脂A1と樹脂B1と樹脂C1とをドライブレンドした。混合比率は、質量比で(樹脂A1):(樹脂B1):(樹脂C1)=64:33:3とした。その後、ドライブレンドした樹脂を用い、樹脂温度250℃で溶融した後、Tダイを用いて押出し、表面温度を95℃に保持した金属ドラムに巻きつけて固化させてキャストシートを作製した。この際、溶融押し出しされた樹脂組成物をエアーナイフで金属ドラムに押さえつけながらキャストシートを作製した。得られた未延伸のキャストシートを130℃の温度に保ち、速度差を設けたロール間に通して流れ方向に4.5倍に延伸し、直ちに室温に冷却した。引き続き、延伸フィルムをテンターに導いて、158℃の温度で幅方向に8倍に延伸した後、緩和、熱固定を施して巻き取り、40℃程度の雰囲気中でエージング処理を施して実施例1に係るポリプロピレンフィルムを得た。
原料樹脂のドライブレンドの際の混合比率を表2の通りに変更したこと以外は、実施例1と同様にして実施例2、比較例1~比較例6に係るポリプロピレンフィルムを得た。
ただし、比較例6については、押出成形時のメルトフラクチャーにより平滑なキャストシートを作製できなかった。そのため、当該キャストシートを延伸した時に破断が起こった。
原料樹脂のドライブレンドの際の混合比率を表2の通りに変更したこと以外は、実施例1と同様にして実施例3~実施例5、比較例7、比較例8に係るポリプロピレンフィルムを得た。
実施例、比較例のポリプロピレンフィルムの厚さを測定した。具体的に、シチズンセイミツ社製の紙厚測定器MEI-11を用いて100±10kPaで測定すること以外、JIS-C2330に準拠して測定した。結果を表3に示す。
以下、第1の面を「A面」と呼び、第2の面を「B面」と呼ぶことがある。表3中においても、A面、B面という用語を使用する場合がある。
光干渉式非接触表面形状測定機として(株)菱化システム製の「VertScan2.0(型式:R5500GML)」を使用した。
まず、WAVEモードを用い、530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μmの計測を行った。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行った。
次に、得られたデータに対して、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去した。これにより、粗面化表面の状態を適切に計測できる状態とした。
次に、「VertScan2.0」の解析ソフトウェア「VS-Viewer」のプラグイン機能「ベアリング」にある、「ISOパラメータ」を用いて解析を行った。
最後に、上記10箇所で得られた各値(SvkA、SpkA、SvkB、SpkB、SqA、SqB、SaA、SaB、SkA、SkB)について、それぞれ平均値を算出した。以上により、第1の面のSvk値(SvkA)、第1の面のSpk値(SpkA)、第2の面のSvk値(SvkB)、第2の面のSpk値(SpkB)、第1の面のSq値(SqA)、第2の面のSq値(SqB)、第1の面のSa値(SaA)、第2の面のSa値(SaB)、第1の面のSk値(SkA)、及び、第2の面のSk値(SkB)を決定した。結果を表3に示す。なお、表3には、比SpkB/SpkA、比SvkB/SvkA、比SqB/SqA、比SaB/SaA、比SkB/SkAの値も合わせて示した。
実施例、比較例のポリプロピレンフィルムの第1の面(A面)、及び、第2の面(B面)の楕円密度を測定した。具体的に、デジタルスコープ(株式会社キーエンス製デジタルマイクロスコープVHX-2000)を用いて、レンズ倍率:100倍、測定方法:反射測定、視野範囲:3.4mm×2.6mmにてポリプロピレンフィルムの各面を観察し、その視野範囲内に観測された「楕円」の数を計測した。その後、単位面積当たりに換算した。結果を表3に示す。
なお、一方の軸の長さLμmと他方の軸の長さSμmとしたきにS≦L且つ1≦L≦300を満たすものを、楕円密度を算出する際に考慮する「楕円」とした。これを満たさないものは、楕円密度を算出する際に考慮しなかった(楕円密度を算出する際の「楕円」としてカウントしなかった)。
楕円密度の測定で観測された楕円の長軸の平均値を算出した。結果を表3に示す。
まず、光干渉式非接触表面形状測定機として、(株)菱化システム製の「VertScan2.0(型式R5500GML)」を使用し、WAVEモードにて530whiteフィルタ及び1×BODYの鏡筒を適用し、×10対物レンズを用いて、一視野あたり470.92μm×353.16μmの表面形状データを得た。この操作を対象試料(ポリプロピレンフィルム)の流れ方向・幅方向ともに中央となる箇所から流れ方向に1cm間隔で10箇所について行った。
次に、得られたデータについて、メディアンフィルタ(3×3)によるノイズ除去処理を行ない、その後、カットオフ値30μmによるガウシアンフィルタ処理を行い、うねり成分を除去した。
上述のようにして得られた10箇所の各表面形状データの投影画像から、対をなす円弧からなるクレーター投影画像を3個ずつ抽出した。なお、投影画像は、微細凹凸のうちの高さが0.02μm以上の部分をフィルム表面へ投影した投影画像とした。
