JP7007688B2 - Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device - Google Patents

Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device Download PDF

Info

Publication number
JP7007688B2
JP7007688B2 JP2020141210A JP2020141210A JP7007688B2 JP 7007688 B2 JP7007688 B2 JP 7007688B2 JP 2020141210 A JP2020141210 A JP 2020141210A JP 2020141210 A JP2020141210 A JP 2020141210A JP 7007688 B2 JP7007688 B2 JP 7007688B2
Authority
JP
Japan
Prior art keywords
potential
electrode
substrate
adsorbed
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020141210A
Other languages
Japanese (ja)
Other versions
JP2021042467A (en
Inventor
一史 柏倉
博 石井
奉代 川畑
悟 諸橋
広樹 富井
映之 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2021042467A publication Critical patent/JP2021042467A/en
Application granted granted Critical
Publication of JP7007688B2 publication Critical patent/JP7007688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、吸着装置、成膜装置、吸着方法、成膜方法及び電子デバイスの製造方法に関するものである。 The present invention relates to an adsorption device, a film forming apparatus, an adsorption method, a film forming method, and a method for manufacturing an electronic device.

最近、フラットパネル表示装置として有機EL表示装置(有機ELディスプレイ)が脚光を浴びている。有機EL表示装置は、自発光ディスプレイであり、応答速度、視野角、薄型化などの特性が液晶パネルディスプレイより優れており、モニタ、テレビ、スマートフォンに代表される各種の携帯端末などで既存の液晶パネルディスプレイを早いスピードで代替している。また、自動車用ディスプレイ等にも、その応用分野を広げている。 Recently, an organic EL display device (organic EL display) has been in the limelight as a flat panel display device. The organic EL display device is a self-luminous display, which is superior to the liquid crystal panel display in characteristics such as response speed, viewing angle, and thinning, and is an existing liquid crystal display in various mobile terminals such as monitors, televisions, and smartphones. It replaces the panel display at a high speed. It is also expanding its application fields to automobile displays and the like.

有機EL表示装置を構成する有機発光素子(有機EL素子;OLED)は、2つの向かい合う電極(カソード電極、アノード電極)の間に発光を起こす有機物層が形成された基本構造を持つ。例えば、有機発光素子の有機物層と金属電極層は、成膜装置において、成膜材料が収容された成膜源から放出される成膜材料を画素パターンに基づくパターンが形成されたマスクを介して基板に堆積させることで製造される。 The organic light emitting element (organic EL element; OLED) constituting the organic EL display device has a basic structure in which an organic substance layer that emits light is formed between two facing electrodes (cathode electrode and anode electrode). For example, in the film forming apparatus, the organic substance layer and the metal electrode layer of the organic light emitting element are formed by forming a film-forming material discharged from a film-forming source in which the film-forming material is housed through a mask in which a pattern based on a pixel pattern is formed. Manufactured by depositing on a substrate.

上向蒸着方式(デポアップ)の成膜装置において、成膜源は成膜装置の真空容器の下部に設けられ、基板は真空容器の上部に配置され、成膜材料は基板の下面に蒸着される。このような上向蒸着方式の成膜装置の真空容器内において、基板はその下面の周辺部だけが基板ホルダによって保持されるので、基板がその自重によって撓み、これが蒸着精度を落とす一つの要因となっている。上向蒸着方式以外の方式の成膜装置においても、基板の自重による撓みが生じる可能性はある。 In the upward vapor deposition method (depot-up) film forming apparatus, the film forming source is provided in the lower part of the vacuum vessel of the film forming apparatus, the substrate is arranged in the upper part of the vacuum vessel, and the film forming material is vapor-deposited on the lower surface of the substrate. .. In the vacuum vessel of such an upward vapor deposition type film forming apparatus, only the peripheral portion of the lower surface of the substrate is held by the substrate holder, so that the substrate bends due to its own weight, which is one of the factors that reduce the vapor deposition accuracy. It has become. Even in a film forming apparatus of a method other than the upward thin-film deposition method, there is a possibility that bending may occur due to the weight of the substrate itself.

基板の自重による撓みを低減するための方法として、静電チャックを使う技術が検討されている。すなわち、基板の上面をその全体にわたって静電チャックで吸着することで、基板の撓みを低減することができる。 As a method for reducing the bending due to the weight of the substrate, a technique using an electrostatic chuck is being studied. That is, the bending of the substrate can be reduced by adsorbing the upper surface of the substrate with an electrostatic chuck over the entire surface.

特許文献1(韓国特許公開公報第2007-0010723号)には、静電チャックで基板及びマスクを吸着する技術が提案されている。
ところが、このように静電チャックで基板越しにマスクを吸着する場合には、基板とマスク間のアライメントが完了した後は、基板とマスクの両方を静電チャックによって十分吸着し、両者間の密着度を高める必要があるが、アライメントを行う間には基板とマスクが互いに接触しないようにすることが好ましい。つまり、アライメント完了後、成膜を行う際には、成膜精度を向上させるためには基板とマスクを隙間なく密着させることが好ましいが、アライメントを行っている間には両者間の接触が生じると、基板又はマスクの損傷、或いは前の工程で基板上に成膜された膜などが損傷する可能性があり、かつ、アライメントの精度も低下する。
Patent Document 1 (Korean Patent Publication No. 2007-0010723) proposes a technique for adsorbing a substrate and a mask with an electrostatic chuck.
However, when the mask is adsorbed through the substrate by the electrostatic chuck in this way, after the alignment between the substrate and the mask is completed, both the substrate and the mask are sufficiently adsorbed by the electrostatic chuck, and the two are in close contact with each other. Although it is necessary to increase the degree, it is preferable to prevent the substrate and the mask from contacting each other during the alignment. That is, when the film formation is performed after the alignment is completed, it is preferable that the substrate and the mask are in close contact with each other without a gap in order to improve the film formation accuracy, but contact between the two occurs during the alignment. Then, there is a possibility that the substrate or the mask is damaged, or the film formed on the substrate in the previous step is damaged, and the alignment accuracy is also lowered.

韓国特許公開公報第2007-0010723号Korean Patent Publication No. 2007-0010723

したがって、静電チャックで基板越しにマスクを吸着する場合には、アライメント時の要求事項(基板/マスクの損傷防止、及びアライメント精度の低下の抑制)と、アライメ
ント以降の要求事項(基板とマスク間の密着性向上)を共に達成できるように、静電チャックに付与される電位を効果的に制御する必要があるが、従来は、これに関する認識や研究がされていなかった。
Therefore, when the mask is attracted through the substrate by the electrostatic chuck, the requirements for alignment (prevention of damage to the substrate / mask and suppression of deterioration of alignment accuracy) and the requirements after alignment (between the substrate and the mask). It is necessary to effectively control the potential applied to the electrostatic chuck so that (improvement of adhesion) can be achieved together, but in the past, this has not been recognized or studied.

本発明は上記課題に鑑みてなされたものであり、アライメント以降は基板とマスクの両方が静電チャックに十分吸着されるようにし、アライメント時には静電チャックに吸着された基板がマスクと接触しないようにするための技術を提供することを目的とする。 The present invention has been made in view of the above problems, so that both the substrate and the mask are sufficiently adsorbed by the electrostatic chuck after alignment, and the substrate adsorbed by the electrostatic chuck does not come into contact with the mask during alignment. The purpose is to provide the technology to make it.

本発明の実施形態による吸着装置は、第1被吸着体と、該第1被吸着体を挟んで第2被吸着体を吸着するための静電吸着力を発生させるための第1電極と第2電極を有する静電チャックと、前記第1電極と前記第2電極に位を付与する電位付与部と、前記電位付与部による前記第1電極への電位の付与と前記第2電極への電位の付与と独立に制御するための電位制御部とを備え、前記電位制御部は、前記第1被吸着体を吸着させる静電吸着力を発生させるために前記第1電極に第1電位を付与し前記第2電極に第2電位を付与した後に、前記第1電位と前記第2電位の少なくとも一つを変化させ、前記第1電極に第3電位を付与し前記第2電極に第4電位を付与し、前記第3電位と前記第4電位との電位差は、前記第1電位と前記第2電位との電位差と同一であり、前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする。
The adsorption device according to the embodiment of the present invention has a first object to be adsorbed, and a first electrode and a first electrode for generating an electrostatic attraction force for adsorbing the second object to be adsorbed by sandwiching the first object to be adsorbed. An electrostatic chuck having two electrodes, a potential applying portion for applying a potential to the first electrode and the second electrode, and applying a potential to the first electrode by the potential applying unit and to the second electrode. The potential control unit is provided with a potential control unit for independently controlling the application of the potential, and the potential control unit has a first electrode on the first electrode in order to generate an electrostatic adsorption force for adsorbing the first object to be adsorbed . After applying a potential and applying a second potential to the second electrode, at least one of the first potential and the second potential is changed, and a third potential is applied to the first electrode to the second electrode. A fourth potential is applied, and the potential difference between the third potential and the fourth potential is the same as the potential difference between the first potential and the second potential, and the sum of the third potential and the fourth potential. The absolute value of is larger than the absolute value of the sum of the first potential and the second potential.

