JP7017907B2 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP7017907B2
JP7017907B2 JP2017219443A JP2017219443A JP7017907B2 JP 7017907 B2 JP7017907 B2 JP 7017907B2 JP 2017219443 A JP2017219443 A JP 2017219443A JP 2017219443 A JP2017219443 A JP 2017219443A JP 7017907 B2 JP7017907 B2 JP 7017907B2
Authority
JP
Japan
Prior art keywords
group
atom
ring
formula
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017219443A
Other languages
English (en)
Other versions
JP2018085505A (ja
Inventor
敏明 佐々田
浩平 浅田
タラン ウィリアム
カムテカー キラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cambridge Display Technology Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Cambridge Display Technology Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Display Technology Ltd, Sumitomo Chemical Co Ltd filed Critical Cambridge Display Technology Ltd
Publication of JP2018085505A publication Critical patent/JP2018085505A/ja
Application granted granted Critical
Publication of JP7017907B2 publication Critical patent/JP7017907B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、発光素子に関する。
有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が行われている。例えば、特許文献1には、下記式で表される金属錯体1及び赤色燐光材料を含有する発光層を有する発光素子が記載されている。なお、特許文献1に記載の発光素子は、1層のみに燐光材料を含む発光素子である。また、特許文献1に記載の発光素子は、発光層を1層のみ有する発光素子である。
Figure 0007017907000001
特開2011-253980号公報
しかし、上述した発光素子は、外部量子効率が必ずしも十分ではない。
そこで、本発明は、外部量子効率が優れる発光素子を提供することを目的とする。
本発明は、以下の[1]~[15]を提供する。
[1]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
前記第1の有機層が、式(1)で表される金属錯体を含有する層Aであり、
前記第2の有機層が、
式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
式(2)で表される金属錯体及び架橋基を有する化合物の架橋体を含有する層C’である、発光素子。
Figure 0007017907000002

[式中、
Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
環Bは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Bが複数存在する場合、それらは同一でも異なっていてもよい。
1Aは、=N-で表される基又は=C(RZ1A)-で表される基を表す。Z1Aが複数存在する場合、それらは同一であっても異なっていてもよい。RZ1Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
は、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、ハロゲン原子又は炭素原子数2以上30以下のアルキル基を表し、これらの基は置換基を有していてもよい。Rが複数存在する場合、それらは同一でも異なっていてもよい。
Ar1Aは、式(Ar-1A)で表される基を表す。Ar1Aが複数存在する場合、それらは同一でも異なっていてもよい。
-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure 0007017907000003

[式中、
環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
Figure 0007017907000004

[式中、
は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
がロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
[2]前記式(1)で表される金属錯体が、式(1-1)で表される金属錯体である、[1]に記載の発光素子。
Figure 0007017907000005

[式中、
M、Z1A、n、n、R、Ar1A及びA-G-Aは、前記と同じ意味を表す。
環Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E1B、E2B、E3B及びE4Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E1B、E2B、E3B及びE4Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E1Bが窒素原子の場合、R1Bは存在しない。E2Bが窒素原子の場合、R2Bは存在しない。E3Bが窒素原子の場合、R3Bは存在しない。E4Bが窒素原子の場合、R4Bは存在しない。
1B、R2B、R3B及びR4Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1B、R2B、R3B及びR4Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R1BとR2B、R2BとR3B、及び、R3BとR4Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[3]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
前記第1の有機層及び前記第2の有機層が、発光層であり、
前記第1の有機層が、式(1’)で表される金属錯体を含有する層A’である、発光素子。
Figure 0007017907000006

[式中、
Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
環Bは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Bが複数存在する場合、それらは同一でも異なっていてもよい。
1Aは、=N-で表される基又は=C(RZ1A)-で表される基を表す。Z1Aが複数存在する場合、それらは同一であっても異なっていてもよい。RZ1Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
1’は、炭素原子数2以上30以下のアルキル基を表し、該基は置換基を有していてもよい。Rが複数存在する場合、それらは同一でも異なっていてもよい。
Ar1Aは、前記式(Ar-1A)で表される基を表す。Ar1Aが複数存在する場合、それらは同一でも異なっていてもよい。
-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
[4]前記第2の有機層が、
前記式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
前記式(2)で表される金属錯体を含有する層Cである、[3]に記載の発光素子。
[5]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
前記第1の有機層が、前記式(1’)で表される金属錯体を含有する層A’であり、
前記第2の有機層が、
前記式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
前記式(2)で表される金属錯体を含有する層C
である、発光素子。
[6]前記第2の有機層が、前記層Bであり、
前記高分子化合物が、架橋基を有する構成単位を更に含む、[1]、[2]、[4]及び[5]のいずれかに記載の発光素子。
[7]前記第2の有機層が、前記層Bであり、
前記構成単位が、式(2-1B)で表される構成単位、式(2-2B)で表される構成単位、式(2-3B)で表される構成単位又は式(2-4B)で表される構成単位である、[1]、[2]及び[4]~[6]のいずれかに記載の発光素子。
Figure 0007017907000007

[式中、
1Bは、式(2)で表される金属錯体から水素原子1個を除いた基を表す。
は、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
c1は0以上の整数を表す。]
Figure 0007017907000008

[式中、
1Bは前記と同じ意味を表す。
及びLは、それぞれ独立に、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R及びRは、前記と同じ意味を表す。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
d1及びne1は、それぞれ独立に、0以上の整数を表す。複数存在するnd1は、同一でも異なっていてもよい。
Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
Figure 0007017907000009

[式中、
及びnd1は、前記と同じ意味を表す。
2Bは、式(2)で表される金属錯体から水素原子2個を除いた基を表す。]
Figure 0007017907000010

[式中、
及びnd1は、前記と同じ意味を表す。
3Bは、式(2)で表される金属錯体から水素原子3個を除いた基を表す。]
[8]前記第2の有機層が、前記層B又は前記層C’であり、
前記架橋基が、架橋基A群から選ばれる架橋基である、[1]、[2]又は[6]に記載の発光素子。
(架橋基A群)
Figure 0007017907000011

[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnXLは、同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
[9]前記式(Ar-1A)で表される基が、式(Ar-2A)で表される基である、[1]~[8]のいずれかに記載の発光素子。
Figure 0007017907000012

[式中、R及びRは、前記と同じ意味を表す。
環Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E1A、E2A及びE3Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1Aが窒素原子の場合、R1Aは存在しない。E2Aが窒素原子の場合、R2Aは存在しない。E3Aが窒素原子の場合、R3Aは存在しない。
1A、R2A及びR3Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[10]前記式(2)で表される金属錯体が、式(2-B)で表される金属錯体である、[1]~[9]のいずれかに記載の発光素子。
Figure 0007017907000013

[式中、
、n、n及びA-G-Aは、前記と同じ意味を表す。
環L1Bは、ピリジン環又はピリミジン環を表し、環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[11]前記式(2-B)で表される金属錯体が、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体である、[10]に記載の発光素子。
Figure 0007017907000014

[式中、
、n、n、R11B、R12B、R13B、R14B、R21B、R22B、R23B、R24B及びA-G-Aは、前記と同じ意味を表す。
31及びn32は、それぞれ独立に、1以上の整数を表し、n31+n32は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n31+n32は3であり、Mがパラジウム原子又は白金原子の場合、n31+n32は2である。
15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R15BとR16B、R16BとR17B、及び、R17BとR18Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[12]前記第1の有機層が、式(H-1)で表される化合物、及び/又は、式(Y)で表される構成単位を含む高分子化合物を更に含有する、[1]~[11]のいずれかに記載の発光素子。
Figure 0007017907000015

[式中、
ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
H1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
H3は、0以上10以下の整数を表す。
H1は、アリーレン基、2価の複素環基、又は、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
H2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
Figure 0007017907000016

