JP7012613B2 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
JP7012613B2
JP7012613B2 JP2018133608A JP2018133608A JP7012613B2 JP 7012613 B2 JP7012613 B2 JP 7012613B2 JP 2018133608 A JP2018133608 A JP 2018133608A JP 2018133608 A JP2018133608 A JP 2018133608A JP 7012613 B2 JP7012613 B2 JP 7012613B2
Authority
JP
Japan
Prior art keywords
gas
processing container
film forming
pressure
supply path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133608A
Other languages
English (en)
Other versions
JP2020012137A (ja
Inventor
太一 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018133608A priority Critical patent/JP7012613B2/ja
Priority to TW108124439A priority patent/TW202020213A/zh
Priority to US16/508,348 priority patent/US11535932B2/en
Priority to KR1020190083576A priority patent/KR102326735B1/ko
Priority to CN201910629781.3A priority patent/CN110714191B/zh
Publication of JP2020012137A publication Critical patent/JP2020012137A/ja
Application granted granted Critical
Publication of JP7012613B2 publication Critical patent/JP7012613B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本開示は、成膜方法及び成膜装置に関する。
処理容器内の基板に対して互いに反応する複数種類の反応ガスを順番に供給し成膜処理を行う成膜装置が知られている(例えば、特許文献1参照)。この装置では、成膜処理を行った後、反応ガスの圧力よりも高い圧力に昇圧したパージガスを処理容器内に供給することで、反応ガスに接触する部位に付着したパーティクルを除去している。
特開2014-198872号公報
本開示は、基板に付着するパーティクルを低減することができる技術を提供する。
本開示の一態様による成膜方法は、真空雰囲気である処理容器内の基板に対して互いに反応する複数種類の反応ガスを、反応ガスの種類ごとに設けられた反応ガス供給路とは別に設けられたカウンターガス供給路からカウンターガスを連続的に供給しながら、前記反応ガス供給路を介して順番に供給し、反応生成物を積層して薄膜を形成する成膜方法であって、前記カウンターガスを連続的に供給しながら、複数種類の反応ガスの各々について、前記反応ガス供給路に設けられた貯留部に反応ガスを貯留して昇圧した後、前記貯留部から前記処理容器内に吐出する動作を順番に行う成膜工程と、前記反応ガス供給路に設けられた前記貯留部にパージガスを貯留して前記成膜工程における対応する前記貯留部の昇圧時の圧力よりも高い圧力に昇圧し、前記貯留部から前記処理容器内に吐出する動作を複数回繰り返すパージ工程と、を有し、前記パージ工程において前記処理容器内に供給する前記カウンターガスの流量は、前記成膜工程において前記処理容器内に供給する前記カウンターガスの流量よりも小さい。
本開示によれば、基板に付着するパーティクルを低減することができる。
成膜装置の構成例を示す概略図 図1の成膜装置のガス供給系を示す図 第1の実施形態に係る成膜方法を示すフローチャート 図3の成膜方法におけるカウンターガスの供給シーケンスを示す図 第2の実施形態に係る成膜方法を示すフローチャート 図5の成膜方法におけるカウンターガスの供給シーケンスを示す図 ウエハの処理枚数とパーティクルの数との関係を示す図
以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。
〔成膜装置〕
本開示の一実施形態に係る成膜装置について説明する。成膜装置は、基板の一例である半導体ウエハ(以下「ウエハ」という。)上に、互いに反応する塩化チタン(TiCl)ガスとアンモニア(NH)ガスとを交互に供給し、ALD法により反応生成物である窒化チタン(TiN)の薄膜を成膜する装置である。
図1は、成膜装置の構成例を示す概略図である。図1に示されるように、成膜装置は、処理容器1、載置台2、天板部材3、排気機構4、ガス供給系5、制御部6を有する。
処理容器1は、アルミニウム等の金属により構成され、略円筒状を有する。処理容器1の側壁にはウエハWを搬入又は搬出するための搬入出口11が形成されている。搬入出口11は、ゲートバルブ12により開閉される。処理容器1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット131が形成されている。また、排気ダクト13の外壁には排気口132が形成されている。排気ダクト13の上面には、処理容器1の上部開口を塞ぐように蓋体31が設けられている。蓋体31と排気ダクト13との間はシールリング(図示せず)で気密にシールされている。
載置台2は、処理容器1内でウエハWを水平に支持する。載置台2は、ウエハWに対応した大きさの円板状をなし、支持部材23に支持されている。載置台2は、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル基合金等の金属材料で構成されており、内部にウエハWを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、載置台2の上面のウエハ載置面近傍に設けられた熱電対(図示せず)の温度信号によりヒータ21の出力を制御することにより、ウエハWを所定の温度に制御するようになっている。
載置台2には、ウエハ載置面の外周領域、及び載置台2の側面を覆うようにアルミナ等のセラミックス材料からなるカバー部材22が設けられている。
支持部材23は、載置台2の底面中央から処理容器1の底壁に形成された孔部を貫通して処理容器1の下方に延び、下端が昇降機構24に接続されている。昇降機構24は、載置台2を搬送機構(図示せず)との間でウエハWを受け渡す受け渡し位置と、受け渡し位置の上方であって、ウエハWへの成膜が行われる処理位置(図1に示す位置)との間で昇降させる。支持部材23の処理容器1の下方には、鍔部231が取り付けられており、処理容器1の底面と鍔部231の間には、処理容器1内の雰囲気を外気と区画し、載置台2の昇降動作に伴って伸縮するベローズ232が設けられている。
処理容器1の底面近傍には、昇降板25aから上方に突出する例えば3本(2本のみ図示)の支持ピン25が設けられている。支持ピン25は、処理容器1の下方に設けられた昇降機構26により昇降板25aを介して昇降可能になっており、搬送位置にある載置台2に設けられた貫通孔201に挿通されて載置台2の上面に対して突出可能となっている。支持ピン25を昇降させることにより、搬送機構と載置台2との間でウエハWの受け渡しが行われる。
天板部材3は、例えば金属製であり、載置台2と対向するように蓋体31の下面に設けられている。天板部材3は、処理空間30に反応ガスやパージガス等を供給する。天板部材3の下面には凹部32が形成されており、凹部32の中央側から外周側へ向けて末広がりの傾斜面が形成されている。傾斜面の外側には、環状で平坦な先端部33が形成されている。
載置台2を処理位置まで上昇させた状態では、天板部材3の先端部33の下面は、カバー部材22の上面と互いに対向するように配置され、天板部材3の凹部32と載置台2の上面とによって囲まれた空間は、ウエハWに対する成膜が行われる処理空間30となる。また、天板部材3の先端部33の下面と、カバー部材22の上面との間には隙間34が形成されるように処理位置の高さ位置が設定されている。排気ダクト13のスリット131は、隙間34に向けて開口している。
天板部材3の凹部32の中央には、処理空間30内へ反応ガスを供給するためのガス供給路35が形成されている。ガス供給路35は天板部材3を上下方向に貫通し、下端が載置台2側へ向けて下方に開口している。また、ガス供給路35は、接続部材36及びバルブ機構37を介してガス供給系5に接続されている。接続部材36は例えばステンレスやハステロイにより形成され、内部にはガスの流路が形成されている。図1の例では、ガス供給路35は2本の流路351,352に分岐し、バルブ機構37に接続されている。バルブ機構37は、例えば4個のバルブV1~V4を備えている。
排気機構4は、処理容器1の内部を排気する。排気機構4は、排気ダクト13の排気口132に接続された排気配管41と、排気配管41に接続された排気装置42と、排気配管の途中に設けられた圧力調整弁43と、を有する。処理に際しては、処理容器1内のガスはスリット131を介して排気ダクト13に至り、排気ダクト13から排気機構4の排気装置42により排気配管41を通って排気される。
ガス供給系5について、図2を参照して説明する。図2は、図1の成膜装置のガス供給系5を示す図である。図2に示されるように、ガス供給系5は、カウンターガス供給路51、塩化チタン供給路52、アンモニア供給路53、及びカウンターガス供給路54を有する。
カウンターガス供給路51は、塩化チタン供給路52及びアンモニア供給路53とは別に設けられ、カウンターガスである窒素(N)ガスの供給源511に接続されている。カウンターガス供給路51には、供給源511側から順に、バルブV11、流量調整部MF1、及びバルブV1が設けられている。また、カウンターガス供給路51は、流量調整部MF1とバルブV11との間から分岐し、バルブV12を備えた分岐路512によりクリーニング用流体であるフッ化塩素(ClF)ガスの供給源513に接続されている。なお、バルブはガスの給断、流量調整部はガス流量の調整を行うものであり、以降のバルブ及び流量調整部についても同様である。
塩化チタン供給路52は、反応ガス供給路であり、反応ガスである塩化チタン(TiCl)ガスの供給源521に接続されている。塩化チタン供給路52には、供給源521側から順に、バルブV22、流量調整部MF2、バルブV21、貯留タンク61、及びバルブV2が設けられている。また、塩化チタン供給路52は、流量調整部MF2とバルブV22との間から分岐し、バルブV23を備えた分岐路522を介してパージガスである窒素(N)ガスの供給源523に接続されている。供給源523、分岐路522、及びバルブV23は、パージガス供給部の一例である。さらに、バルブV21と流量調整部MF2との間には排気路524が接続されており、排気路524はバルブV24を介して排気装置42に接続されている。貯留タンク61は、貯留部の一例であり、塩化チタン供給路52を流れるガスを一時的に貯留し、短時間で必要なガスを供給する。貯留タンク61と処理容器1との間のバルブV2を閉じ、貯留タンク61にガスを供給したときに、貯留タンク61内にガスが貯留されるようになっている。また、貯留タンク61へのガスの供給を続けることにより貯留タンク61内が昇圧されるように構成されている。貯留タンク61には、タンク内の圧力を検出するための圧力計63が設けられている。
アンモニア供給路53は、反応ガス供給路であり、反応ガスであるアンモニア(NH)ガスの供給源531に接続されている。アンモニア供給路53には、供給源531側から順に、バルブV32、流量調整部MF3、バルブV31、貯留タンク62、及びバルブV3が設けられている。また、アンモニア供給路53は、流量調整部MF3とバルブV32との間から分岐し、バルブV33を備えた分岐路532を介してパージガスである窒素(N)ガスの供給源533に接続されている。供給源533、分岐路532、及びバルブV33は、パージガス供給部の一例である。さらに、バルブV31と流量調整部MF3との間には排気路534が接続されており、排気路534はバルブV34を介して排気装置42に接続されている。貯留タンク62は、貯留部の一例であり、アンモニア供給路53を流れるガスを一時的に貯留し、短時間で必要なガスを供給する。貯留タンク62と処理容器1との間のバルブV3を閉じ、貯留タンク62にガスを供給したときに、貯留タンク62内にガスが貯留されるようになっている。また、貯留タンク62へのガスの供給を続けることにより貯留タンク62内が昇圧されるように構成されている。貯留タンク62には、タンク内の圧力を検出するための圧力計64が設けられている。
カウンターガス供給路54は、塩化チタン供給路52及びアンモニア供給路53とは別に設けられ、カウンターガスである窒素(N)ガスの供給源541に接続されている。カウンターガス供給路54は、供給源541側から順に、バルブV41、流量調整部MF4、及びバルブV4が設けられている。また、カウンターガス供給路54は、流量調整部MF4とバルブV41との間から分岐し、バルブV42を備えた分岐路542によりクリーニング用流体であるフッ化塩素(ClF)ガスの供給源であるクリーニングガス供給源543に接続されている。
制御部6は、成膜装置の各部の動作を制御する。制御部6は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を有する。CPUは、RAM等の記憶領域に格納されたレシピに従って、所望の処理を実行する。レシピには、プロセス条件に対する装置の制御情報が設定されている。制御情報は、例えばガス流量、圧力、温度、プロセス時間であってよい。なお、レシピ及び制御部6が使用するプログラムは、例えばハードディスク、半導体メモリに記憶されてもよい。また、レシピ等は、CD-ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で所定の位置にセットされ、読み出されるようにしてもよい。
〔成膜方法〕
(第1の実施形態)
第1の実施形態に係る成膜方法について説明する。以下で説明する成膜方法は、制御部6が成膜装置の各部の動作を制御することにより実行される。図3は、第1の実施形態に係る成膜方法を示すフローチャートである。図4は、図3の成膜方法におけるカウンターガスの供給シーケンスを示す図である。
図3に示されるように、一実施形態に係る成膜方法は、成膜工程S1、判定工程S2、及びパージ工程S3を有する。成膜工程S1、判定工程S2、及びパージ工程S3は、例えばウエハWの処理枚数が所定枚数(例えば、1000枚)に到達するまで繰り返し行われる。以下、それぞれの工程について説明する。
<成膜工程S1>
成膜工程S1は、処理容器1内にカウンターガスを連続的に供給しながら、複数種類の反応ガスの各々について、反応ガス供給路に設けられた貯留タンクに反応ガスを貯留して昇圧した後、貯留タンクから処理容器1内に吐出する動作を順番に行う工程である。
まず、処理容器1内を真空雰囲気に減圧した後、搬送機構(図示せず)によりウエハWを処理容器1に搬入する。続いて、所定の温度に加熱された載置台2を受け渡し位置に移動させ、搬送機構と支持ピン25との協働作業によりウエハWを受け渡す。
続いて、載置台2を処理位置まで上昇させると共に、処理容器1内の圧力を調整した後、塩化チタン供給路52を介して塩化チタンガスを供給する。塩化チタンガスの供給では、バルブV2を閉じ、バルブV21,V22を開く。これにより、塩化チタンガスを、塩化チタン供給路52を介して貯留タンク61に所定の流量例えば50sccmで供給して貯留タンク61内に塩化チタンガスを充填する。また、バルブV1,V11,V4,V41を開き、カウンターガス供給路51,54を介して、窒素ガスをそれぞれ第1の流量Q1、例えば3000sccmで処理容器1に導入する。このとき、その他のバルブについては、閉じておく。
塩化チタンガスの供給により、貯留タンク61では徐々に圧力が高まってくる。そして貯留タンク61内の圧力が第1の圧力、例えば12.80kPa(96Torr)以上に昇圧すると、バルブV2を開いて、処理容器1内に所定量の塩化チタンガスを供給する。第1の圧力とは、例えば空の貯留タンク61に塩化チタンガスの供給を開始したときの貯留タンク61の圧力よりも高い圧力であり、例えば12.40kPa(93Torr)~13.07kPa(98Torr)に設定される。この工程では、バルブV2を開く以外、バルブの開閉の状態は貯留タンク61に塩化チタンガスを充填する場合と同様である。
塩化チタンガス及び窒素ガスは、接続部材36及び天板部材3内の流路351,352及びガス供給路35を介して処理空間30内に供給され、処理空間30の天井部の傾斜面に案内され、天板部材3の中央側から外周側へ向け広がり、ウエハWに到達する。また、先端部33とカバー部材22との間の隙間34に到達した塩化チタンガス及び窒素ガスは、隙間34から処理容器1内に流れ出た後、排気ダクト13を介して外部へ排出される。
バルブV2を開いて処理容器1へ塩化チタンガスを供給すると、貯留タンク61内の圧力が下がってくるので、例えば12.40kPa(93Torr)以下になると、バルブV2を閉じて塩化チタンガスの供給を停止する。一方、バルブV1,V4は開いた状態を維持し、処理容器1内に、カウンターガス供給路51,54から窒素ガスをそれぞれ第1の流量Q1、例えば3000sccmで供給し続ける。窒素ガスは、ガスの流路351,352及びガス供給路35を介して処理空間30内に供給され、処理容器1内に流出して、排気ダクト13から排気される。これにより、塩化チタン供給路52及び処理空間30内の塩化チタンガスが窒素ガスと置換される。
窒素ガスの供給によりガスを置換した後、アンモニア供給路53を介して処理容器1にアンモニアガスを供給する。アンモニアガスの供給では、バルブV3を閉じ、バルブV31,V32を開く。これにより、アンモニアガスを、アンモニア供給路53を介して貯留タンク62に所定の流量、例えば2700sccmで供給して貯留タンク62内にアンモニアガスを充填する。また、バルブV1,V4は開いた状態を維持し、処理容器1内に、カウンターガス供給路51,54から窒素ガスをそれぞれ第1の流量Q1、例えば3000sccmで供給し続ける。このとき、その他のバルブについては、閉じておく。
アンモニアガスの供給により、貯留タンク62では徐々に圧力が高まっていく。そして、貯留タンク62内の圧力が第2の圧力、例えば21.73kPa(163Torr)以上に昇圧すると、バルブV3を開いて、処理容器1内に所定量のアンモニアガスを供給する。第2の圧力とは、例えば空の貯留タンク62にアンモニアガスの供給を開始したときの貯留タンク62の圧力よりも高い圧力であり、例えば19.20kPa(144Torr)~24.93kPa(187Torr)に設定される。この工程では、バルブV3を開く以外、バルブの開閉は貯留タンク62にアンモニアガスを充填する場合と同様である。
処理容器1に供給されたアンモニアガスは、塩化チタンガスの場合と同様の流れを形成して処理空間30内に供給される。処理空間30内を流れるアンモニアガスがウエハWの表面に到達すると、先にウエハWに吸着している塩化チタンガスの成分を窒化して窒化チタンが形成される。
バルブV3を開いて処理容器1へアンモニアガスを供給すると、貯留タンク62内の圧力が下がってくるので、例えば19.33kPa(145Torr)以下になると、バルブV3を閉じてアンモニアガスの供給を停止する。一方、バルブV1,V4は開いた状態を維持し、処理容器1内に、カウンターガス供給路51,54から窒素ガスをそれぞれ第1の流量Q1、例えば3000sccmで供給し続ける。これにより、アンモニア供給路53及び処理空間30内のアンモニアガスが窒素ガスと置換される。
このように塩化チタンガス、窒素ガス、アンモニアガス、及び窒素ガスの順番で反応ガス(塩化チタンガス、アンモニアガス)と置換用のガス(窒素ガス)とを供給することにより、ウエハWの表面に窒化チタンの分子層が積層され、窒化チタンの薄膜が成膜される。そして、塩化チタンガスの供給とアンモニアガスの供給とを所定の回数行うことで、所望の膜厚の窒化チタンの薄膜が成膜される。一実施形態では、塩化チタンガス、窒素ガス、アンモニアガス、及び窒素ガスの供給時間は、それぞれ0.05秒、0.2秒、0.3秒、及び0.3秒である。
このようにして置換用の窒素ガスを供給して最後のアンモニアガスを排出した後、載置台2を受け渡し位置まで降下させる。そして搬入時とは逆の手順で成膜後のウエハWを搬出させた後、次のウエハWの搬入を待つ。
なお、成膜工程S1においては、塩化チタンガス、窒素ガス、アンモニアガス、及び窒素ガスの順番でガスを切り換えて処理容器1に供給すればよく、例えば貯留タンク61,62への塩化チタンガス及びアンモニアガスの充填はそれぞれ並行して行われる。また例えば塩化チタンガス及びアンモニアガスの一方の処理容器1への供給と、塩化チタンガス及びアンモニアガスの他方の貯留タンク61,62への充填は並行して行われる。
<判定工程S2>
判定工程S2は、成膜工程S1が予め定められた回数(所定の回数)行われたか否かを判定する工程である。判定工程S2において成膜工程S1が所定の回数行われたと判定されると、成膜工程S1を終了してパージ工程S3を行う。一方、判定工程S2において成膜工程S1が所定の回数行われていないと判定されると、再び成膜工程S1を行う。なお、所定の回数は、成膜工程S1において成膜する膜の厚さ等に応じて定められ、例えば25回であってよい。
<パージ工程S3>
パージ工程S3は、反応ガス供給路に設けられた貯留タンクにパージガスを貯留して成膜工程S11における対応する貯留タンクの昇圧時の圧力よりも高い圧力に昇圧し、貯留タンクから処理容器1内に吐出する動作を複数回繰り返す工程である。
まず、アンモニア供給路53の実ガス抜きを行う。この工程は、バルブV1,V11,V4,V41,V31,V34を開き、これら以外のバルブを閉じ、排気装置42により排気することにより行う。これにより、アンモニア供給路53はバルブV3の上流側が排気され、アンモニア供給路53内に残存するガスが除去される。
続いて、塩化チタン供給路52の実ガス抜きを行う。この工程は、バルブV1,V11,V4,V41,V21,V24を開き、これら以外のバルブを閉じ、排気装置42により排気することにより行う。これにより、塩化チタン供給路52はバルブV2の上流側が排気され、塩化チタン供給路52内に残存するガスが除去される。
続いて、貯留タンク61,62にパージガスである窒素ガスを充填する。即ち、バルブV1,V11,V4,V41,V21,V23,V31,V33を開き、これら以外のバルブを閉じる。バルブV2,V3は閉じられているので、塩化チタン供給路52及びアンモニア供給路53を介してそれぞれ流れてくる窒素ガスは、それぞれ貯留タンク61,62に貯留される。こうして塩化チタン供給路52を介して貯留タンク61に窒素ガスを所定の流量、例えば190sccmで供給して、貯留タンク61内に窒素ガスを充填する。また、アンモニア供給路53を介して貯留タンク62に窒素ガスを所定の流量、例えば900sccmで供給して、貯留タンク62内に窒素ガスを充填する。また、カウンターガス供給路51,54を介して窒素ガスをそれぞれ第1の流量Q1よりも小さい第2の流量Q2(例えば、500sccm~2000sccm)で処理容器1に導入する。
貯留タンク61,62では、それぞれ窒素ガスの供給により、貯留タンク61,62内の圧力が徐々に圧力が高まってくる。貯留タンク61内の圧力が第1の圧力よりも高い第3の圧力、例えば56.00kPa(420Torr)になると、バルブV2を開く。これにより、貯留タンク61から塩化チタン供給路52を介して処理容器1に窒素ガスを供給してパージを行う。この状態で開いているバルブは、バルブV1,V11,V4,V41,V2,V21,V23,V31,V33である。
処理容器1内に貯留タンク61内で加圧された窒素ガス(パージガス)が供給されると、窒素ガスは圧力差により急激に処理空間30内を拡散し、隙間34を介して処理容器1内に広がる。また、貯留タンク61にて加圧されてから処理容器1へ供給されるので、窒素ガスは強い圧力で処理容器1へ供給される。従って貯留タンク61の下流側における窒素ガスの流路では、窒素ガスの強い流れが発生し、この流れと共に前記流路に存在するパーティクルが除去される。また、パージ工程S3において処理容器1内に供給するカウンターガスの流量は、成膜工程S11において処理容器1内に供給するカウンターガスの流量よりも小さい。これにより、パージガスが処理容器1内に向かう流れの勢いがカウンターガスによって弱まることを抑制できる。但し、カウンターガスの流量が小さすぎるとパージガスがカウンターガス供給路51,54に逆流してパージガスが処理容器1内に向かう流れの勢いが弱まる場合もあるため、第2の流量Q2は500sccm~2000sccmであることが好ましい。
このように貯留タンク61から処理容器1にパージガスを供給すると、貯留タンク61内の圧力が下がってくる。そこで、貯留タンク61内の圧力が、例えば第3の圧力の80%以上90%以下、例えば46.66kPa(350Torr)になると、バルブV2を閉じて処理容器1への窒素ガスの供給を停止する。これにより、塩化チタン供給路52では窒素ガスの充填工程が再び行われ、貯留タンク61への窒素ガスの供給により、次第に貯留タンク61の圧力が高まっていく。こうして再び貯留タンク61内の圧力が第3の圧力、例えば56.00kPa(420Torr)になるとバルブV2を開き、窒素ガスを処理容器1に供給してパージを行う。このように塩化チタン供給路52では、貯留タンク61内への窒素ガスの充填と、処理容器1への窒素ガスのパージが例えば100回繰り返される。このとき、処理容器1への窒素ガスのパージは例えば0.1秒行われ、貯留タンク61への窒素ガスの充填は例えば3秒行われる。
同様にアンモニア供給路53においても、窒素ガスの供給により貯留タンク62内の圧力が第2の圧力よりも高い第4の圧力、例えば56.00kPa(420Torr)になると、バルブV3を開く。これにより、貯留タンク62からアンモニア供給路53を介して処理容器1内に窒素ガスを供給してパージを行う。この状態で開いている開閉バルブは、バルブV1,V11,V4,V41,V21,V23,V3,V31,V33である。これにより、貯留タンク62の下流側における窒素ガスの流路では、窒素ガスの強い流れが発生し、この流れと共に前記流路に存在するパーティクルが除去される。また、パージ工程S3において処理容器1内に供給するカウンターガスの流量は、成膜工程S11において処理容器1内に供給するカウンターガスの流量よりも小さい。これにより、パージガスが処理容器1内に向かう流れの勢いがカウンターガスによって弱まることを抑制できる。
このように貯留タンク62から処理容器1に窒素ガスを供給し、貯留タンク62内の圧力が例えば第4の圧力の80%以上90%以下、例えば46.66kPa(350Torr)になると、バルブV3を閉じて処理容器1への窒素ガスの供給を停止する。これにより、アンモニア供給路53では、窒素ガスの充填工程が再び行われ、貯留タンク62への窒素ガスの供給により、次第に貯留タンク62の圧力が高まっていく。こうして再び貯留タンク62内の圧力が第4の圧力、56.00kPa(420Torr)になると、バルブV3を開き、窒素ガスを処理容器1に供給し、アンモニア供給路53のパージを行う。このようにアンモニア供給路53では、貯留タンク62内への窒素ガスの充填と、処理容器1への窒素ガスのパージが例えば100回繰り返される。このとき、処理容器1への窒素ガスのパージは例えば0.1秒行われ、貯留タンク62への窒素ガスの充填は例えば2秒行われる。
こうして塩化チタン供給路52を介してのパージ処理と、アンモニア供給路53を介してのパージ処理を行った後、塩化チタン供給路52の窒素ガス抜きと、アンモニア供給路53の窒素ガス抜きを行ってパージ処理を終了する。塩化チタン供給路52の窒素ガス抜きは、バルブV1,V11,V4,V41,V21,V24を開き、これら以外の開閉バルブを閉じ、排気装置42により排気することにより行う。これにより、塩化チタン供給路52は、バルブV2の上流側が排気され、塩化チタン供給路52内に残存する窒素ガスが除去される。また、アンモニア供給路53の窒素ガス抜きは、バルブV1,V11,V4,V41,V31,V34を開き、これら以外の開閉バルブを閉じ、排気装置42により排気することにより行う。これにより、アンモニア供給路53は、バルブV3の上流側が排気され、アンモニア供給路53内に残存する窒素ガスが除去される。なお、一連のパージ処理の間、カウンターガス供給路51,54を介して窒素ガスを第1の流量Q1よりも小さい第2の流量Q2、例えば1000sccmで処理容器1内に導入しておく。
第1の実施形態によれば、処理容器1内に貯留タンク61,62内で加圧された窒素ガス(パージガス)を供給するパージ工程S3を有する。これにより、窒素ガスは圧力差により急激に処理空間30内を拡散し、隙間34を介して処理容器1内に広まっていく。また、貯留タンク61,62にて加圧されてから処理容器1へ供給されるので、窒素ガスは強い圧力で処理容器1へ供給される。従って、貯留タンク61,62の下流側における窒素ガスの流路では、窒素ガスの強い流れが発生し、この流れと共に前記流路に存在するパーティクルが除去される。
また、パージ工程S3において処理容器1内に供給するカウンターガスの流量は、成膜工程S1において処理容器1内に供給するカウンターガスの流量よりも小さい。これにより、パージガスが処理容器1内に向かう流れの勢いがカウンターガスによって弱まることが抑制される。その結果、成膜工程S1においてカウンターガスにより反応ガスを置換する際に残存し得る処理容器1内の部品の隙間等に堆積した生成物を除去できるので、ウエハWの処理枚数が多くなっても、パーティクルが発生しにくい。
(第2の実施形態)
第2の実施形態に係る成膜方法について説明する。以下で説明する成膜方法は、制御部6が成膜装置の各部の動作を制御することにより実行される。図5は、第2の実施形態に係る成膜方法を示すフローチャートである。図6は、図5の成膜方法におけるカウンターガスの供給シーケンスを示す図である。
図5に示されるように、一実施形態に係る成膜方法は、成膜工程S11、判定工程S12、クリーニング工程S13、パージ工程S14、及びコンディショニング工程S15を有する。以下、それぞれ工程について説明する。
<成膜工程S11>
成膜工程S11は、第1の実施形態において説明した成膜工程S1と同様とすることができる。
<判定工程S12>
判定工程S12は、成膜工程S11が予め定められた回数(所定の回数)行われたか否かを判定する工程である。判定工程S12において成膜工程S11が所定の回数行われたと判定されると、成膜工程S11を終了してクリーニング工程S13を行う。一方、判定工程S12において成膜工程S11が所定の回数行われていないと判定されると、再び成膜工程S11を行う。なお、所定の回数は、成膜工程S1において成膜する膜の厚さ等に応じて定められ、例えば1000回であってよい。
<クリーニング工程S13>
クリーニング工程S13は、処理容器1内にクリーニング用流体を供給し、処理容器1内のクリーニングを行う工程である。
まず、処理容器1内を引き切り状態(圧力調整弁43が全開の状態)にて排気する。その後、バルブV1,V12を開き、カウンターガス供給路51を介して所定の流量のフッ化塩素ガスを所定の時間供給する。このとき、バルブV4,V41を開き、カウンターガス供給路54を介して所定の流量の窒素ガスを供給する。所定の時間が経過した後に、バルブV1,V4,V12,V41を閉じる。続いて、バルブV4,V42を開き、カウンターガス供給路54を介して所定の流量のフッ化塩素ガスを所定の時間供給する。このとき、バルブV1,V11を開きカウンターガス供給路51を介して所定の流量の窒素ガスを供給する。
フッ化塩素ガスは、ガスの流路351,352、ガス供給路35を介して処理空間30内に供給され、反応ガスと同様の経路で流れていく。そして隙間34から処理容器1内に流出し、排気ダクト13を介して外部へ排出される。このように反応ガスの到達する領域にフッ化塩素ガスが供給されるため、処理容器1内に堆積した膜が除去される。
フッ化塩素ガスを所定の時間供給してクリーニングを行った後、処理容器1を真空排気しながら、バルブV12,V42を閉じ、バルブV1,V11,V4,V41を開いてカウンターガス供給路51,54を介して窒素ガスを処理容器1に導入する。この処理を所定の時間行った後、処理容器1の排気を停止すると共に、バルブV1,V11,V4,V41を閉じてクリーニングを終了する。
<パージ工程S14>
パージ工程S14は、第1の実施形態において説明したパージ工程S3と同様とすることができる。
<コンディショニング工程S15>
コンディショニング工程S15は、成膜工程S11を行うための調整(コンディショニング)を行う工程であり、例えば処理容器1内に成膜工程S11で使用する反応ガスと同じガスを供給し、処理容器1内にプリコート膜を形成する工程である。
コンディショニング工程S15では、例えば処理容器1内の載置台2にウエハWが載置されていない状態で、成膜工程S11と同様の方法で成膜を行う。
以上に説明したように、第2の実施形態によれば、処理容器1内に貯留タンク61,62内で加圧された窒素ガス(パージガス)を供給するパージ工程S14を有する。これにより、窒素ガスは圧力差により急激に処理空間30内を拡散し、隙間34を介して処理容器1内に広がる。また、貯留タンク61,62にて加圧されてから処理容器1へ供給されるので、窒素ガスは強い圧力で処理容器1へ供給される。従って、貯留タンク61,62の下流側における窒素ガスの流路では、窒素ガスの強い流れが発生し、この流れと共に前記流路に存在するパーティクルが除去される。