本発明の他の実施形態による吸着装置は、第1被吸着体と該第1被吸着体を挟んで第2被吸着体を吸着するための静電吸着力を発生させるための第1電極と第2電極を有する静電チャックと、前記第1電極と前記第2電極に位を付与する電位付与部と、前記電位付与部による前記第1電極への電位の付与と前記第2電極への電位の付与と独立に制御す
るための電位制御部とを備え、前記電位制御部は、前記静電チャックに前記第1被吸着体が吸着され記静電チャックに前記第2被吸着体が吸着されない静電吸着力が発生している状態から、前記第1電極と前記第2電極に付与される電位の少なくとも一つを変化させることによって、前記第2被吸着体に及ぼす静電吸着力を変化させ、前記第1電極に付与される電位と前記第2電極に付与される電位との間の電位差は変化させずに、前記第1電極に付与される電位と前記第2電極に付与される電位との和の絶対値を大きくすることを特徴とする。
The adsorption device according to another embodiment of the present invention includes a first object to be adsorbed and a first electrode for generating an electrostatic attraction force for adsorbing the second object to be adsorbed by sandwiching the first object to be adsorbed. An electrostatic chuck having a second electrode, a potential applying portion for applying a potential to the first electrode and the second electrode, and applying a potential to the first electrode by the potential applying unit and the second electrode. The potential control unit is provided with a potential control unit for independently controlling the application of the potential to the electrostatic chuck. By changing at least one of the potentials applied to the first electrode and the second electrode from the state where the electrostatic attraction force that the adsorbent is not adsorbed is generated , the effect is exerted on the second object to be adsorbed. The potential applied to the first electrode and the potential applied to the first electrode are changed without changing the potential difference between the potential applied to the first electrode and the potential applied to the second electrode by changing the electrostatic attraction force . It is characterized in that the absolute value of the sum with the potential applied to the two electrodes is increased.

本発明の実施形態による成膜装置は、基板にマスクを介して成膜を行うための成膜装置であって、第1被吸着体である基板、及び前記基板越しに第2被吸着体であるマスクを吸着するための吸着装置を含み、吸着装置は、施形態による吸着装置のいずれかの一つであることを特徴とする。

The film forming apparatus according to the embodiment of the present invention is a film forming apparatus for forming a film on a substrate via a mask, and is a substrate which is a first adsorbed body and a second adsorbed body through the substrate. The suction device includes a suction device for sucking a certain mask, and the suction device is one of the suction devices according to the embodiment .

本発明の実施形態による吸着方法は、第1電極と第2電極を有する静電チャックに、第1被吸着体と該第1被吸着体を挟んで第2被吸着体吸着するための方法であって、接地電位に対する第1電位前記第1電極に付与し前記第2電極に前記接地電位に対する第2電位を付与して静電吸着力が発生し、前記第2被吸着体は吸着せずに前記第1被吸着体を前記静電チャックに吸着する第1吸着段階と、前記接地電位に対する第3電位を前記第1電極に付与し前記接地電位に対する第4電位を前記第2電極に付与し、前記第1被吸着体を挟んで前記第2被吸着体を前記静電チャックに吸着する第2吸着段階とを含み、前記第3電位と前記第4電位との電位差は、第1電位と前記第2電位との電位差と同一であり、前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする。
The adsorption method according to the embodiment of the present invention is a method for adsorbing a second object to be adsorbed by sandwiching the first object to be adsorbed and the first object to be adsorbed on an electrostatic chuck having a first electrode and a second electrode. Therefore, the first potential with respect to the ground potential is applied to the first electrode, and the second potential with respect to the ground potential is applied to the second electrode to generate an electrostatic adsorption force , and the second object to be adsorbed is adsorbed. The first adsorption step in which the first object to be adsorbed is adsorbed on the electrostatic chuck, and the third potential with respect to the ground potential is applied to the first electrode and the fourth potential with respect to the ground potential is applied to the second electrode. The potential difference between the third potential and the fourth potential includes a second adsorption step of imparting and adsorbing the second object to be adsorbed to the electrostatic chuck with the first object to be adsorbed sandwiched therein. It is the same as the potential difference between the potential and the second potential, and the absolute value of the sum of the third potential and the fourth potential is larger than the absolute value of the sum of the first potential and the second potential. It is characterized by.

本発明の実施形態による成膜方法は、第1電極と第2電極を有する静電チャックに基板と該基板を挟んでマスクを吸着し、成膜材料を成膜する成膜方法であって、真空容器内にマスクを搬入する段階と、前記真空容器内に基板を搬入する段階と、接地電位に対する第1電位を前記第1電極に付与し前記接地電位に対する第2電位を前記第2電極に付与し、前記マスクは吸着せずに前記基板を前記静電チャックに吸着する段階と、前記接地電位に対する第3電位を前記第1電極に付与し前記接地電位に対する第4電位を前記第2電極に付与し、前記基板を挟んで前記マスクを前記静電チャックに吸着する段階と、前記静電チャックに前記基板及び前記マスクが吸着された状態で、前記成膜材料を放出させて、前記マスクを介して前記基板に前記成膜材料を成膜する段階とを含み、前記第3電位と前記第4電位との電位差は、前記第1電位と前記第2電位との電位差と同一であり、前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする。


The film-forming method according to the embodiment of the present invention is a film-forming method for forming a film-forming material by sandwiching a substrate and the substrate on an electrostatic chuck having a first electrode and a second electrode and adsorbing the mask. The stage of carrying the mask into the vacuum container, the stage of carrying the substrate into the vacuum container, and the stage of applying the first potential to the ground potential to the first electrode and the second potential to the ground potential to the second electrode. The step of adsorbing the substrate to the electrostatic chuck without adsorbing the mask, and applying the third potential to the ground potential to the first electrode and applying the fourth potential to the ground potential to the second electrode. The film-forming material is released at the stage of adsorbing the mask to the electrostatic chuck with the substrate sandwiched between the two, and with the substrate and the mask adsorbed on the electrostatic chuck, to release the mask. The potential difference between the third potential and the fourth potential is the same as the potential difference between the first potential and the second potential, including the step of forming the film-forming material on the substrate via the above. The absolute value of the sum of the third potential and the fourth potential is larger than the absolute value of the sum of the first potential and the second potential.


本発明によれば、アライメント以降は基板とマスクの両方が静電チャックに十分吸着されるようにし、アライメント時には静電チャックに吸着された基板がマスクと接触しないようにすることができる。 According to the present invention, after alignment, both the substrate and the mask can be sufficiently adsorbed by the electrostatic chuck, and the substrate adsorbed by the electrostatic chuck can be prevented from coming into contact with the mask during alignment.

図1は、電子デバイスの製造装置の一部の模式図である。FIG. 1 is a schematic diagram of a part of an electronic device manufacturing apparatus. 図2は、本発明の一実施形態による成膜装置の模式図である。FIG. 2 is a schematic view of a film forming apparatus according to an embodiment of the present invention. 図3は、本実施形態の吸着装置の概念的なブロック図である。FIG. 3 is a conceptual block diagram of the suction device of the present embodiment. 図4(a)~図4(c)は、基板及びマスクの静電チャックへの吸着方法の一例を示す端面模式図である。4 (a) to 4 (c) are schematic end face views showing an example of a method of adsorbing a substrate and a mask to an electrostatic chuck. 図5は、電子デバイスを示す模式図である。FIG. 5 is a schematic diagram showing an electronic device.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, unless otherwise specified, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention. It is not the purpose.

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に望ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、金属などの任意の材料を選択することができ、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板であってもよい。また、成膜材料としても、有機材料、金属性材料(金属、金属酸化物など)などの任意の材料を選択してもいい。なお、以下の説明において説明する真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機発光素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、成膜材料を蒸発させてマスクを介して基板に蒸着させることで有機発光素子を形成する有機発光素子の製造装置は、本発明の好ましい適用例の一つである。 The present invention can be applied to an apparatus for depositing various materials on the surface of a substrate to form a film, and can be preferably applied to an apparatus for forming a thin film (material layer) having a desired pattern by vacuum deposition. As the material of the substrate, any material such as glass, a film of a polymer material, and a metal can be selected, and the substrate may be, for example, a substrate in which a film such as polyimide is laminated on a glass substrate. .. Further, as the film forming material, any material such as an organic material and a metallic material (metal, metal oxide, etc.) may be selected. In addition to the vacuum deposition apparatus described in the following description, the present invention can be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus. Specifically, the technique of the present invention can be applied to manufacturing equipment such as organic electronic devices (for example, organic light emitting devices, thin film solar cells), optical members, and the like. Among them, an apparatus for manufacturing an organic light emitting device that forms an organic light emitting device by evaporating a film forming material and depositing it on a substrate via a mask is one of the preferred application examples of the present invention.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
図1の製造装置は、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用いられる。スマートフォン用の表示パネルの場合、例えば、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルに製作する。
<Manufacturing equipment for electronic devices>
FIG. 1 is a plan view schematically showing a configuration of a part of an electronic device manufacturing apparatus.
The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device for a smartphone. In the case of a display panel for smartphones, for example, on a 4.5 generation substrate (about 700 mm x about 900 mm), a 6 generation full size (about 1500 mm x about 1850 mm) or a half cut size (about 1500 mm x about 925 mm) substrate. After forming a film for forming an organic EL element, the substrate is cut out to produce a plurality of small-sized panels.

電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置の間を繋ぐ中継装置とを含む。
クラスタ装置1は、基板Sに対する処理(例えば、成膜)を行う複数の成膜装置11と、使用前後のマスクMを収納する複数のマスクストック装置12と、その中央に配置される搬送室13と、を具備する。搬送室13は、図1に示すように、複数の成膜装置11およびマスクストック装置12のそれぞれと接続されている。
The electronic device manufacturing device generally includes a plurality of cluster devices 1 and a relay device that connects the cluster devices.
The cluster device 1 includes a plurality of film forming devices 11 for processing (for example, film forming) the substrate S, a plurality of mask stock devices 12 for accommodating masks M before and after use, and a transport chamber 13 arranged in the center thereof. And. As shown in FIG. 1, the transport chamber 13 is connected to each of the plurality of film forming apparatus 11 and the mask stock apparatus 12.

搬送室13内には、基板およびマスクを搬送する搬送ロボット14が配置されている。搬送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Sを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクMを搬送する。搬送ロボット14は、例えば、多関節アームに、基板S又はマスクMを保持するロボットハンドが取り付けられた構造を有するロボットである。 In the transport chamber 13, a transport robot 14 that transports the substrate and the mask is arranged. The transfer robot 14 transfers the substrate S from the path chamber 15 of the relay device arranged on the upstream side to the film forming device 11. Further, the transfer robot 14 transfers the mask M between the film forming apparatus 11 and the mask stock apparatus 12. The transfer robot 14 is, for example, a robot having a structure in which a robot hand for holding a substrate S or a mask M is attached to an articulated arm.

成膜装置11(蒸着装置ともいう)では、成膜源に収納された成膜材料がヒータによって加熱されて蒸発し、マスクを介して基板上に蒸着される。搬送ロボット14との基板Sの受け渡し、基板SとマスクMの相対位置の調整(アライメント)、マスクM上への基板Sの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), the film forming material stored in the film forming source is heated by a heater and evaporated, and is deposited on the substrate via a mask. A series of film forming processes such as transfer of the substrate S to and from the transfer robot 14, adjustment (alignment) of the relative position between the substrate S and the mask M, fixing of the substrate S on the mask M, and film formation (deposited film) are performed. This is done by device 11.

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットに収納された新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, a new mask used in the film forming process in the film forming apparatus 11 and a used mask are separately stored in two cassettes. The transfer robot 14 transfers the used mask from the film forming apparatus 11 to the cassette of the mask stock device 12, and conveys a new mask stored in another cassette of the mask stock device 12 to the film forming apparatus 11.

クラスタ装置1には、基板Sの流れ方向において上流側からの基板Sを当該クラスタ装置1に伝達するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Sを下流側の他のクラスタ装置に伝えるためのバッファー室16が連結される。搬送室13の搬送ロボット14は、上流側のパス室15から基板Sを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、当該クラスタ装置1での成膜処理が完了した基板Sを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結されたバッファー室16に搬送する。 The cluster device 1 includes a path chamber 15 that transmits the board S from the upstream side to the cluster device 1 in the flow direction of the board S, and another board S on the downstream side that has been film-formed by the cluster device 1. A buffer chamber 16 for transmitting to the cluster device is connected. The transfer robot 14 in the transfer chamber 13 receives the substrate S from the path chamber 15 on the upstream side and transfers it to one of the film forming devices 11 (for example, the film forming device 11a) in the cluster device 1. Further, the transfer robot 14 receives the substrate S for which the film forming process in the cluster device 1 has been completed from one of the plurality of film forming devices 11 (for example, the film forming device 11b), and the buffer connected to the downstream side. Transport to room 16.

バッファー室16とパス室15との間には、基板の向きを変える旋回室17が設置される。旋回室17には、バッファー室16から基板Sを受け取って基板Sを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側のクラスタ装置と下流側のクラスタ装置で基板Sの向きが同じくなり、基板処理が容易になる。 A swivel chamber 17 for changing the direction of the substrate is installed between the buffer chamber 16 and the pass chamber 15. The swivel chamber 17 is provided with a transfer robot 18 for receiving the substrate S from the buffer chamber 16, rotating the substrate S by 180 °, and transporting the substrate S to the pass chamber 15. As a result, the orientation of the substrate S is the same between the cluster device on the upstream side and the cluster device on the downstream side, and the substrate processing becomes easy.

パス室15、バッファー室16、旋回室17は、クラスタ装置間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファー室、旋回室のうち少なくとも1つを含む。 The pass chamber 15, the buffer chamber 16, and the swivel chamber 17 are so-called relay devices that connect the cluster devices, and the relay devices installed on the upstream side and / or the downstream side of the cluster device are the pass room, the buffer room, and the like. Includes at least one of the swivel chambers.

成膜装置11、マスクストック装置12、搬送室13、バッファー室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。パス室15は、通常低真空状態に維持されるが、必要に応じて高真空状態に維持されてもいい。 The film forming apparatus 11, the mask stock apparatus 12, the transport chamber 13, the buffer chamber 16, the swivel chamber 17, and the like are maintained in a high vacuum state in the process of manufacturing the organic light emitting element. The pass chamber 15 is usually maintained in a low vacuum state, but may be maintained in a high vacuum state if necessary.

本実施例では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバーを有してもよく、これらの装置やチャンバー間の配置が変わってもいい。
以下、成膜装置11の具体的な構成について説明する。
In the present embodiment, the configuration of the electronic device manufacturing apparatus has been described with reference to FIG. 1, but the present invention is not limited to this, and other types of apparatus and chambers may be provided, and these devices may be provided. And the arrangement between the chambers may change.
Hereinafter, a specific configuration of the film forming apparatus 11 will be described.

<成膜装置>
図2は、成膜装置11の構成を示す模式図である。以下の説明においては、鉛直方向をZ方向とするXYZ直交座標系を用いる。成膜時に基板Sが水平面(XY平面)と平行となるよう固定された場合、基板Sの短手方向(短辺に平行な方向)をX方向、長手方向(長辺に平行な方向)をY方向とする。また、Z軸まわりの回転角をθで表す。
<Film formation device>
FIG. 2 is a schematic view showing the configuration of the film forming apparatus 11. In the following description, an XYZ Cartesian coordinate system with the vertical direction as the Z direction is used. When the substrate S is fixed so as to be parallel to the horizontal plane (XY plane) at the time of film formation, the lateral direction (direction parallel to the short side) of the substrate S is the X direction, and the longitudinal direction (direction parallel to the long side) is set. It is in the Y direction. Further, the angle of rotation around the Z axis is represented by θ.

成膜装置11は、真空雰囲気又は窒素ガスなどの不活性ガス雰囲気に維持される真空容器21と、真空容器21の内部に設けられる、基板支持ユニット22と、マスク支持ユニット23と、静電チャック24と、成膜源25とを含む。 The film forming apparatus 11 includes a vacuum vessel 21 maintained in a vacuum atmosphere or an atmosphere of an inert gas such as nitrogen gas, a substrate support unit 22 provided inside the vacuum vessel 21, a mask support unit 23, and an electrostatic chuck. 24 and a film forming source 25 are included.

基板支持ユニット22は、搬送室13に設けられた搬送ロボット14から基板Sを受取って保持する手段であり、基板ホルダとも呼ばれる。
基板支持ユニット22の下方には、マスク支持ユニット23が設けられる。マスク支持ユニット23は、搬送室13に設けられた搬送ロボット14からマスクMを受取って保持する手段であり、マスクホルダとも呼ばれる。
The board support unit 22 is a means for receiving and holding the board S from the transfer robot 14 provided in the transfer chamber 13, and is also called a board holder.
A mask support unit 23 is provided below the board support unit 22. The mask support unit 23 is a means for receiving and holding the mask M from the transfer robot 14 provided in the transfer chamber 13, and is also called a mask holder.

マスクMは、基板S上に形成する薄膜パターンに対応する開口パターンを有し、マスク支持ユニット23の上に載置される。特に、スマートフォン用の有機EL素子を製造するのに使われるマスクは、微細な開口パターンが形成された金属製のマスクであり、FMM(Fine Metal Mask)ともいう。 The mask M has an opening pattern corresponding to the thin film pattern formed on the substrate S, and is placed on the mask support unit 23. In particular, the mask used for manufacturing an organic EL element for a smartphone is a metal mask on which a fine opening pattern is formed, and is also called FMM (Fine Metal Mask).

基板支持ユニット22の上方には、基板を静電引力によって吸着し固定するための静電チャック24が設けられる。静電チャック24は、誘電体(例えば、セラミック材質)マトリックス内に金属電極などの電気回路が埋設された構造を有する。金属電極は、電極対を含むように設置することができ、以下では、電極対をなす金属電極を第1電極と第2電極と表すことにする。 An electrostatic chuck 24 for attracting and fixing the substrate by electrostatic attraction is provided above the substrate support unit 22. The electrostatic chuck 24 has a structure in which an electric circuit such as a metal electrode is embedded in a dielectric (for example, ceramic material) matrix. The metal electrode can be installed so as to include the electrode pair, and in the following, the metal electrode forming the electrode pair will be referred to as a first electrode and a second electrode.

静電チャック24は、クーロン力タイプの静電チャックであってもよいし、ジョンソン・ラーベック力タイプの静電チャックであってもよいし、グラジエント力タイプの静電チャックであってもよい。静電チャック24は、グラジエント力タイプの静電チャックであることが好ましい。静電チャック24がグラジエント力タイプの静電チャックであることによって、基板Sが絶縁性基板である場合であっても、静電チャック24によって良好に吸着することができる。静電チャック24がクーロン力タイプの静電チャックである場合には、金属電極にプラス(+)及びマイナス(-)の電位が付与されると、誘電体マトリックスを通じて基板Sなどの被吸着体に金属電極と反対極性の分極電荷が誘導され、これら間の静電引力によって基板Sが静電チャック24に吸着固定される。 The electrostatic chuck 24 may be a Coulomb force type electrostatic chuck, a Johnson-Labeck force type electrostatic chuck, or a gradient force type electrostatic chuck. The electrostatic chuck 24 is preferably a gradient force type electrostatic chuck. Since the electrostatic chuck 24 is a gradient force type electrostatic chuck, even when the substrate S is an insulating substrate, it can be satisfactorily adsorbed by the electrostatic chuck 24. When the electrostatic chuck 24 is a Coulomb force type electrostatic chuck, when positive (+) and negative (-) potentials are applied to the metal electrode, it is applied to the object to be adsorbed such as the substrate S through the dielectric matrix. A polarization charge having the opposite polarity to that of the metal electrode is induced, and the substrate S is attracted and fixed to the electrostatic chuck 24 by the electrostatic attraction between them.

静電チャック24は、一つのプレートで形成されてもよく、複数のサブプレートを有するように形成されてもいい。また、一つのプレートで形成される場合にも、その内部に複数の電気回路を含み、一つのプレート内で位置によって静電引力が異なるように制御してもいい。また、静電チャック24は、一つのプレートで形成されようが、複数のプレートで形成されようが、位置によらず、全面が同じ静電引力になるように制御されてもよい。 The electrostatic chuck 24 may be formed of one plate or may be formed to have a plurality of sub-plates. Further, even when formed by one plate, a plurality of electric circuits may be included therein and controlled so that the electrostatic attraction is different depending on the position in one plate. Further, the electrostatic chuck 24 may be controlled so that the entire surface has the same electrostatic attraction regardless of the position, whether it is formed by one plate or a plurality of plates.

本実施形態では、後述のように、成膜前に静電チャック24で基板S(第1被吸着体)だけでなく、マスクM(第2被吸着体)をも吸着し保持する。
即ち、本実施例では、静電チャック24の鉛直方向の下側に置かれた基板S(第1被吸着体)を静電チャック24で吸着及び保持した状態で、基板SとマスクMとの相対位置を調整し、基板SとマスクM間の相対位置調整が終わったら、基板S(第1被吸着体)を挟んで静電チャック24と反対側に置かれたマスクM(第2被吸着体)も静電チャック24
で吸着し保持する。特に、基板SとマスクMとの相対位置調整後、基板S越しにマスクMを静電チャック24で吸着する際に、電極対をなす第1電極と第2電極にそれぞれ付与される、接地電位に対する電位(以下、略して「電位」と呼ぶ)の和の絶対値は、基板SとマスクMとの相対位置調整時に第1電極と第2電極にそれぞれ付与される電位の和の絶対値よりも大きくなるように、第1電極と第2電極の少なくとも一つの電極に付与される電位を制御する。これについては、図3~図5を参照して後述する。
In the present embodiment, as will be described later, not only the substrate S (first adsorbed body) but also the mask M (second adsorbed body) is adsorbed and held by the electrostatic chuck 24 before film formation.
That is, in this embodiment, the substrate S and the mask M are held in a state where the substrate S (first object to be adsorbed) placed on the lower side in the vertical direction of the electrostatic chuck 24 is attracted and held by the electrostatic chuck 24. After adjusting the relative position and adjusting the relative position between the substrate S and the mask M, the mask M (second adsorbed body) placed on the opposite side of the electrostatic chuck 24 with the substrate S (first adsorbed body) sandwiched between them. Body) is also an electrostatic chuck 24
Adsorb and hold with. In particular, after adjusting the relative position between the substrate S and the mask M, when the mask M is attracted through the substrate S by the electrostatic chuck 24, the ground potential applied to the first electrode and the second electrode forming the electrode pair, respectively. The absolute value of the sum of the potentials (hereinafter, abbreviated as "potential") with respect to the substrate S is the absolute value of the sum of the potentials given to the first electrode and the second electrode when the relative positions of the substrate S and the mask M are adjusted. The potential applied to at least one of the first electrode and the second electrode is controlled so as to increase the potential. This will be described later with reference to FIGS. 3 to 5.

図2には図示しなかったが、静電チャック24の吸着面とは反対側に基板Sの温度上昇を抑える冷却機構(例えば、冷却板)を設けることで、基板S上に堆積された有機材料の変質や劣化を抑制する構成としてもよい。 Although not shown in FIG. 2, the organic matter deposited on the substrate S is provided by providing a cooling mechanism (for example, a cooling plate) for suppressing the temperature rise of the substrate S on the side opposite to the suction surface of the electrostatic chuck 24. It may be configured to suppress deterioration or deterioration of the material.

成膜源25(蒸着源、蒸発源ともいう)は、基板に成膜される成膜材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)、成膜源25からの蒸発レートが一定になるまで成膜材料が基板に飛散することを阻むシャッタ(不図示)などを含む。成膜源25は、点(point)成膜源や線状(linear)成膜源など、用途に従って多様な構成を有することができる。 The film forming source 25 (also referred to as a vapor deposition source or an evaporation source) includes a crucible (not shown) in which the film forming material to be formed on the substrate is stored, a heater for heating the crucible (not shown), and a film forming source 25. It includes a shutter (not shown) that prevents the film-forming material from scattering on the substrate until the evaporation rate from the film becomes constant. The film forming source 25 can have various configurations depending on the application, such as a point film forming source and a linear film forming source.

図2に図示しなかったが、成膜装置11は、基板に蒸着された膜の厚さを測定するための膜厚モニタ及び膜厚算出ユニットを含む。 Although not shown in FIG. 2, the film forming apparatus 11 includes a film thickness monitor and a film thickness calculation unit for measuring the thickness of the film deposited on the substrate.

真空容器21の上部外側(大気側)には、基板Zアクチュエータ26、マスクZアクチュエータ27、静電チャックZアクチュエータ28、位置調整機構29などが設けられる。これらのアクチュエータと位置調整機構は、例えば、モータとボールねじ、或いはモータとリニアガイドなどで構成される。基板Zアクチュエータ26は、基板支持ユニット22を昇降(Z方向移動)させるための駆動手段である。マスクZアクチュエータ27は、マスク支持ユニット23を昇降(Z方向移動)させるための駆動手段である。静電チャックZアクチュエータ28は、静電チャック24を昇降(Z方向移動)させるための駆動手段である。 A substrate Z actuator 26, a mask Z actuator 27, an electrostatic chuck Z actuator 28, a position adjusting mechanism 29, and the like are provided on the upper outer side (atmosphere side) of the vacuum vessel 21. These actuators and the position adjusting mechanism are composed of, for example, a motor and a ball screw, or a motor and a linear guide. The board Z actuator 26 is a driving means for raising and lowering (moving in the Z direction) the board support unit 22. The mask Z actuator 27 is a driving means for raising and lowering (moving in the Z direction) the mask support unit 23. The electrostatic chuck Z actuator 28 is a driving means for raising and lowering (moving in the Z direction) the electrostatic chuck 24.

位置調整機構29は、静電チャック24のアライメントのための駆動手段である。位置調整機構29は、静電チャック24全体を基板支持ユニット22及びマスク支持ユニット23に対して、X方向移動、Y方向移動、θ回転させる。なお、本実施形態では、基板Sを吸着した状態で、静電チャック24をX、Y、θ方向に位置調整することで、基板SとマスクMの相対的位置を調整するアライメントを行う。 The position adjusting mechanism 29 is a driving means for aligning the electrostatic chuck 24. The position adjusting mechanism 29 moves the entire electrostatic chuck 24 in the X direction, moves in the Y direction, and rotates θ with respect to the substrate support unit 22 and the mask support unit 23. In this embodiment, the electrostatic chuck 24 is positioned in the X, Y, and θ directions while the substrate S is adsorbed, so that the alignment is performed to adjust the relative positions of the substrate S and the mask M.

真空容器21の外側上面には、上述した駆動機構の他に、真空容器21の上面に設けられた透明窓を介して、基板S及びマスクMに形成されたアライメントマークを撮影するためのアライメント用カメラ20を設置してもよい。本実施例においては、アライメント用カメラ20は、矩形の基板S、マスクM及び静電チャック24の対角線に対応する位置または、矩形の4つのコーナー部に対応する位置に設置しても良い。 On the outer upper surface of the vacuum container 21, in addition to the drive mechanism described above, for alignment for photographing the alignment marks formed on the substrate S and the mask M through the transparent window provided on the upper surface of the vacuum container 21. A camera 20 may be installed. In this embodiment, the alignment camera 20 may be installed at a position corresponding to the diagonal line of the rectangular substrate S, the mask M, and the electrostatic chuck 24, or at a position corresponding to the four corners of the rectangle.

本実施形態の成膜装置11に設置されるアライメント用カメラ20は、基板SとマスクMとの相対的な位置を高精度で調整するのに使われるファインアライメント用カメラであり、その視野角は狭いが高解像度を持つカメラである。成膜装置11は、ファインアライメント用カメラ20の他に相対的に視野角が広くて低解像度であるラフアライメント用カメラを有してもよい。 The alignment camera 20 installed in the film forming apparatus 11 of the present embodiment is a fine alignment camera used to adjust the relative positions of the substrate S and the mask M with high accuracy, and its viewing angle is It is a narrow but high resolution camera. In addition to the fine alignment camera 20, the film forming apparatus 11 may have a rough alignment camera having a relatively wide viewing angle and a low resolution.

尚、位置調整機構29は、アライメント用カメラ20によって取得した基板S(第1被吸着体)及びマスクM(第2被吸着体)の位置情報に基づいて、基板S(第1被吸着体)とマスクM(第2被吸着体)を相対的に移動させて位置調整するアライメントを行う。 The position adjusting mechanism 29 is the substrate S (first adsorbed body) based on the position information of the substrate S (first adsorbed body) and the mask M (second adsorbed body) acquired by the alignment camera 20. And the mask M (second adsorbed body) are relatively moved to perform alignment for position adjustment.

成膜装置11は、制御部(不図示)を具備する。制御部は、基板Sの搬送及びアライメント、成膜源25の制御、成膜の制御などの機能を有する。制御部は、例えば、プロセッサ、メモリー、ストレージ、I/Oなどを持つコンピューターによって構成可能である。この場合、制御部の機能はメモリーまたはストレージに格納されたプログラムをプロセッサが実行することにより実現される。コンピューターとしては、汎用のパーソナルコンピューターを使用してもよく、組込み型のコンピューターまたはPLC(programmable logic controller)を使用してもよい。または、制御部の機能の一部または全部をASICやFPGAのような回路で構成してもよい。また、成膜装置ごとに制御部が設置されていてもよく、一つの制御部が複数の成膜装置を制御するように構成してもよい。 The film forming apparatus 11 includes a control unit (not shown). The control unit has functions such as transfer and alignment of the substrate S, control of the film formation source 25, and control of film formation. The control unit can be configured by, for example, a computer having a processor, memory, storage, I / O, and the like. In this case, the function of the control unit is realized by the processor executing the program stored in the memory or the storage. As the computer, a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logical controller) may be used. Alternatively, a part or all of the functions of the control unit may be configured by a circuit such as an ASIC or FPGA. Further, a control unit may be installed for each film forming apparatus, or one control unit may be configured to control a plurality of film forming apparatus.