クレーター投影画像を抽出するにあたっては、異なるβ型球晶に基づく円弧同士の重なり合いが認められないクレーター投影画像を3個ずつ抽出した。3個の抽出方法は、目視による楕円の面積で四分位数(第1四分位数、第2四分位数(すなわち中央値)および第3四分位数)となる楕円を抽出することとした。
次に、抽出した3個のクレーター投影画像のそれぞれについて、対をなす円弧の合計長さLtと、対をなす円弧を含む仮想円環の全周長さをLcとを計測し、比(Lt/Lc)を求めた。そして、得られた合計30個の前記比の値を平均し、比(Lt/Lc)の平均値αを得た。
仮想円環の決定と、LtおよびLcの計測には、光干渉式非接触表面形状測定器VertScan2.0の解析ソフトウェア「VS-Viewer」のプラグイン機能「エッジ曲線長」を用いて行った。具体的手順は以下の通りである。
(1)まず、図3(a)に示すように、円弧30aおよび円弧30b上における、互いに最も離れた2点をP1、P2とし、P1とP2を結んだ直線(以下、直線(P1-P2)という。)を決定する。
(2)ついで、図3(b)に示すように、直線(P1-P2)の一方側(図3中では、直線(P1-P2)よりも上方側。)に位置する部分の円弧30a、30bの形状(位置データ)から、最小二乗法により、直線(P1-P2)が長軸となるような楕円(E0)を導き出す。そして、この楕円(E0)を構成する曲線(楕円(E0)の周の一部)により、上記一方側における円弧30aと円弧30bとの間の部分を補完して補完線40aとする。なお、図3では、楕円(E0)のうち、補完線40aに相当する部分以外を図示略としている。
(3)ついで、図3(c)に示すように、直線(P1-P2)の他方側(図3では、直線(P1-P2)よりも下方側。)に位置する部分の円弧30a、30bの形状(位置データ)から、最小二乗法により、直線(P1-P2)が長軸となるような楕円(E1)を導き出す。そして、この楕円(E1)を構成する曲線(楕円(E1)の周の一部)により、上記他方側における円弧30aと円弧30bとの間の部分を補完して補完線40bとする。なお、図3では、楕円(E1)のうち、補完線40bに相当する部分以外を図示略としている。
(4)このように決定された補完線40a、40bと、円弧30a、30bとで連結された図3(c)に示される円環が仮想円環である。
(5)そして、この仮想円環の周における各位置(周のある点を基準とした際の距離。)に対する、各位置における微細凹凸20の高さを示す、微細凹凸20の高さプロファイルを描く。この高さプロファイルから、高さ0.02μm以上の部分に対応するクレーター投影画像GにおけるLtおよびLcを読み取る。
なお、最小二乗法の実施に際しては、それぞれ30個(n=30)の位置データを用いる。
JIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて、直流電源を使用し、100℃、125℃で、ポリプロピレンフィルムの絶縁破壊電圧値を12回測定した。絶縁破壊電圧値VDCを、フィルムの厚み(μm)で割り、12回の測定結果中の上位2点および下位2点を除いた8点の平均値を、絶縁破壊強度ES(VDC/μm)とした。結果を表3に示す。
なお、比較例1、比較例4では、120℃での絶縁破壊強さが485VDC/μm未満であり、耐電圧性に劣ることがわかる。
二軸延伸ポリプロピレンフィルムに、Tマージン蒸着パターンを蒸着抵抗15Ω/□にてアルミニウム蒸着を施すことにより、金属層一体型ポリプロピレンフィルムを得た。パターン蒸着はワイヤー方式による真空蒸着法に従って行い、ヘビーエッジ蒸着はるつぼ方式による真空蒸着法に従って行った。蒸着に用いたフィルムは幅620mmであり、蒸着後のフィルム長さは50,000mであった。この幅620mmの金属層一体型ポリプロピレンフィルムの各マージン部の中央に刃を入れて、スリット速度350m/分で、幅30mm、長さ10,000mの小巻取になるようにスリット加工した。その際、金属蒸着巻取繰り出し部で蒸着面と非蒸着面とのブロッキングによる流れ方向のしわが観察されなかった場合をAA、しわとまでは言えないわずかなスジが観察された場合をA、幅方向端部で流れ方向のしわが観察された場合をB、幅方向中央部でも流れ方向のしわが観察された場合をCとして評価した。結果を表3に示す。
実施例、比較例のポリプロピレンフィルムについて、下記のように測定した。
試料約200gを秤量し、白金皿へ移して800℃で40分間で灰化した。得られた灰分残渣から灰分の割合(ppm)を測定した。結果を表3に示す。
幅620mmの金属蒸着巻取を、幅30mm、長さ10,000mになるように、スリット速度350m/分でスリット加工を行い、幅方向20個に分割した。その結果、得られた20個の小巻取全ての端面ずれ(巻取時においてフィルムが左右へ蛇行し、小巻取の端面が不揃いになったときのずれ長さ)がスリット幅の0.5%以内である場合をA、20個の小巻取全ての端面ずれがスリット幅の1.0%以内であり且つ上記A評価にならない場合をB、20個の小巻取全ての端面ずれがスリット幅の2.0%以内であり且つ上記A評価にもB評価にも該当しない場合をC、20個の小巻取の端面ずれがスリット幅の2.0%超えが1つ以上存在した場合をDとして評価した。結果を表3に示す。