[式中、ArY1は、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
[13]前記第1の有機層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、[1]~[12]のいずれかに記載の発光素子。
[14]前記第1の有機層と前記第2の有機層とが隣接している、[1]~[13]のいずれかに記載の発光素子。
[15]前記第2の有機層が、前記陽極及び前記第1の有機層との間に設けられた層である、[1]~[14]のいずれかに記載の発光素子。
本発明によれば、外部量子効率が優れる発光素子を提供することができる。
以下、本発明の好適な実施形態について詳細に説明する。
<共通する用語の説明>
本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
水素原子は、重水素原子であっても、軽水素原子であってもよい。
金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば1×10~1×10)である重合体を意味する。
高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性又は輝度寿命が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基と結合している基が挙げられる。
「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~30であり、より好ましくは1~15であり、更に好ましくは1~10である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは3~15であり、更に好ましくは3~10である。
アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基等が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってもよい。このようなアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
アリール基は、置換基を有していてもよい。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基等が挙げられる。また、アリール基は、これらの基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってもよい。
「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基等が挙げられる。また、アルコキシ基は、これらの基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってもよい。
「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基が挙げられる。
「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基等が挙げられる。また、アリールオキシ基は、これらの基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基であってもよい。
「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。
1価の複素環基は、置換基を有していてもよい。1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジニル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基等が挙げられる。また、1価の複素環基は、これらの基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基であってもよい。
「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
置換アミノ基としては、二置換アミノ基が好ましい。二置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
二置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
アルケニル基及びシクロアルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルケニル基としては、例えば、シクロヘキセニル基、シクロヘキサジエニル基、シクロオクタトリエニル基、ノルボルニレニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
アルキニル基及びシクロアルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルキニル基としては、例えば、シクロオクチニル基等が挙げられる。
「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
アリーレン基は、置換基を有していてもよい。アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。アリーレン基は、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure 0007017907000017
Figure 0007017907000018
Figure 0007017907000019
Figure 0007017907000020
式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基である。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。
2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
2価の複素環基は、置換基を有していてもよい。2価の複素環基としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール又はトリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられる。また、2価の複素環基は、これらの基における水素原子の一部又は全部が置換基で置換された基であってもよい。2価の複素環基は、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure 0007017907000021
Figure 0007017907000022
Figure 0007017907000023
Figure 0007017907000024
Figure 0007017907000025
Figure 0007017907000026
Figure 0007017907000027
式中、R及びRは、前記と同じ意味を表す。
「架橋基」とは、加熱処理、紫外線照射処理、近紫外線照射処理、可視光照射処理、赤外線照射処理、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~式(XL-17)で表される架橋基である。
「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
<発光素子>
本実施形態の第1の発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の有機層及び第2の有機層と、を有する発光素子である。
<第1の有機層>
第1の有機層は、式(1)で表される金属錯体を含有する層Aである。層Aは、式(1)で表される金属錯体の1種を単独で含有していてもよく、2種以上を含有していてもよい。式(1)で表される金属錯体を含有する層Aは、式(1’)で表される金属錯体を含有する層A’であることが好ましい。すなわち、式(1)で表される金属錯体は式(1’)で表される金属錯体であることが好ましい。層A’は、式(1’)で表される金属錯体の1種を単独で含有していてもよく、2種以上を含有していてもよい。
・式(1)で表される金属錯体及び式(1’)で表される金属錯体
式(1)で表される金属錯体及び式(1’)で表される金属錯体は、通常、室温(25℃)で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
式(1)で表される金属錯体及び式(1’)で表される金属錯体は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成されている。
Mは、本実施形態の発光素子の外部量子効率がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
Mがロジウム原子又はイリジウム原子の場合、nは2又は3であることが好ましく、3であることがより好ましい。
Mがパラジウム原子又は白金原子の場合、nは2であることが好ましい。
は、炭素原子であることが好ましい。
環Bにおける芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
環Bにおける芳香族炭化水素環としては、ベンゼン環、ナフタレン環、インデン環、フルオレン環、フェナントレン環、ジヒドロフェナントレン環及びこれらの環が縮合した環が挙げられる。環Bにおける芳香族炭化水素環は、好ましくは、ベンゼン環、ナフタレン環、インデン環、フルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、より好ましくは、ベンゼン環、フルオレン環又はジヒドロフェナントレン環であり、更に好ましくは、ベンゼン環であり、これらの環は置換基を有していてもよい。
環Bにおける芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常4~60であり、好ましくは4~20である。
環Bにおける芳香族複素環としては、ピロール環、ジアゾール環、フラン環、チオフェン環、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、インドール環、ベンゾジアゾール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらの環に芳香環が縮合した環が挙げられる。環Bにおける芳香族複素環は、好ましくは、ピロール環、ジアゾール環、フラン環、チオフェン環、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、インドール環、ベンゾジアゾール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、より好ましくは、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
環Bは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であり、より好ましくは、ベンゼン環、フルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくは、ベンゼン環、ピリジン環又はジアザベンゼン環であり、特に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。環Bが6員の芳香族複素環である場合、Eは炭素原子であることが好ましい。
環Bが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アルキル基、シクロアルキル基又はアリール基が特に好ましく、アリール基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
環Bが有していてもよい置換基におけるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ジヒドロフェナントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は置換基を有していてもよい。
環Bが有していてもよい置換基における1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾフラニル基、ジベンゾチエニル基又はカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、これらの基は置換基を有していてもよい。
環Bが有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、環Bが有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
環Bが有していてもよい置換基のうち、アリール基、1価の複素環基及び置換アミノ基としては、本実施形態の発光素子の外部量子効率がより優れるので、式(D-A)、(D-B)又は(D-C)で表される基が好ましく、式(D-A)又は(D-C)で表される基がより好ましい。
Figure 0007017907000028
式中、
DA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
DAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するTDAは、同一でも異なっていてもよい。
Figure 0007017907000029
式中、
DA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
DAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数存在するGDAは、同一でも異なっていてもよい。
ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するTDAは、同一でも異なっていてもよい。
Figure 0007017907000030
式中、
DA1は、0以上の整数を表す。
ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数存在する場合、それらは同一でも異なっていてもよい。
DAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
DA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、同一の整数であることがより好ましい。
DAは、好ましくは式(GDA-11)~式(GDA-15)で表される基であり、より好ましくは式(GDA-11)~式(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は式(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。
Figure 0007017907000031
式中、
*は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
**は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
DAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数存在する場合、それらは同一でも異なっていてもよい。
DAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(A-1)~式(A-3)、式(A-8)、式(A-9)、式(AA-10)、式(AA-11)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは式(ArDA-1)~式(ArDA-5)で表される基であり、特に好ましくは式(ArDA-1)~式(ArDA-3)で表される基であり、とりわけ好ましくは式(ArDA-1)で表される基である。
Figure 0007017907000032
式中、
DAは前記と同じ意味を表す。
DBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数存在する場合、それらは同一でも異なっていてもよい。
DBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
DAは、好ましくは式(TDA-1)~式(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure 0007017907000033
式中、RDA及びRDBは前記と同じ意味を表す。
式(D-A)で表される基は、好ましくは式(D-A1)~式(D-A4)で表される基であり、より好ましくは式(D-A1)、式(D-A3)又は式(D-A4)で表される基であり、更に好ましくは式(D-A1)又は式(D-A4)で表される基であり、特に好ましくは式(D-A1)で表される基である。
Figure 0007017907000034
式中、
p1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1、Rp2及びRp4が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数存在するnp1は、同一でも異なっていてもよい。
式(D-B)で表される基は、好ましくは式(D-B1)~式(D-B3)で表される基であり、より好ましくは式(D-B1)又は式(D-B3)で表される基であり、更に好ましくは、式(D-B1)で表される基である。
Figure 0007017907000035
式中、
p1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。np1及びnp2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
式(D-C)で表される基は、好ましくは式(D-C1)~式(D-C4)で表される基であり、より好ましくは式(D-C1)~式(D-C3)で表される基であり、更に好ましくは式(D-C1)又は式(D-C2)で表される基であり、特に好ましくは式(D-C1)で表される基である。
Figure 0007017907000036
式中、
p4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp4、Rp5及びRp6が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。
np1は、好ましくは0又は1であり、より好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数である。np5は、好ましくは1~3の整数である。np6は、好ましくは0~2の整数である。
p1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくはアルキル基又はシクロアルキル基であり、より好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基又はtert-オクチル基であり、更に好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
式(D-A)で表される基としては、例えば、式(D-A-1)~式(D-A-12)で表される基が挙げられる。
Figure 0007017907000037
Figure 0007017907000038
式中、Rは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基を表す。Rが複数存在する場合、それらは同一でも異なっていてもよい。
式(D-B)で表される基としては、例えば、式(D-B-1)~式(D-B-4)で表される基が挙げられる。
Figure 0007017907000039
式中、Rは前記と同じ意味を表す。
式(D-C)で表される基としては、例えば、式(D-C-1)~式(D-C-13)で表される基が挙げられる。
Figure 0007017907000040
式中、Rは前記と同じ意味を表す。
はメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基であることが好ましい。
環Bが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、式(1)で表される金属錯体及び式(1’)で表される金属錯体の発光スペクトルの最大ピーク波長が短波長になるので、環を形成しないことが好ましい。
環Bが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基又はアリール基が更に好ましく、アルキル基が特に好ましく、これらの基は更に置換基を有していてもよい。
環Bが有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
1Aは、好ましくは、=N-で表される基である。
Z1Aは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、水素原子、アルキル基又はシクロアルキル基であり、特に好ましくは、水素原子であり、これらの基は更に置換基を有していてもよい。
Z1Aにおけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
Z1Aが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
は、好ましくは、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基、フッ素原子又は炭素原子数2以上30以下のアルキル基であり、より好ましくは、シクロアルキル基、アリール基、1価の複素環基、置換アミノ基又は炭素原子数2以上30以下のアルキル基であり、更に好ましくは、シクロアルキル基、アリール基又は炭素原子数2以上30以下のアルキル基であり、特に好ましくは、アリール基又は炭素原子数2以上30以下のアルキル基であり、とりわけ好ましくは、炭素原子数2以上30以下のアルキル基であり、これらの基は更に置換基を有していてもよい。
すなわち、Rは、R1’であることが好ましい。
におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
及びR1’におけるアルキル基の炭素原子数は、置換基の炭素原子数を含まないで、好ましくは3以上であり、より好ましくは4以上であり、更に好ましくは5以上である。また、R及びR1’におけるアルキル基の炭素原子数は、置換基の炭素原子数を含まないで、好ましくは30以下であり、より好ましくは20以下であり、更に好ましくは15以下であり、特に好ましくは10以下であり、とりわけ好ましくは8以下である。
が炭素原子数2以上30以下のアルキル基の場合、Rが有していてもよい置換基としては、好ましくは、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、更に好ましくは、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
式(1)で表される金属錯体及び式(1’)で表される金属錯体の合成が容易になるので、R及びR1’において、炭素原子数2以上30以下のアルキル基は置換基を有さないことが好ましい。
が炭素原子数2以上30以下のアルキル基の場合において、Rが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
及びR1’における炭素原子数2以上30以下のアルキル基は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは炭素原子数3以上30以下の分岐のアルキル基であり、より好ましくは炭素原子数3以上15以下の分岐のアルキル基であり、更に好ましくは炭素原子数3以上10以下の分岐のアルキル基であり、特に好ましくは炭素原子数4以上10以下の分岐のアルキル基であり、とりわけ好ましくは炭素原子数5以上8以下の分岐のアルキル基である。これらの基は置換基を有さないことが好ましい。
及びR1’におけるアルキル基において、分岐のアルキル基としては、イソプロピル基、sec-ブチル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1,1-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルペンチル基、1,1-ジエチルプロピル基、1,2-ジメチルペンチル基、1,1-ジメチルヘキシル基、1-エチル-1-メチルペンチル基、1,1,3,3-テトラメチルブチル基、1,2-ジメチルヘキシル基、1-プロピルペンチル基、2-エチルヘキシル基、1,1-ジメチルヘプチル基、1,1-ジプロピルブチル基、1-ブチルヘキシル基、1-プロピルヘプチル基、1,1,3,7-テトラメチルオクチル基及び1,1,2-トリエチルオクチル基が好ましい。
が炭素原子数2以上30以下のアルキル基以外の場合、Rが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
1’が有していてもよい置換基の例及び好ましい範囲は、Rが炭素原子数2以上30以下のアルキル基の場合における、Rが有していてもよい置換基の例及び好ましい範囲と同じである。
[(式Ar-1A)で表される基]
環Aにおける芳香族炭化水素環の例及び好ましい範囲は、環Bにおける芳香族炭化水素環の例及び好ましい範囲と同じである。環Aにおける芳香族複素環の例及び好ましい範囲は、環Bにおける芳香族炭化水素環の例及び好ましい範囲と同じである。
環Aは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であり、より好ましくは、ベンゼン環、フルオレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくは、ベンゼン環、ピリジン環又はジアザベンゼン環であり、特に好ましくはベンゼン環であり、これらの環は置換基を有していてもよい。
環Aが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基が更に好ましく、アルキル基、シクロアルキル基又はアリール基が特に好ましく、アルキル基がとりわけ好ましく、これらの基は更に置換基を有していてもよい。
環Aが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
環Aが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、式(1)で表される金属錯体及び式(1’)で表される金属錯体の発光スペクトルの最大ピーク波長が短波長になるので、環を形成しないことが好ましい。
環Aが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
及びRは、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、特に好ましくは、アルキル基であり、これらの基は更に置換基を有していてもよい。
及びRにおけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
及びRにおけるアルキル基は、式(1)で表される金属錯体及び式(1’)で表される金属錯体の合成が容易になるので、好ましくは、炭素原子数1~7のアルキル基であり、より好ましくは、炭素原子数1~5のアルキル基であり、更に好ましくは、炭素原子数1~3のアルキル基であり、これらの基は置換基を有さないことが特に好ましい。
及びRが有していてもよい置換基の例及び好ましい範囲は、Rが有していてもよい置換基の例及び好ましい範囲と同じである。
とRとは、同一であることが好ましい。
式(Ar-1A)で表される基は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、式(Ar-2A)で表される基である。
1A、E2A及びE3Aは、好ましくは、炭素原子である。
1A、R2A及びR3Aは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
1A及びR3Aは、特に好ましくは、水素原子、アルキル基又はアリール基であり、とりわけ好ましくは、水素原子であり、これらの基は置換基を有していてもよい。
2Aは、特に好ましくは、水素原子、アルキル基又はアリール基であり、とりわけ好ましくは、アルキル基又はアリール基であり、殊更に好ましくは、アルキル基であり、これらの基は置換基を有していてもよい。
1A、R2A及びR3Aにおけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
1A、R2A及びR3Aが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
環Aがピリジン環である場合、E1Aが窒素原子であるピリジン環が好ましい。
環Aがジアザベンゼン環である場合、E1A及びE3Aが窒素原子であるピリミジン環が好ましい。
環Aは、ベンゼン環が好ましい。
[アニオン性の2座配位子]
-G-Aで表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A-G-Aで表されるアニオン性の2座配位子は、添え字nでその数を定義されている配位子とは異なる。
Figure 0007017907000041
Figure 0007017907000042
Figure 0007017907000043
式中、
*は、Mと結合する部位を表す。
L1は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
L2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
L1は、好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又はフッ素原子であり、より好ましくは水素原子又はアルキル基であり、更に好ましくは、水素原子であり、これらの基は置換基を有していてもよい。
L2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
<式(1-1)及び式(1’-1)で表される金属錯体>
式(1)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、式(1-1)で表される金属錯体である。
式(1’)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、式(1’-1)で表される金属錯体である。
Figure 0007017907000044
式中、M、Z1A、n、n、R、Ar1A、A-G-A、E1B、E2B、E3B、E4B、R1B、R2B、R3B、R4B及び環Bは、前記と同じ意味を表す。
1B、E2B、E3B及びE4Bは、炭素原子であることが好ましい。
1B、R2B、R3B及びR4Bは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子がより好ましく、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
1B、R3B及びR4Bは、特に好ましくは、水素原子又はアルキル基であり、とりわけ好ましくは、水素原子であり、これらの基は更に置換基を有していてもよい。
2Bは、特に好ましくは、水素原子、アルキル基又はアリール基であり、とりわけ好ましくは、水素原子又はアリール基であり、殊更に好ましくは、水素原子であり、これらの基は更に置換基を有していてもよい。
1B、R2B、R3B及びR4Bにおけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基、1価の複素環基又は置換アミノ基の例及び好ましい範囲と同じである。
1B、R2B、R3B及びR4Bが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
環Bがピリジン環である場合、環Bは、E1Bが窒素原子であるピリジン環、E2Bが窒素原子であるピリジン環、又は、E3Bが窒素原子であるピリジン環であることが好ましく、E2Bが窒素原子であるピリジン環であることがより好ましい。
環Bがジアザベンゼン環である場合、環Bは、E2B及びE4Bが窒素原子であるピリミジン環、又は、E1B及びE3Bが窒素原子であるピリミジン環であることが好ましく、E2B及びE4Bが窒素原子であるピリミジン環であることがより好ましい。
環Bは、ベンゼン環であることが好ましい。
式(1-1)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、式(1-2)で表される金属錯体であることが好ましい。
式(1’-1)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、式(1’-2)で表される金属錯体であることが好ましい。
Figure 0007017907000045
式中、M、Z1A、n、n、R、Ar1A、A-G-A、R1B、R2B、R3B及びR4Bは、前記と同じ意味を表す。
式(1)で表される金属錯体としては、例えば、下記式で表される金属錯体が挙げられる。
Figure 0007017907000046
Figure 0007017907000047
Figure 0007017907000048
Figure 0007017907000049
式中、
は、-CH=で表される基又は-N=で表される基を表す。Zが複数存在する場合、それらは同一でも異なっていてもよい。Zは、好ましくは-N=で表される基である。
は、-O-で表される基又は-S-で表される基を表す。
<式(1)で表される金属錯体の製造方法>
式(1)で表される金属錯体は、例えば、配位子となる化合物と金属化合物とを反応させる方法により製造することができる。必要に応じて、金属錯体の配位子の官能基変換反応を行ってもよい。
式(1)で表される金属錯体は、例えば、式(M-1)で表される化合物と、金属化合物若しくはその水和物とを反応させる工程A、及び、工程Aで得られた化合物(以下、「金属錯体中間体(1)」ともいう。)と、式(M-1)で表される化合物又はA-G-Aで表される配位子の前駆体とを反応させる工程B、を含む方法により製造することができる。
Figure 0007017907000050
式中、M、n、n、E、環B、Z1A、R、Ar1A及びA-G-Aは、前記と同じ意味を表す。
工程Aにおいて、金属化合物としては、例えば、塩化イリジウム、トリス(アセチルアセトナト)イリジウム(III)、クロロ(シクロオクタジエン)イリジウム(I)ダイマー、酢酸イリジウム(III)等のイリジウム化合物;塩化白金酸カリウム等の白金化合物;塩化パラジウム、酢酸パラジウム等のパラジウム化合物;及び、塩化ロジウム等のロジウム化合物が挙げられる。金属化合物の水和物としては、例えば、塩化イリジウム・三水和物、塩化ロジウム・三水和物が挙げられる。
金属錯体中間体(1)としては、例えば、式(M-2)で表される金属錯体が挙げられる。
Figure 0007017907000051
式中、M、E、環B、Z1A、R、Ar1A及びA-G-Aは、前記と同じ意味を表す。
1’は、1又は2を表す。Mがロジウム原子又はイリジウム原子の場合、n1’は2であり、Mがパラジウム原子又は白金原子の場合、n1’は1である。
工程Aにおいて、式(M-1)で表される化合物の量は、金属化合物又はその水和物1モルに対して、通常、2~20モルである。
工程Bにおいて、式(M-1)で表される化合物又はA-G-Aで表される配位子の前駆体の量は、金属錯体中間体(1)1モルに対して、通常、1~100モルである。
工程Bにおいて、反応は、トリフルオロメタンスルホン酸銀等の銀化合物の存在下で行うことが好ましい。銀化合物を用いる場合、その量は、金属錯体中間体(1)1モルに対して、通常、2~20モルである。
工程A及び工程Bは、通常、溶媒中で行う。溶媒としては、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水等が挙げられる。
工程A及び工程Bにおいて、反応時間は、通常、30分間~200時間であり、反応温度は、通常、反応系に存在する溶媒の融点から沸点の間である。
<式(1)で表される金属錯体の製造方法>で説明した反応において用いられる化合物、触媒及び溶媒は、各々、一種単独で用いても二種以上を併用してもよい。
[ホスト材料]
本実施形態の発光素子の外部量子効率がより優れるので、第1の有機層は、式(1)又は式(1’)で表される金属錯体と、正孔注入性、正孔輸送性、電子注入性及び電子輸送性のうちの少なくとも1つの機能を有するホスト材料とを含有する層であることが好ましい。第1の有機層は、ホスト材料の1種を単独で含有していてもよく、2種以上を含有していてもよい。
第1の有機層が、式(1)又は式(1’)で表される金属錯体とホスト材料とを含有する層である場合、式(1)又は式(1’)で表される金属錯体の含有量は、式(1)又は式(1’)で表される金属錯体とホスト材料との合計を100質量部として、通常、0.1~50質量部であり、好ましくは1~45質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。
ホスト材料の有する最低励起三重項状態(T)は、本実施形態の発光素子の外部量子効率がより優れるので、式(1)又は式(1’)で表される金属錯体の有する最低励起三重項状態(T)より高いエネルギー準位であることが好ましい。
ホスト材料としては、本実施形態の発光素子を溶液塗布プロセスで作製できるので、式(1)又は式(1’)で表される金属錯体を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
ホスト材料は、低分子化合物(低分子ホスト)と高分子化合物(高分子ホスト)とに分類され、第1の有機層はいずれのホスト材料を含有していてもよい。第1の有機層に含有されていてもよいホスト材料としては、低分子化合物が好ましい。
[低分子ホスト]
ホスト材料として好ましい低分子化合物(以下、「低分子ホスト」と言う。)に関して説明する。
低分子ホストは、好ましくは、式(H-1)で表される化合物である。
ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基又はアザカルバゾリル基であることがより好ましく、フルオレニル基、スピロビフルオレニル基、ジベンゾチエニル基、ジベンゾフリル基又はカルバゾリル基であることが更に好ましく、式(TDA-3)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルコキシ基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルコキシ基が更に好ましく、これらの基は更に置換基を有していてもよい。
H1は、好ましくは1である。nH2は、好ましくは0である。
H3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
H11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
H11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
H1は、アリーレン基又は2価の複素環基であることが好ましい。
H1は、式(A-1)~式(A-3)、式(A-8)~式(A-10)、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-21)又は式(AA-24)~式(AA-34)で表される基であることが好ましく、式(A-1)、式(A-2)、式(A-8)、式(A-9)、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)、式(AA-33)又は式(AA-34)で表される基であることがより好ましく、式(A-1)、式(A-2)、式(A-8)、式(AA-2)、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は(AA-33)で表される基であることが更に好ましく、式(A-8)、式(AA-10)、式(AA-12)又は式(AA-14)で表される基であることが特に好ましく、式(AA-14)で表される基であることがとりわけ好ましい。
H1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、1価の複素環基が特に好ましく、これらの基は更に置換基を有していてもよい。
H21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
H21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
H21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
H21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
H21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure 0007017907000052
式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。
式(H-1)で表される化合物としては、式(H-101)~式(H-118)で表される化合物が例示される。
Figure 0007017907000053
Figure 0007017907000054
Figure 0007017907000055
Figure 0007017907000056
ホスト材料に用いられる高分子化合物としては、例えば、後述の正孔輸送材料である高分子化合物、後述の電子輸送材料である高分子化合物が挙げられる。
[高分子ホスト]
ホスト化合物として好ましい高分子化合物(以下、「高分子ホスト」と言う。)は、好ましくは、式(Y)で表される構成単位を含む高分子化合物である。
ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)、式(AA-18)~式(AA-21)、式(AA-33)又は式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
ArY1で表されるアリーレン基と2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
「アリーレン基と2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure 0007017907000057
式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
XXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
式(Y)で表される構成単位としては、例えば、式(Y-1)~式(Y-10)で表される構成単位が挙げられ、本実施形態の発光素子の外部量子効率の観点からは、好ましくは式(Y-1)~式(Y-3)で表される構成単位であり、本実施形態の発光素子の電子輸送性の観点からは、好ましくは式(Y-4)~式(Y-7)で表される構成単位であり、本実施形態の発光素子の正孔輸送性の観点からは、好ましくは式(Y-8)~式(Y-10)で表される構成単位である。
Figure 0007017907000058
式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
Y1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
式(Y-1)で表される構成単位は、好ましくは、式(Y-1’)で表される構成単位である。
Figure 0007017907000059
式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。
Y11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure 0007017907000060
式中、RY1は前記と同じ意味を表す。XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
Y2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
Y1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure 0007017907000061
Y1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
Y1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure 0007017907000062
式中、RY2は前記と同じ意味を表す。
式(Y-2)で表される構成単位は、式(Y-2’)で表される構成単位であることが好ましい。
Figure 0007017907000063
式中、RY1及びXY1は前記と同じ意味を表す。
Figure 0007017907000064
式中、RY1及びXY1は前記と同じ意味を表す。
式(Y-3)で表される構成単位は、式(Y-3’)で表される構成単位であることが好ましい。
Figure 0007017907000065
式中、RY11及びXY1は前記と同じ意味を表す。
Figure 0007017907000066
Figure 0007017907000067
式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
Y3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
式(Y-4)で表される構成単位は、式(Y-4’)で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6’)で表される構成単位であることが好ましい。
Figure 0007017907000068
式中、RY1及びRY3は前記と同じ意味を表す。
Figure 0007017907000069
式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
Y4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
式(Y)で表される構成単位としては、例えば、式(Y-101)~式(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)~式(Y-206)で表される2価の複素環基からなる構成単位、式(Y-300)~式(Y-304)で表されるアリーレン基と2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure 0007017907000070
Figure 0007017907000071
Figure 0007017907000072
Figure 0007017907000073
Figure 0007017907000074
Figure 0007017907000075
Figure 0007017907000076
Figure 0007017907000077
Figure 0007017907000078
式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本実施形態の発光素子の外部量子効率が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基である構成単位は、本実施形態の発光素子の電荷輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。
式(Y)で表される構成単位は、高分子ホスト中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
高分子ホストは、正孔輸送性が優れるので、更に、下記式(X)で表される構成単位を含むことが好ましい。
Figure 0007017907000079
式中、
X1及びaX2は、それぞれ独立に、0以上の整数を表す。
ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
X1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。
X1は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは2以下であり、より好ましくは1である。
X2は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは2以下であり、より好ましくは0である。
X1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~式(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
ArX2及びArX4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
ArX2及びArX4で表されるアリーレン基と2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表されるアリーレン基と2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
式(X)で表される構成単位は、好ましくは式(X-1)~式(X-7)で表される構成単位であり、より好ましくは式(X-1)~式(X-6)で表される構成単位であり、更に好ましくは式(X-3)~(X-6)で表される構成単位である。
Figure 0007017907000080
Figure 0007017907000081
Figure 0007017907000082
Figure 0007017907000083
式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
式(X)で表される構成単位は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。
式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)~式(X1-10)で表される構成単位である。
Figure 0007017907000084
Figure 0007017907000085
Figure 0007017907000086
Figure 0007017907000087
Figure 0007017907000088
高分子ホストにおいて、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
高分子ホストとしては、例えば、高分子化合物P-1~P-6が挙げられる。
Figure 0007017907000089
表中、p、q、r、s及びtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。その他の構成単位とは、式(Y)で表される構成単位及び式(X)で表される構成単位以外の構成単位を意味する。
高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。
高分子ホストのポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、より好ましくは1.5×10~1.5×10である。
[高分子ホストの製造方法]
高分子ホストは、ケミカルレビュー(Chem.Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子ホストの純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
[第1の組成物]
第1の有機層は、式(1)又は式(1’)で表される金属錯体と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料(但し、式(1)で表される金属錯体とは異なる。)及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。
[正孔輸送材料]
正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン(α-NPD)、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)等の芳香族アミン化合物が挙げられる。
高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
第1の組成物において、正孔輸送材料の含有量は、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
[電子輸送材料]
電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
第1の組成物において、電子輸送材料の含有量は、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
[正孔注入材料及び電子注入材料]
正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
第1の組成物において、正孔注入材料及び電子注入材料の含有量は、各々、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
(イオンドープ)
正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
[発光材料]
発光材料(但し、式(1)で表される金属錯体とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基;式(X)で表される構成単位;並びに、カルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基から選択される基を含む高分子化合物が挙げられる。
発光材料は、好ましくは、以下に示す金属錯体、式(2)で表される金属錯体、後述の層Bの高分子化合物、又は、後述の層Bの高分子化合物の架橋体であり、好ましくは、式(2)で表される金属錯体、後述の層Bの高分子化合物、又は、後述の層Bの高分子化合物の架橋体であり、より好ましくは、式(2)で表される金属錯体である。
Figure 0007017907000090
Figure 0007017907000091
Figure 0007017907000092
第1の組成物において、発光材料の含有量は、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
発光材料は、一種単独で用いても二種以上を併用してもよい。
[酸化防止剤]
酸化防止剤は、例えば、式(1)又は式(1’)で表される金属錯体を溶解可能な少なくとも一種の溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であることが好ましい。酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
第1の組成物において、酸化防止剤の含有量は、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、0.001~10質量部である。
酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
<インク>
式(1)又は式(1’)で表される金属錯体と、溶媒とを含有する組成物(以下、「第1のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の湿式法に好適に使用することができる。
第1のインクの粘度は、湿式法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
第1のインクにおいて、溶媒の含有量は、式(1)又は式(1’)で表される金属錯体を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
<第2の有機層>
次に、第2の有機層の好ましい実施形態の1つである層Bについて説明する。
<層B>
層Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上の水素原子を取り除いた基を有する構成単位(以下、「金属錯体構成単位」ともいう。)を含む高分子化合物(以下、「層Bの高分子化合物」ともいう。)、及び、層Bの高分子化合物の架橋体のうち、少なくとも1種を含有する層である。
層Bにおいて、層Bの高分子化合物及び層Bの高分子化合物の架橋体は、それぞれ、1種単独で含有されていても、2種以上含有されていてもよい。
[式(2)で表される金属錯体]
式(2)で表される金属錯体は、通常、室温(25℃)で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
式(2)で表される金属錯体は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成されている。
は、本実施形態の発光素子の外部量子効率がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
がロジウム原子又はイリジウム原子の場合、nは2又は3であることが好ましく、3であることがより好ましい。
がパラジウム原子又は白金原子の場合、nは2であることが好ましい。
は、炭素原子であることが好ましい。
環Lは、1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることが好ましく、1つ以上2つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、これらの環は置換基を有していてもよい。
環Lとしては、例えば、ピリジン環、ジアザベンゼン環、キノリン環及びイソキノリン環が挙げられ、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環が好ましく、ピリジン環、キノリン環又はイソキノリン環がより好ましく、ピリジン環又はイソキノリン環が更に好ましく、ピリジン環が特に好ましく、これらの環は置換基を有していてもよい。
環Lにおける芳香族炭化水素環の例及び好ましい範囲は、環Bにおける芳香族炭化水素環の例及び好ましい範囲と同じである。環Lにおける芳香族複素環の例及び好ましい範囲は、環Bにおける芳香族炭化水素環の例及び好ましい範囲と同じである。
環Lの例及び好ましい範囲は、環Bの例及び好ましい範囲と同じである。但し、環Lが6員の芳香族複素環である場合、Eは炭素原子である。
環L及び環Lが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、式(D-A)、(D-B)又は(D-C)で表される基であり、とりわけ好ましくは、式(D-A)で表される基であり、これらの基は更に置換基を有していてもよい。
環L及び環Lのうち、少なくとも1つは、置換基を有することが好ましい。
環L及び環Lが有していてもよい置換基におけるアリール基の例及び好ましい範囲は、環Bが有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。
環L及び環Lが有していてもよい置換基における1価の複素環基の例及び好ましい範囲は、Bが有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
環L及び環Lが有していてもよい置換基における置換アミノ基の例及び好ましい範囲は、Bが有していてもよい置換基における置換アミノ基の例及び好ましい範囲と同じである。
環L及び環Lが有していてもよい置換基における式(D-A)及び(D-B)で表される基において、GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、より好ましくは式(GDA-11)~(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は(GDA-14)で表される基である。
環L及び環Lが有していてもよい置換基において、式(D-A)で表される基は、好ましくは、式(D-A1)~(D-A4)で表される基であり、より好ましくは、式(D-A1)、(D-A3)又は(D-A4)で表される基であり、更に好ましくは、式(D-A1)又は(D-A3)で表される基であり、特に好ましくは、式(D-A1)で表される基である。
環L及び環Lが有していてもよい置換基において、式(D-B)で表される基は、好ましくは、式(D-B1)~(D-B3)で表される基であり、より好ましくは、式(D-B1)又は(D-B3)で表される基であり、更に好ましくは、式(D-B1)で表される基である。
環L及び環Lが有していてもよい置換基において、式(D-C)で表される基は、好ましくは、式(D-C1)~(D-C4)で表される基であり、より好ましくは、式(D-C1)~(D-C3)で表される基であり、更に好ましくは、式(D-C1)又は(D-C2)で表される基であり、特に好ましくは、式(D-C1)で表される基である。