また、パージ工程S14において処理容器1内に供給するカウンターガスの流量は、成膜工程S11において処理容器1内に供給するカウンターガスの流量よりも小さい。これにより、パージガスが処理容器1内に向かう流れの勢いがカウンターガスによって弱まることが抑制される。そのため、クリーニング工程S13において除去されにくい処理容器1内の部品の隙間等に堆積した生成物を除去できる。その結果、コンディショニング工程S15において処理容器1の内部表面に成膜されるプリコート膜の密着性が向上するので、プリコート膜の剥離に起因するパーティクルの発生を抑制できる。
また、クリーニング工程S13を行った後には、処理容器1の内壁等のクリーニングガスの流路において、クリーニングの残留物が排気されずにパーティクルとして残っている場合がある。従ってクリーニング工程S13後にパージ工程S14を行うと、クリーニングの残留物が処理容器1の内壁等に付着していたとしても、パージガスにより強い衝撃力が与えられて堆積物が内壁から剥離され、パージガスの強い流れと共に処理容器1の外へ排出される。
このパージ工程S14を行った後には、反応ガスを処理容器1に供給して成膜工程S11が行われるが、このときに処理容器1に供給される反応ガスは、パージガスよりも供給圧力が小さい。そのため、仮に処理容器1の内壁等の反応ガスの流路に、クリーニング工程S13の後に残留物が付着していたとしても、その残留物はパージ工程S14におけるパージガスの大きな供給圧力によりパージガスと共に移動せずに除去されなかったものである。従って反応ガスの供給の際に残留物が反応ガスの通流と共に移動し、パーティクルとなってウエハWに付着することは考えにくい。このようにクリーニング工程S13の後にパージ工程S14を行うことによって、ウエハWのパーティクル汚染をより低減できる。
〔実施例〕
(実施例1)
実施例1では、図1に示される成膜装置を用いて、前述の成膜工程S1、判定工程S2、及びパージ工程S3を繰り返し行った。即ち、実施例1では、パージ工程S3において処理容器1内に供給するカウンターガスの流量が、成膜工程S1において処理容器1内に供給するカウンターガスの流量よりも小さい処理条件を用いた。また、判定工程S2における所定の回数を25回とした。
そして、ウエハWを数十枚~数百枚処理するごとにウエハWに付着したパーティクルの数を測定した。なお、粒径が80nm以上のパーティクルを測定対象とした。
(比較例1)
比較例1では、パージ工程S3において処理容器1内に供給するカウンターガスの流量を、成膜工程S1において処理容器1内に供給するカウンターガスの流量と同一とした。なお、その他の点については、実施例1と同様の処理条件を用いた。
そして、ウエハWを数十枚~数百枚処理するごとにウエハWに付着したパーティクルの数を測定した。なお、粒径が80nm以上のパーティクルを測定対象とした。
(比較例2)
比較例2では、判定工程S2及びパージ工程S3を行うことなく成膜工程S1を連続して行った。なお、その他の点については、実施例1と同様の処理条件を用いた。
そして、ウエハWを数十枚~数百枚処理するごとにウエハWに付着したパーティクルの数を測定した。なお、粒径が80nm以上のパーティクルを測定対象とした。
(評価結果)
図7は、ウエハの処理枚数とパーティクルの数との関係を示す図である。図7中、横軸は成膜工程、ウエハの処理枚数(枚)、縦軸はパーティクルの数(個)である。図7では、実施例1の結果を「●」で示し、比較例1の結果を「○」で示し、比較例2の結果を「△」で示す。
図7に示されるように、実施例1では、ウエハWを処理枚数が1000枚に到達してもウエハWにはほとんどパーティクルが付着していなかった。一方、比較例1,2では、ウエハWの処理枚数が1000枚に到達する前に、多数のパーティクルが付着したウエハWが確認された。
以上の結果から、パージ工程S3において処理容器1内に供給するカウンターガスの流量を、成膜工程S1において処理容器1内に供給するカウンターガスの流量よりも小さくすることで、ウエハWに付着するパーティクルを低減できると言える。これは、貯留タンク61,62で昇圧された高圧のパージガスを処理容器1内に供給する際、パージガスが処理容器1内に向かう流れの勢いがカウンターガスによって弱まってパージ効率が低下するのを抑制できたからであると推察される。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
上記の実施形態では、カウンターガス及びパージガスとして窒素ガスを例示したが、これに限定されない。カウンターガス及びパージガスは、例えばアルゴンガス等の不活性ガスであってもよい。また、カウンターガスとパージガスとは、同一の種類のガスであってもよく、異なる種類のガスであってもよい。
1 処理容器
51 カウンターガス供給路
52 塩化チタン供給路
53 アンモニア供給路
54 カウンターガス供給路
61 貯留タンク
62 貯留タンク
W ウエハ

Claims (7)

  1. 真空雰囲気である処理容器内の基板に対して互いに反応する複数種類の反応ガスを、反応ガスの種類ごとに設けられた反応ガス供給路とは別に設けられたカウンターガス供給路からカウンターガスを連続的に供給しながら、前記反応ガス供給路を介して順番に供給し、反応生成物を積層して薄膜を形成する成膜方法であって、
    前記カウンターガスを連続的に供給しながら、複数種類の反応ガスの各々について、前記反応ガス供給路に設けられた貯留部に反応ガスを貯留して昇圧した後、前記貯留部から前記処理容器内に吐出する動作を順番に行う成膜工程と、
    前記反応ガス供給路に設けられた前記貯留部にパージガスを貯留して前記成膜工程における対応する前記貯留部の昇圧時の圧力よりも高い圧力に昇圧し、前記貯留部から前記処理容器内に吐出する動作を複数回繰り返すパージ工程と、
    を有し、
    前記パージ工程において前記処理容器内に供給する前記カウンターガスの流量は、前記成膜工程において前記処理容器内に供給する前記カウンターガスの流量よりも小さい、
    成膜方法。
  2. 前記パージ工程は、前記成膜工程が所定の回数行われるごとに行われる、
    請求項1に記載の成膜方法。
  3. 前記処理容器内にクリーニング用流体を供給し、前記処理容器内のクリーニングを行うクリーニング工程と、
    前記処理容器内に前記成膜工程で使用する前記反応ガスと同じガスを供給し、前記処理容器内にプリコート膜を形成するコンディショニング工程と、
    を更に有し、
    前記パージ工程は、前記クリーニング工程の後であって、前記コンディショニング工程の前に行われる、
    請求項1又は2に記載の成膜方法。
  4. 前記パージガスにより昇圧された貯留部から、前記パージガスを前記処理容器内に吐出した後、前記パージガスによる前記貯留部内の次の昇圧のために前記貯留部の下流側のバルブを閉じるときの前記貯留部内の圧力は、前記パージガスによる前記貯留部内の昇圧時の圧力の80%以上90%以下に設定されている、
    請求項1乃至3のいずれか一項に記載の成膜方法。
  5. 前記カウンターガスは、前記パージガスと同じガスである、
    請求項1乃至4のいずれか一項に記載の成膜方法。
  6. 前記カウンターガスは、アルゴンガス又は窒素ガスである、
    請求項1乃至5のいずれか一項に記載の成膜方法。
  7. 真空雰囲気である処理容器内の基板に対して互いに反応する複数種類の反応ガスを順番に供給し、反応生成物を積層して薄膜を形成する成膜装置であって、
    前記反応ガスの種類ごとに設けられたガス供給路と、
    前記ガス供給路に設けられ、ガスの貯留によりその内部を昇圧する貯留部と、
    前記ガス供給路における前記貯留部の上流側及び下流側の各々に設けられたバルブと、
    前記貯留部にパージガスを供給するパージガス供給部と、
    前記ガス供給路とは別に設けられ、前記反応ガスの種類ごとに設けられ、カウンターガスを供給するカウンターガス供給路と、
    制御部と、
    を有し、
    前記制御部は、
    前記処理容器内に前記カウンターガス供給路から前記カウンターガスを連続的に供給しながら、複数種類の反応ガスの各々について、前記貯留部に反応ガスを貯留して昇圧した後、前記貯留部から前記処理容器内に吐出する動作を順番に行う成膜工程と、
    前記処理容器内に、前記成膜工程において前記処理容器内に供給する流量よりも小さい前記カウンターガスを供給しながら、前記貯留部に前記パージガスを貯留して前記成膜工程における対応する前記貯留部の昇圧時の圧力よりも高い圧力に昇圧し、前記貯留部から前記処理容器内に吐出する動作を複数回繰り返すパージ工程と、
    を実行する、
    成膜装置。
JP2018133608A 2018-07-13 2018-07-13 成膜方法及び成膜装置 Active JP7012613B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018133608A JP7012613B2 (ja) 2018-07-13 2018-07-13 成膜方法及び成膜装置
TW108124439A TW202020213A (zh) 2018-07-13 2019-07-11 成膜方法及成膜裝置
US16/508,348 US11535932B2 (en) 2018-07-13 2019-07-11 Film forming method and film forming apparatus
KR1020190083576A KR102326735B1 (ko) 2018-07-13 2019-07-11 성막 방법 및 성막 장치
CN201910629781.3A CN110714191B (zh) 2018-07-13 2019-07-12 成膜方法和成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133608A JP7012613B2 (ja) 2018-07-13 2018-07-13 成膜方法及び成膜装置

Publications (2)

Publication Number Publication Date
JP2020012137A JP2020012137A (ja) 2020-01-23
JP7012613B2 true JP7012613B2 (ja) 2022-01-28

Family

ID=69138689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133608A Active JP7012613B2 (ja) 2018-07-13 2018-07-13 成膜方法及び成膜装置

Country Status (5)

Country Link
US (1) US11535932B2 (ja)
JP (1) JP7012613B2 (ja)
KR (1) KR102326735B1 (ja)
CN (1) CN110714191B (ja)
TW (1) TW202020213A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210404059A1 (en) * 2020-06-26 2021-12-30 Applied Materials, Inc. Processing system and method of controlling conductance in a processing system
CN115868009A (zh) * 2020-09-16 2023-03-28 株式会社国际电气 半导体器件的制造方法、程序、衬底处理装置及衬底处理方法
CN112164739B (zh) * 2020-09-28 2021-10-08 华灿光电(苏州)有限公司 微型发光二极管外延片的生长方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525430A (ja) 1998-09-14 2002-08-13 ジェニテック コーポレーション リミテッド Cvdリアクタ用ガス供給システムおよび同システムを制御する方法
WO2006090645A1 (ja) 2005-02-24 2006-08-31 Hitachi Kokusai Electric Inc. 半導体装置の製造方法および基板処理装置
JP2010171389A (ja) 2008-12-25 2010-08-05 Hitachi Kokusai Electric Inc 半導体装置の製造方法、クリーニング制御装置及び基板処理装置
JP2013157491A (ja) 2012-01-31 2013-08-15 Tokyo Electron Ltd 成膜装置
JP2014199856A (ja) 2013-03-29 2014-10-23 東京エレクトロン株式会社 縦型熱処理装置の運転方法及び記憶媒体並びに縦型熱処理装置
JP2014198872A (ja) 2013-03-29 2014-10-23 東京エレクトロン株式会社 成膜装置及びガス供給装置並びに成膜方法
WO2016110956A1 (ja) 2015-01-07 2016-07-14 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体