スリット加工性評価により得られた小巻取をのうち、左マージンの巻取リールと右マージンの巻取リールを用い、幅方向に蒸着部分がマージン部よりもはみ出すように2枚重ね合わせて巻回した(素子巻き加工)。巻回は、株式会社皆藤製作所製、自動巻取機 3KAW-N2型を用い、巻き取り張力200gにて、1360ターン行った。その際、巻き始めから巻き終わりまでを目視で観察し、しわやずれが発生したものを不合格とし、不合格となったものの数の製造数全体に対する割合を百分率で示し加工性の指標とした(以下素子巻収率と称する)。素子巻収率は高いほど好ましい。95%以上を良好「○」、95%未満を不良「×」として評価した。結果を表3に示す。
実施例で得られたポリプロピレンフィルムを用いて、以下の通りコンデンサを作製した。ポリプロピレンフィルムに、Tマージン蒸着パターンを蒸着抵抗15Ω/□にてアルミニウム蒸着を施すことにより、ポリプロピレンフィルムの片面に金属膜を含む金属層一体型ポリプロピレンフィルムを得た。60mm幅にスリットした後に、2枚の金属層一体型ポリプロピレンフィルムを相合わせて、株式会社皆藤製作所製、自動巻取機3KAW-N2型を用い、巻き取り張力250gにて、1076ターン巻回を行った。素子巻きした素子は、プレスしながら120℃にて15時間熱処理を施した後、素子端面に亜鉛金属を溶射し、扁平型コンデンサを得た。扁平型コンデンサの端面にリード線をはんだ付けし、その後エポキシ樹脂で封止した。出来上がったコンデンサの静電容量は、いずれも75μF(±5μF)であった。
Claims (7)
- 第1の面と第2の面とを有するポリプロピレンフィルムであって、
主成分としてポリプロピレン樹脂を含有し、
前記第1の面のSpk値(SpkA)と前記第2の面のSpk値(SpkB)との比率SpkB/SpkAが0.490以上0.730以下であり、
前記第1の面のSvk値(SvkA)と前記第2の面のSvk値(SvkB)との比率SvkB/SvkAが0.735以上1.250以下であり、
前記ポリプロピレン樹脂は、
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差が8.0%以上である直鎖ポリプロピレン樹脂Aと、
分子量微分分布曲線において、対数分子量Log(M)=4.5のときの微分分布値からLog(M)=6.0のときの微分分布値を引いた差が8.0%未満である直鎖ポリプロピレン樹脂Bと、
メタロセン触媒を用いて重合された長鎖分岐ポリプロピレン樹脂Cとを含み、
二軸延伸されていることを特徴とするポリプロピレンフィルム。 - コンデンサ用であることを特徴とする請求項1に記載のポリプロピレンフィルム。
- 前記第1の面のSq値(SqA)と前記第2の面のSq値(SqB)との比率SqB/SqAが0.4~1.0であることを特徴とする請求項1又は2に記載のポリプロピレンフィルム。
- 前記第1の面のSa値(SaA)と前記第2の面のSa値(SaB)との比率SaB/SaAが0.6~1.0であることを特徴とする請求項1~3のいずれか1に記載のポリプロピレンフィルム。
- 請求項1~4のいずれか1に記載のポリプロピレンフィルムと、
前記ポリプロピレンフィルムの片面又は両面に積層された金属層とを有することを特徴とする金属層一体型ポリプロピレンフィルム。 - 巻回された請求項5に記載の金属層一体型ポリプロピレンフィルムを有するか、又は、請求項5に記載の金属層一体型ポリプロピレンフィルムが複数積層された構成を有することを特徴とするフィルムコンデンサ。
- 請求項1~4のいずれか1に記載のポリプロピレンフィルムが、ロール状に巻回されていることを特徴とするフィルムロール。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237026255A KR20230119251A (ko) | 2017-12-26 | 2018-12-26 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름,필름 콘덴서 및 필름 롤 |
KR1020207015567A KR102563543B1 (ko) | 2017-12-26 | 2018-12-26 | 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름, 필름 콘덴서 및 필름 롤 |
PCT/JP2018/047983 WO2019131815A1 (ja) | 2017-12-26 | 2018-12-26 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
US16/767,092 US11492475B2 (en) | 2017-12-26 | 2018-12-26 | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