環Lが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
環Lが有していてもよい置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
環Lが有していてもよい置換基と、環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
環L及び環Lが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
-G-Aで表されるアニオン性の2座配位子の例及び好ましい範囲は、A-G-Aで表されるアニオン性の2座配位子の例及び好ましい範囲と同じである。なお、A-G-Aで表されるアニオン性の2座配位子において、上記式中の*はMと結合する部位を表す。但し、A-G-Aで表されるアニオン性の2座配位子は、添え字nでその数を規定されている配位子とは異なる。
<式(2-B)で表される金属錯体>
式(2)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、式(2-B)で表される金属錯体であることが好ましい。
11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、炭素原子であることが好ましい。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であり、特に好ましくは、水素原子、又は、式(D-A)で表される基であり、これらの基は置換基を有していてもよい。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L及び環Lが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
環L1Bがピリミジン環である場合、E11Bが窒素原子であるピリミジン環が好ましい。
環L1Bは、ピリジン環であることが好ましい。
環L2Bがピリジン環である場合、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環が好ましく、E22Bが窒素原子であるピリジン環がより好ましい。
環L2Bがジアザベンゼン環である場合、E21B及びE23Bが窒素原子であるピリミジン環、又は、E22B及びE24Bが窒素原子であるピリミジン環が好ましく、E22B及びE24Bが窒素原子であるピリミジン環がより好ましい。
環L2Bは、ベンゼン環であることが好ましい。
本実施形態の発光素子の外部量子効率がより優れるので、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bのうち、少なくとも1つは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることが好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であることがより好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが更に好ましく、式(D-A)、(D-B)又は(D-C)で表される基であることが特に好ましく、式(D-A)で表される基であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bのうち、少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子である場合、R12B、R13B、R22B及びR23Bのうち、少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることが好ましく、R13B又はR22Bが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることがより好ましく、これらの基は置換基を有していてもよい。
11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、又は、R23BとR24Bが、それぞれが結合する原子とともに環を形成する場合、形成する環としては、芳香族炭化水素環又は芳香族複素環が好ましく、芳香族炭化水素環がより好ましく、ベンゼン環が好ましく、これらの環は置換基を有していてもよい。環を形成する場合において、形成する環における芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲は、それぞれ、環Bにおける芳香族炭化水素環及び芳香族複素環の例及び好ましい範囲と同じである。環を形成する場合において、環が有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
式(2-B)で表される金属錯体は、本実施形態の発光素子の外部量子効率がより優れるので、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体であることが好ましく、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体又は式(2-B3)で表される金属錯体であることがより好ましく、式(2-B1)で表される金属錯体又は式(2-B2)で表される金属錯体であることが更に好ましく、式(2-B1)で表される金属錯体であることが特に好ましい。
15B、R16B、R17B及びR18Bは、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基又はシクロアルキル基であり、特に好ましくは、水素原子であり、これらの基は置換基を有していてもよい。
15B、R16B、R17B及びR18Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L及び環Lが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環Bが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
15BとR16B、R16BとR17B、及び、R17BとR18Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成してもよいが、環を形成しないことが好ましい。
式(2)で表される金属錯体としては、例えば、下記式で表される金属錯体が挙げられる。
Figure 0007017907000093
Figure 0007017907000094
Figure 0007017907000095
Figure 0007017907000096
Figure 0007017907000097
Figure 0007017907000098
Figure 0007017907000099
Figure 0007017907000100
Figure 0007017907000101
Figure 0007017907000102
式(2)で表される金属錯体は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。
また、上記以外の入手方法として、例えば、「Journal of the American Chemical Society,Vol.107,1431-1432(1985)」、「Journal of the American Chemical Society,Vol.106,6647-6653(1984)」、特表2004-530254号公報、特開2008-179617号公報、特開2011-105701号公報、特表2007-504272号公報、国際公開第2006/121811号、特開2013-147450号公報に記載されている方法に従って合成することができる。
[金属錯体構成単位]
金属錯体構成単位は、本実施形態の発光素子の外部量子効率が優れ、かつ、合成が容易なため、好ましくは、式(2)で表される金属錯体から1個以上5個以下の水素原子を除いた基を含む構成単位であり、より好ましくは、式(2)で表される金属錯体から1個以上3個以下の水素原子を除いた基を含む構成単位であり、更に好ましくは式(2-1B)で表される構成単位、式(2-2B)で表される構成単位、式(2-3B)で表される構成単位又は式(2-4B)で表される構成単位であり、特に好ましくは式(2-1B)で表される構成単位、式(2-2B)で表される構成単位又は式(2-3B)で表される構成単位であり、とりわけ好ましくは式(2-3B)で表される構成単位である。
・式(2-1B)で表される構成単位
は、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基がより好ましく、水素原子又はアルキル基が更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
は、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、-C(R-又はアリーレン基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
、R及びLが有していてもよい置換基の例及び好ましい範囲は、それぞれ、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
c1は、通常、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
層Bの高分子化合物が式(2-1B)で表される構成単位を含む高分子化合物である場合、式(2-1B)で表される構成単位は末端の構成単位である。
「末端の構成単位」とは、高分子化合物の末端の構成単位を意味し、該末端の構成単位は、高分子化合物の製造において、末端封止剤から誘導される構成単位であることが好ましい。
1Bは、式(BM-1)で表される基であることがより好ましい。
Figure 0007017907000103
式中、
、E、環L、環L及びA-G-Aは、前記と同じ意味を表す。
環L11は、6員の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
環L12は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
但し、環L11及び環L12の一方は、1つの結合手を有する。
11及びn12は、それぞれ独立に、0以上の整数を表す。但し、n11+n12は1又は2である。Mがロジウム原子又はイリジウム原子の場合、n11+n12は2であり、Mがパラジウム原子又は白金原子の場合、n11+n12は1である。
がロジウム原子又はイリジウム原子の場合、n11が2であることがより好ましい。
がパラジウム原子又は白金原子の場合の場合、n11が1であることが好ましい。
環L11が結合手を有さない場合、環L11の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
環L11が結合手を有する場合、環L11の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
環L12が結合手を有さない場合、環L12の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
環L12が結合手を有する場合、環L12の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
環L11及び環L12が有していてもよい置換基の定義、例及び好ましい範囲は、環L及び環Lが有していてもよい置換基の定義、例及び好ましい範囲と同様である。
[式(2-2B)で表される構成単位]
は、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、アリーレン基又は2価の複素環基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
は、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、-C(R-又はアリーレン基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
及びLで表されるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
d1及びne1は、通常、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
Ar1Mは、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、トリアジン環、カルバゾール環、フェノキサジン環又はフェノチアジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子3個を除いた基であることが好ましく、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環又はジヒドロフェナントレン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることがより好ましく、ベンゼン環又はフルオレン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることが更に好ましく、ベンゼン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることが特に好ましく、これらの基は置換基を有していてもよい。
、L及びAr1Mが有していてもよい置換基の例及び好ましい範囲は、それぞれ、前述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
[式(2-3B)で表される構成単位]
2Bは、式(BM-2)又は(BM-3)で表される基であることがより好ましく、式(BM-2)で表される基であることが更に好ましい。
Figure 0007017907000104
式中、
、E、環L、環L、環L11、環L12及びA-G-Aは前記と同じ意味を表す。複数存在する環L11は、同一でも異なっていてもよい。複数存在する環L12は、同一でも異なっていてもよい。
13及びn14は、それぞれ独立に、0以上の整数を表す。但し、n13+n14は0又は1である。Mがロジウム原子又はイリジウム原子の場合、n13+n14は1であり、Mがパラジウム原子又は白金原子の場合、n13+n14は0である。
がロジウム原子又はイリジウム原子の場合、n13が1であることが好ましい。
Figure 0007017907000105
式中、
、E、環L、環L、A-G-A、n11及びn12は、前記と同じ意味を表す。
環L13は、6員の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
環L14は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
但し、環L13及び環L14の一方は2つの結合手を有するか、又は、環L13及び環L14は、それぞれ、結合手を1つずつ有する。
環L13が結合手を有さない場合、環L13の定義、例及び好ましい範囲は、環Lの定義、例及び好ましい範囲と同様である。
環L13が結合手を有する場合、環L13の結合手を除いた環部分の定義、例及び好ましい範囲は、環Lの定義、例及び好ましい範囲と同様である。
環L14が結合手を有さない場合、環L14の定義、例及び好ましい範囲は、環Lの定義、例及び好ましい範囲と同様である。
環L14が結合手を有する場合、環L14の結合手を除いた環部分の定義、例及び好ましい範囲は、環Lの定義、例及び好ましい範囲と同様である。
環L13及び環L14が有していてもよい置換基の定義、例及び好ましい範囲は、環L及び環Lが有していてもよい置換基の定義、例及び好ましい範囲と同様である。
環L13及び環L14は、それぞれ、結合手を1つずつ有することが好ましい。
[式(2-4B)で表される構成単位]
3Bは、式(BM-4)で表される基であることが好ましい。
Figure 0007017907000106
式中、
、E、環L11、環L12、環L13及び環L14は、前記と同じ意味を表す。
15は0又は1を表す。n16は1又は3を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n15は0であり、かつ、n16は3である。Mがパラジウム原子又は白金原子の場合、n15は1であり、かつ、n16は1である。
金属錯体構成単位としては、例えば、式(1G-1)~(1G-13)、(2G-1)~(2G-16)、(3G-1)~(3G-23)又は(4G-1)~(4G-6)で表される構成単位が挙げられる。
Figure 0007017907000107
Figure 0007017907000108
Figure 0007017907000109
Figure 0007017907000110
Figure 0007017907000111
Figure 0007017907000112
Figure 0007017907000113
Figure 0007017907000114
Figure 0007017907000115
Figure 0007017907000116
Figure 0007017907000117
Figure 0007017907000118
Figure 0007017907000119
式中、
は、前記と同じ意味を表す。
Deは式(D-A)、(D-B)又は(D-C)で表される基を表す。
金属錯体構成単位は、本実施形態の発光素子の外部量子効率が優れるので、層Bの高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.01~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.5~10モル%であり、特に好ましくは1~5モル%である。金属錯体構成単位は、層Bの高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層Bの高分子化合物は、本実施形態の発光素子を湿式法で形成でき、発光素子の積層化も可能なため、金属錯体構成単位及び架橋基を有する構成単位を含む高分子化合物(以下、「層B’の高分子化合物」ともいう。)であることが好ましい。
すなわち、層Bの高分子化合物の架橋体は、層B’の高分子化合物の架橋体であることが好ましい。
金属錯体構成単位は、本実施形態の発光素子の外部量子効率が優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.01~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.5~10モル%であり、特に好ましくは1~5モル%である。金属錯体構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
架橋基を有する構成単位は、層B’の高分子化合物の安定性及び架橋性が優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは3~65モル%であり、更に好ましくは5~50モル%である。架橋基を有する構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層Bの高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。層B’の高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。
層Bの高分子化合物及び層B’の高分子化合物が含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲と同じである。
層Bの高分子化合物が式(X)で表される構成単位を含む場合、層Bの高分子化合物に含まれる式(X)で表される構成単位は、正孔輸送性がより優れるので、層Bの高分子化合物に含まれる構成単位の合計量に対して、好ましくは1~90モル%であり、より好ましくは10~70モル%であり、更に好ましくは30~50モル%である。層B’の高分子化合物が式(X)で表される構成単位を含む場合、層B’の高分子化合物に含まれる式(X)で表される構成単位は、正孔輸送性がより優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは1~90モル%であり、より好ましくは10~70モル%であり、更に好ましくは30~50モル%である。
式(X)で表される構成単位は、層Bの高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。式(X)で表される構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層Bの高分子化合物は、本実施形態の発光素子の外部量子効率が優れるので、更に、式(Y)で表される構成単位を含むことが好ましい。層B’の高分子化合物は、本実施形態の発光素子の外部量子効率が優れるので、更に、式(Y)で表される構成単位を含むことが好ましい。
層Bの高分子化合物及び層B’の高分子化合物が含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲と同じである。
層Bの高分子化合物が式(Y)で表される構成単位を含み、ArY1がアリーレン基である場合、層Bの高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の輝度寿命がより優れるので、層Bの高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
層B’の高分子化合物が式(Y)で表される構成単位を含み、ArY1がアリーレン基である場合、層B’の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の輝度寿命がより優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
層Bの高分子化合物が式(Y)で表される構成単位を含み、ArY1が2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基である場合、層Bの高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の電荷輸送性がより優れるので、層Bの高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%である。
層B’の高分子化合物が式(Y)で表される構成単位を含み、ArY1が2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基である場合、層B’の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の電荷輸送性がより優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%である。
式(Y)で表される構成単位は、層Bの高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。式(Y)で表される構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
[架橋基を有する構成単位]
架橋基を有する構成単位において、架橋基は、本実施形態の発光素子の外部量子効率が優れるので、架橋基A群から選ばれる架橋基であることが好ましい。
架橋基A群から選ばれる架橋基としては、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)又は式(XL-14)~式(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基であり、とりわけ好ましくは、式(XL-17)で表される架橋基である。
架橋基A群から選ばれる架橋基としては、本実施形態の発光素子の外部量子効率がより優れ、且つ、層B’の高分子化合物の架橋性がより優れるので、好ましくは、式(XL-2)~式(XL-4)、式(XL-7)~式(XL-10)、式(XL-14)、式(XL-15)又は式(XL-17)で表される架橋基であり、より好ましくは、式(XL-9)、式(XL-10)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-17)で表される架橋基である。
層B’の高分子化合物における架橋基A群から選ばれる少なくとも一種の架橋基を有する構成単位は、式(Z)で表される構成単位又は式(Z’)で表される構成単位であることが好ましく、式(Z)で表される構成単位であることがより好ましいが、下記式で表される構成単位であってもよい。
Figure 0007017907000120
層B’の高分子化合物が、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位を2種以上含む場合、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位の少なくとも2種は、架橋基が互いに異なることが好ましい。互いに異なる架橋基の組み合わせとしては、式(XL-1)、式(XL-2)、式(XL-5)~式(XL-8)又は式(XL-14)~式(XL-16)で表される架橋基と、式(XL-3)、式(XL-4)、式(XL-13)又は式(XL-17)で表される架橋基との組み合わせが好ましく、式(XL-1)又は式(XL-16)で表される架橋基と、式(XL-17)で表される架橋基との組み合わせがより好ましく、式(XL-1)で表される架橋基と、式(XL-17)で表される架橋基との組み合わせが更に好ましい。
・式(Z)で表される構成単位
Figure 0007017907000121
式中、
nAは0~5の整数を表し、nは1又は2を表す。nAが複数存在する場合、それらは同一でも異なっていてもよい。
Arは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
Xは、架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。
nAは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、更に好ましくは1である。
nは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは2である。
Arは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、さらに好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
Arで表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。
で表されるアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。
で表されるシクロアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20である。
アルキレン基及びシクロアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられ、これらの基は置換基を有していてもよい。
で表されるアルキレン基及びシクロアルキレン基は、置換基を有していてもよい。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子又はシアノ基が好ましく、これらの基は更に置換基を有していてもよい。
で表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基又はフルオレンジイル基が好ましく、m-フェニレン基、p-フェニレン基、フルオレン-2,7-ジイル基、フルオレン-9,9-ジイル基がより好ましい。アリーレン基が有してもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基又は架橋基A群から選ばれる架橋基が好ましく、これらの基は更に置換基を有していてもよい。
で表される2価の複素環基としては、好ましくは式(AA-1)~式(AA-34)で表される基である。
は、層B’の高分子化合物の製造が容易になるため、好ましくは、アリーレン基又はアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基又はアルキレン基であり、これらの基は置換基を有していてもよい。
Xで表される架橋基としては、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)又は式(XL-14)~式(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基であり、とりわけ好ましくは、式(XL-17)で表される架橋基である。
Xで表される架橋基としては、本実施形態の発光素子の外部量子効率がより優れ、且つ、層B’の高分子化合物の架橋性がより優れるので、好ましくは、式(XL-2)~式(XL-4)、式(XL-7)~式(XL-10)、式(XL-14)、式(XL-15)又は式(XL-17)で表される架橋基であり、より好ましくは、式(XL-9)、式(XL-10)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-17)で表される架橋基である。
式(Z)で表される構成単位は、層B’の高分子化合物の安定性及び架橋性が優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは3~65モル%であり、更に好ましくは5~50モル%である。
式(Z)で表される構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層B’の高分子化合物が、式(Z)で表される構成単位を2種以上含む場合、式(Z)で表される構成単位の少なくとも2種は、Xで表される架橋基が互いに異なることが好ましい。互いに異なるXで表される架橋基の組み合わせの好ましい範囲は、前述の互いに異なる架橋基の組み合わせの好ましい範囲と同じである。
・式(Z’)で表される構成単位
Figure 0007017907000122
式中、
mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1の整数を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
Arは、芳香族炭化水素基、複素環基、又は、芳香族炭化水素環と複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
Ar、Ar及びArはそれぞれ、該基が結合している窒素原子に結合している該基以外の基と、直接結合又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
X’は、架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。X’が複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのX’は、架橋基A群から選ばれる架橋基である。
mAは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
mは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは1又は2であり、より好ましくは2である。
cは、層B’の高分子化合物の製造が容易になり、且つ、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは0である。
Arは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
Arで表される芳香族炭化水素環と複素環とが直接結合した基のm個の置換基を除いた2価の基の定義や例は、式(X)におけるArX2で表されるアリーレン基と2価の複素環基とが直接結合した2価の基の定義や例と同じである。
Ar及びArは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
Ar及びArで表されるアリーレン基の定義や例は、式(X)におけるArX1及びArX3で表されるアリーレン基の定義や例と同じである。
Ar及びArで表される2価の複素環基の定義や例は、式(X)におけるArX1及びArX3で表される2価の複素環基の定義や例と同じである。
Ar、Ar及びArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。
で表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
は、層B’の高分子化合物の製造が容易になるので、フェニレン基又はメチレン基であることが好ましい。
X’で表される架橋基の定義や例は、Xで表される架橋基の定義や例と同じである。
式(Z’)で表される構成単位は、層B’の高分子化合物の安定性が優れ、且つ、層B’の高分子化合物の架橋性が優れるので、層B’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは5~20モル%である。式(Z’)で表される構成単位は、層B’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層B’の高分子化合物が、式(Z’)で表される構成単位を2種以上含む場合、式(Z’)で表される構成単位の少なくとも2種は、X’で表される架橋基が互いに異なることが好ましい。互いに異なるX’で表される架橋基の組み合わせの好ましい範囲は、前述の互いに異なる架橋基の組み合わせの好ましい範囲と同じである。
・式(Z)又は(Z’)で表される構成単位の好ましい態様
式(Z)で表される構成単位としては、例えば、式(Z-1)~式(Z-30)で表される構成単位が挙げられ、式(Z’)で表される構成単位としては、例えば、式(Z’-1)~式(Z’-9)で表される構成単位が挙げられる。これらの中でも、層B’の高分子化合物の架橋性が優れるので、好ましくは式(Z-1)~式(Z-30)で表される構成単位であり、より好ましくは式(Z-1)~式(Z-15)、式(Z-19)、式(Z-20)、式(Z-23)、式(Z-25)又は式(Z-30)で表される構成単位であり、更に好ましくは式(Z-1)~式(Z-9)又は式(Z-30)で表される構成単位である。
Figure 0007017907000123
Figure 0007017907000124
Figure 0007017907000125
層Bの高分子化合物及び層B’の高分子化合物としては、例えば、高分子化合物P-15~P-29が挙げられる。ここで、「その他」の構成単位とは、金属錯体構成単位、架橋基を有する構成単位、式(X)で表される構成単位及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure 0007017907000126
表中、p’’’、q’’’、r’’’、s’’’、t’’’及びu’’’は、各構成単位のモル比率を表す。p’’’+q’’’+r’’’+s’’’+t’’’+u’’’=100であり、且つ、70≦p’’’+q’’’+r’’’+s’’’+t’’’≦100である。
層Bの高分子化合物及び層B’の高分子化合物は、それぞれ、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
層Bの高分子化合物及び層B’の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、より好ましくは1.5×10~1×10である。
・層Bの高分子化合物及び層B’の高分子化合物の製造方法
層Bの高分子化合物及び層B’の高分子化合物は、前述の高分子ホストの製造方法と同様の方法で製造することができる。上記以外の製造方法として、例えば、特開2003-171659号公報、国際公開第2006/003000号、特開2010-43243号公報、特開2011-105701号公報、国際公開第2013/021180号、特開2015-174931号公報、特開2015-174932号公報に記載されている方法に従って合成することができる。
・層Bの組成物及び層B’の組成物
層Bは、層Bの高分子化合物(又はその架橋体)と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「層Bの組成物」ともいう。)を含有する層であってもよい。
層Bは、層B’の高分子化合物(又はその架橋体)と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「層B’の組成物」ともいう。)を含有する層であってもよい。
層Bの組成物及び層B’の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。層Bの組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、層Bの高分子化合物(又はその架橋体)を100質量部とした場合、通常、1~1000質量部であり、好ましくは5~500質量部である。層B’の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、層B’の高分子化合物(又はその架橋体)を100質量部とした場合、通常、1~1000質量部であり、好ましくは5~500質量部である。
層Bの組成物及び層B’の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。層Bの組成物において、酸化防止剤の含有量は、層Bの高分子化合物(又はその架橋体)を100質量部とした場合、通常、0.001~10質量部である。層B’の組成物において、酸化防止剤の含有量は、層B’の高分子化合物(又はその架橋体)を100質量部とした場合、通常、0.001~10質量部である。
・層Bのインク及び層B’のインク
層Bは、例えば、層Bの高分子化合物と、溶媒とを含有する組成物(以下、「層Bのインク」ともいう。)、又は、層B’の高分子化合物と、溶媒とを含有する組成物(以下、「層B’のインク」ともいう。)を用いて形成することができる。層Bのインク及び層B’のインクは、第1のインクの項で説明した湿式法に好適に使用することができる。層Bのインク及び層B’のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。層Bのインク及び層B’のインクに含有される溶媒の例及び好ましい範囲は、第1のインクに含有される溶媒の例及び好ましい範囲と同じである。
層Bのインクにおいて、溶媒の含有量は、層Bの高分子化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。層B’のインクにおいて、溶媒の含有量は、層B’の高分子化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
<層C>
次に、第2の有機層の好ましい実施形態の1つである層Cについて説明する。
層Cは、式(2)で表される金属錯体を含有する層である。層Cにおいて、式(2)で表される金属錯体は、1種単独で含有されていても、2種以上含有されていてもよい。
層Cは、式(2)で表される金属錯体と、架橋基を有する化合物の架橋体とを含有する層C’であることが好ましい。層C’において、式(2)で表される金属錯体及び架橋基を有する化合物の架橋体は、それぞれ、1種単独で含有されていても、2種以上含有されていてもよい。
架橋基を有する化合物としては、例えば、架橋基を有する低分子化合物及び架橋基を有する構成単位を含む高分子化合物が挙げられ、本実施形態の発光素子の外部量子効率がより優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物(以下、「層C’の低分子化合物」ともいう。)、又は、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位を含む高分子化合物(以下、「層C’の高分子化合物」ともいう。)であることが好ましく、層C’の高分子化合物であることがより好ましい。層B‘の高分子化合物と、層C’の高分子化合物とは異なる。すなわち、層C’の高分子化合物は、金属錯体構成単位を含まない高分子化合物である。
架橋基を有する化合物における架橋基の例及び好ましい範囲は、架橋基を有する構成単位における架橋基の例及び好ましい範囲と同じである。
[層C’の高分子化合物]
層C’の高分子化合物における架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位の定義、例及び好ましい範囲は、層B’の高分子化合物における架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位の定義、例及び好ましい範囲と同じである。
架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位は、層C’の高分子化合物の安定性及び架橋性が優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは3~65モル%であり、更に好ましくは5~50モル%である。
架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位は、層C’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層C’の高分子化合物において、架橋基A群から選ばれる少なくとも1種の架橋基を有する構成単位は、好ましくは、式(Z)で表される構成単位又は式(Z’)で表される構成単位であり、より好ましくは、式(Z)で表される構成単位である。
層C’の高分子化合物が式(Z)で表される構成単位を含む場合、式(Z)で表される構成単位は、層C’の高分子化合物の安定性及び架橋性が優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは3~65モル%であり、更に好ましくは5~50モル%である。式(Z)で表される構成単位は、層C’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層C’の高分子化合物が式(Z’)で表される構成単位を含む場合、式(Z’)で表される構成単位は、層C’の高分子化合物の安定性が優れ、且つ、層C’の高分子化合物の架橋性が優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは5~20モル%である。式(Z’)で表される構成単位は、層C’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層C’の高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。層C’の高分子化合物が含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲と同じである。
層C’の高分子化合物が式(X)で表される構成単位を含む場合、層C’の高分子化合物に含まれる式(X)で表される構成単位は、正孔輸送性がより優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは1~90モル%であり、より好ましくは10~70モル%であり、更に好ましくは30~50モル%である。式(X)で表される構成単位は、層C’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層C’の高分子化合物は、本実施形態の発光素子の外部量子効率が優れるので、更に、式(Y)で表される構成単位を含むことが好ましい。層C’の高分子化合物が含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲と同じである。
層C’の高分子化合物が式(Y)で表される構成単位を含み、ArY1がアリーレン基である場合、層C’の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の外部量子効率がより優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。層C’の高分子化合物が式(Y)で表される構成単位を含み、ArY1が2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基である場合、層C’の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態の発光素子の電荷輸送性がより優れるので、層C’の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%である。
式(Y)で表される構成単位は、層C’の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
層C’の高分子化合物としては、例えば、高分子化合物P-7~P-14が挙げられる。ここで、「その他」の構成単位とは、架橋基を有する構成単位、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure 0007017907000127
表中、p’、q’、r’、s’及びt’は、各構成単位のモル比率を表す。p’+q’+r’+s’+t’=100であり、且つ、70≦p’+q’+r’+s’≦100である。
層C’の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
層C’の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、より好ましくは1.5×10~1×10である。
・層C’の高分子化合物の製造方法
層C’の高分子化合物は、前述の高分子ホストの製造方法と同様の方法で製造することができる。
[層C’の低分子化合物]
層C’の低分子化合物は、式(3)で表される低分子化合物が好ましい。
Figure 0007017907000128
式中、
B1、mB2及びmB3は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。mB3が複数存在する場合、それらは同一でも異なっていてもよい。
Arは、芳香族炭化水素基、複素環基、又は、芳香族炭化水素環と複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
B1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-N(R’’’)-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
X’’は、架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、架橋基である。
B1は、通常、0~10の整数であり、層C’の低分子化合物の合成が容易になるため、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
B2は、通常、0~10の整数であり、層C’の低分子化合物の合成が容易となり、且つ、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは0~5の整数であり、より好ましくは0~3の整数であり、更に好ましくは1又は2であり、特に好ましくは1である。
B3は、通常、0~5の整数であり、層C’の低分子化合物の合成が容易になるため、好ましくは0~4の整数であり、より好ましくは0~2の整数であり、更に好ましくは0である。
Arで表される芳香族炭化水素基のmB3個の置換基を除いたアリーレン基部分の定義や例は、式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
Arで表される複素環基のmB3個の置換基を除いた2価の複素環基部分の定義や例は、式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
Arで表される芳香族炭化水素環と複素環とが直接結合した基のmB3個の置換基を除いた2価の基の定義や例は、式(X)におけるArX2で表されるアリーレン基と2価の複素環基とが直接結合した2価の基の定義や例と同じである。
Arで表される基が有してもよい置換基の定義や例は、式(X)におけるArX2で表される基が有してもよい置換基の定義や例と同じである。
Arは、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは芳香族炭化水素基であり、この芳香族炭化水素基は置換基を有していてもよい。
B1で表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
B1は、層C’の低分子化合物の合成が容易になるため、好ましくは、アルキレン基、アリーレン基又は酸素原子であり、より好ましくはアルキレン基又はアリーレン基であり、更に好ましくはフェニレン基、フルオレンジイル基又はアルキレン基であり、特に好ましくはフェニレン基又はアルキレン基であり、これらの基は置換基を有していてもよい。
X’’は、好ましくは、式(XL-1)~式(XL-17)のいずれかで表される架橋基、アリール基又は1価の複素環基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-7)~式(XL-10)、式(XL-16)若しくは式(XL-17)で表される架橋基、又は、アリール基であり、更に好ましくは、式(XL-1)、式(XL-16)若しくは式(XL-17)で表される架橋基、フェニル基、ナフチル基又はフルオレニル基であり、特に好ましくは、式(XL-16)若しくは式(XL-17)で表される架橋基、フェニル基又はナフチル基であり、とりわけ好ましくは、式(XL-16)で表される架橋基、又は、ナフチル基であり、これらの基は置換基を有していてもよい。
層C’の低分子化合物としては、例えば、式(3-1)~式(3-16)で表される低分子化合物が挙げられ、好ましくは式(3-1)~式(3-10)で表される低分子化合物であり、より好ましくは式(3-5)~式(3-9)で表される低分子化合物である。
Figure 0007017907000129
Figure 0007017907000130
Figure 0007017907000131
Figure 0007017907000132
Figure 0007017907000133
層C’の低分子化合物は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。その他には、例えば、国際公開第1997/033193号、国際公開第2005/035221号、国際公開第2005/049548号に記載されている方法に従って合成することができる。
・層Cの組成物及び層C’の組成物
層Cは、式(2)で表される金属錯体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「層Cの組成物」ともいう。)を含有する層であってもよい。但し、式(2)で表される金属錯体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料とは異なる。
層C’は、式(2)で表される金属錯体と、架橋基を有する化合物の架橋体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種とを含む組成物(以下、「層C’の組成物」ともいう。)を含有する層であってもよい。但し、式(2)で表される金属錯体及び架橋基を有する化合物の架橋体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料とは異なる。
層Cの組成物及び層C’の組成物に含有される、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。層Cの組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、式(2)で表される金属錯体を100質量部とした場合、通常、1~1000質量部であり、好ましくは5~500質量部である。層C’の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の含有量は、各々、式(2)で表される金属錯体と架橋基を有する化合物の架橋体との合計を100質量部とした場合、通常、1~1000質量部であり、好ましくは5~500質量部である。
層Cの組成物及び層C’の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。層Cの組成物において、酸化防止剤の含有量は、式(2)で表される金属錯体を100質量部とした場合、通常、0.001~10質量部である。層C’の組成物において、酸化防止剤の含有量は、式(2)で表される金属錯体と架橋基を有する化合物の架橋体との合計を100質量部とした場合、通常、0.001~10質量部である。
・層Cのインク及び層C’のインク
層Cは、例えば、式(2)で表される金属錯体と、溶媒とを含有する組成物(以下、「層Cのインク」ともいう。)を用いて形成することができる。層C’は、例えば、式(2)で表される金属錯体と、架橋基を有する化合物と、溶媒とを含有する組成物(以下、「層C’のインク」ともいう。)を用いて形成することができる。層Cのインク及び層C’のインクは、第1のインクの項で説明した湿式法に好適に使用することができる。層Cのインク及び層C’のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。層Cのインク及び層C’のインクに含有される溶媒の例及び好ましい範囲は、第1のインクに含有される溶媒の例及び好ましい範囲と同じである。
層Cのインクにおいて、溶媒の含有量は、式(2)で表される金属錯体を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。層C’のインクにおいて、溶媒の含有量は、式(2)で表される金属錯体と架橋基を有する化合物との合計を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
<発光素子の層構成>
本実施形態の発光素子は、陽極、陰極、第1の有機層及び第2の有機層以外の層を有していてもよい。
本実施形態の発光素子において、第1の有機層と第2の有機層とは、本実施形態の発光素子の外部量子効率がより優れるので、隣接していることが好ましい。
本実施形態の発光素子において、第2の有機層は、本実施形態の発光素子の外部量子効率がより優れるので、陽極及び第1の有機層の間に設けられた層であることが好ましい。
本実施形態の発光素子は、第1の有機層が層Aである場合、第2の有機層は層B又は層C’であり、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは層Bである。
本実施形態の発光素子は、第1の有機層が層A’である場合、第2の有機層は層B又は層Cであり、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは層B又は層C’であり、より好ましくは層Bである。
本実施形態の発光素子において、第1の有機層は、発光層(以下、「第1の発光層」と言う。)であることが好ましい。
本実施形態の発光素子において、第2の有機層は、通常、正孔輸送層、発光層(即ち、第1の発光層とは別個の発光層であり、以下、「第2の発光層」と言う。)又は電子輸送層であり、好ましくは正孔輸送層又は第2の発光層であり、更に好ましくは第2の発光層である。
本実施形態の発光素子は、第1の有機層が第1の発光層であり、且つ、第2の有機層が第2の発光層である場合、第1の有機層は層A’であり、本実施形態の発光素子の外部量子効率がより優れるので、第1の有機層が層A’であり、且つ、第2の有機層が層B又は層Cであることが好ましく、第1の有機層が層A’であり、且つ、第2の有機層が層B又は層C’であることがより好ましく、第1の有機層が層A’であり、且つ、第2の有機層が層Bであることが更に好ましい。
本実施形態の発光素子において、第1の発光層及び第2の発光層を有する場合、第1の発光層の発光色と、第2の発光層の発光色とを調整することにより、発光素子の発光色を調整することが可能であり、発光色を白色に調整することも可能である。
例えば、第1の発光層が層Aであり、且つ、第2の発光層が層Bである場合、層Aにおける式(1)で表される金属錯体の含有量と、層Bにおける層Bの高分子化合物又は層Bの高分子化合物の架橋体の含有量とを調整することにより、発光色を調整することが可能であり、発光色を白色に調整することも可能である。
発光素子の発光色は、発光素子の発光色度を測定して色度座標(CIE色度座標)を求めることで確認することできる。白色の発光色とは、例えば、色度座標のXが0.20~0.55の範囲内であり、かつ、色度座標のYが0.20~0.55の範囲内であり、色度座標のXが0.25~0.50の範囲内であり、かつ、色度座標のYが0.25~0.50の範囲内であることが好ましい。
本実施形態の発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態の発光素子の発光スペクトルは、380nm以上495nm未満に極大発光波長を有することが好ましく、400nm以上490nm以下に極大発光波長を有することがより好ましく、420nm以上485nm以下に極大発光波長を有することが更に好ましく、440nm以上480nm以下に極大発光波長を有することが特に好ましい。これらの極大発光波長は、本実施形態の発光素子の外部量子効率がより優れるので、第1の有機層に含まれる発光材料の発光に由来する極大発光波長であることが好ましく、式(1)に金属錯体の発光に由来する極大発光波長又は式(1’)で表される金属錯体の発光に由来する極大発光波長であることがより好ましく、式(1’)で表される金属錯体の発光に由来する極大発光波長であることが更に好ましい。
本実施形態の発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態の発光素子の発光スペクトルは、495nm以上750nm未満に極大発光波長を有することが好ましく、500nm以上680nm以下に極大発光波長を有することがより好ましく、505nm以上640nm以下に極大発光波長を有することが更に好ましい。これらの極大発光波長は、本実施形態の発光素子の外部量子効率がより優れるので、第2の有機層に含まれる発光材料の発光に由来する極大発光波長であることが好ましく、層B又は層Cに含まれる発光材料の発光に由来する極大発光波長であることがより好ましく、層Bの高分子化合物に含まれる金属錯体構成単位又は式(2)で表される金属錯体の発光に由来する極大発光波長であることが更に好ましく、層Bの高分子化合物に含まれる金属錯体構成単位の発光に由来する極大発光波長であることが特に好ましい。
本実施形態の発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態の発光素子の発光スペクトルは、495nm以上750nm未満に2つ以上の極大発光波長を有することが好ましい。該2つ以上の極大発光波長のうち、少なくとも2つの極大発光波長の差は、好ましくは10~200nmであり、より好ましくは20~150nmであり、更に好ましくは40~120nmである。これらの2つの極大発光波長のうち、本実施形態の発光素子の外部量子効率がより優れるので、少なくとも1つは第2の有機層に含まれる発光材料の発光に由来する極大発光波長であることが好ましく、層B又は層Cに含まれる発光材料の発光に由来する極大発光波長であることがより好ましく、層Bの高分子化合物に含まれる金属錯体構成単位又は式(2)で表される金属錯体の発光に由来する極大発光波長であることが更に好ましく、層Bの高分子化合物に含まれる金属錯体構成単位の発光に由来する極大発光波長であることが特に好ましい。
本実施形態の発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態の発光素子の発光スペクトルが495nm以上750nm未満に2つ以上の極大発光波長を有することが好ましい。該2つ以上の極大発光波長のうち、少なくとも2つの極大発光波長の組み合わせは、一方の極大発光波長(以下、「短波長側の極大発光波長」ともいう。)が500nm以上570nm未満であり、且つ、他方の極大発光波長(以下、「長波長側の極大発光波長」ともいう。)が570nm以上680nm以下であることが好ましい。短波長側の極大発光波長は505nm以上550nm以下であることが好ましい。長波長側の極大発光波長は590nm以上640nm以下であることが好ましい。
短波長側の極大発光波長は、本実施形態の発光素子の外部量子効率がより優れるので、第1の有機層に含まれる発光材料の発光に由来する極大発光波長であることが好ましい。短波長側の極大発光波長が第1の有機層に含まれる発光材料の発光に由来する極大発光波長である場合、第1の有機層は、式(1)で表される金属錯体又は式(1’)で表される金属錯体と、式(2)で表される金属錯体とを含むことが好ましく、短波長側の極大発光波長は式(2)で表される金属錯体の発光に由来する極大発光波長であることがより好ましい。