JP2018021229A (ja) 2016-08-03 2018-02-08 東京エレクトロン株式会社 ガス供給装置及びガス供給方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520900B1 (ko) * 2003-03-13 2005-10-12 주식회사 아이피에스 Ald 박막증착방법
JP2008160006A (ja) * 2006-12-26 2008-07-10 Toshiba Corp 半導体製造装置及びその制御方法
CN101772833B (zh) * 2008-02-20 2012-04-18 东京毅力科创株式会社 气体供给装置
JP2011155044A (ja) * 2010-01-26 2011-08-11 Hitachi High-Technologies Corp 真空処理装置
JP6222833B2 (ja) * 2013-01-30 2017-11-01 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
JP6134522B2 (ja) * 2013-01-30 2017-05-24 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
JP5950892B2 (ja) * 2013-11-29 2016-07-13 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
US10121671B2 (en) * 2015-08-28 2018-11-06 Applied Materials, Inc. Methods of depositing metal films using metal oxyhalide precursors
JP6523119B2 (ja) * 2015-09-28 2019-05-29 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525430A (ja) 1998-09-14 2002-08-13 ジェニテック コーポレーション リミテッド Cvdリアクタ用ガス供給システムおよび同システムを制御する方法
WO2006090645A1 (ja) 2005-02-24 2006-08-31 Hitachi Kokusai Electric Inc. 半導体装置の製造方法および基板処理装置
JP2010171389A (ja) 2008-12-25 2010-08-05 Hitachi Kokusai Electric Inc 半導体装置の製造方法、クリーニング制御装置及び基板処理装置
JP2013157491A (ja) 2012-01-31 2013-08-15 Tokyo Electron Ltd 成膜装置
JP2014199856A (ja) 2013-03-29 2014-10-23 東京エレクトロン株式会社 縦型熱処理装置の運転方法及び記憶媒体並びに縦型熱処理装置
JP2014198872A (ja) 2013-03-29 2014-10-23 東京エレクトロン株式会社 成膜装置及びガス供給装置並びに成膜方法
WO2016110956A1 (ja) 2015-01-07 2016-07-14 株式会社日立国際電気 半導体装置の製造方法、基板処理装置および記録媒体
JP2018021229A (ja) 2016-08-03 2018-02-08 東京エレクトロン株式会社 ガス供給装置及びガス供給方法

Also Published As

Publication number Publication date
JP2020012137A (ja) 2020-01-23
CN110714191B (zh) 2021-10-01
US11535932B2 (en) 2022-12-27
KR20200007699A (ko) 2020-01-22
CN110714191A (zh) 2020-01-21
TW202020213A (zh) 2020-06-01
KR102326735B1 (ko) 2021-11-17
US20200017963A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR101752951B1 (ko) 성막 장치, 가스 공급 장치 및 성막 방법
KR102086217B1 (ko) 가스 공급 장치, 가스 공급 방법 및 성막 방법
JP7012613B2 (ja) 成膜方法及び成膜装置
KR101521466B1 (ko) 가스 공급 장치, 열처리 장치, 가스 공급 방법 및 열처리 방법
JP4985031B2 (ja) 真空処理装置、真空処理装置の運転方法及び記憶媒体
JP5616591B2 (ja) 半導体装置の製造方法及び基板処理装置
KR101665371B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP2012212854A (ja) 基板処理装置および固体原料補充方法
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP2014199856A (ja) 縦型熱処理装置の運転方法及び記憶媒体並びに縦型熱処理装置
TWI428987B (zh) Film Forming Method and Memory Media of Titanium (Ti) Membrane
KR20160035974A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
WO2007037233A1 (ja) 基板処理装置
US10519542B2 (en) Purging method
US20220002873A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
WO2021049392A1 (ja) ガス供給装置、基板処理装置及びガス供給装置の制御方法
US20200056287A1 (en) Film-Forming Method and Film-Forming Apparatus
WO2024128099A1 (ja) 成膜装置及び成膜方法
JP2012126976A (ja) 真空成膜装置及び成膜方法
JP2010118441A (ja) 半導体装置の製造方法
JP4903619B2 (ja) 基板処理装置
KR20070047587A (ko) 화학기상증착장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7012613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150