JP2021133159A JP7265228B2 (ja) | 2017-12-27 | 2021-08-18 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
US17/930,839 US11661507B2 (en) | 2017-12-26 | 2022-09-09 | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
US18/301,895 US11926730B2 (en) | 2017-12-26 | 2023-04-17 | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017252094 | 2017-12-27 | ||
JP2017252094 | 2017-12-27 | ||
JP2018240394 | 2018-12-22 | ||
JP2018240394 | 2018-12-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021133159A Division JP7265228B2 (ja) | 2017-12-27 | 2021-08-18 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020100798A JP2020100798A (ja) | 2020-07-02 |
JP7020393B2 true JP7020393B2 (ja) | 2022-02-16 |
Family
ID=71141126
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018243115A Active JP7020393B2 (ja) | 2017-12-26 | 2018-12-26 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
JP2023062437A Pending JP2023095855A (ja) | 2017-12-27 | 2023-04-07 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023062437A Pending JP2023095855A (ja) | 2017-12-27 | 2023-04-07 | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7020393B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7484682B2 (ja) | 2020-12-02 | 2024-05-16 | 王子ホールディングス株式会社 | 二軸延伸ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及びフィルムロール |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014231584A (ja) | 2013-05-30 | 2014-12-11 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム |
JP2015146374A (ja) | 2014-02-03 | 2015-08-13 | 王子ホールディングス株式会社 | コンデンサ素子の製造方法 |
WO2016159330A1 (ja) | 2015-03-31 | 2016-10-06 | 王子ホールディングス株式会社 | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびコンデンサ |
JP2016188360A (ja) | 2015-03-27 | 2016-11-04 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2016195250A (ja) | 2015-03-31 | 2016-11-17 | 王子ホールディングス株式会社 | フィルムコンデンサ用二軸延伸ポリプロピレンフィルム |
WO2017077752A1 (ja) | 2015-11-05 | 2017-05-11 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
JP2017119885A (ja) | 2012-03-01 | 2017-07-06 | 王子ホールディングス株式会社 | ポリプロピレンフィルムとその製造方法 |
-
2018
- 2018-12-26 JP JP2018243115A patent/JP7020393B2/ja active Active
-
2023
- 2023-04-07 JP JP2023062437A patent/JP2023095855A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017119885A (ja) | 2012-03-01 | 2017-07-06 | 王子ホールディングス株式会社 | ポリプロピレンフィルムとその製造方法 |