長波長側の極大発光波長は、本実施形態の発光素子の外部量子効率がより優れるので、第2の有機層に含まれる発光材料の発光に由来する極大発光波長であることが好ましく、層B又は層Cに含まれる発光材料の発光に由来する極大発光波長であることがより好ましく、層Bの高分子化合物に含まれる金属錯体構成単位又は式(2)で表される金属錯体の発光に由来する極大発光波長であることが更に好ましく、層Bの高分子化合物に含まれる金属錯体構成単位の発光に由来する極大発光波長であることが特に好ましい。
本実施形態の発光素子において、第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陽極と第2の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
本実施形態の発光素子において、第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陰極と第2の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
本実施形態の発光素子において、第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陽極と第2の有機層との間に、正孔注入層を更に有することが好ましい。また、第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。
本実施形態の発光素子において、第2の有機層が陽極及び第1の有機層の間に設けられた電子輸送層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陰極及び第1の有機層の間に設けられた電子輸送層である場合、本実施形態の発光素子の外部量子効率がより優れるので、陰極と第2の有機層との間に、電子注入層を更に有することが好ましい。
本実施形態の発光素子の具体的な層構成としては、例えば、下記の(D1)~(D15)で表される層構成が挙げられる。本実施形態の発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。
(D1)陽極/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D2)陽極/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D3)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D4)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D5)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D6)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D7)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D8)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D9)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D10)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D11)陽極/正孔注入層/正孔輸送層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D12)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/第2の発光層/電子輸送層/電子注入層/陰極
(D13)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/第2の発光層(第2の有機層)/電子輸送層/電子注入層/陰極
(D14)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/電子輸送層(第2の有機層)/電子注入層/陰極
(D15)陽極/正孔注入層/正孔輸送層(第2の有機層)/第2の発光層/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
上記の(D1)~(D15)中、「/」は、その前後の層が隣接して積層していることを意味する。例えば、「第2の発光層(第2の有機層)/第1の発光層(第1の有機層)」とは、第2の発光層(第2の有機層)と第1の発光層(第1の有機層)とが隣接して積層していることを意味する。
本実施形態の発光素子の外部量子効率がより優れるので、(D3)~(D12)で表される層構成が好ましく、(D3)~(D10)で表される層構成がより好ましく、(D3)~(D6)で表される層構成がより好ましく
本実施形態の発光素子において、陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。
陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらを構成する材料はそれぞれ同一でも異なっていてもよい。
陽極、正孔注入層、正孔輸送層、第1の有機層、第2の有機層、第2の発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
本実施形態の発光素子において、積層する層の順番、数、及び厚さは、発光素子の発光効率及び素子寿命を勘案して調整すればよい。
[第2の発光層]
第2の発光層は、第2の有機層又は発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第1の組成物が含有していてもよい発光材料が挙げられる。第2の発光層に含有される発光材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
本実施形態の発光素子が第2の発光層を有し、且つ、後述の正孔輸送層及び後述の電子輸送層が第2の有機層ではない場合、第2の発光層は第2の有機層であることが好ましい。
[正孔輸送層]
正孔輸送層は、第2の有機層又は正孔輸送材料を含有する層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第1の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
本実施形態の発光素子が正孔輸送層を有し、且つ、前述の第2の発光層及び後述の電子輸送層が第2の有機層ではない場合、正孔輸送層は第2の有機層であることが好ましい。
[電子輸送層]
電子輸送層は、第2の有機層又は電子輸送材料を含有する層であり、好ましくは、電子輸送材料を含有する層である。電子輸送層が電子輸送材料を含有する層である場合、電子輸送層に含有される電子輸送材料としては、例えば、前述の第1の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[正孔注入層及び電子注入層]
正孔注入層は、正孔注入材料を含有する層である。正孔注入層に含有される正孔注入材料としては、例えば、前述の第1の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
電子注入層は、電子注入材料を含有する層である。電子注入層に含有される電子注入材料としては、例えば、前述の第1の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[基板/電極]
発光素子における基板は、電極の形成及び有機層の形成の際に、化学的に変化しない基板であることが好ましい。基板は、例えば、ガラス、プラスチック、シリコン等の材料からなる基板であってよい。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
本実施形態の発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
[発光素子の製造方法]
本実施形態の発光素子において、第1の有機層、第2の有機層、その他の層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
第1の有機層、第2の有機層、その他の層は、上述した各種インク、各種材料を含むインクを用いて、スピンコート法、インクジェット印刷法等の湿式法により形成することができる。なお、第1の有機層、第2の有機層は、真空蒸着法等の乾式法により形成してもよい。
第1の有機層を湿式法により形成する場合、第1のインクを用いることが好ましい。
第2の有機層が層Bであり、且つ、層Bを湿式法により形成する場合、層Bのインク又は層B’のインクを用いることが好ましく、層B’のインクを用いることがより好ましい。層B’のインクを用いて、第2の有機層を湿式法により形成する場合、層形成後、加熱又は光照射(好ましくは、加熱)することで、第2の有機層に含有される層B’の高分子化合物を架橋させることができる。層B’の高分子化合物が架橋した状態(層B’の高分子化合物の架橋体)で、第2の有機層に含有されている場合、第2の有機層は溶媒に対して実質的に不溶化されている。そのため、第2の有機層は、発光素子の積層化に好適に使用することができる。
第2の有機層が層Cであり、且つ、層Cを湿式法により形成する場合、層Cのインクを用いることが好ましい。
第2の有機層が層C’であり、且つ、層C’を湿式法により形成する場合、層C’のインクを用いることが好ましい。層C’のインクを用いて、第2の有機層を湿式法により形成する場合、層形成後、加熱又は光照射(好ましくは、加熱)することで、第2の有機層に含有される架橋基を有する化合物を架橋させることができる。架橋基を有する化合物が架橋した状態(架橋基を有する化合物の架橋体)で、第2の有機層に含有されている場合、第2の有機層は溶媒に対して実質的に不溶化されている。そのため、第2の有機層は、発光素子の積層化に好適に使用することができる。
架橋させるための加熱の温度は、通常、25℃~300℃であり、好ましくは50℃~260℃であり、より好ましくは130℃~230℃であり、更に好ましくは180℃~210℃である。
加熱の時間は、通常、0.1分~1000分であり、好ましくは0.5分~500分であり、より好ましくは1分~120分であり、更に好ましくは10分~60分である。
光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
第1の有機層又は第2の有機層に含有される成分の分析方法としては、例えば、抽出等の化学的分離分析法、赤外分光法(IR)、核磁気共鳴分光法(NMR)、質量分析法(MS)等の機器分析法、並びに、化学的分離分析法及び機器分析法を組み合わせた分析法が挙げられる。
第1の有機層又は第2の有機層に対して、トルエン、キシレン、クロロホルム、テトラヒドロフラン等の有機溶媒を用いた固液抽出を行うことで、有機溶媒に対して実質的に不溶な成分(不溶成分)と、有機溶媒に対して溶解する成分(溶解成分)とに分離することが可能である。不溶成分は赤外分光法又は核磁気共鳴分光法により分析することが可能であり、溶解成分は核磁気共鳴分光法又は質量分析法により分析することが可能である。
[発光素子の用途]
発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC-10Avp)により求めた。なお、SECの測定条件は、次のとおりである。
[測定条件]
測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフラン(THF)に溶解させ、SECに10μL注入した。SECの移動相としてTHFを用い、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
LC-MSは、下記の方法で測定した。
測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
NMRは、下記の方法で測定した。
5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(バリアン(Varian,Inc.)製、商品名:INOVA300若しくはMERCURY 400VX、又は、ブルカー製、商品名:AVANCE600)を用いて測定した。
化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
<合成例M1~M3> 化合物M1~M3の合成
化合物M1、M2及びM3は、国際公開第2013/146806号に記載の方法に従って合成した。
Figure 0007017907000134
<合成例R1、RM1> 金属錯体R1及びRM1の合成
金属錯体R1は、特開2008-179617号公報に記載の方法に従って合成した。
金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
Figure 0007017907000135
<合成例G1> 金属錯体G1の合成
金属錯体G1は、国際公開第2009/131255号に記載の方法に準じて合成した。
Figure 0007017907000136
<合成例HTL1> 高分子化合物HTL-1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物M1(0.800g)、化合物M2(0.149g)、化合物M3(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。
(工程3)反応後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。冷却後、反応液を、3.6質量%塩酸、2.5質量%アンモニア水、水で洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.64g得た。高分子化合物HTL-1のMnは3.5×10であり、Mwは2.2×10であった。
高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、40:10:50のモル比で構成された共重合体である。
<合成例EML1> 高分子化合物EML-1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物M1(2.52g)、化合物M2(0.470g)、化合物M3(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。
(工程3)反応後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。冷却後、反応液を、3.6質量%塩酸、2.5質量%アンモニア水、水で洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物EML-1を6.02g得た。高分子化合物EML-1のMnは3.8×10であり、Mwは4.5×10であった。
高分子化合物EML-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成された共重合体である。
<合成例ET1> 高分子化合物ET1の合成
(高分子化合物ET1aの合成)
高分子化合物ET1aは、特開2012-33845号公報に記載の方法に従って合成した化合物ET1-1、及び、特開2012-33845号公報に記載の方法に従って合成した化合物ET1-2を用いて、特開2012-33845号公報に記載の方法に従って合成した。
Figure 0007017907000137
高分子化合物ET1aのMnは5.2×10であった。
高分子化合物ET1aは、仕込み原料の量から求めた理論値では、化合物ET1-1から誘導される構成単位と、化合物ET1-2から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
(高分子化合物ET1の合成)
反応容器内を不活性ガス雰囲気とした後、高分子化合物ET1a(200mg)、テトラヒドロフラン(20mL)及びエタノール(20mL)を加え、55℃に加熱した。その後、そこへ、水(2mL)に溶解させた水酸化セシウム(200mg)を加え、55℃で6時間撹拌した。その後、室温まで冷却した後、減圧濃縮することにより、固体を得た。得られた固体を水で洗浄した後、減圧乾燥させることにより、高分子化合物ET1(150mg、薄黄色固体)を得た。得られた高分子化合物ET1のNMRスペクトルにより、高分子化合物ET1aのエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。
Figure 0007017907000138
<合成例B1> 金属錯体B1の合成
金属錯体B1は、以下の方法で合成した。
Figure 0007017907000139
(反応混合物L1-2’の合成)
反応容器内を窒素雰囲気とした後、化合物L1-2(50g)及び塩化チオニル(100mL)を加え、還流下、3時間撹拌した。その後、反応混合物を室温まで冷却した後、塩化チオニルを減圧留去することにより、反応混合物L1-2’を得た。
(化合物L1-3の合成)
反応容器内を窒素雰囲気とした後、化合物L1-1(47g)及びテトラヒドロフラン(1L)を加え、0℃に冷却した。そこへ、トリエチルアミン(54mL)をゆっくり加え、0℃で45分間撹拌した。そこへ、(反応混合物L1-2’の合成)で得られた反応混合物L1-2’(全量)をゆっくりと加えた。その後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチル及びヘキサンの混合溶媒で洗浄した後、減圧乾燥させることにより、化合物L1-3(50g)を得た。化合物L1-3のHPLC面積百分率値は95.2%であった。上記操作を繰り返し行うことにより、必要量の化合物L1-3を得た。
化合物L1-3の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=263[M+H]
H-NMR(300MHz,CDCl):δ(ppm)=0.84(t,9H),1.64(q,6H),7.39-7.54(m,3H),7.81-7.84(m,2H),8.72-8.74(m,1H),9.66-9.68(m,1H).
(化合物L1-5の合成)
反応容器内を窒素雰囲気とした後、化合物L1-3(58g)及びトルエン(600mL)を加え、室温で撹拌した。そこへ、五塩化リン(92g)をゆっくりと加えた後、110℃で3時間撹拌した。その後、得られた反応液を室温まで冷却し、そこへ、化合物L1-4(78.2g)及びp-トルエンスルホン酸(3g)を加えた。その後、130℃で4日間撹拌した後、反応液を室温まで冷却した。得られた反応液を減圧濃縮し、そこへ、酢酸エチル(2L)を加えた後、10質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(メタノール及びクロロホルムの混合溶媒)により精製し、更に、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L1-5(6g)を得た。化合物L1-5のHPLC面積百分率値は99.1%であった。
化合物L1-5の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=404[M+H]
H-NMR(400MHz,CDCl):δ(ppm)=0.83(t,9H),1.34(s,9H),1.64(q,6H),1.96(s,6H),7.12(s,2H),7.20-7.23(m,2H),7.28-7.34(m,3H).
(金属錯体B1の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.4g)、化合物L1-5(4.6g)及びペンタデカン(2mL)を加え、300℃で18時間撹拌した。その後、得られた反応液を室温まで冷却し、そこへ、トルエンを加え、溶解させた後、減圧濃縮させることにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った後、減圧乾燥させることにより、金属錯体B1(2.8g)を得た。金属錯体B1のHPLC面積百分率値は99.5%以上であった。
金属錯体B1の分析結果は以下のとおりであった。
H-NMR(600MHz,THF-d):δ(ppm)=7.30(s,6H),6.90(d,3H),6.44-6.48(m,3H),6.22-6.26(m,3H),5.77(d,3H),2.10(s,9H),1.89(s,9H),1.56(s,18H),1.38(s,27H),0.73(t,27H).
<合成例B2> 金属錯体B2の合成
金属錯体B2は、以下の方法で合成した。
Figure 0007017907000140
(化合物L2-2の合成)
反応容器内を窒素雰囲気とした後、化合物L1-1(500g)、テトラヒドロフラン(5L)及びトリエチルアミン(585mL)を加え、0℃で撹拌した。そこへ、化合物L2-1を滴下した後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、固体を得た。得られた固体を酢酸エチルで洗浄した後、減圧乾燥させることにより、化合物L2-2(500g)を得た。化合物L2-2のHPLC面積百分率値は99.4%であった。
化合物L2-2の分析結果は以下のとおりであった。
H-NMR(400MHz,CDCl):δ(ppm)=1.22(d,6H),2.54-2.63(m,1H),7.40-7.56(m,3H),7.80-7.83(m,2H),9.06(s,1H),9.42(s,1H).
(化合物L2-3の合成)
反応容器内を窒素雰囲気とした後、化合物L2-2(40g)、ジクロロベンゼン(400mL)及び化合物L1-4(85g)を加え、-10℃で撹拌した。そこへ、五塩化リン(22mL)を滴下した。その後、-10℃で30分間撹拌し、更に、室温で1時間撹拌した後、185℃で18時間撹拌した。その後、得られた反応液を室温まで冷却し、減圧濃縮した。得られた反応混合物を塩化メチレン及びイオン交換水で抽出した。得られた有機層を硫酸マグネシウムで乾燥させ、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L2-3(10g)を得た。化合物L2-3のHPLC面積百分率値は99.4%であった。
化合物L2-3の分析結果は以下のとおりであった。
H-NMR(400MHz,CDCl):δ(ppm)=1.32(d,6H),1.35(s,9H),1.94(s,6H),2.55-2.62(m,1H),7.17(s,2H),7.22-7.33(m,3H),7.39-7.41(m,2H).
(金属錯体B2の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(3.5g)、化合物L2-3(10g)及びペンタデカン(2mL)を加え、285℃で18時間撹拌した。その後、得られた反応液を室温まで冷却し、シリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)及びシリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、更に、ヘプタン及びトルエンの混合溶媒を用いて晶析を行った。その後、得られた固体を減圧乾燥させることにより、金属錯体B2(1.2g)を得た。金属錯体B2のHPLC面積百分率値は99.5%以上であった。上記操作を繰り返し行うことにより、必要量の金属錯体B2を得た。
金属錯体B2の分析結果は以下のとおりであった。
H-NMR(600MHz,THF-d):δ(ppm)=7.35(brs,3H),7.34(brs,3H),6.86(dd,3H),6.49(td,3H),6.33(td,3H),6.13(d,3H),2.53(spt,3H),2.15(s,9H),1.90(s,9H),1.39(s,27H),1.23(d,9H),1.11(d,9H).
<合成例B3> 金属錯体B3の合成
金属錯体B3は、以下の方法で合成した。
Figure 0007017907000141
(化合物L3-2の合成)
反応容器内を窒素雰囲気とした後、化合物L1-1(50g)及びN-メチル-2-ピロリドン(200mL)を加え、0℃で撹拌した。そこへ、N-メチル-2-ピロリドン(40mL)に溶解させた化合物L3-1(40g)を滴下した後、室温で18時間撹拌した。その後、得られた反応液をイオン交換水(1.2L)に注ぐことにより、沈殿物が得られた。得られた沈殿物をろ取し、更に、1M塩酸水溶液、イオン交換水及びヘプタンで順次洗浄した。その後、得られた固体を減圧乾燥することにより、化合物L3-2(43g、白色固体)を得た。
化合物L3-2の分析結果は以下のとおりであった。
H-NMR(600MHz、CDCl)δ(ppm)=9.64(br,1H),8.90(br,1H),7.86(d,2H),7.56(t,1H),7.45(t,2H),7.02-7.08(m,3H),2.41(s,6H).
(化合物L3-3の合成)
反応容器内を窒素雰囲気とした後、化合物L3-2(43g)及びトルエン(740mL)を加え、室温で撹拌した。そこへ、五塩化リン(67g)を少しずつ加えた後、110℃で21時間撹拌した。得られた反応液を室温まで冷却した後、氷水(500mL)に注ぎ、2時間撹拌し、水層を除去した。得られた有機層をイオン交換水、10質量%炭酸水素ナトリウム水溶液で洗浄し、更に、得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過した。得られたろ液を減圧濃縮することにより、化合物L3-3(40g)を得た。
(化合物L3-5の合成)
反応容器内を窒素雰囲気とした後、化合物L3-3(40g)、化合物L3-4(32g)及びキシレン(800mL)を加え、室温で撹拌した。そこへ、p-トルエンスルホン酸(3g)を加え、120℃で116時間撹拌した。その後、得られた反応液を室温まで冷却した後、そこへ、イオン交換水(800mL)を加え、室温で1時間撹拌した。その後、水層を除去した後、得られた有機層を5質量%炭酸水素ナトリウム水溶液で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)及びシリカゲルカラムクロマトグラフィー(アセトニトリル及びテトラヒドロフラン)により順次精製することにより、化合物L3-5(1.3g、白色固体)を得た。化合物L3-5のHPLC面積百分率値は99.5%以上であった。上記操作を繰り返し行うことにより、必要量の化合物L3-5を得た。
化合物L3-5の分析結果は以下のとおりであった。
H-NMR(600MHz、THF-d)δ(ppm)=7.42(d,2H),7.30(t,1H),7.24(t,2H),7.15(t,1H),6.98(d,2H),6.85(s,2H),2.51(t,2H),2.07(s,6H),1.81(s,6H),1.56(m,2H),1.26-1.32(m,6H),0.88(t,3H).
(金属錯体B3の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(0.6g)、化合物L3-5(2.0g)及びトリデカン(2mL)を加え、250℃で120時間攪拌した。その後、得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)により精製し、更に、塩化メチレン及びアセトニトリルの混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥することにより、金属錯体B3(0.6g、黄色固体)を得た。金属錯体B3のHPLC面積百分率値は99.2%であった。
金属錯体B3の分析結果は以下のとおりであった。
H-NMR(600MHz、THF-d)δ(ppm)=7.04-7.08(m,6H),6.93(s,3H),6.92(s,3H),6.88(d,3H),6.84(d,3H),6.61(t,3H),6.43(t,3H),6.29(d,3H),2.57(t,6H),2.12(s,9H),1.95(s,9H),1.82(s,9H),1.70(s,9H),1.62(m,6H),1.28-1.36(m,18H),0.89(t,9H).
<合成例B4> 金属錯体B4の合成
金属錯体B4は、以下の方法で合成した。
Figure 0007017907000142
(化合物L4-2の合成)
反応容器内を窒素雰囲気とした後、化合物L1-1(100g)、トリエチルアミン(114mL)及びテトラヒドロフラン(1.5L)を加え、0℃で撹拌した。そこへ、化合物L4-1(52mL)を滴下した後、室温で16時間撹拌した。その後、得られた反応液をろ過した後、得られたろ液を濃縮することにより、粗生成物を得た。得られた粗生成物を、酢酸エチルを用いて晶析した後、減圧乾燥することにより、化合物L4-2(70g)を得た。化合物L4-2のHPLC面積百分率値は98.7%であった。
化合物L4-2の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=179[M+H]
H-NMR(300MHz、DMSO-d)δ(ppm)=10.26(br,1H),9.86(br,1H),7.83-7.86(m,2H),7.45-7.56(m,3H),1.90(s,3H).
(化合物L4-4の合成)
反応容器内を窒素雰囲気とした後、化合物L4-2(70g)及びキシレン(700mL)を加え、室温で撹拌した。そこへ、五塩化リン(123g)を少しずつ加え、130℃で2時間撹拌した後、室温に冷却した。そこへ、化合物L4-3(70g)を少しずつ加えた後、130℃で8時間撹拌した。その後、得られた反応液を室温まで冷却した後、減圧濃縮した。そこへ、酢酸エチルを加え、得られた有機層をイオン交換水、10質量%炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、更に、N,N-ジメチルホルムアミド及び水の混合溶媒を用いて晶析を行った。得られた固体を減圧乾燥することにより、化合物L4-4(70g、白色固体)を得た。化合物L4-4のHPLC面積百分率値は99.2%であった。
化合物L4-4の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=320[M+H]
H-NMR(400MHz、CDCl)δ(ppm)=7.53-7.58(m,1H),7.48(d,2H),7.33(d,2H),7.28-7.30(m,1H),7.21-7.25(m,2H),2.39(q,2H),2.26(s,3H),1.14(d,6H),0.87(d,6H).
