JP7019471B2 - 固体撮像装置及び撮像システム - Google Patents

固体撮像装置及び撮像システム Download PDF

Info

Publication number
JP7019471B2
JP7019471B2 JP2018050637A JP2018050637A JP7019471B2 JP 7019471 B2 JP7019471 B2 JP 7019471B2 JP 2018050637 A JP2018050637 A JP 2018050637A JP 2018050637 A JP2018050637 A JP 2018050637A JP 7019471 B2 JP7019471 B2 JP 7019471B2
Authority
JP
Japan
Prior art keywords
electrodes
solid
electrode
charge
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050637A
Other languages
English (en)
Other versions
JP2019165285A (ja
Inventor
一 池田
隆博 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018050637A priority Critical patent/JP7019471B2/ja
Priority to US16/288,783 priority patent/US10536653B2/en
Publication of JP2019165285A publication Critical patent/JP2019165285A/ja
Application granted granted Critical
Publication of JP7019471B2 publication Critical patent/JP7019471B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • H01L27/1485Frame transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像装置及び撮像システムに関する。
視界の中の物体の動きを検出するイメージセンサは、自動運転やロボットのためのセンサとして期待されている。動きの検出は、原理的には、短期間で複数の画像を撮影し、画像同士の比較をすることにより実現が可能である。しかしながら、画像同士を比較するには大規模な計算が必要であり、処理に時間を要する。特に前述の用途においては、動きを検知してから短時間で実際の対応を行う必要があるため、より高速に物体の動きを検出することが求められる。
非特許文献1には、より少ない計算量で高速に被写体の動きの算出が可能な固体撮像装置として、時間相関イメージセンサが提案されている。非特許文献1に記載されたセンサは、光キャリアを蓄積するコンデンサを1画素あたり複数設け、これらコンデンサにキャリアを分配して蓄積する。その分配比を1フレームの時間の中で変化しながら撮影して得た複数の画像を用いることで、動きベクトルを算出することができる。
非特許文献1に記載のデバイスでは、複数のコンデンサの各々がトランジスタを介して受光部に接続された構成となっており、トランジスタのゲート電位を制御することによって各コンデンサに流れ込む電流の量を制御している。
Shigeru Ando and Akira Kimachi, "Correlation Image Sensor: Two-Dimensional Matched Detection of Amplitude-Modulated Light", IEEE Transactions on Electron Devices, Vol.50, No.10, October 2003, pp.2059-2066.
しかしながら、非特許文献1に記載の構成は、被写体が明るく光キャリアが電流をなすほど多い場合には十分に動作し電荷の分配が可能であるが、被写体が暗く信号が離散的である場合にはノイズに支配される成分が大きくなりすぎ、適切な分配が行えなかった。
本発明の目的は、暗い被写体の撮影を行う場合であっても光電変換部で生成された光キャリアを複数の電荷蓄積部に適切に振り分けて蓄積しうる固体撮像装置及びその駆動方法を提供することにある。
本発明の一観点によれば、光の入射により電荷を生成する光電変換膜と、前記光電変換膜の一方の面側に配された第1の電極と、前記光電変換膜の他方の面側に配された複数の第2の電極と、を有する光電変換部と、前記複数の第2の電極の各々に接続された複数の電荷蓄積部と、前記複数の電荷蓄積部に蓄積された電荷の量に応じた信号を出力する出力部と、前記複数の第2の電極の各々に印加する駆動電圧を個別に制御する制御部と、を有し、前記制御部は、1フレームの電荷の蓄積期間に、前記複数の第2の電極の各々が順に前記電荷に対して前記複数の第2の電極の中で最も低いポテンシャルとなるように、前記複数の第2の電極の各々に印加する前記駆動電圧を制御する固体撮像装置が提供される。
また、本発明の他の一観点によれば、光の入射により電荷を生成する光電変換膜と、前記光電変換膜の一方の面側に配された第1の電極と、前記光電変換膜の他方の面側に配された複数の第2の電極と、を有する光電変換部と、前記複数の第2の電極の各々に接続された複数の電荷蓄積部と、前記複数の電荷蓄積部に蓄積された電荷の量に応じた信号を出力する出力部と、を有する固体撮像装置の駆動方法であって、1フレームの電荷の蓄積期間に、前記複数の第2の電極の各々が順に前記電荷に対して前記複数の第2の電極の中で最も低いポテンシャルとなるように、前記複数の第2の電極の各々に印加する駆動電圧を個別に制御する固体撮像装置の駆動方法が提供される。
本発明によれば、暗い被写体の撮影を行う場合であっても光電変換部で生成された光キャリアを複数の電荷蓄積部に適切に振り分けて蓄積することができる。
本発明の第1実施形態による固体撮像装置の概略構成を示すブロック図である。 本発明の第1実施形態による固体撮像装置の画素の構成例を示す回路図である。 本発明の第1実施形態による固体撮像装置の画素の構成例を示す断面図及び平面図である。 本発明の第1実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。 本発明の第1実施形態による固体撮像装置の駆動時における光電変換膜内のポテンシャル分布を示す図である。 本発明の第1実施形態による固体撮像装置における画素の空間的な範囲を説明する図である。 本発明の第2実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。 本発明の第2実施形態による固体撮像装置の画素の構成例を示す回路図である。 本発明の第2実施形態による固体撮像装置の画素の構成例を示す平面図である。 本発明の第2実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。 本発明の第4実施形態による撮像システムの概略構成を示すブロック図である。 本発明の第5実施形態による撮像システム及び移動体の構成例を示す図である
[第1実施形態]
本発明の第1実施形態による固体撮像装置及びその駆動方法について、図1乃至図6を用いて説明する。図1は、本実施形態による固体撮像装置の概略構成を示すブロック図である。図2は、本実施形態による固体撮像装置の画素の構成例を示す回路図である。図3は、本実施形態による固体撮像装置の画素の構成例を示す断面図及び平面図である。図4は、本実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。図5は、本実施形態による固体撮像装置の駆動時における光電変換膜内のポテンシャル分布を示す図である。図6は、本実施形態による固体撮像装置における画素の空間的な範囲を説明する図である。
はじめに、本実施形態による固体撮像装置の構造について、図1乃至図3を用いて説明する。
本実施形態による固体撮像装置100は、図1に示すように、画素領域10と、垂直走査回路20と、読み出し回路30と、水平走査回路40と、出力回路50と、制御回路60とを有している。
画素領域10には、複数行及び複数列に渡ってマトリクス状に配された複数の画素12が設けられている。それぞれの画素12は、入射光をその光量に応じた電荷に変換する光電変換部を含む。画素領域10に配される画素アレイの行数及び列数は、特に限定されるものではない。また、画素領域10には、入射光の光量に応じた信号を出力する画素12のほかに、遮光されたオプティカルブラック画素や信号を出力しないダミー画素等の他の画素(図示せず)が配置されていてもよい。