JP2014231584A (ja) | 2013-05-30 | 2014-12-11 | 王子ホールディングス株式会社 | コンデンサー用二軸延伸ポリプロピレンフィルム |
JP2015146374A (ja) | 2014-02-03 | 2015-08-13 | 王子ホールディングス株式会社 | コンデンサ素子の製造方法 |
JP2016188360A (ja) | 2015-03-27 | 2016-11-04 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
WO2016159330A1 (ja) | 2015-03-31 | 2016-10-06 | 王子ホールディングス株式会社 | コンデンサ用二軸延伸ポリプロピレンフィルム、金属化フィルムおよびコンデンサ |
JP2016195250A (ja) | 2015-03-31 | 2016-11-17 | 王子ホールディングス株式会社 | フィルムコンデンサ用二軸延伸ポリプロピレンフィルム |
WO2017077752A1 (ja) | 2015-11-05 | 2017-05-11 | 東レ株式会社 | 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ |
Also Published As
Publication number | Publication date |
---|---|
JP2023095855A (ja) | 2023-07-06 |
JP2020100798A (ja) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7020395B2 (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
KR101942765B1 (ko) | 콘덴서용 2축 연신 폴리프로필렌 필름 | |
US11661507B2 (en) | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll | |
JP5929838B2 (ja) | コンデンサー用二軸延伸ポリプロピレンフィルム | |
US10910164B2 (en) | Biaxially stretched polypropylene film for capacitors, metallized film, and capacitor | |
KR102184883B1 (ko) | 2축 연신 폴리프로필렌 필름, 콘덴서용 금속화 필름 및 콘덴서 | |
JP6314509B2 (ja) | コンデンサ素子の製造方法 | |
CN110139738B (zh) | 双轴拉伸聚丙烯薄膜、金属化薄膜和电容器 | |
JPWO2016167328A1 (ja) | コンデンサ用二軸延伸ポリプロピレンフィルム | |
JP2008127460A (ja) | コンデンサー用二軸配向ポリプロピレンフィルム、それを用いてなる金属化フィルムおよびコンデンサー | |
JP7484682B2 (ja) | 二軸延伸ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及びフィルムロール | |
US11492475B2 (en) | Polypropylene film, metal layer-integrated polypropylene film, film capacitor and film roll | |
JP2023095855A (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
JP7265228B2 (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
JP7265227B2 (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
JP7020394B2 (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
JP7265229B2 (ja) | ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、フィルムコンデンサ、及び、フィルムロール | |
CN116239839B (zh) | 聚丙烯薄膜、金属层一体型聚丙烯薄膜、薄膜电容器和薄膜卷 | |
US20240181749A1 (en) | Metallized polypropylene film | |
EP4289890A1 (en) | Polypropylene film, metal layer-integrated polypropylene film, and capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7020393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |