JP7009048B2 - 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス - Google Patents
導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス Download PDFInfo
- Publication number
- JP7009048B2 JP7009048B2 JP2016118506A JP2016118506A JP7009048B2 JP 7009048 B2 JP7009048 B2 JP 7009048B2 JP 2016118506 A JP2016118506 A JP 2016118506A JP 2016118506 A JP2016118506 A JP 2016118506A JP 7009048 B2 JP7009048 B2 JP 7009048B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- resin fine
- storage device
- power storage
- polyolefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
また、本発明は、カルボニル基を有しない高密度ポリオレフィン系樹脂微粒子(B1)と、カルボニル基を有するポリオレフィン系樹脂微粒子(B2)との固形分の合計((B1)+(B2))に対する、カルボニル基を有するポリオレフィン系樹脂微粒子(B2)の比率((B2)/((B1)+(B2))×100)が、50~90質量%である前記蓄電デバイス用電極の下地層形成用導電性組成物に関する。
また、本発明は、カルボニル基を有するポリオレフィン系樹脂微粒子(B2)の赤外吸収スペクトルにおいて、2800~3000cm-1の最大ピーク高さ(極大吸光度)(X)と、1690~1740cm-1の最大ピーク高さ(極大吸光度)(Y)との比(Y)/(X)が0.05~1.0であることを特徴とする前記蓄電デバイス用電極の下地層形成用導電性組成物に関する。
また、本発明は、集電体と、集電体の少なくとも片面に前記蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体に関する。
また、本発明は、集電体と、集電体の少なくとも片面に前記蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層と、電極活物質及びバインダーを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極に関する。
また、本発明は、正極と負極と電解液とを具備する蓄電デバイスであって、前記正極または前記負極の少なくとも一方が前記蓄電デバイス用電極である、蓄電デバイスに関する。
また、本発明は、前記蓄電デバイスが、非水電解質二次電池、電気二重層キャパシターまたはリチウムイオンキャパシターのいずれかである、前記蓄電デバイスに関する。
前記したように、本発明の導電性組成物は、蓄電デバイスの下地層形成用として使用する。導電性組成物は、導電性の炭素材料(A)と少なくともポリオレフィン系樹脂微粒子を含む水分散性樹脂微粒子(B)と、水溶性樹脂(C)と、水性液状媒体(D)とを含有する。
本発明における導電性の炭素材料(A)としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
、Conductex 975 ULTRA等、PUER BLACK100、115、2
05等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP-Li(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(デンカ社製、アセチレンブラック)等、グラファイトとしては、例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。
本発明の水分散樹脂微粒子(B)としては、一般的に水性エマルションとも呼ばれるものであり、樹脂微粒子が水中で溶解せずに、微粒子の形態で水に分散されているものであるが、本発明において、水分散樹脂微粒子(B)の割合や固形分質量に関しては、水を除去した質量をいう。
本発明に用いる水溶性樹脂(C)とは、25℃の水99g中に水溶性樹脂(C)1g入れて撹拌し、25℃で24時間放置した後、分離・析出せずに水中で樹脂が溶解可能なものである。
本発明に使用する水性液状媒体(D)としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。
さらに、導電性組成物には、界面活性剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
本発明の導電性組成物や後述する合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
本発明の蓄電デバイス用下地層付き集電体とは、集電体上に、本発明の導電性組成物から形成された下地層を有するものである。また、本発明の蓄電デバイス用電極とは、集電体上に、本発明の導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物(合材インキ)から形成された合材層とを有する。
電極に使用する集電体の材質や形状は特に限定されず、各種蓄電デバイス用にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
本発明の蓄電デバイス用電極の下地層形成用導電性組成物を、集電体上に塗工・乾燥し、下地層を形成することができる。
集電体上に導電性組成物や後述する合材インキを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではなく、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。
合材インキとは、蓄電デバイスで使用される電極の構成成分である活物質と、バインダーと、溶媒などを、液体状もしくはペースト状にしたものをいい、本発明の蓄電デバイス用電極においても、活物質と、溶媒を必須とし、必要に応じて導電助剤と、バインダーとを含有する。
活物質はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質の割合は、80~99質量%が好ましい。導電助剤を含む場合、合材インキ固形分に占める導電助剤の割合は、0.1~15質量%であることが好ましい。バインダーを含む場合、合材インキ固形分に占めるバインダーの割合は、0.1~15質量%であることが好ましい。
また、水性の合材インキ中で好適に使用されるバインダーとしては水媒体のものが好ましく、水媒体のバインダーの形態としては、水溶性型、エマルション型、ハイドロゾル型等が挙げられ、適宜選択することができる。
本発明の導電性組成物を、集電体上に塗工・乾燥し、下地層を形成し、蓄電デバイス用下地層電極を得ることができる。
正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池、キャパシターなどの蓄電デバイスを得ることができる。
リチウムイオン二次電池の場合を例にとって説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。
γ-ブチロラクトン、γ-バレロラクトン、及びγ-オクタノイックラクトン等のラクトン類;
テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、及び1,2-ジブトキシエタン等のグライム類;
メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、
アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<導電性組成物>
導電性の炭素材料としてアセチレンブラック(A-1:デンカブラックHS-100、デンカ社製)25質量部、水溶性樹脂であるカルボキシメチルセルロース(C-1:CMCダイセル#1240、ダイセル化学工業社製)2.5%水溶液1000質量部(固形分として25質量部)をミキサーに入れて混合し、更にサンドミルに入れて分散を行った。次に水分散樹脂微粒子である高密度ポリオレフィン系樹脂微粒子(B-1:ケミパールW4005、三井化学社製、40%水系分散液(平均粒子径0.57μm)62.5質量部(固形分として25質量部)とカルボニル基を有するポリオレフィン系樹脂微粒子(B-3:ケミパールV300、三井化学社製、40%水分散液(平均粒子径3.50μm)62.5質量部(固形分として25質量部)を入れ、ミキサーで混合し、導電性組成物(1)を得た。
(水分散樹脂微粒子の体積平均粒子径)
水分散樹脂微粒子分散液を、固形分に応じて200~1000倍に水希釈し。該希釈液約5mlをナノトラック(日機装社製 Wave-EX150)のセルに注入し、サンプルに応じた分散媒(本発明では水)および樹脂の屈折率条件を入力後、測定を行い、D50を平均粒子径とした。
(ポリオレフィン系樹脂微粒子の密度)
水分散樹脂微粒子(B)を80℃のオーブンに入れ、分散媒を除去した後、120℃で30分乾燥させて固形物を得た。これを真密度測定装置(マイクロメリティックス社製 アキュアピック1330)を用いて、ヘリウムガスによって測定した。
(ポリオレフィン系樹脂微粒子の変性量(Y)/(X))
水分散樹脂微粒子(B)を80℃のオーブンに入れ、分散媒を除去した後、120℃で30分乾燥させて固形物を得た。これをフーリエ変換赤外分光装置(FT-IR:PerkinElmer社製Spectrum One/100)による全反射測定法(ATR)によって測定した。
変性量は、波数に対して吸光度をプロットしたスペクトルを用い、2700cm-1における吸光度を示す点と3000cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBXとした際の、2800~3000cm-1のオレフィン由来の最大ピークからベースラインBXまでの高さ(極大吸光度)(X)と、1650m-1における吸光度を示す点と1850cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBYとした際の、1690~1740cm-1のカルボニル由来の最大ピークからベースラインBYまでの高さ(極大吸光度)(Y)との比(Y)/(X)を求めた。
表1に示す組成比を変更した以外は、導電性組成物(1)と同様の方法により、それぞれ実施例の導電性組成物(2)~(14)、(16)~(19)を得た。
なお、本明細書において、実施例4、5および10の導電性組成物、およびそれを用いた集電体、電極、電池の例は参考例である。
(導電性の炭素材料(A))
・A-1:デンカブラックHS-100(デンカ社製)
・A-2:ケッチェンブラックEC-300J(ライオン社製)
(水分散樹脂微粒子(B))
(高密度ポリオレフィン系樹脂微粒子(B1))
・B-1:ケミパールW4005(固形分40%水分散液、平均粒子径0.57μm、密度1.00g/cm3、変性なし、ポリエチレン)(三井化学社製)
・B-2:アクアペトロDP-2401(固形分30%水分散液、平均粒子径0.30μm、密度0.99g/cm3、変性なし、ポリエチレン)(東洋アドレ社製)
(カルボニル基を有するポリオレフィン系樹脂微粒子(B2))
・B-3:ケミパールV300(固形分40%水分散液、平均粒子径3.50μm、密度0.94g/cm3、変性量(Y)/(X)0.54、ポリエチレン)(三井化学社製)
・B-4:アローベースSB-1200(固形分25%水分散液、平均粒子径0.10μm、密度0.92g/cm3、変性量(Y)/(X)0.58、ポリエチレン)(ユニチカ社製)
・B-5:アローベースTC-4010(固形分25%水分散液、平均粒子径0.20μm、密度0.90g/cm3、変性量(Y)/(X)0.14、ポリプロピレン)(ユニチカ社製)
・B-6:アローベースSD-1200(固形分25%水分散液、平均粒子径0.09μm、密度0.86g/cm3、変性量(Y)/(X)0.10、ポリエチレン)(ユニチカ社製)
(水溶性樹脂)(C))
・C-1:CMCダイセル#1240(ダイセル化学工業社製)
・C-2:ポリアクリル酸ナトリウム、平均分子量5000(和光純薬工業社製)
・C-3:クラレポバールPVA235(クラレ社製)
<下地層付き集電体>(実施例1~13、比較例2~5)
導電性組成物(1)~(13)、(16)~(19)、集電体となる厚さ20μmのアルミ箔上にバーコーターを用いて塗布をした後、80℃で加熱乾燥し、表1に示す厚みとなるように非水電解質二次電池用下地層付き集電体(1)~(13)、(16)~(19)をそれぞれ得た。
導電性組成物(14)を、集電体となる厚さ20μmの銅箔上にバーコーターを用いて塗布をした後、80℃で加熱乾燥し、厚みが3μmとなるように非水電解質二次電池用下地層付き集電体(14)を得た。
正極活物質としてLiNi0.5Mn0.3Co0.2O293質量部、導電剤としてアセチレンブラック(デンカブラックHS-100、デンカ社製)4質量部、バインダーとしてポリフッ化ビニリデン(KFポリマー#1300、クレハ社製)3質量部、N―メチルピロリドン45質量部を入れて混合して、正極用合材インキを作製した。
負極活物質として人造黒鉛98質量部、カルボキシメチルセルロース(CMCダイセル#1190、ダイセル化学工業社製)1.5%水溶液66.7質量部(固形分として1質量部)をプラネタリーミキサーに入れて混練し、水33質量部、スチレンブタジエンエマルション(TRD2001、JSR社製)48質量%水系分散液2.08質量部(固形分として1質量部)を混合して、負極二次電池電極用合材インキを得た。
上述のリチウムイオン二次電池正極用合材インキを、二次電池用下地層付き集電体(1)~(13)、(16)~(19)、上にドクターブレードを用いて塗布した後、80℃で加熱乾燥して電極の単位面積当たりの目付け量が20mg/cm2となるようにとなるように調整した。さらにロールプレスによる圧延処理を行い、合材層の密度が3.1g/cm3となる正極(1)~(13)、(16)~(19)を作製した。
上述のリチウムイオン二次電池正極用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、80℃で加熱乾燥して電極の単位面積当たりの目付け量が20mg/cm2となるようにとなるように調整した。さらにロールプレスによる圧延処理を行い、合材層の密度が3.1g/cm3となる正極(14)、(15)を作製した。
上述のリチウムイオン二次電池負極用合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、80℃で加熱乾燥して電極の単位面積当たりの目付け量が12mg/cm2となるように調整した。さらにロールプレスによる圧延処理を行い、合材層の密度が1.5g/cm3となる負極(1)~(13)、(15)~(19)を作製した。
上述のリチウムイオン二次電池負極用合材インキを、下地層付き集電体(14)上にドクターブレードを用いて塗布した後、80℃で加熱乾燥して電極の単位面積当たりの目付け量が12mg/cm2となるように調整した。さらにロールプレスによる圧延処理を行い、合材層の密度が1.5g/cm3となる負極(14)を作製した。
表2に示す正極と負極を各々45mm×40mm、50mm×45mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、真空乾燥の後、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させた非水系電解液)を注入した後、アルミ製ラミネートを封口してラミネート型リチウムイオン電池を作製した。ラミネート型リチウムイオン型電池の作製はアルゴンガス置換したグロ-ブボックス内で行い、ラミネート型リチウムイオン型電池作製後、以下に示す初期抵抗、抵抗増加、レート特性およびサイクル特性の電池特性評価を行った。
放電電流12mA(0.2C)にて放電終止電圧3.0Vで定電流放電を行ったラミネート型電池を、インピーダンスアナライザー(biologic社製SP-50)にて500kHzでの抵抗測定を行った。
・初期抵抗
上述したラミネート型電池を25℃で抵抗測定を行った。
○:「初期抵抗が下地層なしの比較例1の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例1の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例1の初期抵抗より大きい。劣っている。」
・抵抗増加(1)
上述したラミネート型電池を25℃から180℃まで昇温速度5℃/min.で加熱し、各々の温度での抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、180℃で測定した抵抗値と25℃で測定した抵抗値の商を抵抗増加とした。すなわち抵抗増加は以下(式1)で表される。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表2に示す。
○:「抵抗増加が初期抵抗の5倍以上。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。実用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
・抵抗増加(2)
上述したラミネート型電池を予め180℃に加温したオーブンに入れ、電池表面温度が180℃に到達した時点から、上述した抵抗増加(1)の方法で得られた180℃での抵抗値に達するまでの時間を測定し、抵抗増加速度とした。以下の基準で評価した結果を表2に示す。 〇:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が10秒以内。特に優れている。」
△:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒以内。優れている。」
×:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒を超える。劣っている。」
(抵抗増加(1)が初期抵抗の3倍未満のものは評価を実施しなかった。)
上述したラミネート電池について、充放電装置(北斗電工社製SM-8)を用い、充放電測定を行った。
充電電流12mA(0.2C)にて充電終止電圧4.2Vで定電流定電圧充電(カットオフ電流0.6mAを行った後、放電電流12mA(0.2C)および120mA(2C)で放電終止電圧3.0Vに達するまで定電流放電を行って、それぞれ放電容量を求めた。レート特性は0.2C放電容量と2C放電容量の比、つまり以下(式2)で表される。
(式2) レート特性=2C放電容量/0.2C放電容量×100(%)
以下の基準で評価した結果を表2に示す。
・レート特性
○:「レート特性が80%以上。特に優れている。」
○△:「レート特性が75%以上、80%未満。優れている。」
△:「レート特性が70以上、75%未満。下地層なしの比較例1のレート特性と同等。」
×:「レート特性が70%未満。劣っている。」
50℃恒温槽にて充電電流を60mAにて充電終止電圧を4.2Vで定電流定電圧充電(カットオフ電流0.6mA)を行った後、放電電流60mAで放電終止電圧3.0Vに達するまで定電流放電を行って、初回放電容量を求めた。この充放電サイクルを200回行い、放電容量維持率(初回放電容量に対する200回目の放電容量の百分率)を算出した。以下の基準で評価した結果を表2に示す。
・サイクル特性
○:「放電容量維持率が90%以上。特に優れている。」
○△:「放電容量維持率が85%以上、90%未満。優れている。」
△:「放電容量維持率が80%以上、85%未満。下地層なしの比較例1の放電容量維持率と同等。」
×:「放電容量維持率が80%未満。劣っている。」
活物質として活性炭(比表面積1800m2/g)85部、導電助剤(アセチレンブラック:デンカブラックHS-100、デンカ社製)5部、カルボキシメチルセルロース(CMCダイセル#1190、ダイセル化学工業社製)8部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)3.3部(固形分として2部)、水220部を混合して正極、負極用合材インキを作製した。
<下地層なし電気二重層キャパシター用正極、負極(比較例6、及び評価用対極)>
上述の電気二重層キャパシター用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、加熱乾燥した後にロールプレスによる圧延処理を行い、電極の厚みが50μmとなる正極および負極を作製した。
(実施例15.16)
上述の電気二重層キャパシター用合材インキを、実施例3の下地層付き集電体(3)上にドクターブレードを用いて塗布した後、80℃で加熱乾燥した後、ロールプレスによる圧延処理を行い、厚みが50μmとなる正極および負極を作製した。
表3に示す正極と負極をそれぞれ直径16mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(プロピレンカーボネート溶媒に(TEMABF4(四フッ化ホウ素トリエチルメチルアンモニウム)を1Mの濃度で溶解させた非水系電解液)とからなるラミネート型電気二重層キャパシターを作製した。電気二重層キャパシターはアルゴンガス置換したグロ-ブボックス内で行い、電気二重層キャパシター作製後、下記の電気特性評価を行った。
得られた電気二重層キャパシターについて、充放電装置を用い、充放電測定を行った。
○△:「放電容量維持率が90%以上、95%未満。全く問題なし。」
△:「放電容量維持率が85%以上、90%未満。問題はあるが使用可能なレベル。」
×:「放電容量維持率が85%未満。実用上問題あり、使用不可。」
充電電流10Cレートにて充電終止電圧2.0Vまで充電を行った電気二重層キャパシターを、インピーダンスアナライザー(biologic社製SP-50)にて500kHzでの抵抗測定を行った。
・初期抵抗
○:「初期抵抗が下地層なしの比較例6の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例6の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例6の初期抵抗より大きい。劣っている。」
・抵抗増加(1)
上述したラミネート型電気二重層キャパシターを25℃から180℃まで昇温速度5℃/min.で加熱し、各々の温度での抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、180℃で測定した抵抗値と25℃で測定した抵抗値の商を抵抗増加とした。すなわち抵抗増加は以下(式1)で表される。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表3に示す。
○:「抵抗増加が初期抵抗の5倍以上。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。使用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
・抵抗増加(2)
上述したラミネート型電気二重層キャパシターを予め180℃に加温したオーブンに入れ、電池表面温度が180℃に到達した時点から、上述した抵抗増加(1)の方法で得られた180℃での抵抗値に達するまでの時間を測定し、抵抗増加速度とした。以下の基準で評価した結果を表3に示す。
〇:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が10秒以内。特に優れている。」
△:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒以内。優れている。」
×:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒を超える。劣っている。」
(抵抗増加(1)が初期抵抗の3倍未満のものは評価を実施しなかった。)
活物質として活性炭(比表面積1800m2/g)85部、導電助剤(アセチレンブラック:デンカブラックHS-100、デンカ社製)5部、カルボキシメチルセルロース(CMCダイセル#1190、ダイセル化学工業社製)8部、バインダー(ポリテトラフルオロエチレン30-J:三井・デュポンフロロケミカル社製、60%水系分散体)3.3部(固形分として2部)を混合して正極用合材インキを作製した。
<リチウムイオンキャパシター用負極用合材インキ>
負極活物質として黒鉛90部、導電助剤(アセチレンブラック:デンカブラックHS-100、デンカ社製)5部、ヒドロキシエチルセルロース2質量%水溶液175部(固形分として3.5部)をミキサーに入れて混合し、水26.3部、スチレンブタジエンエマルション(TRD2001、JSR社製、40%水系分散体)3.75部(固形分として1.5部)を混合して、負極用合材インキを作製した。
<下地層なしリチウムイオンキャパシター用正極(実施例18、比較例7)>
上述のリチウムイオンキャパシター用正極用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。
(実施例17)
上述のリチウムイオンキャパシター用正極用合材インキを、実施例3の下地層付き集電体(3)上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。
<下地層なしリチウムイオンキャパシター用負極(実施例17、比較例7)>
上述のリチウムイオンキャパシター用負極用合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。
(実施例18)
上述のリチウムイオンキャパシター用負極用合材インキを、実施例14の下地層付き集電体(14)上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。
表4に示す正極と、あらかじめリチウムイオンのハーフドープ処理を施した負極を、それぞれ直径16mmの大きさで用意し、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジメチルカーボネートとジエチルカーボネートを1:1:1(体積比)の割合で混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水系電解液)とからなるラミネート型リチウムイオンキャパシターを作製した。リチウムイオンのハーフドープは、ビーカーセル中で負極とリチウム金属の間にセパレーターを挟み、負極容量の約半分の量となるようリチウムイオンを負極にドープして行った。また、リチウムイオンキャパシターはアルゴンガス置換したグロ-ブボックス内で行い、リチウムイオンキャパシター作製後、下記の電気特性評価を行った。
得られたリチウムイオンキャパシターについて、充放電装置を用い、充放電測定を行った。
○△:「放電容量維持率が90%以上、95%未満。全く問題なし。」
△:「放電容量維持率が85%以上、90%未満。問題はあるが使用可能なレベル。」
×:「放電容量維持率が85%未満。実用上問題あり、使用不可。」
(抵抗測定)
充電電流10Cレートにて充電終止電圧4.0Vまで充電を行ったリチウムイオンキャパシターを、インピーダンスアナライザー(biologic社製SP-50)にて500kHzでの抵抗測定を行った。
・初期抵抗
上述したラミネート型リチウムイオンキャパシターを25℃で抵抗測定を行った。
○:「初期抵抗が下地層なしの比較例7の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例7の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例7の初期抵抗より大きい。劣っている。」
・抵抗増加(1)
上述したラミネート型リチウムイオンキャパシターを25℃から180℃まで加熱し、各々の温度での抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、180℃で測定した抵抗値と25℃で測定した抵抗値の商を抵抗増加とした。すなわち抵抗増加は以下(式1)で表される。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表4に示す。
○:「抵抗増加が初期抵抗の5倍以上。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。使用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
・抵抗増加(2)
上述したラミネート型リチウムイオンキャパシターを予め180℃に加温したオーブンに入れ、電池表面温度が180℃に到達した時点から、上述した抵抗増加(1)の方法で得られた180℃での抵抗値に達するまでの時間を測定し、抵抗増加速度とした。以下の基準で評価した結果を表4に示す。
〇:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が10秒以内。特に優れている。」
△:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒以内。優れている。」
×:「抵抗増加(1)が初期抵抗の3倍以上、かつ抵抗増加速度が30秒を超える。劣っている。」
(抵抗増加(1)が初期抵抗の3倍未満のものは評価を実施しなかった。)
Claims (5)
- 導電性の炭素材料(A)と、水分散樹脂微粒子(B)と、水溶性樹脂(C)と、水性液状