<吸着装置>
図3を参照して本実施形態による吸着装置30について説明する。
図3は、本実施形態の吸着装置30の概念的なブロック図である。図3に示すように、本実施形態の吸着装置30は、静電チャック24と、電位付与部31と、電位制御部32とを含む。
<Adsorption device>
The adsorption device 30 according to the present embodiment will be described with reference to FIG.
FIG. 3 is a conceptual block diagram of the suction device 30 of the present embodiment. As shown in FIG. 3, the suction device 30 of the present embodiment includes an electrostatic chuck 24, a potential applying unit 31, and a potential control unit 32.

電位付与部31は、静電チャック24の電極部に電位を付与し、2つの電極部の間に電位差を発生させて静電引力を発生させる。なお、電位付与部31による各電極部への電位の付与は、各電極部と不図示の接地電極との間に所望の電圧をそれぞれ印加することで行っても良い。 The potential applying portion 31 applies a potential to the electrode portion of the electrostatic chuck 24 and generates a potential difference between the two electrode portions to generate an electrostatic attraction. The potential can be applied to each electrode by the potential applying unit 31 by applying a desired voltage between each electrode unit and the ground electrode (not shown).

電位制御部32は、吸着装置30の吸着工程または成膜装置11の成膜工程の進行に応じて、電位付与部31から電極部に加えられる電位の大きさ、電位の付与開始時点、電位の維持時間、電位の付与順番などを制御する。電位制御部32は、例えば、静電チャック24の電極部に含まれる第1電極241と第2電極242への電位付与を独立に制御することができる。本実施形態では、電位制御部32が成膜装置11の制御部とは別途に設けられるが、本発明はこれに限定されず、成膜装置11の制御部に統合されてもいい。 The potential control unit 32 determines the magnitude of the potential applied from the potential applying unit 31 to the electrode unit, the time at which the potential application starts, and the potential according to the progress of the adsorption process of the adsorption device 30 or the film forming process of the film forming device 11. Control the maintenance time, the order of applying potential, etc. The potential control unit 32 can independently control the application of potential to the first electrode 241 and the second electrode 242 included in the electrode unit of the electrostatic chuck 24, for example. In the present embodiment, the potential control unit 32 is provided separately from the control unit of the film forming apparatus 11, but the present invention is not limited to this and may be integrated into the control unit of the film forming apparatus 11.

静電チャック24は、吸着面に被吸着体(例えば、基板S、マスクM)を吸着するための静電吸着力を発生させる、複数の電極を有する電極部を含み、電極部は、電極対をなす第1電極241と第2電極242とを含む。第1電極241は、電位制御部32の制御によって電位付与部31が所定の電位(Va)を付与する電極または電極のセットを指し、第2電極242は、電位制御部32の制御によって電位付与部31が、第1電極241に付与される電位(Va)とは異なる所定の電位(Vb)を付与する電極または電極のセットを指す。そして、第1電極241と第2電極242にそれぞれ付与される電位によって、静電チャック24は、基板Sだけを吸着する静電引力か、または基板SとマスクMを共に吸着する静電引力を発生することができる。 The electrostatic chuck 24 includes an electrode portion having a plurality of electrodes that generate an electrostatic adsorption force for adsorbing an object to be adsorbed (for example, substrate S, mask M) on the adsorption surface, and the electrode portion is an electrode pair. The first electrode 241 and the second electrode 242 are included. The first electrode 241 refers to an electrode or a set of electrodes to which the potential applying unit 31 applies a predetermined potential (Va) under the control of the potential control unit 32, and the second electrode 242 applies the potential under the control of the potential control unit 32. Section 31 refers to an electrode or a set of electrodes that impart a predetermined potential (Vb) different from the potential (Va) imparted to the first electrode 241. Then, depending on the potentials applied to the first electrode 241 and the second electrode 242, the electrostatic chuck 24 exerts an electrostatic attraction that adsorbs only the substrate S or an electrostatic attraction that adsorbs both the substrate S and the mask M. Can occur.

図3には、第1電極241と第2電極242が一つずつ交互に配置されているが、これに限定されず、第1電極241と第2電極242は他の形態で(例えば、2つずつ交互に)配置されていてもよい。 In FIG. 3, the first electrode 241 and the second electrode 242 are alternately arranged one by one, but the present invention is not limited to this, and the first electrode 241 and the second electrode 242 are in other forms (for example, 2). They may be arranged alternately).

交互に配置されている第1電極241及び第2電極242は、被吸着体との間で静電引力を発生させることができるかぎり、多様な形状を有することができる。例えば、第1電極241及び第2電極242は、それぞれ櫛形状を有してもよい。櫛状の第1電極241及び第2電極242は、それぞれ複数の櫛歯部と、複数の櫛歯部に連結される基部とを含む。各電極241、242の基部は櫛歯部に電位を供給し、複数の櫛歯部は、被吸着体との間で静電吸着力を生じさせる。このため、第1電極241の各櫛歯部は、第2電極24
2の各櫛歯部と対向するように、交互に配置される。このように、各電極241、242の各櫛歯部が対向しかつ互いに入り組んだ構成とすることで、異なる電位が付与される電極間の間隔を狭くすることができ、大きな不平等電界を形成し、グラジエント力によって被吸着体を吸着することができる。
The first electrode 241 and the second electrode 242 arranged alternately can have various shapes as long as they can generate an electrostatic attraction with the adsorbed body. For example, the first electrode 241 and the second electrode 242 may each have a comb shape. The comb-shaped first electrode 241 and the second electrode 242 each include a plurality of comb teeth and a base connected to the plurality of comb teeth. The base of each of the electrodes 241 and 242 supplies an electric potential to the comb tooth portion, and the plurality of comb tooth portions generate an electrostatic adsorption force with the object to be adsorbed. Therefore, each comb tooth portion of the first electrode 241 has a second electrode 24.
It is arranged alternately so as to face each comb tooth portion of 2. In this way, by forming the comb teeth of the electrodes 241 and 242 facing each other and intricately intertwined with each other, the distance between the electrodes to which different potentials are applied can be narrowed, and a large unequal electric field is formed. However, the object to be adsorbed can be adsorbed by the gradient force.

<吸着装置による吸着及方法及び電位の制御>
図4(a)~図4(c)は、本発明による吸着方法によって、静電チャック24に基板S及びマスクMを順次に吸着する過程と、その時の電位制御を示す断面模式図である。
<Adsorption method and potential control by adsorption device>
4 (a) to 4 (c) are schematic cross-sectional views showing a process of sequentially adsorbing the substrate S and the mask M on the electrostatic chuck 24 by the adsorption method according to the present invention, and potential control at that time.

図4(a)は、真空容器21内の基板支持ユニット22に基板S、そして、マスク支持ユニット23にマスクMがそれぞれ載置されている状態を示す。図4(a)を参照すると、静電チャック24から所定の間隔で離隔されている基板Sは、静電チャック24がある方向とは反対方向にマスクMとも所定の間隔をもって離隔されている。そして、静電チャック24の第1電極241と第2電極242には電位が付与されておらず、静電チャック24には静電引力が誘発されていない。 FIG. 4A shows a state in which the substrate S is mounted on the substrate support unit 22 in the vacuum vessel 21 and the mask M is mounted on the mask support unit 23. Referring to FIG. 4A, the substrate S separated from the electrostatic chuck 24 at a predetermined interval is also separated from the mask M in a direction opposite to the direction in which the electrostatic chuck 24 is located at a predetermined interval. Further, no potential is applied to the first electrode 241 and the second electrode 242 of the electrostatic chuck 24, and the electrostatic attraction is not induced in the electrostatic chuck 24.

続いて、第1電極241と第2電極242に所定の電位を付与し静電チャック24に基板Sを吸着させた後、静電チャック24に吸着された基板Sと、マスクMとの相対位置を調整する。 Subsequently, a predetermined potential is applied to the first electrode 241 and the second electrode 242 to adsorb the substrate S to the electrostatic chuck 24, and then the relative position between the substrate S adsorbed by the electrostatic chuck 24 and the mask M. To adjust.

図4(b)は、このように、基板Sを静電チャック24に吸着させた状態で、マスクMとの相対位置を調整する工程を示している。具体的な図示は省略しているが、マスクとの相対位置の調整は、基板SとマスクMが接触しない範囲内で相互間の離隔距離が狭まった状態で行われることが好ましく、そのため、基板吸着の後、静電チャック24を下降させるかマスク支持ユニット23を上昇させて、基板SとマスクMとの相対位置を調整する高さまで基板SまたはマスクMを移動させる工程が追加で行われてもよい。 FIG. 4B shows a step of adjusting the relative position with respect to the mask M in a state where the substrate S is attracted to the electrostatic chuck 24 in this way. Although specific illustration is omitted, it is preferable that the adjustment of the relative position with the mask is performed in a state where the separation distance between the substrates S and the mask M is narrowed within the range where the substrate S and the mask M do not contact, and therefore the substrate is not shown. After suction, an additional step of lowering the electrostatic chuck 24 or raising the mask support unit 23 to move the substrate S or the mask M to a height that adjusts the relative position between the substrate S and the mask M is performed. May be good.

図4(b)を参照すると、静電チャック24の第1電極241には、第1電位(V1)が付与され、同時に、第2電極242には、第2電位(V2)が付与される。第1電位(V1)及び第2電位(V2)は、静電チャック24に基板Sを吸着させる際に第1電極241と第2電極242にそれぞれ付与していた電位で、この基板吸着時の付与電位がそのまま維持される状態で、基板SとマスクMとの相対位置を調整(アライメント)する。 Referring to FIG. 4B, a first potential (V1) is applied to the first electrode 241 of the electrostatic chuck 24, and at the same time, a second potential (V2) is applied to the second electrode 242. .. The first potential (V1) and the second potential (V2) are the potentials applied to the first electrode 241 and the second electrode 242 when the substrate S is adsorbed on the electrostatic chuck 24, and are the potentials applied to the first electrode 241 and the second electrode 242, respectively, at the time of adsorbing the substrate. The relative position between the substrate S and the mask M is adjusted (aligned) while the applied potential is maintained as it is.