(金属錯体B4の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.2g)、化合物L4-4(4.0g)及びトリデカン(1mL)を加え、280℃で18時間攪拌した。その後、得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(酢酸エチル及びメタノールの混合溶媒)により精製し、更に、トルエン及びアセトニトリルの混合溶媒を用いて晶析した。得られた固体を減圧乾燥することにより、金属錯体B4(1.7g、黄色固体)を得た。金属錯体B4のHPLC面積百分率値は99.5%以上であった。
金属錯体B4の分析結果は以下のとおりであった。
H-NMR(600MHz、THF-d)δ(ppm)=7.56(t,3H),7.42(dd,3H),7.40(dd,3H),6.87(dd,3H),6.52(td,3H),6.35(td,3H),6.17(dd,3H),2.83(hept,3H),2.34(hept,3H),2.10(s,9H),1.23(d,9H),0.98(d,9H),0.96(d,9H),0.92(d,9H).
<合成例B5> 金属錯体B5の合成
金属錯体B5は、以下の方法で合成した。
Figure 0007017907000143
(化合物L5-2の合成)
反応容器内を窒素雰囲気とした後、化合物L1-1(200g)、トリエチルアミン(225mL)及びテトラヒドロフラン(3L)を加え、0℃に冷却した。そこへ、化合物L5-1(198g)を滴下した後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を酢酸エチルで洗浄した後、減圧乾燥させることにより、化合物L5-2(172g)を得た。化合物L5-2のHPLC面積百分率値は99.2%であった。
化合物L5-2の分析結果は以下のとおりであった。
H-NMR(400MHz,DMSO-d):δ(ppm)=0.88(t,3H),1.18(s,6H),1.57(q,2H),7.47-7.58(m,3H),7.89-7.91(m,2H),9.51(s,1H),10.20(s,1H).
(化合物L5-3の合成)
反応容器内を窒素雰囲気とした後、化合物L5-2(100g)及びトルエン(700mL)を加え、室温で撹拌した。そこへ、五塩化リン(178g)を少しずつ加え、110℃で18時間撹拌した後、室温に冷却した。得られた反応液を濃縮することにより、粗生成物L5-2’(65g)を得た。その後、反応容器内を再度、窒素雰囲気とした後、トルエン(1L)、化合物L1-4(43g)及びp-トルエンスルホン酸(6.5g)を加え、110で3日間撹拌した。その後、得られた反応液を室温まで冷却した後、減圧濃縮した。そこへ、酢酸エチルを加え、得られた有機層をイオン交換水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリル及び酢酸エチルの混合溶媒を用いて晶析を行った。得られた固体を逆相カラムクロマトグラフィーにより精製した後、減圧乾燥することにより、化合物L5-3(16g)を得た。化合物L5-3のHPLC面積百分率値は99.4%であった。
化合物5-3の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=376[M+H]
H-NMR(400MHz,CDCl):δ(ppm)=0.89(t,3H),1.19(s,6H),1.33(s,9H),1.71(q,2H), 1.97(s,6H),7.12(s,2H),7.19-7.23(m,2H),7.27-7.28(m,1H),7.33-7.36(m,2H).
(金属錯体B5の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.5g)、化合物L5-3(4.0g)及びトリデカン(2mL)を加え、280℃で28時間攪拌した。その後、得られた反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー(へプタン及び酢酸エチルの混合溶媒)により精製し、更に、トルエン及びメタノールの混合溶媒を用いて晶析した。得られた固体を減圧乾燥することにより、金属錯体B5(1.0g、黄色固体)を得た。金属錯体B5のHPLC面積百分率値は99.5%以上であった。
金属錯体B5の分析結果は以下のとおりであった。
H-NMR(600MHz,THF-d):δ(ppm)=7.31(s,6H),6.91(d,3H),6.48(td,3H),6.24-6.30(m,3H),5.87(d,3H),2.12-2.15(m,9H),1.94(s,9H),1.58-1.66(m,3H),1.50-1.57(m,3H),1.38(s,27H),1.12-1.16(m,9H),1.04-1.08(m,9H),0.84(t,9H).
<合成例B6> 金属錯体B6の合成
金属錯体B6は、以下の方法で合成した。
Figure 0007017907000144
(化合物L9-1の合成)
反応容器内を窒素雰囲気とした後、4-ブロモ-2,6-ジメチルアニリン(100g)、トリエチルアミン(253mL)及びテトラヒドロフラン(1.5L)を加え、0℃に冷却した。そこへ、化合物L5-1(124mL)をゆっくりと滴下した後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をアセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L9-1(125g)を得た。化合物L9-1のHPLC面積百分率値は98.7%であった。
化合物L9-1の分析結果は以下のとおりであった。
H-NMR(400MHz,CDCl):δ(ppm)=0.96(t,3H),1.29(s,6H),1.68(q,2H),2.16(s,6H),6.93(brs,1H),7.08(s,2H).
(化合物L9-2の合成)
反応容器内を窒素雰囲気とした後、化合物L9-1(120g)、モノクロロベンゼン(1.2L)、2-フルオロピリジン(43g)及びトリフルオロメタンスルホン酸無水物(125g)を加え、室温で撹拌した。そこへ、化合物L8-2(95.2g)を加え、室温で1時間撹拌した後、90℃で18時間撹拌し、更に、130℃で12時間撹拌した。その後、得られた反応液を室温まで冷却し、そこへ、酢酸エチルを加えた。得られた反応液を10質量%炭酸水素ナトリウム水溶液で洗浄し、更に、イオン交換水で2回洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をアセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L9-2(70g)を得た。化合物L9-2のHPLC面積百分率値は99.5%以上であった。
化合物L9-2の分析結果は以下のとおりであった。
H-NMR(400MHz,CDCl):δ(ppm)=0.89(t,3H),1.22(s,6H),1.71(q,2H),1.99(s,6H),7.11-7.14(m,2H),7.37(s,2H),7.46-7.49(m,1H),7.64-7.65(m,1H).
(化合物L9-3の合成)
反応容器内を窒素雰囲気とした後、化合物L9-2(60g)、フェニルボロン酸(38.3g)、トルエン(600mL)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))(2.3g)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(SPhos)(2.1g)を加え、60℃に昇温した。そこへ、25質量%のテトラエチルアンモニウムヒドロキシド水溶液(300mL)を加えた後、加熱還流下で18時間攪拌した。その後、得られた反応液をセライトを敷いたろ過器でろ過した後、セライトを酢酸エチルで洗浄した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を、アセトニトリルを用いて晶析し、更に、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った。得られた固体を、シリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)、及び、逆相カラムクロマトグラフィー(水及びアセトニトリルの混合溶媒)により、順次精製した後、減圧乾燥することにより、化合物L9-3(34g)を得た。化合物L9-3のHPLC面積百分率値は99.5%以上であった。
化合物L9-3の分析結果は以下のとおりであった。
H-NMR(400MHz,CDCl):δ(ppm)=0.95(t,3H),1.29(s,6H),1.79(q,2H),2.01(s,6H),7.26-7.31(m,5H),7.36-7.57(m,8H),7.65-7.69(m,3H).
(金属錯体B6の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(1.3g)、化合物L9-3(5.0g)及びペンタデカン(2mL)を加え、300℃で24時間撹拌した。その後、反応液を50℃まで冷却し、そこへ、トルエンを加えた。その後、得られた反応液を室温にまで冷却した後、イオン交換水で洗浄した。得られた有機層を減圧濃縮することにより、固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った後、減圧乾燥させることにより、金属錯体B6(0.65g)を得た。金属錯体B6のHPLC面積百分率値は99.5%以上であった。
金属錯体B6の分析結果は以下のとおりであった。
H-NMR(600MHz,THF-d):δ(ppm)=7.77(dd,6H),7.65(s,6H),7.50(t,6H),7.41(tt,3H),7.25(d,3H),7.11(dd,6H),6.98-7.02(m,9H),6.93-6.97(m,3H),6.33(d,3H),2.27(s,9H),2.13(s,9H),1.75-1.79(m,4H),1.64-1.70(m,4H),1.30(s,9H),1.22(s,9H),1.00(t,9H).
<合成例B7> 金属錯体B7の合成
金属錯体B7は、以下の方法で合成した。
Figure 0007017907000145
(金属錯体B7’の合成)
反応容器内を窒素雰囲気とした後、金属錯体B2(2.2g)及び塩化メチレン(30mL)を加え、0℃で撹拌した。そこへ、N-ブロモスクシンイミド(0.95g)を15分間かけてゆっくりと加えた後、反応液を0℃から室温にゆっくりと昇温し、更に、室温で20時間撹拌した。その後、そこへ、メタノール(100mL)を加えた後、15分間撹拌することにより、沈殿物が得られた。得られた沈殿物をろ取し、更に、メタノールで洗浄した後、減圧乾燥させることにより、金属錯体B7’(2.1g)を得た。金属錯体B7’のHPLC面積百分率値は99.3%であった。
金属錯体B7’の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=1468[M+H]
(金属錯体B7の合成)
反応容器内を窒素雰囲気とした後、金属錯体B7’(1.0g)、化合物L7-1(1.2g)、トルエン(50mL)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))(9.4mg)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(SPhos)(8.4mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラエチルアンモニウムヒドロキシド水溶液(1.8mL)を加え、加熱還流下で20時間攪拌した。その後、得られた反応液を室温まで冷却し、水層を除去した後、得られた有機層をシリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)で精製し、更に、アセトニトリル及びトルエンの混合溶媒を用いて晶析を行った後、減圧乾燥させることにより、金属錯体B7(0.72g)を得た。金属錯体B7のHPLC面積百分率値は99.5%以上であった。
金属錯体B7の分析結果は以下のとおりであった。
H-NMR(600MHz,THF-d):δ(ppm)=7.57-7.61(m,15H),7.49(d,12H),7.43(d,6H),7.27(d,3H),7.23(d,3H),7.21(d,3H),7.09(dd,3H),6.65(d,3H),2.61(spt,3H),2.24(s,9H),2.08(s,9H),1.38(s,54H),1.28(d,9H),1.18(d,9H),0.93(s,27H).
<合成例B8> 金属錯体B8の合成
金属錯体B8は、以下の方法で合成した。
Figure 0007017907000146
(化合物L8-1の合成)
反応容器内を窒素雰囲気とした後、化合物L1-4(200g)、トリエチルアミン(472mL)及びテトラヒドロフラン(2L)を加え、0℃に冷却した。そこへ、化合物L5-1(228g)をゆっくりと滴下した後、室温で16時間撹拌した。得られた反応液をろ過した後、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物を酢酸エチルで洗浄した後、減圧乾燥させることにより、化合物L8-1(205g)を得た。化合物L8-1のHPLC面積百分率値は99.5%以上であった。
化合物L8-1の分析結果は以下のとおりであった。
LC-MS(APPI,positive):m/z=276[M+H]
H-NMR(400MHz,CDCl):δ(ppm)=1.01(t,3H),1.31(s,6H),1.33(s,9H),1.70(q,2H),2.23(s,6H),6.84-7.09(m,3H).
(化合物L8-3の合成)
反応容器内を窒素雰囲気とした後、化合物L8-1(115g)、モノクロロベンゼン(1.2L)、2-フルオロピリジン(44.6g)及びトリフルオロメタンスルホン酸無水物(130g)を加え、室温で撹拌した。そこへ、化合物L8-2(23g)を加え、室温で1時間撹拌した後、90℃で18時間撹拌した。その後、得られた反応液を室温まで冷却し、そこへ、クロロホルムを加えた。得られた反応液を10質量%炭酸水素ナトリウム水溶液で洗浄し、更に、イオン交換水で2回洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L8-3(100g)を得た。化合物L8-3のHPLC面積百分率値は99.5%以上であった。
化合物L8-3の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=454[M+H]
H-NMR(400MHz,DMSO-d):δ(ppm)=0.79(t,3H),1.12(s,6H),1.31(s,9H),1.62(q,2H),1.91(s,6H),7.16(s,2H),7.27-7.39(m,3H),7.56(d,1H).
(化合物L8-5の合成)
反応容器内を窒素雰囲気とした後、化合物L8-3(50g)、化合物L8-4(22g)、トルエン(500mL)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))(1g)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(SPhos)(0.9g)を加え、60℃に昇温した。そこへ、25質量%のテトラエチルアンモニウムヒドロキシド水溶液(260mL)を加えた後、加熱還流下で18時間攪拌した。その後、得られた反応液をセライトを敷いたろ過器でろ過した後、セライトを酢酸エチルで洗浄した。得られたろ液から水層を除去した後、得られた有機層をイオン交換水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリルを用いて晶析を行った後、減圧乾燥させることにより、化合物L8-5(36g)を得た。化合物L8-5のHPLC面積百分率値は99.5%以上であった。
化合物L8-5の分析結果は以下のとおりであった。
LC-MS(APCI,positive):m/z=508[M+H]
H-NMR(400MHz,CDCl):δ(ppm)=0.92(t,3H),1.23(s,6H),1.35(s,9H),1.37(s,9H),1.73(q,2H),2.01(s,6H),7.19(d,2H),7.20(s,2H),7.26-7.28(m,1H),7.34-7.39(m,3H),7.51-7.54(m,1H),7.69-7.72(m,1H).
(金属錯体B8の合成)
反応容器内を窒素雰囲気とした後、トリス(アセチルアセトナト)イリジウム(III)(2.1g)、化合物L8-5(8.6g)及びペンタデカン(3mL)を加え、300℃で24時間撹拌した。その後、反応液を室温まで冷却することにより、固体が析出した。析出した固体をろ取し、得られた固体をシリカゲルカラムクロマトグラフィー(塩化メチレン及び酢酸エチルの混合溶媒)により精製し、更に、アセトニトリル及び塩化メチレンの混合溶媒を用いて晶析を行った後、減圧乾燥させることにより、金属錯体B8(4.0g)を得た。金属錯体B8のHPLC面積百分率値は99.5%以上であった。
金属錯体B8の分析結果は以下のとおりであった。
LC-MS(ESI,positive):m/z=1713[M+H]
H-NMR(600MHz,THF-d):δ(ppm)=0.92(t,9H),1.11(s,9H),1.22(s,9H),1.27(s,27H),1.42(s,27H),1.56-1.62(m,3H),1.64-1.72(m,3H),2.02(s,9H),2.18(s,9H),6.24(d,3H),6.92(dd,3H),7.04(d,6H),7.15(d,3H),7.19(d,6H),7.38(d,6H).
<実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(第2の有機層の形成)
キシレンに、高分子化合物EML-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の有機層(第2の発光層)を形成した。
(第1の有機層の形成)
トルエンに、化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の有機層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の有機層(第1の発光層)を形成した。化合物HM-1は、Luminescence Technology社より購入したものを用いた。
Figure 0007017907000147
(電子輸送層の形成)
2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ET1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の有機層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
発光素子D1に電圧を印加することにより、470nm、495nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。470nm及び495nmの発光は、金属錯体B1に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は18.6[%]であり、色度座標(x,y)は(0.45,0.38)であった。
<実施例D2> 発光素子D2の作製と評価
実施例D1の(第2の有機層の形成)における、「高分子化合物EML-1」に代えて、「高分子化合物HTL-1及び金属錯体R1(高分子化合物HTL-1/金属錯体R1=65質量%/35質量%)」を用いた以外は実施例D1と同様にして、発光素子D2を作製した。
発光素子D2に電圧を印加することにより、465nm、495nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。465nm及び495nmの発光は、金属錯体B1に由来する発光であり、595nmの発光は、金属錯体R1に由来する発光であった。また、100cd/mにおける外部量子効率は11.8[%]であり、色度座標(x,y)は(0.31,0.34)であった。
<実施例D3> 発光素子D3の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1及び金属錯体B3(化合物HM-1/金属錯体B3=75質量%/25質量%)」を用いた以外は実施例D1と同様にして、発光素子D3を作製した。
発光素子D3に電圧を印加することにより、470nm、495nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。470nm及び495nmの発光は、金属錯体B3に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は10.4[%]であり、色度座標(x,y)は(0.57,0.39)であった。
<実施例D4> 発光素子D4の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1及び金属錯体B5(化合物HM-1/金属錯体B5=75質量%/25質量%)」を用いた以外は実施例D1と同様にして、発光素子D4を作製した。
発光素子D4に電圧を印加することにより、465nm、495nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。465nm及び495nmの発光は、金属錯体B5に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は18.1[%]であり、色度座標(x,y)は(0.42,0.36)であった。
<実施例D5> 発光素子D5の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1及び金属錯体B6(化合物HM-1/金属錯体B6=75質量%/25質量%)」を用いた以外は実施例D1と同様にして、発光素子D5を作製した。
発光素子D5に電圧を印加することにより、480nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。480nm及び510nmの発光は、金属錯体B6に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は20.7[%]であり、色度座標(x,y)は(0.41,0.40)であった。
<実施例D6> 発光素子D6の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1及び金属錯体B7(化合物HM-1/金属錯体B7=75質量%/25質量%)」を用いた以外は実施例D1と同様にして、発光素子D6を作製した。
発光素子D6に電圧を印加することにより、480nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。480nm及び510nmの発光は、金属錯体B7に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は20.1[%]であり、色度座標(x,y)は(0.43,0.40)であった。
<実施例D7> 発光素子D7の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1及び金属錯体B8(化合物HM-1/金属錯体B8=75質量%/25質量%)」を用いた以外は実施例D1と同様にして、発光素子D7を作製した。
発光素子D7に電圧を印加することにより、480nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。480nm及び510nmの発光は、金属錯体B8に由来する発光であり、595nmの発光は、高分子化合物EML-1に由来する発光であった。また、100cd/mにおける外部量子効率は20.6[%]であり、色度座標(x,y)は(0.42,0.40)であった。
<比較例CD1> 発光素子CD1の作製と評価
実施例D1における(第2の有機層の形成)を、下記(第2の有機層の形成-CD1)に変更し、更に、実施例D1における(第1の有機層の形成)を下記(第1の有機層の形成-CD1)に変更したこと以外は実施例D1と同様にして、発光素子CD1を作製した。
(第2の有機層の形成-CD1)
キシレンに、高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の有機層(正孔輸送層)を形成した。
(第1の有機層の形成-CD1)
トルエンに、化合物HM-1、金属錯体B1及び金属錯体R1(化合物HM-1/金属錯体B1/金属錯体R1=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の有機層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の有機層(発光層)を形成した。
(発光素子の評価)
発光素子CD1に電圧を印加することにより、465nm、495nm及び590nmに発光スペクトルの極大発光波長を有するEL発光が観測された。465nm及び495nmの発光は、金属錯体B1に由来する発光であり、590nmの発光は、金属錯体R1に由来する発光であった。100cd/mにおける外部量子効率は2.6[%]であり、色度座標(x,y)は(0.53,0.40)であった。
Figure 0007017907000148
<実施例D8> 発光素子D8の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B5及び金属錯体G1(化合物HM-1/金属錯体B5/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D8を作製した。
発光素子D8に電圧を印加することにより、470nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B5、金属錯体G1及び高分子化合物EML-1に由来する発光であった。また、20cd/mにおける外部量子効率は17.0[%]であり、色度座標(x,y)は(0.43,0.43)であった。
<実施例D9> 発光素子D9の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B2及び金属錯体G1(化合物HM-1/金属錯体B2/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D9を作製した。
発光素子D9に電圧を印加することにより、475nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B2、金属錯体G1及び高分子化合物EML-1に由来する発光であった。また、20cd/mにおける外部量子効率は12.7[%]であり、色度座標(x,y)は(0.45,0.43)であった。
<実施例D10> 発光素子D10の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B1及び金属錯体G1(化合物HM-1/金属錯体B1/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D10を作製した。
発光素子D10に電圧を印加することにより、465nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B1、金属錯体G1及び高分子化合物EML-1に由来する発光であった。また、20cd/mにおける外部量子効率は15.7[%]であり、色度座標(x,y)は(0.47,0.44)であった。
<実施例D11> 発光素子D11の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B6及び金属錯体G1(化合物HM-1/金属錯体B6/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D11を作製した。
発光素子D11に電圧を印加することにより、480nm、515nm及び600nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B6、金属錯体G1及び高分子化合物EML-1に由来する発光であった。
また、20cd/mにおける外部量子効率は17.6[%]であり、色度座標(x,y)は(0.46,0.46)であった。
<実施例D12> 発光素子D12の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B7及び金属錯体G1(化合物HM-1/金属錯体B7/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D12を作製した。
発光素子D12に電圧を印加することにより、480nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B7、金属錯体G1及び高分子化合物EML-1に由来する発光であった。
また、20cd/mにおける外部量子効率は20.8[%]であり、色度座標(x,y)は(0.47,0.44)であった。
<実施例D13> 発光素子D13の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B8及び金属錯体G1(化合物HM-1/金属錯体B8/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子D13を作製した。
発光素子D13に電圧を印加することにより、480nm、510nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B8、金属錯体G1及び高分子化合物EML-1に由来する発光であった。
また、20cd/mにおける外部量子効率は19.2[%]であり、色度座標(x,y)は(0.45,0.45)であった。
<比較例CD2> 発光素子CD2の作製と評価
実施例D1の(第1の有機層の形成)における、「化合物HM-1及び金属錯体B1(化合物HM-1/金属錯体B1=75質量%/25質量%)」に代えて、「化合物HM-1、金属錯体B4及び金属錯体G1(化合物HM-1/金属錯体B4/金属錯体G1=74質量%/25質量%/1質量%)」を用いた以外は実施例D1と同様にして、発光素子CD2を作製した。
発光素子CD2に電圧を印加することにより、465nm、515nm及び595nmに発光スペクトルの極大発光波長を有するEL発光が観測された。これらの発光は、それぞれ、金属錯体B4、金属錯体G1及び高分子化合物EML-1に由来する発光であった。また、20cd/mにおける外部量子効率は10.6[%]であり、色度座標(x,y)は(0.47,0.44)であった。
Figure 0007017907000149