画素領域10の画素アレイの各行には、第1の方向(図1において横方向)に延在して、制御線14が配されている。制御線14は、第1の方向に並ぶ画素12にそれぞれ接続され、これら画素12に共通の信号線をなしている。制御線14の延在する第1の方向は、行方向或いは水平方向と表記することがある。各行の制御線14は、垂直走査回路20に接続されている。なお、各行の制御線14は、複数の信号線を含み得る。
画素領域10の画素アレイの各列には、第1の方向と交差する第2の方向(図1において縦方向)に延在して、出力線16が配されている。出力線16は、第2の方向に並ぶ画素12にそれぞれ接続され、これら画素12に共通の信号線をなしている。出力線16の延在する第2の方向は、列方向或いは垂直方向と表記することがある。各列の出力線16は、読み出し回路30に接続されている。なお、各列の出力線16は、複数の信号線を含み得る。
垂直走査回路20は、それぞれの画素12から信号を読み出す際に画素12内の読み出し回路を駆動するための制御信号を、画素アレイの行毎に設けられた制御線14を介して画素12に供給する制御部である。垂直走査回路20は、シフトレジスタやアドレスデコーダを用いて構成することができる。画素12から読み出された信号は、画素アレイの列毎に設けられた出力線16を介して読み出し回路30に入力される。
読み出し回路30は、画素12から読み出された信号に対して所定の処理、例えば、増幅処理や加算処理等の信号処理を実施する回路部である。読み出し回路30は、信号保持部、列アンプ、相関二重サンプリング(CDS)回路、加算回路等を含み得る。読み出し回路30は、必要に応じてA/D変換回路等を更に含んでもよい。
水平走査回路40は、読み出し回路30において処理された信号を列毎に順次、出力回路50に転送するための制御信号を、読み出し回路30に供給する回路部である。水平走査回路40は、シフトレジスタやアドレスデコーダを用いて構成することができる。出力回路50は、バッファアンプや差動増幅器などから構成され、水平走査回路40によって選択された列の信号を増幅して出力するための回路部である。
制御回路60は、垂直走査回路20、読み出し回路30及び水平走査回路40に、それらの動作やタイミングを制御する制御信号を供給するための回路部である。垂直走査回路20、読み出し回路30及び水平走査回路40に供給する制御信号の一部又は総ては、固体撮像装置100の外部から供給してもよい。
画素領域10を構成する画素12の各々は、例えば図2に示す画素回路により構成することができる。すなわち、画素領域10を構成する画素12の各々は、光電変換部PCと、電荷蓄積部CA,CB,CCと、リセットトランジスタM1A,M1B,M1Cと、増幅トランジスタM2A,M2B,M2Cと、選択トランジスタM3A,M3B,M3Cと、を含む。
光電変換部PCは、光電変換膜110と、光電変換膜110の一方の面側に設けられた共通電極120と、光電変換膜110の他方の面側に設けられた複数の個別電極130A,130B,130Cと、を含む。光電変換部PCが半導体基板の上に配される場合、一例では、共通電極120が上部電極であり、個別電極130A,130B,130Cが下部電極である。
なお、光電変換部PCの膜構成は、特に限定されるものではなく、必要に応じて適宜変更が可能である。例えば、光電変換部PCは、共通電極120と光電変換膜110との間に配されたブロッキング層や、光電変換膜110と個別電極130A,130B,130Cとの間に配された絶縁層等を更に有してもよい。このブロッキング層は、共通電極120側から信号キャリアが流入するのを防止する機能を備える。また、絶縁層は、個別電極130A,130B,130C側から光電変換膜110に信号キャリアが逆流するのを防止する機能を備える。
光電変換部PCの個別電極130Aは、電荷蓄積部CAの一方のノード、リセットトランジスタM1Aのソース、増幅トランジスタM2Aのゲートに接続されている。増幅トランジスタM2Aのソースは、選択トランジスタM3Aのドレインに接続されている。選択トランジスタM3Aのソースは、出力線16Aに接続されている。電荷蓄積部CAの他方のノードは、駆動電圧V1を供給する電源140Aに接続されている。
同様に、光電変換部PCの個別電極130Bは、電荷蓄積部CBの一方のノード、リセットトランジスタM1Bのソース、増幅トランジスタM2Bのゲートに接続されている。増幅トランジスタM2Bのソースは、選択トランジスタM3Bのドレインに接続されている。選択トランジスタM3Bのソースは、出力線16Bに接続されている。電荷蓄積部CBの他方のノードは、駆動電圧V2を供給する電源140Bに接続されている。
また、光電変換部PCの個別電極130Cは、電荷蓄積部CCの一方のノード、リセットトランジスタM1Cのソース、増幅トランジスタM2Cのゲートに接続されている。増幅トランジスタM2Cのソースは、選択トランジスタM3Cのドレインに接続されている。選択トランジスタM3Cのソースは、出力線16Cに接続されている。電荷蓄積部CCの他方のノードは、駆動電圧V3を供給する電源140Cに接続されている。
電源140Aから供給される駆動電圧V1、電源140Bから供給される駆動電圧V2、電源140Cから供給される駆動電圧V3は、制御回路60により或いは垂直走査回路20を介して制御することができる。
リセットトランジスタM1A,M1B,M1Cのドレインは、リセット電圧(電圧VRES)を供給する信号線に接続されている。増幅トランジスタM2A,M2B,M2Cのドレインは、電源電圧(VDD)を供給する電源線に接続されている。光電変換部PCの共通電極120は、電圧VPLを供給する信号線に接続されている。
リセットトランジスタM1A,M1B,M1Cのゲートは、リセット信号線RESに接続されている。選択トランジスタM3Aのゲートは、選択信号線SELAに接続されている。選択トランジスタM3Bのゲートは、選択信号線SELBに接続されている。選択トランジスタM3Cのゲートは、選択信号線SELCに接続されている。リセット信号線RES及び選択信号線SELA,SELB,SELCが、図1に示した1本の制御線14に相当する。また、出力線16A,16B,16Cが、図1に示した1本の出力線16に相当する。
画素12の構造について、図3を用いてより具体的に説明する。本実施形態による固体撮像装置100は、図3(a)に示すように、半導体基板150に設けられる。画素12の電荷蓄積部CA,CB,CCの各々は、半導体基板150のP型半導体領域152内に設けられたN型半導体領域154と、絶縁膜156を介してN型半導体領域154に対向する電極158と、を含むMIS型容量により構成することができる。或いは、平板型や櫛歯型等の2つの金属電極を組み合わせたMIM型容量により構成することも可能である。画素12の光電変換部PCは、電荷蓄積部CA,CB,CCが設けられた半導体基板150の上に、配線部160を介して設けられる。光電変換部PCは、個別電極130A,130B,130Cが設けられた面が半導体基板150に対向するように、配線部160の上に配される。配線部160には、電荷蓄積部CAの電極158Aと個別電極130Aとを接続する配線、電荷蓄積部CBの電極158Bと個別電極130Bとを接続する配線、電荷蓄積部CCの電極158Cと個別電極130Cとを接続する配線などが配される。配線部160は、絶縁膜内に複数の配線層が配された多層配線構造により構成される。
図3(b)は、配線部160の側から光電変換部PCを見たときの、1つの画素12の個別電極130A,130B,130Cの平面的なレイアウトを示す平面図である。各々の画素12は、図3(b)に示すように、個別電極130A,130B,130Cを、それぞれ複数含みうる。図3(b)には、7つの個別電極130Aと、5つの個別電極130Bと、8つの個別電極130Cと、を含む光電変換部PCを示しているが、各々の数は1つ以上であれば特に限定されるものではない。同じ種類の個別電極130は、配線部160において互いに接続され、共通の電極158に電気的に接続される。図3(b)では、3種類の個別電極130A,130B,130Cを六方格子状に配列した例を示しているが、個別電極130の種類や配列は、これに限定されるものではない。
図3(c)は、配線部160の側から半導体基板150を見たときの、半導体基板150上における各素子の平面的なレイアウトを示す平面図である。図3(c)には、電荷蓄積部CA,CB,CC、リセットトランジスタM1A,M1B,M1C、増幅トランジスタM2A,M2B,M2C、選択トランジスタM3A,M3B,M3Cが配される領域を模式的に示している。電荷蓄積部CA,CB,CCの容量値を十分に確保する観点から、電荷蓄積部CA,CB,CCの配置領域は相対的に大きな面積を占めることが望ましい。
固体撮像装置100の画素12に入射した光は、光電変換部PCの光電変換膜110に吸収され、光電変換膜110内に光キャリア(電子正孔対)を発生させる。個別電極130A,130B,130C側が共通電極120側よりも高い電位に設定されていると、光電変換膜110で生成された電子は、個別電極130A,130B,130Cによって収集され、電荷蓄積部CA,CB,CCに蓄積される。このとき、電源140A,140B,140Cから電荷蓄積部CA,CB,CCに供給する駆動電圧V1,V2,V3を適宜制御することにより、光キャリアを収集する個別電極130A,130B,130Cを任意に選択することができる。
リセットトランジスタM1A,M1B,M1Cは、オンになることで電荷蓄積部CA,CB,CCを電圧VRESに応じた所定の電圧にリセットする。電荷蓄積部CA,CB,CCは、光電変換部PCから転送された電荷を保持するとともに、その容量成分による電荷電圧変換によって、光電変換部PCから転送された電荷の量に応じた電位差を両端子間に形成する。これにより、増幅トランジスタM2A,M2B,M2Cのゲートには、電荷蓄積部CA,CB,CCに蓄積された電荷の量に応じた電圧がそれぞれ印加される。増幅トランジスタM2A,M2B,M2Cは、ドレインに電圧VDDが供給され、ソースに選択トランジスタM3A,M3B,M3Cを介してバイアス電流が供給される構成となっており、ゲートを入力ノードとする増幅部(ソースフォロワ回路)を構成する。これにより、増幅トランジスタM2A,M2B,M2Cは、電荷蓄積部CA,CB,CCに蓄積された電荷の量に応じた信号を、選択トランジスタM3A,M3B,M3Cを介して出力線16A,16B,16Cにそれぞれ出力する。増幅トランジスタM2A,M2B,M2C及び選択トランジスタM3A,M3B,M3Cは、電荷蓄積部CA,CB,CCに蓄積された電荷の量に応じた信号を出力する出力部を構成する。
次に、本実施形態による固体撮像装置の駆動方法について、図4を用いて説明する。図4は、1フレーム分の動作を示すタイミングチャートである。図4中、制御信号PRESは、リセット信号線RESの電位である。信号OUT1,OUT2,OUT3は、それぞれ出力線16A,16B,16Cの電位である。駆動電圧V1,V2,V3は、それぞれ電源140A,140B,140Cの出力電圧である。なお、信号電荷が電子の場合、光電変換部PCの共通電極120に供給される電圧VPLは、個別電極130A,130B,130Cの電圧よりも低くなるように設定される。
まず、時刻t0において、垂直走査回路20は、制御信号PRESをハイ(Hi)レベルに制御し、リセットトランジスタM1A,M1B,M1Cをオンにする。これにより、増幅部の入力ノードの電位を電圧VRESに応じた所定の電位にリセットし、出力線16A,16B,16Cの電位をリセットレベルに設定する。なお、時刻t0において、電荷蓄積部CAの他方の電極に印加する駆動電圧V1、電荷蓄積部CBの他方の電極に印加する駆動電圧V2及び電荷蓄積部CCの他方の電極に印加する駆動電圧V3は、ロー(Lo)レベルである。
次いで、時刻t1において、垂直走査回路20は、制御信号PRESをローレベルに制御し、リセットトランジスタM1A,M1B,M1Cをオフにする。これにより、増幅部の入力ノードのリセット状態は解除され、電荷蓄積部CA,CB,CCは光電変換部PCで生成された電子を蓄積可能な状態となる。
同じく時刻t1において、制御回路60は、電源140Aを制御し、駆動電圧V1をハイレベルに設定する。これにより、駆動電圧V1がハイレベル、駆動電圧V2,V3がローレベルとなり、個別電極130Aは、光キャリア(電子)に対して最低のポテンシャルとなる。その結果、光電変換部PCにて生成された光キャリア(電子)は、個別電極130Aを介して収集され、電荷蓄積部CAに蓄積される。信号OUT1の信号レベルは、駆動電圧V1をハイレベルに設定することに伴って増加し、電荷蓄積部CAへの光キャリアの蓄積が進行するに従って徐々に低下する。時刻t1は、光キャリアの蓄積期間の開始時刻である。
次いで、時刻t2において、制御回路60は、電源140Bを制御し、駆動電圧V2を、駆動電圧V1と同じハイレベルに設定する。これにより、駆動電圧V1,V2がハイレベル、駆動電圧V3がローレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Aと個別電極130Bとを介して均等に収集され、電荷蓄積部CA及び電荷蓄積部CBにそれぞれ蓄積される。信号OUT2の信号レベルは、駆動電圧V2をハイレベルに設定することに伴って増加し、電荷蓄積部CBへの光キャリアの蓄積に伴い、徐々に低下する。
次いで、時刻t3において、制御回路60は、電源140Aを制御し、駆動電圧V1をローレベルに設定する。これにより、駆動電圧V2がハイレベル、駆動電圧V1,V3がローレベルとなり、個別電極130Bは、光キャリアに対して最低のポテンシャルとなる。その結果、光電変換部PCにて生成された光キャリアは、個別電極130Bを介して収集され、電荷蓄積部CBに蓄積される。信号OUT1の信号レベルは、駆動電圧V1をハイレベルからローレベルに制御することに伴って低下し、電荷蓄積部CAに蓄積された光キャリアの量に相当するレベルだけ初期のリセットレベルよりも低くなる。
次いで、時刻t4において、制御回路60は、電源140Cを制御し、駆動電圧V3を、駆動電圧V2と同じハイレベルに設定する。これにより、駆動電圧V2,V3がハイレベル、駆動電圧V1がローレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Bと個別電極130Cとを介して均等に収集され、電荷蓄積部CB及び電荷蓄積部CCにそれぞれ蓄積される。信号OUT3の信号レベルは、駆動電圧V3をハイレベルに設定することに伴って増加し、電荷蓄積部CCへの光キャリアの蓄積に伴い、徐々に低下する。
次いで、時刻t5において、制御回路60は、電源140Bを制御し、駆動電圧V2をローレベルに設定する。これにより、駆動電圧V3がハイレベル、駆動電圧V1,V2がローレベルとなり、個別電極130Cは、光キャリアに対して最低のポテンシャルとなる。その結果、光電変換部PCにて生成された光キャリアは、個別電極130Cを介して収集され、電荷蓄積部CCに蓄積される。信号OUT2の信号レベルは、駆動電圧V2をハイレベルからローレベルに制御することに伴って低下し、電荷蓄積部CBに蓄積された光キャリアの量に相当するレベルだけ初期のリセットレベルよりも低くなる。
次いで、時刻t6において、制御回路60は、電源140Aを制御し、駆動電圧V1を、駆動電圧V3と同じハイレベルに設定する。これにより、駆動電圧V1,V3がハイレベル、駆動電圧V2がローレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Aと個別電極130Cとを介して均等に収集され、電荷蓄積部CA及び電荷蓄積部CCにそれぞれ蓄積される。
次いで、時刻t7において、制御回路60は、電源140A,140Cを制御し、駆動電圧V1,V3をローレベルに設定する。これにより、駆動電圧V1,V2,V3がローレベルとなり、個別電極130A,130B,130Cによる電荷の収集がされなくなる。時刻t7は、光キャリアの蓄積期間の終了時刻である。この時点における信号OUT1,OUT2,OUT3は、電荷蓄積部CA,CB,CCが蓄積する電荷量を反映している。
次いで、駆動電圧V1,V2,V3をローレベルに設定した後の時刻t8において、信号OUT1,OUT2,OUT3を読み出し回路30を介して読み出すことにより、時刻t1から時刻t7の間に生成された光キャリアに基づく信号を出力することができる。
固体撮像装置100をこのように駆動することにより、光電変換部PCで生成された光キャリアを、3種類の電荷蓄積部CA,CB,CCに蓄積することができる。このとき、駆動電圧V1,V2,V3によって光電変換膜110内の電界を適宜制御することにより、個別電極130A,130B,130Cが光キャリアに対して順に最も低いポテンシャルとなるように個別に制御することができる。これにより、光電変換部PCで生成された光キャリアを、1フレームの時間の中で分配比を変化しながら3種類の電荷蓄積部CA,CB,CCに振り分けて蓄積することができる。
本実施形態による固体撮像装置では、光電変換部PCで生じた電荷を、トランジスタを介さずに電荷蓄積部CA,CB,CCへと転送するため、出力信号にトランジスタの動作等に起因するノイズ成分が重畳するのを防止することができる。これにより、被写体が暗く信号が離散的な場合においても、光電変換部PCで生成された光キャリアを電荷蓄積部CA,CB,CCに適切に振り分けて蓄積することができる。
図5は、1つの画素12の光電変換膜110内における等ポテンシャル(位置エネルギー)線の模式図である。
図5(a)は、図4のタイミングチャートの時刻t1から時刻t2までの期間における状態を示している。時刻t1から時刻t2までの期間は、駆動電圧V1がハイレベル、駆動電圧V2,V3がローレベルであり、光キャリアから見たポテンシャルは、個別電極130A部が最も低く、個別電極130B,130C部が高くなる。このポテンシャル勾配により、光電変換膜110内で生成された光キャリアは、自然に電極130A部へと集まる。
図5(b)は、図4のタイミングチャートの時刻t2から時刻t3までの期間における状態を示している。時刻t2から時刻t3までの期間は、駆動電圧V1,V2がハイレベル、駆動電圧V3がローレベルであり、光キャリアから見たポテンシャルは、個別電極130A,130B部が最も低く、個別電極130C部が高くなる。このポテンシャル勾配により、光電変換膜110内で生成された光キャリアは、個別電極130A部と個別電極130B部とに均等に集まり、どちらかに偏ることがない。光キャリアは、発生と同時に電界によって振り分けられるため、被写体が暗くても適切に振り分けることができる。
画素12の空間的な範囲は、個別電極130間の接続状態や駆動態様に応じて動的に変化する。これは、各個別電極130の役割が、駆動時には電荷収集の役割と障壁形成の役割とに変化するからである。
例えば、図6(a)に示すように、個別電極130が各々独立している場合において、個別電極130Bに着目すると、その周囲の6つの個別電極130A,130Cで囲まれた領域(点線で囲まれた領域)が、個別電極130Bの電荷収集範囲となる。この電荷収集範囲が、この瞬間における「画素」であるともいえる。同様に、個別電極130A,130Cが最低ポテンシャルであるときの電荷収集範囲も定義することができる。この場合、電荷収集領域の範囲は、個別電極130の種類によって異なることになるが、被写体の像が画素の大きさに比べて十分に大きければ、この差は無視することができる。
また、図6(b)は、個別電極130A,130B,130Cを、それぞれ3つずつ互いに電気的に接続し、1つの画素12を9個の個別電極130A,130B,130Cにより構成した例である。個別電極130A,130B,130Cを1つの電極ユニットと考えた場合、1つの画素12は、3つの電極ユニットにより構成されていると考えることができる。この場合、互いに接続された3つの個別電極130Bの周囲の12個の個別電極130A,130Bで囲まれた領域(点線で囲まれた領域)が、個別電極130Bの電荷収集範囲となる。この電荷収集範囲が、この瞬間における「画素」であるともいえる。同様に、個別電極130A,130Cが最低ポテンシャルであるときの電荷収集範囲も定義することができる。この場合、電荷収集範囲の大きさに対する動作間の差違を、相対的に小さくすることができる。
また、図6(c)は、個別電極130A,130B,130Cを、それぞれ7つずつ互いに電気的に接続し、1つの画素12を21個の個別電極130A,130B,130Cにより構成した例である。個別電極130A,130B,130Cを1つの電極ユニットと考えた場合、1つの画素12は、7個の電極ユニットにより構成されていると考えることができる。ここでは図示を省略するが、この場合にも、電荷収集範囲の大きさに対する動作間の差違を、相対的に小さくすることができる。
本実施形態では、個別電極130A,130B,130Cを等間隔に配置する構成を示したが、個別電極130A,130B,130Cは必ずしも等間隔に配置する必要はない。ただし、各個別電極130A,130B,130Cを介した出力を等価に扱うことができるという観点からは、個別電極130A,130B,130Cは等間隔に配置することが好ましい。個別電極130が4種類以上の場合も同様である。
また、本実施形態では、同じ種類の個別電極130が互いに最近接で隣り合わない構成としている。これは、図5に示したように、他の個別電極が、相互にポテンシャル障壁の役割と電荷収集電極の役割とを果たし合ううえで有効であるからである。しかしながら、同じ種類の個別電極130が最近接で隣接する構成を採用することも可能である。例えば、個々の個別電極130を、近接配置された2つ以上のブロックにより構成することが可能である。
また、本実施形態では、1つの画素12に含まれる同じ種類の複数の個別電極130を1つの電荷蓄積部Cに電気的に接続するように構成しているが、同じ種類の複数の個別電極130をそれぞれ別の電荷蓄積部Cに接続するように構成してもよい。また、個別電極130の間にスイッチを設け、任意に接続と切り離しとを制御できる構成としてもよい。
また、本実施形態では、1つの画素12中に3種類の個別電極130A,130B,130Cを有する構成を示しているが、個別電極130の種類は3種類に限定されるものではない。個別電極130の種類は、3種類のみならず、2種類、4種類、6種類等であってもよい。
個別電極130の配置は、個別電極130の種類に応じて適宜選択することができる。例えば、2種類又は4種類の個別電極130を設ける場合には、2個又は4個の個別電極130を正方格子状に配置する方法をとり得る。3種類又は6種類の個別電極130を設ける場合には、本実施形態において示したように、3個又は6個の個別電極130を六方格子状に配置する方法をとり得る。これら配置は、同じ種類の個別電極130を等間隔に配置できる観点から好ましい。
また、本実施形態では、駆動電圧V1,V2,V3を、ハイレベル、ローレベルの2種類としたが、駆動電圧V1,V2,V3の設定レベルは、必ずしも2種類である必要はない。例えば、ハイレベル、ミドルレベル、ローレベルの3種類、或いは4種類以上の複数のレベルに設定するようにしてもよい。また、駆動電圧V1,V2,V3は、必ずしも直流電圧である必要はなく、交流電圧を用いてもよい。
このように、本実施形態によれば、暗い被写体の撮影を行う場合であっても光電変換部で生成された光キャリアを複数の出力に適切に振り分けることができる。
[第2実施形態]
本発明の第2実施形態による固体撮像装置及びその駆動方法について、図7を用いて説明する。第1実施形態による固体撮像装置と同様の構成要素には同一の符号を付し、説明を省略し或いは簡潔にする。
第1実施形態では、電荷蓄積部CA,CB,CCを介して個別電極130A,130B,130Cに印加する駆動電圧V1,V2,V3のレベルを、ハイレベルとローレベルの2種類とした。しかしながら、デバイス構成によっては、駆動電圧V1,V2,V3をローレベルに制御したときに、電荷蓄積部CA,CB,CCに蓄積された信号電荷が光電変換膜110に逆流する懸念がある。通常、光電変換部PCにはこのような信号電荷の逆流を防止する膜構成が採用されるが、信号電荷の逆流を防止する能力には限界がある。本実施形態では、光電変換膜110への信号電荷の逆流が生じることのない固体撮像装置の駆動方法を説明する。
図7は、本実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。図7には、1フレーム分の動作を記載している。図7中、制御信号PRESは、リセット信号線RESの電位である。駆動電圧V1,V2,V3は、それぞれ電源140A,140B,140Cの出力電圧である。なお、信号電荷が電子の場合、光電変換部PCの共通電極120に供給される電圧VPLは、個別電極130A,130B,130Cの電圧よりも低くなるように設定される。
まず、時刻t0において、垂直走査回路20は、制御信号PRESをハイレベルに制御し、リセットトランジスタM1A,M1B,M1Cをオンにする。これにより、増幅部の入力ノードの電位を電圧VRESに応じた所定の電位をリセットし、出力線16A,16B,16Cの電位をリセットレベルに設定する。なお、時刻t0において、電荷蓄積部CAの他方の電極に印加する駆動電圧V1、電荷蓄積部CBの他方の電極に印加する駆動電圧V2及び電荷蓄積部CCの他方の電極に印加する駆動電圧V3は、第1のレベルである。
次いで、時刻t1において、垂直走査回路20は、制御信号PRESをローレベルに制御し、リセットトランジスタM1A,M1B,M1Cをオフにする。これにより、増幅部の入力ノードのリセット状態は解除され、電荷蓄積部CA,CB,CCは、光電変換部PCで生成された電子を蓄積可能な状態となる。
同じく時刻t1において、制御回路60は、電源140Aを制御し、駆動電圧V1を、第1のレベルよりも高い第2のレベルに設定する。これにより、駆動電圧V1が第2のレベル、駆動電圧V2,V3が第1のレベルとなり、光電変換部PCにて生成された光キャリア(電子)は、個別電極130Aを介して収集され、電荷蓄積部CAに蓄積される。
次いで、時刻t2において、制御回路60は、電源140Bを制御し、駆動電圧V2を、駆動電圧V1と同じ第2のレベルに設定する。これにより、駆動電圧V1,V2が第2のレベル、駆動電圧V3が第1のレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Aと個別電極130Bとを介して均等に収集され、電荷蓄積部CA及び電荷蓄積部CBにそれぞれ蓄積される。
次いで、時刻t3において、制御回路60は、電源140B,140Cを制御し、駆動電圧V2を第2のレベルよりも高い第3のレベルに設定するとともに、駆動電圧V3を第2のレベルに設定する。これにより、駆動電圧V2が第3のレベル、駆動電圧V1,V3が第2のレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Bを介して収集され、電荷蓄積部CBに蓄積される。
次いで、時刻t4において、制御回路60は、電源140Cを制御し、駆動電圧V3を、駆動電圧V2と同じ第3のレベルに設定する。これにより、駆動電圧V2,V3が第3のレベル、駆動電圧V1が第2のレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Bと個別電極130Cとを介して均等に収集され、電荷蓄積部CB及び電荷蓄積部CCにそれぞれ蓄積される。
次いで、時刻t5において、制御回路60は、電源140A,140Cを制御し、駆動電圧V1を第3のレベルに設定するとともに、駆動電圧V3を第3のレベルよりも高い第4のレベルに設定する。これにより、駆動電圧V3が第4のレベル、駆動電圧V1,V2が第3のレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Cを介して収集され、電荷蓄積部CCに蓄積される。
次いで、時刻t6において、制御回路60は、電源140Aを制御し、駆動電圧V1を、駆動電圧V3と同じ第4のレベルに設定する。これにより、駆動電圧V1,V3が第4のレベル、駆動電圧V2が第3のレベルとなり、光電変換部PCにて生成された光キャリアは、個別電極130Aと個別電極130Cとを介して均等に収集され、電荷蓄積部CA及び電荷蓄積部CCにそれぞれ蓄積される。
次いで、時刻t7において、制御回路60は、電源140Bを制御し、駆動電圧V2を、駆動電圧V1,V3と同じ第4のレベルに設定する。この時点における信号OUT1,OUT2,OUT3は、電荷蓄積部CA,CB,CCが蓄積する電荷量を反映している。
次いで、時刻t8において、信号OUT1,OUT2,OUT3を読み出すことにより、時刻t1から時刻t7の間に生成された光キャリアに基づく信号を出力することができる。
このように、本実施形態による固体撮像装置の駆動方法では、1フレームの電荷の蓄積期間の間に、駆動電圧V1,V2,V3のレベルを下げることなく段階的に増加していく。光キャリアに対するポテンシャルの観点から言い換えると、1フレームの電荷の蓄積期間の間に、個別電極130A,130B,130Cの光キャリアに対するポテンシャルが段階的に減少するように、駆動電圧V1,V2,V3を制御している。駆動電圧V1,V2,V3は、レベルを下げることなく段階的に増加していくため、電荷蓄積部CA,CB,CCに蓄積された信号電荷が光電変換膜110に逆流することはない。
したがって、本実施形態によれば、電荷蓄積部CA,CB,CCに蓄積された信号電荷の逆流を防止しつつ、第1実施形態と同様の効果を実現することができる。
[第3実施形態]
本発明の第3実施形態による固体撮像装置及びその駆動方法について、図8乃至図10を用いて説明する。第1及び第2実施形態による固体撮像装置と同様の構成要素には同一の符号を付し、説明を省略し或いは簡潔にする。図8は、本実施形態による固体撮像装置の画素の構成例を示す回路図である。図9は、本実施形態による固体撮像装置の画素の構成例を示す平面図である。図10は、本実施形態による固体撮像装置の駆動方法を示すタイミングチャートである。
第1及び第2実施形態による固体撮像装置では、個別電極130A,130B,130Cを、光電変換部PCの駆動電極として及び光キャリアを出力する電極として利用しているが、これら役割を別の電極が担うように構成してもよい。本実施形態では、光電変換部PCの駆動電極と光キャリアの出力用の電極とを別の電極で構成した固体撮像装置について説明する。
はじめに、本実施形態による固体撮像装置の構造について、図8及び図9を用いて説明する。
本実施形態による固体撮像装置100は、図8に示すように、各画素12の光電変換部PCが、電荷排出電極132A,132B,132Cを更に有している。電荷排出電極132A,132B,132Cは、それぞれ電源140A,140B,140Cに接続されている。電荷蓄積部CA,CB,CCの他方のノードは、基準電圧ノードに接続されている。電荷蓄積部CAは、容量として光キャリアを蓄積できればよいため、必ずしもMIS構造やMIM構造の容量である必要はなく、寄生容量であってもよい。その他の構成は、第1実施形態による固体撮像装置100と同様である。電荷排出電極132A,132B,132Cは、図9に示すように、各々が個別電極130A,130B,130Cを囲うように配されている。図9において点線で囲った領域は、1単位画素領域を示している。
なお、電荷排出電極132は、個別電極130と同様、光電変換膜110中の光キャリアを収集する役割を有しており、個別電極130と電荷排出電極132とは同等の機能を備えた1つの電極ユニットと捉えることもできる。そのため、本明細書では、個別電極130と電荷排出電極132とを、1つの電極(第2の電極)として扱うことがある。この場合において、個別電極130A,130B,130Cは、電荷収集電極と表記することがある。
次に、本実施形態による固体撮像装置の駆動方法について、図10を用いて説明する。図10は、1フレーム分の動作を示すタイミングチャートである。図10中、制御信号PRESは、リセット信号線RESの電位である。信号OUT1,OUT2,OUT3は、それぞれ出力線16A,16B,16Cの電位である。駆動電圧V1,V2,V3は、それぞれ電源140A,140B,140Cの出力電圧である。なお、信号電荷が電子の場合、光電変換部PCの共通電極120に供給される電圧VPLは、個別電極130A,130B,130Cの電圧よりも低くなるように設定される。
本実施形態では、駆動電圧V1,V2,V3が、ハイレベル、ローレベル、ハイレベルとローレベルトの間のミドル(Mid)レベルの3種類のレベルをとり得るものとする。ハイレベルの電圧は、個別電極130の周囲の光電変換膜110内で発生した光キャリアのほとんどが電荷排出電極132に流れ込むような電圧である。ミドルレベルの電圧は、個別電極130に流れ込む光キャリアの量と電荷排出電極132に流れ込む光キャリアの量との比が1:1になるような電圧である。また、1つの画素の光電変換膜110内に発生する光キャリアは空間的に均一であることを前提とする。光電変換膜110内の電界の分布は電荷排出電極132の電位と個別電極130の電位との関係によって決まるため、両者の関係が同じ場合はどの個別電極130においても出力される光キャリアは同じになる。
まず、時刻t0において、垂直走査回路20は、制御信号PRESをハイレベルに制御し、リセットトランジスタM1A,M1B,M1Cをオンにする。これにより、増幅部の入力ノードの電位を電圧VRESに応じた所定の電位にリセットし、出力線16A,16B,16Cの電位をリセットレベルに設定する。なお、時刻t0において、電荷蓄積部CAの他方の電極に印加する駆動電圧V1、電荷蓄積部CBの他方の電極に印加する駆動電圧V2及び電荷蓄積部CCの他方の電極に印加する駆動電圧V3は、ローレベルである。
次いで、時刻t1において、垂直走査回路20は、制御信号PRESをローレベルに制御し、リセットトランジスタM1A,M1B,M1Cをオフにする。これにより、増幅部の入力ノードのリセット状態は解除され、電荷蓄積部CA,CB,CCは、光電変換部PCで生成された電子を蓄積可能な状態となる。
同じく時刻t1において、制御回路60は、電源140B,140Cを制御し、駆動電圧V2,V3をハイレベルに設定する。これにより、駆動電圧V1がローレベルとなり、駆動電圧V2,V3がハイレベルとなる。個別電極130Aの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Aを介して収集され、電荷蓄積部CAに蓄積される。一方、個別電極130B,130Cの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132B,132Cを介して排出される。このとき、個別電極130A,130B,130Cの周囲で発生する光電変換膜110内の光キャリアは同じ量であるから、個別電極130A,130B,130Cの各々を介して出力される信号の比は、100:0:0となる。
次いで、時刻t2において、制御回路60は、電源140A,140Bを制御し、駆動電圧V1,V2をミドルレベルに設定する。これにより、駆動電圧V1,V2がミドルレベル、駆動電圧V3がハイレベルとなる。個別電極130Aの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Aを介して収集され、電荷蓄積部CAに蓄積される。また、個別電極130Bの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Bを介して収集され、電荷蓄積部CBに蓄積される。一方、個別電極130Cの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132Cを介して排出される。このとき、個別電極130A,130B,130Cの各々を介して出力される信号の比は、50:50:0となる。なお、このとき個別電極130Cは、光キャリアに対して最低のポテンシャルとなる。