このとき、静電チャック24に基板Sのみ吸着され、マスクMは吸着されない程度の吸引力が誘発する限り、第1電位(V1)と第2電位(V2)それぞれの大きさや極性などに特に制限はない。好ましくは、第1電位(V1)は1kV、第2電位(V2)は-1kVのように、第1電位(V1)と第2電位(V2)は、接地電位に対する電位の絶対値の大きさは同じく、極性は異なる値を有することができる。これによれば、第1電極241と第2電極242との間の電位差(ΔV)は、基板Sを十分に吸着することができる大きさとなり、一方、第1電位(V1)または第2電位(V2)自体の大きさ、つまり、第1電極241または第2電極242の接地電位に対する電位は、相対的に小さく(例えば、1kV)、マスクMは静電チャック24の静電引力によって吸引されない。したがって、静電チャック24に基板Sを吸着した状態で、基板SとマスクMのアライメントを行っても、基板SとマスクMは互いに接触しないので、基板Sの表面やその上部に形成されている物質膜の損傷を防止することができる。 At this time, as long as only the substrate S is adsorbed on the electrostatic chuck 24 and the attractive force to the extent that the mask M is not adsorbed is induced, the size and polarity of the first potential (V1) and the second potential (V2) are particularly limited. There is no. Preferably, the first potential (V1) and the second potential (V2) are the magnitudes of the absolute values of the potentials with respect to the ground potential, such that the first potential (V1) is 1 kV and the second potential (V2) is -1 kV. Similarly, the polarity can have different values. According to this, the potential difference (ΔV) between the first electrode 241 and the second electrode 242 is large enough to sufficiently adsorb the substrate S, while the first potential (V1) or the second potential The size of (V2) itself, that is, the potential of the first electrode 241 or the second electrode 242 with respect to the ground potential is relatively small (for example, 1 kV), and the mask M is not attracted by the electrostatic attraction of the electrostatic chuck 24. .. Therefore, even if the substrate S and the mask M are aligned with the substrate S adsorbed on the electrostatic chuck 24, the substrate S and the mask M do not come into contact with each other, so that they are formed on the surface of the substrate S or above the surface of the substrate S. It is possible to prevent damage to the material film.

静電チャック24に基板Sを吸着した状態で基板SとマスクMのアライメント工程を行った後には、基板S越しにマスクMを静電チャック24で吸着する工程を行う。図4(c)は、静電チャック24に、基板S越しにマスクMを吸着させる工程を示している。図4(c)を参照すると、静電チャック24の第1電極241には第3電位(V3)を付与し
、同時に、第2電極242には第4電位(V4)を付与する。
After the alignment step between the substrate S and the mask M is performed with the substrate S adsorbed on the electrostatic chuck 24, the step of adsorbing the mask M through the substrate S by the electrostatic chuck 24 is performed. FIG. 4C shows a step of adsorbing the mask M to the electrostatic chuck 24 through the substrate S. Referring to FIG. 4C, a third potential (V3) is applied to the first electrode 241 of the electrostatic chuck 24, and at the same time, a fourth potential (V4) is applied to the second electrode 242.

本発明の実施例では、基板S越しにマスクMを静電チャック24に吸着することができる十分な大きさの吸引力が誘発されるように、第1電極241と第2電極242の少なくとも一つの電極に付与される電位を変化させる。つまり、第3電位(V3)と第4電位(V4)の和の絶対値が、第1電位(V1)と第2電位(V2)の和の絶対値よりも大きくなるように、第1電極241と第2電極242の電位を制御する。 In the embodiment of the present invention, at least one of the first electrode 241 and the second electrode 242 is induced so as to induce a suction force having a sufficient size to attract the mask M to the electrostatic chuck 24 through the substrate S. The potential applied to one electrode is changed. That is, the first electrode is such that the absolute value of the sum of the third potential (V3) and the fourth potential (V4) is larger than the absolute value of the sum of the first potential (V1) and the second potential (V2). The potentials of 241 and the second electrode 242 are controlled.

より具体的には、図4(b)を参照して前述したように、基板SとマスクMのアライメント時には、第1電位(V1)と第2電位(V2)との間の電位差(ΔV)が所定の大きさとなるように、第1電極241と第2電極242の電位を制御する。つまり、静電チャック24に基板Sのみ吸着される吸引力が発生するように電位差(ΔV)を制御する。要するに、基板Sを吸着する力は、主に静電チャック24の電極対241、242の電位差の大きさを調整することでコントロールすることができる。一方、マスクMを吸着する力は、電位差(ΔV)は同じであっても、静電チャック24の電極対241、242を構成する各電極の電位の大きさを調整することによっても変化させることができる。そこで、図4(c)に示すように、基板S越しにマスクMを吸着する際には、第3電位(V3)と第4電位(V4)の少なくとも一つの大きさ(絶対値)が大きくなるように、第1電極241と第2電極242それぞれの電位を制御する。 More specifically, as described above with reference to FIG. 4B, the potential difference (ΔV) between the first potential (V1) and the second potential (V2) at the time of alignment between the substrate S and the mask M. The potentials of the first electrode 241 and the second electrode 242 are controlled so as to have a predetermined size. That is, the potential difference (ΔV) is controlled so that the electrostatic chuck 24 generates an attractive force that attracts only the substrate S. In short, the force for adsorbing the substrate S can be controlled mainly by adjusting the magnitude of the potential difference between the electrode pairs 241 and 242 of the electrostatic chuck 24. On the other hand, the force for adsorbing the mask M can be changed by adjusting the magnitude of the potential of each electrode constituting the electrode pair 241 and 242 of the electrostatic chuck 24 even if the potential difference (ΔV) is the same. Can be done. Therefore, as shown in FIG. 4C, when the mask M is adsorbed through the substrate S, at least one magnitude (absolute value) of the third potential (V3) and the fourth potential (V4) is large. The potentials of the first electrode 241 and the second electrode 242 are controlled so as to be.

例えば、基板SとマスクMのアライメント時には、第1電位(V1)と第2電位(V2)は、絶対値の大きさは同じで、極性は異なる電位になるように制御される。一方、アライメント終了後、基板S越しにマスクMを吸着する際には、第3電位(V3)と第4電位(V4)の和の絶対値が、第1電位(V1)と第2電位(V2)の和の絶対値よりも大きくなるように、第1電極241と第2電極242の少なくとも一つの電極に付与される電位を変化させる。つまり、第1電極241と第2電極242に付与される電位が、+側または-側に寄せられるように制御する。 For example, at the time of alignment between the substrate S and the mask M, the first potential (V1) and the second potential (V2) are controlled so that the magnitudes of the absolute values are the same and the polarities are different potentials. On the other hand, when the mask M is adsorbed through the substrate S after the alignment is completed, the absolute value of the sum of the third potential (V3) and the fourth potential (V4) is the first potential (V1) and the second potential (V1). The potential applied to at least one of the first electrode 241 and the second electrode 242 is changed so as to be larger than the absolute value of the sum of V2). That is, the potential applied to the first electrode 241 and the second electrode 242 is controlled so as to be closer to the + side or the − side.

このとき、第3電位(V3)と第4電位(V4)間の電位差(ΔV)は、第1電位(V1)と第2電位(V2)間の電位差(ΔV)と同一になるように制御されることができる。同じ電位差を維持することで、マスクMの吸着が行われる間に、基板Sは引き続き静電チャック24に吸着されている状態となる。例えば、前述した例のように、第1電位(V1)は1kV、第2電位(V2)は-1kVである場合、第3電位(V3)と第4電位(V4)は、2kVの電位差(ΔV)を維持しつつ、制御することができる。すなわち、第3電位(V3)と第4電位(V4)は、それぞれ、2kVと0kV、4kVと2kV、0kVと-2kV、または-2kVと-4kVなどのように制御することができる。このうち、第3電位(V3)と第4電位(V4)のいずれかが接地電位である場合(例えば、第3電位(V3)と第4電位(V4)が、2kVと0kV、または0kVと-2kVである場合)は、他の場合(例えば、第3電位(V3)と第4電位(V4)が、4kVと2kV、または-2kVと-4kVである場合)に比べて、相対的に低電位の電源で第1電極241と第2電極242それぞれに電位を付与することができる。 At this time, the potential difference (ΔV) between the third potential (V3) and the fourth potential (V4) is controlled to be the same as the potential difference (ΔV) between the first potential (V1) and the second potential (V2). Can be done. By maintaining the same potential difference, the substrate S is continuously adsorbed by the electrostatic chuck 24 while the mask M is adsorbed. For example, when the first potential (V1) is 1 kV and the second potential (V2) is -1 kV as in the above-mentioned example, the potential difference between the third potential (V3) and the fourth potential (V4) is 2 kV ( It can be controlled while maintaining ΔV). That is, the third potential (V3) and the fourth potential (V4) can be controlled as 2 kV and 0 kV, 4 kV and 2 kV, 0 kV and -2 kV, or -2 kV and -4 kV, respectively. Of these, when either the third potential (V3) or the fourth potential (V4) is the ground potential (for example, the third potential (V3) and the fourth potential (V4) are 2 kV and 0 kV, or 0 kV. -2kV) is relatively compared to other cases (eg, when the third potential (V3) and the fourth potential (V4) are 4kV and 2kV, or -2kV and -4kV). A potential can be applied to each of the first electrode 241 and the second electrode 242 with a low-potential power source.