媒体(D)とを含有する蓄電デバイス用電極の下地層形成用導電性組成物であって、導電性組成物の固形分の合計100質量%中、導電性の炭素材料(A)の含有率が10~50質量%であり、水分散樹脂微粒子(B)の含有率が35~60質量%であり、水溶性樹脂(C)の含有率が15~35質量%であり、さらに前記水分散樹脂微粒子(B)が少なくともポリオレフィン系樹脂微粒子を含み、水分散樹脂微粒子(B)に含まれるポリオレフィン系樹脂微粒子の割合が、水分散樹脂微粒子(B)全体の固形分に対し、50~100質量%であり、ポリオレフィン系樹脂微粒子は、密度0.96~1.2g/cm3のカルボニル基を有しない高密度ポリオレフィン系樹脂微粒子(B1)とカルボニル基を有するポリオレフィン系樹脂微粒子(B2)の少なくとも2種を含み、
カルボニル基を有しない高密度ポリオレフィン系樹脂微粒子(B1)と、カルボニル基を有するポリオレフィン系樹脂微粒子(B2)との固形分の合計((B1)+(B2))に対する、カルボニル基を有するポリオレフィン系樹脂微粒子(B2)の比率((B2)/((B1)+(B2))×100)が、50~90質量%であり、
カルボニル基を有するポリオレフィン系樹脂微粒子(B2)が、カルボニル基を有するポリエチレン微粒子を含み、
カルボニル基を有するポリオレフィン系樹脂微粒子(B2)の赤外吸収スペクトルにおいて、2800~3000cm-1の最大ピーク高さ(極大吸光度)(X)と、1690~1740cm-1の最大ピーク高さ(極大吸光度)(Y)との比(Y)/(X)が0.3~0.8であることを特徴とする蓄電デバイス用電極の下地層形成用導電性組成物。 - 集電体と、集電体の少なくとも片面に請求項1に記載の蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体。
- 集電体と、集電体の少なくとも片面に請求項1に記載の蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層と、電極活物質及びバインダーを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極。
- 正極と負極と電解液とを具備する蓄電デバイスであって、前記正極または前記負極の少なくとも一方が請求項3に記載の蓄電デバイス用電極である、蓄電デバイス。
- 前記蓄電デバイスが、非水電解質二次電池、電気二重層キャパシターまたはリチウムイオンキャパシターのいずれかである、請求項4に記載の蓄電デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016118506A JP7009048B2 (ja) | 2016-06-15 | 2016-06-15 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016118506A JP7009048B2 (ja) | 2016-06-15 | 2016-06-15 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017224463A JP2017224463A (ja) | 2017-12-21 |
JP7009048B2 true JP7009048B2 (ja) | 2022-01-25 |
Family
ID=60688430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016118506A Active JP7009048B2 (ja) | 2016-06-15 | 2016-06-15 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7009048B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7148275B2 (ja) * | 2018-05-30 | 2022-10-05 | 三洋化成工業株式会社 | 樹脂集電体の製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046469A1 (ja) | 2013-09-30 | 2015-04-02 | 日立化成株式会社 | リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544688B1 (en) * | 2000-09-20 | 2003-04-08 | Moltech Corporation | Cathode current collector for electrochemical cells |
KR101464841B1 (ko) * | 2010-03-30 | 2014-11-25 | 가부시끼가이샤 구레하 | 비수 전해질 2 차 전지용 합제, 비수 전해질 2 차 전지용 전극 및 비수 전해질 2 차 전지 |
JP5281706B2 (ja) * | 2011-10-25 | 2013-09-04 | 株式会社神戸製鋼所 | 集電体、集電体の製造方法、電極および二次電池 |
JPWO2014077366A1 (ja) * | 2012-11-19 | 2017-01-05 | 株式会社Uacj | 集電体、電極構造体、蓄電部品および集電体用組成物 |
JP5707605B2 (ja) * | 2013-02-21 | 2015-04-30 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
JP6539978B2 (ja) * | 2014-10-16 | 2019-07-10 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用電極、及び蓄電デバイス |
-
2016
- 2016-06-15 JP JP2016118506A patent/JP7009048B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015046469A1 (ja) | 2013-09-30 | 2015-04-02 | 日立化成株式会社 | リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP2017224463A (ja) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107429009B (zh) | 导电性组合物及其制造方法、蓄电装置用带有基底层的集电体、蓄电装置用电极及蓄电装置 | |