次いで、時刻t3において、制御回路60は、電源140A,140Bを制御し、駆動電圧V1をハイレベル、駆動電圧V2をローレベルに設定する。これにより、駆動電圧V1,V3がハイレベル、駆動電圧V2がローレベルとなる。個別電極130Bの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Bを介して収集され、電荷蓄積部CBに蓄積される。一方、個別電極130A,130Cの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132A,132Cを介して排出される。このとき、個別電極130A,130B,130Cの各々を介して出力される信号の比は、0:100:0となる。
次いで、時刻t4において、制御回路60は、電源140B,140Cを制御し、駆動電圧V2,V3をミドルレベルに設定する。これにより、駆動電圧V1がハイレベル、駆動電圧V2,V3がミドルレベルとなる。個別電極130Bの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Bを介して収集され、電荷蓄積部CBに蓄積される。また、個別電極130Cの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Cを介して収集され、電荷蓄積部CCに蓄積される。一方、個別電極130Aの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132Aを介して排出される。このとき、個別電極130A,130B,130Cの各々を介して出力される信号の比は、0:50:50となる。なお、このとき個別電極130Aは、光キャリアに対して最低のポテンシャルとなる。
次いで、時刻t5において、制御回路60は、電源140B,140Cを制御し、駆動電圧V2をハイレベル、駆動電圧V3をローレベルに設定する。これにより、駆動電圧V1,V2がハイレベル、駆動電圧V3がローレベルとなる。個別電極130Cの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Cを介して収集され、電荷蓄積部CCに蓄積される。一方、個別電極130A,130Bの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132A,132Bを介して排出される。このとき、個別電極130A,130B,130Cの各々を介して出力される信号の比は、0:0:100となる。
次いで、時刻t6において、制御回路60は、電源140A,140Cを制御し、駆動電圧V1,V3をミドルレベルに設定する。これにより、駆動電圧V2がハイレベル、駆動電圧V1,V3がミドルレベルとなる。個別電極130Aの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Aを介して収集され、電荷蓄積部CAに蓄積される。また、個別電極130Cの周囲の光電変換膜110内で生成された光キャリアは、個別電極130Cを介して収集され、電荷蓄積部CCに蓄積される。一方、個別電極130Bの周囲の光電変換膜110内で生成された光キャリアは、電荷排出電極132Bを介して排出される。このとき、個別電極130A,130B,130Cの各々を介して出力される信号の比は、50:0:50となる。なお、このとき個別電極130Bは、光キャリアに対して最低のポテンシャルとなる。
次いで、時刻t7において、制御回路60は、電源140A,140Cを制御し、駆動電圧V1,V3をハイレベルに設定する。これにより、駆動電圧V1,V2,V3がハイレベルとなり、光電変換膜110内で生成された光キャリアは電荷排出電極132A,132B,132Cを介して排出され、個別電極130A,130B,130Cによる電荷の収集がされなくなる。時刻t7は、光キャリアの蓄積期間の終了時刻である。この時点における信号OUT1,OUT2,OUT3は、電荷蓄積部CA,CB,CCが蓄積する電荷量を反映している。
このように、本実施形態による固体撮像装置100は、光電変換膜110で生成された光キャリアの総量を分配するのではないため、第1実施形態による固体撮像装置とは出力される光キャリアの絶対量は異なるが信号比は同じになる。したがって、本実施形態による固体撮像装置においても、第1実施形態による固体撮像装置と同様の効果を得ることができる。
なお、本実施形態では、電荷排出電極132A,132B,132Cを、個別電極130A,130B,130Cを囲うドーナツ形状としたが、電荷排出電極132A,132B,132Cの形状はこれに限定されるものではない。電荷排出電極132A,132B,132Cは、少なくとも個別電極130A,130B,130Cに流れ込む光キャリアを制御することができればよく、形状は特に限定されるものではない。電荷排出電極132A,132B,132Cの各々は、複数のブロックに分かれていてもよい。
また、本実施形態では、1つの画素12が3種類の個別電極130A,130B,130Cを備えた例を示したが、個別電極130A,130B,130Cの各々が複数のブロックに分かれていてもよい。この場合、これら複数のブロックから出力された光キャリアを加算して電荷蓄積部に出力するように、これら複数のブロックは、配線部160にて互いに電気的に接続すればよい。
本実施形態では、生成される光キャリアが画素内で空間的に均一であると仮定したが、不均一の場合も想定される。このような場合、上記のように個別電極130や電荷排出電極132を複数のブロックに分けて細分化し、空間的に均等に並べることによって、光電変換膜110内の発生キャリア量のばらつきによる出力信号の誤差を低減することができる。
[第4実施形態]
本発明の第4実施形態による撮像システムについて、図11を用いて説明する。図11は、本実施形態による撮像システムの概略構成を示すブロック図である。
上記第1乃至第3実施形態で述べた固体撮像装置100は、種々の撮像システムに適用可能である。適用可能な撮像システムの例としては、デジタルスチルカメラ、デジタルカムコーダ、監視カメラ、複写機、ファックス、携帯電話、車載カメラ、観測衛星などが挙げられる。また、レンズなどの光学系と撮像装置とを備えるカメラモジュールも、撮像システムに含まれる。図11には、これらのうちの一例として、デジタルスチルカメラのブロック図を例示している。
図11に例示した撮像システム200は、撮像装置201、被写体の光学像を撮像装置201に結像させるレンズ202、レンズ202を通過する光量を可変にするための絞り204、レンズ202の保護のためのバリア206を有する。レンズ202及び絞り204は、撮像装置201に光を集光する光学系である。撮像装置201は、第1乃至第3実施形態で説明した固体撮像装置100であって、レンズ202により結像された光学像を画像データに変換する。
撮像システム200は、また、撮像装置201より出力される出力信号の処理を行う信号処理部208を有する。信号処理部208は、撮像装置201が出力するアナログ信号をデジタル信号に変換するAD変換を行う。また、信号処理部208はその他、必要に応じて各種の補正、圧縮を行って画像データを出力する動作を行う。信号処理部208の一部であるAD変換部は、撮像装置201が設けられた半導体基板に形成されていてもよいし、撮像装置201とは別の半導体基板に形成されていてもよい。また、撮像装置201と信号処理部208とが同一の半導体基板に形成されていてもよい。
撮像システム200は、さらに、画像データを一時的に記憶するためのメモリ部210、外部コンピュータ等と通信するための外部インターフェース部(外部I/F部)212を有する。さらに撮像システム200は、撮像データの記録又は読み出しを行うための半導体メモリ等の記録媒体214、記録媒体214に記録又は読み出しを行うための記録媒体制御インターフェース部(記録媒体制御I/F部)216を有する。なお、記録媒体214は、撮像システム200に内蔵されていてもよく、着脱可能であってもよい。
さらに撮像システム200は、各種演算とデジタルスチルカメラ全体を制御する全体制御・演算部218、撮像装置201と信号処理部208に各種タイミング信号を出力するタイミング発生部220を有する。ここで、タイミング信号などは外部から入力されてもよく、撮像システム200は少なくとも撮像装置201と、撮像装置201から出力された出力信号を処理する信号処理部208とを有すればよい。
撮像装置201は、撮像信号を信号処理部208に出力する。信号処理部208は、撮像装置201から出力される撮像信号に対して所定の信号処理を実施し、画像データを出力する。信号処理部208は、撮像信号を用いて、画像を生成する。
第1乃至第3実施形態による固体撮像装置100を適用することにより、ノイズの少ない良質な画像を取得しうる撮像システムを実現することができる。
[第5実施形態]
本発明の第5実施形態による撮像システム及び移動体について、図12を用いて説明する。図12は、本実施形態による撮像システム及び移動体の構成を示す図である。
図12(a)は、車載カメラに関する撮像システムの一例を示したものである。撮像システム300は、撮像装置310を有する。撮像装置310は、上記第1乃至第3実施形態のいずれかに記載の固体撮像装置100である。撮像システム300は、撮像装置310により取得された複数の画像データに対し、画像処理を行う画像処理部312と、撮像システム300により取得された複数の画像データから視差(視差画像の位相差)の算出を行う視差取得部314を有する。また、撮像システム300は、算出された視差に基づいて対象物までの距離を算出する距離取得部316と、算出された距離に基づいて衝突可能性があるか否かを判定する衝突判定部318と、を有する。ここで、視差取得部314や距離取得部316は、対象物までの距離情報を取得する距離情報取得手段の一例である。すなわち、距離情報とは、視差、デフォーカス量、対象物までの距離等に関する情報である。衝突判定部318はこれらの距離情報のいずれかを用いて、衝突可能性を判定してもよい。距離情報取得手段は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよい。また、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated circuit)等によって実現されてもよいし、これらの組合せによって実現されてもよい。
撮像システム300は車両情報取得装置320と接続されており、車速、ヨーレート、舵角などの車両情報を取得することができる。また、撮像システム300は、衝突判定部318での判定結果に基づいて、車両に対して制動力を発生させる制御信号を出力する制御装置である制御ECU330が接続されている。また、撮像システム300は、衝突判定部318での判定結果に基づいて、ドライバーへ警報を発する警報装置340とも接続されている。例えば、衝突判定部318の判定結果として衝突可能性が高い場合、制御ECU330はブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして衝突を回避、被害を軽減する車両制御を行う。警報装置340は音等の警報を鳴らす、カーナビゲーションシステムなどの画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。
本実施形態では、車両の周囲、例えば前方又は後方を撮像システム300で撮像する。図12(b)に、車両前方(撮像範囲350)を撮像する場合の撮像システムを示した。車両情報取得装置320が、撮像システム300ないしは撮像装置310に指示を送る。このような構成により、測距の精度をより向上させることができる。
上記では、他の車両と衝突しないように制御する例を説明したが、他の車両に追従して自動運転する制御や、車線からはみ出さないように自動運転する制御などにも適用可能である。さらに、撮像システムは、自車両等の車両に限らず、例えば、船舶、航空機あるいは産業用ロボットなどの移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)等、広く物体認識を利用する機器に適用することができる。
[変形実施形態]
本発明は、上記実施形態に限らず種々の変形が可能である。
例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例や、他の実施形態の一部の構成と置換した例も、本発明の実施形態である。
また、上記実施形態では、光電変換膜110で生じた光キャリアのうち電子を収集する例を示したが、正孔を収集するように構成してもよい。この場合、共通電極120と個別電極130とに印加する電圧の大小関係や、P型半導体領域152及びN型半導体領域154の導電型を逆にすればよい。
また、上記第4及び第5実施形態に示した撮像システムは、本発明の光電変換装置を適用しうる撮像システム例を示したものであり、本発明の光電変換装置を適用可能な撮像システムは図11及び図12に示した構成に限定されるものではない。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
PC…光電変換部
CA,CB,CC…電荷蓄積部
110…光電変換膜
120…共通電極
130A,130B,130C…個別電極(電荷収集電極)
132A,132B,132C…電荷排出電極

Claims (14)

  1. 光の入射により電荷を生成する光電変換膜と、前記光電変換膜の一方の面側に配された第1の電極と、前記光電変換膜の他方の面側に配された複数の第2の電極と、を有する光電変換部と、
    前記複数の第2の電極の各々に接続された複数の電荷蓄積部と、
    前記複数の電荷蓄積部に蓄積された電荷の量に応じた信号を出力する出力部と、
    前記複数の第2の電極の各々に印加する駆動電圧を個別に制御する制御部と、を有し、
    前記制御部は、1フレームの電荷の蓄積期間に、前記複数の第2の電極の各々が順に前記電荷に対して前記複数の第2の電極の中で最も低いポテンシャルとなるように、前記複数の第2の電極の各々に印加する前記駆動電圧を制御する
    ことを特徴とする固体撮像装置。
  2. 前記制御部は、前記電荷蓄積部を介して前記第2の電極に印加される前記駆動電圧を制御する
    ことを特徴とする請求項1記載の固体撮像装置。
  3. 前記制御部は、前記複数の第2の電極の各々に印加する前記駆動電圧を、第1のレベルと、前記第1のレベルと異なる第2のレベルとに切り替える
    ことを特徴とする請求項1又は2記載の固体撮像装置。
  4. 前記制御部は、前記蓄積期間において、前記複数の第2の電極のうちの一の第2の電極の前記電荷に対するポテンシャルが段階的に減少するように、前記一の第2の電極に印加する前記駆動電圧を制御する
    ことを特徴とする請求項1又は2記載の固体撮像装置。
  5. 前記複数の第2の電極の各々は、電荷収集電極と、電荷排出電極と、を含み、
    前記電荷蓄積部は、前記電荷収集電極に接続されており、
    前記制御部は、前記電荷排出電極に印加される前記駆動電圧を制御する
    ことを特徴とする請求項1記載の固体撮像装置。
  6. 前記電荷排出電極は、前記電荷収集電極の周囲を囲むように設けられている
    ことを特徴とする請求項5記載の固体撮像装置。
  7. 前記複数の第2の電極は、少なくとも3つの第2の電極を有し、前記3つの第2の電極が等間隔に配置されている
    ことを特徴とする請求項1乃至6のいずれか1項に記載の固体撮像装置。
  8. 前記光電変換部は、前記複数の第2の電極を各々が含む複数の電極ユニットを有し、
    前記複数の電極ユニットは、対応する前記複数の第2の電極の各々が互いに電気的に接続されている
    ことを特徴とする請求項1乃至7のいずれか1項に記載の固体撮像装置。
  9. 前記複数の電極ユニットは、最近接する2つの前記第2の電極に異なる前記駆動電圧が印加されるように配列されている
    ことを特徴とする請求項8記載の固体撮像装置。
  10. 前記複数の第2の電極は、六方格子状に配列された3個又は6個の前記第2の電極である
    ことを特徴とする請求項1乃至9のいずれか1項に記載の固体撮像装置。
  11. 前記複数の第2の電極は、正方格子状に配列された4個の前記第2の電極である
    ことを特徴とする請求項1乃至9のいずれか1項に記載の固体撮像装置。
  12. 光の入射により電荷を生成する光電変換膜と、前記光電変換膜の一方の面側に配された第1の電極と、前記光電変換膜の他方の面側に配された複数の第2の電極と、を有する光電変換部と、前記複数の第2の電極の各々に接続された複数の電荷蓄積部と、前記複数の電荷蓄積部に蓄積された電荷の量に応じた信号を出力する出力部と、を有する固体撮像装置の駆動方法であって、
    1フレームの電荷の蓄積期間に、前記複数の第2の電極の各々が順に前記電荷に対して前記複数の第2の電極の中で最も低いポテンシャルとなるように、前記複数の第2の電極の各々に印加する駆動電圧を個別に制御する
    ことを特徴とする固体撮像装置の駆動方法。
  13. 請求項1乃至11のいずれか1項に記載の固体撮像装置と、
    前記固体撮像装置から出力される信号を処理する信号処理部と
    を有することを特徴とする撮像システム。
  14. 移動体であって、
    請求項1乃至11のいずれか1項に記載の固体撮像装置と、
    前記固体撮像装置からの信号に基づく視差画像から、対象物までの距離情報を取得する距離情報取得手段と、
    前記距離情報に基づいて前記移動体を制御する制御手段と
    を有することを特徴とする移動体。
JP2018050637A 2018-03-19 2018-03-19 固体撮像装置及び撮像システム Active JP7019471B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018050637A JP7019471B2 (ja) 2018-03-19 2018-03-19 固体撮像装置及び撮像システム