これとは異なり、第3電位(V3)と第4電位(V4)間の電位差(ΔV)が、第1電位(V1)と第2電位(V2)間の電位差(ΔV)よりも大きくなるように、制御することもできる。この場合は、基板Sを吸着する力が増加し、基板Sは引き続き静電チャック24に吸着されていることができ、また、マスクMを吸着する力も共に増加し、基板SとマスクMの密着度を高めることもできる。 Unlike this, the potential difference (ΔV) between the third potential (V3) and the fourth potential (V4) is made larger than the potential difference (ΔV) between the first potential (V1) and the second potential (V2). It can also be controlled. In this case, the force for adsorbing the substrate S increases, the substrate S can continue to be adsorbed on the electrostatic chuck 24, and the force for adsorbing the mask M also increases, so that the substrate S and the mask M are in close contact with each other. You can also increase the degree.

<成膜プロセス>
以下、本実施形態による静電チャックの電位制御を採用した成膜方法について説明する

真空容器21内のマスク支持ユニット23にマスクMが支持された状態で、搬送室13の搬送ロボット14によって成膜装置11の真空容器21内に基板が搬入される。
真空容器21内に進入した搬送ロボット14のハンドが下降し、基板Sを基板支持ユニット22の支持部上に載置する。
<Film formation process>
Hereinafter, a film forming method using the potential control of the electrostatic chuck according to the present embodiment will be described.
With the mask M supported by the mask support unit 23 in the vacuum container 21, the substrate is carried into the vacuum container 21 of the film forming apparatus 11 by the transfer robot 14 in the transfer chamber 13.
The hand of the transfer robot 14 that has entered the vacuum container 21 is lowered, and the substrate S is placed on the support portion of the substrate support unit 22.

続いて、静電チャック24が基板Sに向かって下降し、基板Sに十分に近接或いは接触した後に、静電チャック24の電極対、すなわち第1電極241と第2電極242にそれぞれ第1電位(V1)と第2電位(V2)を付与し、基板Sを吸着する。 Subsequently, after the electrostatic chuck 24 descends toward the substrate S and is sufficiently close to or in contact with the substrate S, the first potential is applied to the electrode pair of the electrostatic chuck 24, that is, the first electrode 241 and the second electrode 242, respectively. (V1) and a second potential (V2) are applied, and the substrate S is adsorbed.

本発明の一実施形態においては、基板Sを静電チャック24に十分吸着させるとともに、後述する基板SとマスクMのアライメント時にマスクMが吸引され基板Sと接触することを防止するために、第1電位(V1)と第2電位(V2)は、大きさは同じで極性は異なるように制御される。 In one embodiment of the present invention, in order to sufficiently attract the substrate S to the electrostatic chuck 24 and prevent the mask M from being attracted and coming into contact with the substrate S during alignment between the substrate S and the mask M, which will be described later. The first potential (V1) and the second potential (V2) are controlled to have the same magnitude but different polarities.

静電チャック24に基板Sが吸着された状態で、基板SのマスクMに対する相対的な位置ずれを計測するために、基板SをマスクMに向かって下降させる。このとき、第1電極241と第2電極242にそれぞれ付与される第1の電位(V1)と第2電位(V2)は、同じ大きさで維持される。 With the substrate S adsorbed on the electrostatic chuck 24, the substrate S is lowered toward the mask M in order to measure the relative positional deviation of the substrate S with respect to the mask M. At this time, the first potential (V1) and the second potential (V2) applied to the first electrode 241 and the second electrode 242, respectively, are maintained at the same magnitude.

基板Sが計測位置まで下降すると、アライメント用カメラ20で基板SとマスクMに形成されたアライメントマークを撮影して、基板とマスクの相対的な位置ずれ量を計測する。計測の結果、基板のマスクに対する相対的な位置ずれ量が閾値を超えることが判明すれば、静電チャック24に吸着された状態の基板Sを水平方向(XYθ方向)に移動させて、基板をマスクに対して、位置調整(アライメント)する。なお、基板SとマスクMにそれぞれ形成されたアライメントマークの計測を行う計測工程の後に行われる、基板SとマスクMの少なくとも一方を移動させる位置調整工程の際には、計測工程における基板SとマスクMとの間の間隔よりも、位置調整工程における基板SとマスクMとの間の間隔が大きくなるようにしてもよい。このようにすることで、基板SとマスクMとを相対移動させる際に基板SとマスクMとが接触して基板Sや基板S上に形成されている素子、マスクMの損傷をより確実に抑制することができるようになる。このような場合には、少なくとも、アライメント工程のうちの計測工程において、第1電極241に第1の電位(V1)が付与され、第2電極242に第2電位(V2)が付与されるようにすることが好ましい。 When the substrate S descends to the measurement position, the alignment camera 20 photographs the alignment marks formed on the substrate S and the mask M to measure the relative positional deviation between the substrate and the mask. As a result of the measurement, if it is found that the amount of displacement of the substrate relative to the mask exceeds the threshold value, the substrate S in a state of being adsorbed by the electrostatic chuck 24 is moved in the horizontal direction (XYθ direction) to move the substrate. Position adjustment (alignment) with respect to the mask. In the position adjustment step of moving at least one of the substrate S and the mask M, which is performed after the measurement step of measuring the alignment marks formed on the substrate S and the mask M, the substrate S in the measurement step is used. The distance between the substrate S and the mask M in the position adjusting step may be larger than the distance between the mask M. By doing so, when the substrate S and the mask M are relatively moved, the substrate S and the mask M come into contact with each other to more reliably damage the substrate S, the element formed on the substrate S, and the mask M. It will be possible to suppress it. In such a case, at least in the measurement step of the alignment step, the first potential (V1) is given to the first electrode 241 and the second potential (V2) is given to the second electrode 242. Is preferable.

アライメント工程の後、マスクMを基板S越しに静電チャック24に吸着させる。このため、静電チャック24の電極対、つまり、第1電極241と第2電極242に、それぞれ第3電位(V3)と第4電位(V4)を付与する。このとき、第3電位(V3)と第4電位(V4)の電位差は、第1電位(V1)と第2電位(V2)の電位差と同じで、かつ、第3電位(V3)と第4電位(V4)との和の絶対値は、第1電位(V1)と第2電位(V2)との和の絶対値よりも大きくなるように、第1電極241と第2電極242の少なくとも一つの電極に付与される電位を変化させる。実施例によっては、第3電位(V3)と第4電位(V4)の電位差は、第1電位(V1)と第2電位(V2)の電位差よりも大きくすることもできる。 After the alignment step, the mask M is attracted to the electrostatic chuck 24 through the substrate S. Therefore, a third potential (V3) and a fourth potential (V4) are applied to the electrode pair of the electrostatic chuck 24, that is, the first electrode 241 and the second electrode 242, respectively. At this time, the potential difference between the third potential (V3) and the fourth potential (V4) is the same as the potential difference between the first potential (V1) and the second potential (V2), and the third potential (V3) and the fourth potential (V3). The absolute value of the sum with the potential (V4) is at least one of the first electrode 241 and the second electrode 242 so as to be larger than the absolute value of the sum of the first potential (V1) and the second potential (V2). The potential applied to one electrode is changed. Depending on the embodiment, the potential difference between the third potential (V3) and the fourth potential (V4) can be made larger than the potential difference between the first potential (V1) and the second potential (V2).

このようなマスクMの吸着工程が完了した後、成膜源25のシャッタを開け、成膜材料をマスクを介して基板Sに蒸着させる。 After the adsorption step of the mask M is completed, the shutter of the film forming source 25 is opened, and the film forming material is vapor-deposited on the substrate S via the mask.

なお、上述の説明では、成膜装置11は、基板Sの成膜面が鉛直方向下方を向いた状態で成膜が行われる、いわゆる上向蒸着方式(デポアップ)の構成としたが、これに限定はされず、基板Sが真空容器21の側面側に垂直に立てられた状態で配置され、基板Sの成
膜面が重力方向と平行な状態で成膜が行われる構成であってもよい。
In the above description, the film forming apparatus 11 has a so-called upward vapor deposition method (depot-up) in which the film forming surface of the substrate S faces downward in the vertical direction. The configuration is not limited, and the substrate S may be arranged in a state of being vertically erected on the side surface side of the vacuum vessel 21, and the film formation may be performed in a state where the film formation surface of the substrate S is parallel to the direction of gravity. ..

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
<Manufacturing method of electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of this embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.

まず、製造する有機EL表示装置について説明する。図5(a)は有機EL表示装置60の全体図、図5(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be described. FIG. 5A shows an overall view of the organic EL display device 60, and FIG. 5B shows a cross-sectional structure of one pixel.

図5(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 5A, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix in the display area 61 of the organic EL display device 60. Although the details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The pixel referred to here refers to the smallest unit capable of displaying a desired color in the display area 61. In the case of the organic EL display device according to this embodiment, the pixel 62 is composed of a combination of the first light emitting element 62R, the second light emitting element 62G, and the third light emitting element 62B, which emit light different from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element, and is particularly limited to at least one color. It is not limited.

図5(b)は、図5(a)のA-B線における部分断面模式図である。画素62は、基板63上に、陽極64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、陰極68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、陽極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と陰極68は、複数の発光素子62R、62G、62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、陽極64と陰極68とが異物によってショートするのを防ぐために、陽極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。 5 (b) is a schematic partial cross-sectional view taken along the line AB of FIG. 5 (a). The pixel 62 has an organic EL element having an anode 64, a hole transport layer 65, any of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a cathode 68 on the substrate 63. There is. Of these, the hole transport layer 65, the light emitting layer 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in a pattern corresponding to a light emitting element (sometimes referred to as an organic EL element) that emits red, green, and blue, respectively. Further, the anode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the cathode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the anode 64 in order to prevent the anode 64 and the cathode 68 from being short-circuited by foreign matter. Further, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

図5(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、陽極64と正孔輸送層65との間には陽極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、陰極68と電子輸送層67の間にも電子注入層が形成されることができる。 In FIG. 5B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but they are formed of a plurality of layers including the hole block layer and the electron block layer due to the structure of the organic EL display element. May be done. Further, between the anode 64 and the hole transport layer 65, a hole injection layer having an energy band structure capable of smoothly injecting holes from the anode 64 into the hole transport layer 65 is provided. It can also be formed. Similarly, an electron injection layer can be formed between the cathode 68 and the electron transport layer 67.