JP5939346B1 (ja) | 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 | |
JP6185984B2 (ja) | 集電体、電極構造体、非水電解質電池又は蓄電部品 | |
CN113728064B (zh) | 含有炭黑的浆料、电极糊剂、电极的制造方法和二次电池的制造方法 | |
WO2014157405A1 (ja) | 集電体、電極構造体、電池およびキャパシタ | |
JP6880576B2 (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP6044300B2 (ja) | 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池 | |
JP2014135198A (ja) | 二次電池電極形成用組成物、二次電池用電極および二次電池 | |
JP6683028B2 (ja) | 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP6763163B2 (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP7009048B2 (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
CN110476281B (zh) | 锂离子电池用负极和锂离子电池 | |
JP6874283B2 (ja) | 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP2011181387A (ja) | 電気化学素子用電極合材の製造方法 | |
JP7055589B2 (ja) | 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池 | |
JP6879044B2 (ja) | 非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極及び非水電解質二次電池 | |
JP2022165797A (ja) | 下地層用炭素材料分散液、およびそれを用いた下地層用導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、蓄電デバイス | |
JP6760034B2 (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス | |
JP2019117725A (ja) | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極及び蓄電デバイス | |
JP6740564B2 (ja) | 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス | |
JP2017224469A (ja) | 非水電解質二次電池用電極の下地層形成用導電性組成物、及びその用途 | |
JP2023059402A (ja) | 導電性組成物、それを用いてなる蓄電デバイス用下地層付き集電体および蓄電デバイス用電極、並びにその電極を用いて得られる蓄電デバイス | |
JP2023092639A (ja) | 非水電解質二次電池用カーボン材料樹脂複合物、それを用いた非水電解質二次電池用分散液、非水電解質二次電池用電極、及び非水電解質二次電池 | |
JP2021036520A (ja) | 非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極及び非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190403 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200323 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201009 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201009 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201009 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201020 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201027 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20201127 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20201201 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210615 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210914 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211105 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20211207 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220111 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220112 |