Claims (15)

  1. 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
    前記第1の有機層が、式(1)で表される金属錯体を含有する層Aであり、
    前記第2の有機層が、
    式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
    式(2)で表される金属錯体及び架橋基を有する化合物の架橋体を含有する層C’である、発光素子。
    Figure 0007017907000150

    [式中、
    Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Bは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Bが複数存在する場合、それらは同一でも異なっていてもよい。
    1Aは、=N-で表される基又は=C(RZ1A)-で表される基を表す。Z1Aが複数存在する場合、それらは同一であっても異なっていてもよい。RZ1Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    、炭素原子数以上30以下のアルキル基を表し、基は置換基を有していてもよい。Rが複数存在する場合、それらは同一でも異なっていてもよい。
    Ar1Aは、式(Ar-1A)で表される基を表す。Ar1Aが複数存在する場合、それらは同一でも異なっていてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure 0007017907000151

    [式中、
    環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
    Figure 0007017907000152

    [式中、
    は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    がロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  2. 前記式(1)で表される金属錯体が、式(1-1)で表される金属錯体である、請求項1に記載の発光素子。
    Figure 0007017907000153

    [式中、
    M、Z1A、n、n、R、Ar1A及びA-G-Aは、前記と同じ意味を表す。
    環Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E1B、E2B、E3B及びE4Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E1B、E2B、E3B及びE4Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E1Bが窒素原子の場合、R1Bは存在しない。E2Bが窒素原子の場合、R2Bは存在しない。E3Bが窒素原子の場合、R3Bは存在しない。E4Bが窒素原子の場合、R4Bは存在しない。
    1B、R2B、R3B及びR4Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1B、R2B、R3B及びR4Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R1BとR2B、R2BとR3B、及び、R3BとR4Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  3. 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
    前記第1の有機層及び前記第2の有機層が、発光層であり、
    前記第1の有機層が、式(1’)で表される金属錯体を含有する層A’である、発光素子。
    Figure 0007017907000154

    [式中、
    Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Bは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Bが複数存在する場合、それらは同一でも異なっていてもよい。
    1Aは、=N-で表される基又は=C(RZ1A)-で表される基を表す。Z1Aが複数存在する場合、それらは同一であっても異なっていてもよい。RZ1Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    1’は、炭素原子数以上30以下のアルキル基を表し、該基は置換基を有していてもよい。 1’ が複数存在する場合、それらは同一でも異なっていてもよい。
    Ar1Aは、式(Ar-1A)で表される基を表す。Ar1Aが複数存在する場合、それらは同一でも異なっていてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure 0007017907000155

    [式中、
    環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
  4. 前記第2の有機層が、
    式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
    式(2)で表される金属錯体を含有する層Cである、請求項3に記載の発光素子。
    Figure 0007017907000156

    [式中、
    は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    がロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  5. 陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有し、
    前記第1の有機層が、式(1’)で表される金属錯体を含有する層A’であり、
    前記第2の有機層が、
    式(2)で表される金属錯体から水素原子1個以上を除いた基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体のうち、少なくとも1種を含有する層B、又は、
    式(2)で表される金属錯体を含有する層C
    である、発光素子。
    Figure 0007017907000157

    [式中、
    Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Bは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Bが複数存在する場合、それらは同一でも異なっていてもよい。
    1Aは、=N-で表される基又は=C(RZ1A)-で表される基を表す。Z1Aが複数存在する場合、それらは同一であっても異なっていてもよい。RZ1Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
    1’は、炭素原子数以上30以下のアルキル基を表し、該基は置換基を有していてもよい。 1’ が複数存在する場合、それらは同一でも異なっていてもよい。
    Ar1Aは、式(Ar-1A)で表される基を表す。Ar1Aが複数存在する場合、それらは同一でも異なっていてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure 0007017907000158

    [式中、
    環Aは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    及びRは、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
    Figure 0007017907000159

    [式中、
    は、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
    は1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
    がロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
    は、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
    環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
    -G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  6. 前記第2の有機層が、前記層Bであり、
    前記高分子化合物が、架橋基を有する構成単位を更に含む、請求項1、2、4及び5のいずれか一項に記載の発光素子。
  7. 前記第2の有機層が、前記層Bであり、
    前記構成単位が、式(2-1B)で表される構成単位、式(2-2B)で表される構成単位、式(2-3B)で表される構成単位又は式(2-4B)で表される構成単位である、請求項1、2及び4~6のいずれか一項に記載の発光素子。
    Figure 0007017907000160

    [式中、
    1Bは、式(2)で表される金属錯体から水素原子1個を除いた基を表す。
    は、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
    c1は0以上の整数を表す。]
    Figure 0007017907000161

    [式中、
    1Bは前記と同じ意味を表す。
    及びLは、それぞれ独立に、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R及びRは、前記と同じ意味を表す。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
    d1及びne1は、それぞれ独立に、0以上の整数を表す。複数存在するnd1は、同一でも異なっていてもよい。
    Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure 0007017907000162

    [式中、
    及びnd1は、前記と同じ意味を表す。
    2Bは、式(2)で表される金属錯体から水素原子2個を除いた基を表す。]
    Figure 0007017907000163

    [式中、
    及びnd1は、前記と同じ意味を表す。
    3Bは、式(2)で表される金属錯体から水素原子3個を除いた基を表す。]
  8. 前記第2の有機層が、前記層B又は前記層C’であり、
    前記架橋基が、架橋基A群から選ばれる架橋基である、請求項1、2又は6に記載の発光素子。
    (架橋基A群)
    Figure 0007017907000164

    [式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnXLは、同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
  9. 前記式(Ar-1A)で表される基が、式(Ar-2A)で表される基である、請求項1~8のいずれか一項に記載の発光素子。
    Figure 0007017907000165

    [式中、R及びRは、前記と同じ意味を表す。
    環Aは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E1A、E2A及びE3Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E1Aが窒素原子の場合、R1Aは存在しない。E2Aが窒素原子の場合、R2Aは存在しない。E3Aが窒素原子の場合、R3Aは存在しない。
    1A、R2A及びR3Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R1AとR2A、及び、R2AとR3Aは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  10. 前記式(2)で表される金属錯体が、式(2-B)で表される金属錯体である、請求項1~9のいずれか一項に記載の発光素子。
    Figure 0007017907000166

    [式中、
    、n、n及びA-G-Aは、前記と同じ意味を表す。
    環L1Bは、ピリジン環又はピリミジン環を表し、環L2Bは、ベンゼン環、ピリジン環又はジアザベンゼン環を表し、E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
    11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  11. 前記式(2-B)で表される金属錯体が、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体である、請求項10に記載の発光素子。
    Figure 0007017907000167

    [式中、
    、n、n、R11B、R12B、R13B、R14B、R21B、R22B、R23B、R24B及びA-G-Aは、前記と同じ意味を表す。
    31及びn32は、それぞれ独立に、1以上の整数を表し、n31+n32は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n31+n32は3であり、Mがパラジウム原子又は白金原子の場合、n31+n32は2である。
    15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R15BとR16B、R16BとR17B、及び、R17BとR18Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  12. 前記第1の有機層が、式(H-1)で表される化合物、及び/又は、式(Y)で表される構成単位を含む高分子化合物を更に含有する、請求項1~11のいずれか一項に記載の発光素子。
    Figure 0007017907000168

    [式中、
    ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
    H1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
    H3は、0以上10以下の整数を表す。
    H1は、アリーレン基、2価の複素環基、又は、-[C(RH11 nH11 -で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
    H2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure 0007017907000169

    [式中、ArY1は、アリーレン基、2価の複素環基、又は、アリーレン基と2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
  13. 前記第1の有機層が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群より選ばれる少なくとも1種を更に含有する、請求項1~12のいずれか一項に記載の発光素子。
  14. 前記第1の有機層と前記第2の有機層とが隣接している、請求項1~13のいずれか一項に記載の発光素子。
  15. 前記第2の有機層が、前記陽極及び前記第1の有機層の間に設けられた層である、請求項1~14のいずれか一項に記載の発光素子。
JP2017219443A 2016-11-14 2017-11-14 発光素子 Active JP7017907B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221919 2016-11-14
JP2016221919 2016-11-14

Publications (2)

Publication Number Publication Date
JP2018085505A JP2018085505A (ja) 2018-05-31
JP7017907B2 true JP7017907B2 (ja) 2022-02-09

Family

ID=62237732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017219443A Active JP7017907B2 (ja) 2016-11-14 2017-11-14 発光素子

Country Status (1)

Country Link
JP (1) JP7017907B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550203A (en) * 2016-05-13 2017-11-15 Sumitomo Chemical Co Light-emitting compound
JP6589032B1 (ja) * 2018-10-25 2019-10-09 住友化学株式会社 発光素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046479A (ja) 2009-11-02 2012-03-08 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、表示装置、電子機器、及び照明装置
JP2013199473A (ja) 2012-02-24 2013-10-03 Semiconductor Energy Lab Co Ltd 燐光性有機金属イリジウム錯体、発光素子、発光装置、電子機器、および照明装置
WO2015151914A1 (ja) 2014-04-04 2015-10-08 コニカミノルタ株式会社 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子
WO2015163174A1 (ja) 2014-04-25 2015-10-29 住友化学株式会社 発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046479A (ja) 2009-11-02 2012-03-08 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、表示装置、電子機器、及び照明装置
JP2013199473A (ja) 2012-02-24 2013-10-03 Semiconductor Energy Lab Co Ltd 燐光性有機金属イリジウム錯体、発光素子、発光装置、電子機器、および照明装置
WO2015151914A1 (ja) 2014-04-04 2015-10-08 コニカミノルタ株式会社 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子
WO2015163174A1 (ja) 2014-04-25 2015-10-29 住友化学株式会社 発光素子

Also Published As

Publication number Publication date
JP2018085505A (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP2021120952A (ja) 組成物の製造方法
JP6468289B2 (ja) 発光素子
JP6610536B2 (ja) 発光素子およびそれに用いる組成物
WO2015145871A1 (ja) 高分子化合物およびそれを用いた発光素子
JP7020420B2 (ja) 発光素子
JP6881430B2 (ja) 発光素子及び該発光素子に用いる高分子化合物
WO2015159744A1 (ja) 組成物およびそれを用いた発光素子
JP2018083941A (ja) 組成物及びそれを用いた発光素子
CN110574497B (zh) 组合物和使用了该组合物的发光元件
JP6877976B2 (ja) 発光素子
JP6826930B2 (ja) 発光素子
JP6754774B2 (ja) 発光素子
JP2017125087A (ja) 高分子化合物及びそれを用いた発光素子
JP6642428B2 (ja) 高分子化合物およびそれを用いた発光素子
JP7017907B2 (ja) 発光素子
JP2020138934A (ja) 金属錯体及び前記金属錯体を含む組成物
JP2018083940A (ja) 組成物及びそれを用いた発光素子
JP6468928B2 (ja) 高分子化合物およびそれを用いた発光素子
KR20190047099A (ko) 발광 소자
JP6851189B2 (ja) 発光素子及び金属錯体
JP7017908B2 (ja) 発光素子
JPWO2019208648A1 (ja) 発光素子
JP6941711B2 (ja) 金属錯体及びそれを含有する発光素子
JP7192339B2 (ja) 発光素子
JP6804465B2 (ja) 組成物及びそれを用いた発光素子

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250