US16/288,783 US10536653B2 (en) 2018-03-19 2019-02-28 Solid-state imaging device and imaging system with a plurality of electrodes sequentially becoming a lowest potential relative to charges of the plurality of electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050637A JP7019471B2 (ja) 2018-03-19 2018-03-19 固体撮像装置及び撮像システム

Publications (2)

Publication Number Publication Date
JP2019165285A JP2019165285A (ja) 2019-09-26
JP7019471B2 true JP7019471B2 (ja) 2022-02-15

Family

ID=67906325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050637A Active JP7019471B2 (ja) 2018-03-19 2018-03-19 固体撮像装置及び撮像システム

Country Status (2)

Country Link
US (1) US10536653B2 (ja)
JP (1) JP7019471B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107980A (ja) 2018-12-27 2020-07-09 キヤノン株式会社 光検出装置および撮像システム
JP7237622B2 (ja) 2019-02-05 2023-03-13 キヤノン株式会社 光電変換装置
US11056519B2 (en) 2019-02-25 2021-07-06 Canon Kabushiki Kaisha Photoelectric conversion device, imaging system, and mobile apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021445A (ja) 2014-07-11 2016-02-04 キヤノン株式会社 光電変換装置、および、撮像システム
JP2016086407A (ja) 2014-10-23 2016-05-19 パナソニックIpマネジメント株式会社 撮像装置および画像取得装置
JP2017118595A (ja) 2015-07-10 2017-06-29 パナソニックIpマネジメント株式会社 撮像装置
JP2017157804A (ja) 2016-03-04 2017-09-07 キヤノン株式会社 撮像装置
JP2017208812A (ja) 2016-05-11 2017-11-24 パナソニックIpマネジメント株式会社 撮像装置、撮像システムおよび光検出方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703815B2 (ja) * 2000-05-26 2011-06-15 株式会社半導体エネルギー研究所 Mos型センサの駆動方法、及び撮像方法
EP1521981B1 (en) * 2002-07-15 2008-02-20 Matsushita Electric Works, Ltd. Light receiving device with controllable sensitivity and spatial information detecting apparatus using the same
US9900539B2 (en) 2015-09-10 2018-02-20 Canon Kabushiki Kaisha Solid-state image pickup element, and image pickup system
JP6674219B2 (ja) 2015-10-01 2020-04-01 キヤノン株式会社 固体撮像装置及び撮像システム
JP2017135168A (ja) 2016-01-25 2017-08-03 キヤノン株式会社 光電変換装置及び情報処理装置
JP6701108B2 (ja) 2017-03-21 2020-05-27 キヤノン株式会社 固体撮像装置及び撮像システム
US10818715B2 (en) 2017-06-26 2020-10-27 Canon Kabushiki Kaisha Solid state imaging device and manufacturing method thereof
JP6987562B2 (ja) 2017-07-28 2022-01-05 キヤノン株式会社 固体撮像素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021445A (ja) 2014-07-11 2016-02-04 キヤノン株式会社 光電変換装置、および、撮像システム
JP2016086407A (ja) 2014-10-23 2016-05-19 パナソニックIpマネジメント株式会社 撮像装置および画像取得装置
JP2017118595A (ja) 2015-07-10 2017-06-29 パナソニックIpマネジメント株式会社 撮像装置
JP2017157804A (ja) 2016-03-04 2017-09-07 キヤノン株式会社 撮像装置
JP2017208812A (ja) 2016-05-11 2017-11-24 パナソニックIpマネジメント株式会社 撮像装置、撮像システムおよび光検出方法

Also Published As

Publication number Publication date
US10536653B2 (en) 2020-01-14
US20190289233A1 (en) 2019-09-19
JP2019165285A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
US11496704B2 (en) Photoelectric conversion device having select circuit with a switch circuit having a plurality of switches, and imaging system
JP7374639B2 (ja) 光電変換装置及び撮像システム
JP6736539B2 (ja) 撮像装置及びその駆動方法
JP6987562B2 (ja) 固体撮像素子
JP7393152B2 (ja) 光電変換装置、撮像システム、移動体及び露光制御装置
JP7146424B2 (ja) 光電変換装置及び撮像システム
JP7067907B2 (ja) 固体撮像装置及び信号処理装置
JP6806553B2 (ja) 撮像装置、撮像装置の駆動方法及び撮像システム
JP7193907B2 (ja) 固体撮像装置
US11202023B2 (en) Imaging device and imaging system
JP7019471B2 (ja) 固体撮像装置及び撮像システム
JP6953263B2 (ja) 固体撮像装置および撮像システム
JP7224823B2 (ja) 光検出装置
US11490041B2 (en) Photoelectric converter and imaging system
JP7538618B2 (ja) 光電変換装置及び光電変換システム
JP2018125620A (ja) 固体撮像装置
JP2024012454A (ja) 光電変換装置、光電変換システム、および移動体
JP7297546B2 (ja) 光電変換装置、撮像システム、移動体、および積層用の半導体基板
JP7458746B2 (ja) 光電変換装置、撮像システム及び移動体
JP2019009672A (ja) 撮像装置及びその駆動方法
JP6929266B2 (ja) 光電変換装置、光電変換システム、移動体
JP2020191600A (ja) 光電変換装置および光電変換システム
JP2019036770A (ja) 撮像装置及び撮像システム
JP7490708B2 (ja) 光電変換装置
JP2023111095A (ja) 光電変換装置及びその駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R151 Written notification of patent or utility model registration

Ref document number: 7019471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151