次に、有機EL表示装置の製造方法の例について具体的に説明する。
まず、有機EL表示装置を駆動するための回路(不図示)および陽極64が形成された基板63を準備する。
Next, an example of a method for manufacturing an organic EL display device will be specifically described.
First, a circuit (not shown) for driving the organic EL display device and a substrate 63 on which the anode 64 is formed are prepared.

陽極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、陽極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 63 on which the anode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in the portion where the anode 64 is formed to form an insulating layer 69. .. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、静電チ
ャックにて基板を保持し、正孔輸送層65を、表示領域の陽極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。
The substrate 63 in which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, the substrate is held by an electrostatic chuck, and the hole transport layer 65 is a common layer on the anode 64 in the display region. To form a film. The hole transport layer 65 is formed by vacuum vapor deposition. In reality, the hole transport layer 65 is formed in a size larger than that of the display region 61, so that a high-definition mask is unnecessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、静電チャックにて保持する。基板とマスクとのアライメントを行い、静電チャックにてマスクを基板越しに保持し、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second organic material film forming apparatus and held by an electrostatic chuck. The substrate and the mask are aligned, the mask is held through the substrate by an electrostatic chuck, and a light emitting layer 66R that emits red is formed on the portion of the substrate 63 where the element that emits red is arranged.

発光層66Rの成膜と同様に、第3有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G that emits green color is formed by the third organic material film forming apparatus, and the light emitting layer 66B that emits blue color is further formed by the fourth organic material film forming apparatus. After the film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the light emitting layers 66R, 66G, and 66B of three colors.

電子輸送層67まで形成された基板を金属性材料成膜装置で移動させて陰極68を成膜する。
その後、プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。
The substrate formed up to the electron transport layer 67 is moved by a metallic material film forming apparatus to form a cathode 68.
After that, it moves to a plasma CVD device to form a protective layer 70, and the organic EL display device 60 is completed.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。 From the time when the substrate 63 in which the insulating layer 69 is patterned is carried into the film forming apparatus until the film formation of the protective layer 70 is completed, when the substrate 63 is exposed to an atmosphere containing moisture or oxygen, a light emitting layer made of an organic EL material is formed. It may be deteriorated by moisture and oxygen. Therefore, in this example, the loading and unloading of the substrate between the film forming apparatus is performed in a vacuum atmosphere or an inert gas atmosphere.

上記実施例は本発明の一例を示したが、本発明は上記実施例の構成に限定されないし、その技術思想の範囲内で適切に変形しても良い。 Although the above-mentioned embodiment shows an example of the present invention, the present invention is not limited to the configuration of the above-mentioned embodiment and may be appropriately modified within the scope of the technical idea.

11:成膜装置
21:真空容器
22:基板支持ユニット
23:マスク支持ユニット
24:静電チャック
30:吸着装置
31:電位付与部
32:電位制御部
241、242:電極対(第1電極、第2電極)
11: Film forming device 21: Vacuum container 22: Substrate support unit 23: Mask support unit 24: Electrostatic chuck 30: Adsorption device 31: Potential applying unit 32: Potential control unit 241 and 242: Electrode pair (first electrode, first 2 electrodes)

Claims (15)

第1被吸着体と該第1被吸着体を挟んで第2被吸着体を吸着するための静電吸着力を発生させるための第1電極と第2電極を有する静電チャックと、
前記第1電極と前記第2電極に位を付与する電位付与部と、
前記電位付与部による前記第1電極への電位の付与と前記第2電極への電位の付与と独立に制御するための電位制御部とを備え、
前記電位制御部は、前記第1被吸着体を吸着させる静電吸着力を発生させるために前記第1電極に第1電位を付与し前記第2電極に第2電位を付与した後に、前記第1電位と前記第2電位の少なくとも一つを変化させ、前記第1電極に第3電位を付与し前記第2電極に第4電位を付与し、
前記第3電位と前記第4電位との電位差は、前記第1電位と前記第2電位との電位差と同一であり、
前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする吸着装置。
An electrostatic chuck having a first electrode and a second electrode for generating an electrostatic adsorption force for adsorbing a second adsorbed body by sandwiching the first adsorbed body and the first adsorbed body, and an electrostatic chuck.
A potential applying portion that applies a potential to the first electrode and the second electrode,
A potential control unit for independently controlling the application of the potential to the first electrode and the application of the potential to the second electrode by the potential applying unit is provided.
The potential control unit applies a first potential to the first electrode and a second potential to the second electrode in order to generate an electrostatic attraction force for adsorbing the first object to be adsorbed, and then the second potential. At least one of the 1 potential and the 2nd potential is changed, a 3rd potential is applied to the 1st electrode, and a 4th potential is applied to the 2nd electrode.
The potential difference between the third potential and the fourth potential is the same as the potential difference between the first potential and the second potential.
An adsorption device characterized in that the absolute value of the sum of the third potential and the fourth potential is larger than the absolute value of the sum of the first potential and the second potential.
前記第1電位と前記第2電位は、絶対値の大きさは同一で、接地電位に対する極性は反対であることを特徴とする請求項1に記載の吸着装置。 The adsorption device according to claim 1, wherein the first potential and the second potential have the same absolute value and opposite polarities with respect to the ground potential . 前記第3電位と前記第4電位のうち一つは、0Vであることを特徴とする請求項1または2に記載の吸着装置。 The adsorption device according to claim 1 or 2, wherein one of the third potential and the fourth potential is 0 V. 前記第1電極と前記第2電極は、交互に配置されていることを特徴とする請求項1から3のいずれか一項に記載の吸着装置。 The suction device according to any one of claims 1 to 3, wherein the first electrode and the second electrode are arranged alternately. 前記第1被吸着体は、絶縁性の基板で、前記第2被吸着体は、金属性のマスクであることを特徴とする請求項1から4のいずれか一項に記載の吸着装置。 The adsorption device according to any one of claims 1 to 4, wherein the first adsorbed body is an insulating substrate, and the second adsorbed body is a metallic mask. 第1被吸着体と該第1被吸着体を挟んで第2被吸着体を吸着するための静電吸着力を発生させるための第1電極と第2電極を有する静電チャックと、
前記第1電極と前記第2電極に位を付与する電位付与部と、
前記電位付与部による前記第1電極への電位の付与と前記第2電極への電位の付与と独立に制御するための電位制御部とを備え、
前記電位制御部は、
前記静電チャックに前記第1被吸着体が吸着され記静電チャックに前記第2被吸着体が吸着されない静電吸着力が発生している状態から、前記第1電極と前記第2電極に付与される電位の少なくとも一つを変化させることによって、前記第2被吸着体に及ぼす静電吸着力を変化させ、
前記第1電極に付与される電位と前記第2電極に付与される電位との間の電位差は変化させずに、前記第1電極に付与される電位と前記第2電極に付与される電位との和の絶対値を大きくすることを特徴とする吸着装置。
An electrostatic chuck having a first electrode and a second electrode for generating an electrostatic adsorption force for adsorbing a second adsorbed body by sandwiching the first adsorbed body and the first adsorbed body, and an electrostatic chuck.
A potential applying portion that applies a potential to the first electrode and the second electrode,
A potential control unit for independently controlling the application of the potential to the first electrode and the application of the potential to the second electrode by the potential applying unit is provided.
The potential control unit
From the state where the first electrode to be adsorbed is attracted to the electrostatic chuck and the electrostatic attraction force is generated so that the second adsorbed body is not adsorbed to the electrostatic chuck, the first electrode and the second electrode are generated. By changing at least one of the potentials applied to the electrodes, the electrostatic adsorption force exerted on the second object to be adsorbed is changed.
The potential applied to the first electrode and the potential applied to the second electrode are the same without changing the potential difference between the potential applied to the first electrode and the potential applied to the second electrode. An adsorption device characterized by increasing the absolute value of the sum of.
前記電位制御部は、前記静電チャックに前記第1被吸着体が吸着され、前記静電チャックに前記第2被吸着体が吸着されていない状態から、前記静電チャックと前記第2被吸着体を支持する支持機構との間の離隔距離を維持したまま、前記第1電極と前記第2電極に付与される電位の少なくとも一つを変化させることによって、前記第2被吸着体に及ぼす静電吸着力を変化させることを特徴とする請求項6に記載の吸着装置。 The potential control unit has the electrostatic chuck and the second adsorbed body from the state where the first adsorbed body is adsorbed on the electrostatic chuck and the second adsorbed body is not adsorbed on the electrostatic chuck. Static electricity exerted on the second adsorbed body by changing at least one of the potentials applied to the first electrode and the second electrode while maintaining the separation distance between the support mechanism that supports the body. The suction device according to claim 6, wherein the electric suction force is changed. 基板にマスクを介して成膜を行うための成膜装置であって、
第1被吸着体である基板、及び前記基板越しに第2被吸着体であるマスクを吸着するための吸着装置を含み、
前記吸着装置は、請求項1から7のいずれか一項に記載の吸着装置であることを特徴とする成膜装置。
It is a film forming apparatus for forming a film on a substrate via a mask.
It includes a substrate which is a first adsorbed body and an adsorption device for adsorbing a mask which is a second adsorbed body through the substrate.
The film forming apparatus according to any one of claims 1 to 7, wherein the adsorption apparatus is the adsorption apparatus.
第1電極と第2電極を有する静電チャックに、第1被吸着体と該第1被吸着体を挟んで第2被吸着体吸着するための方法であって、
接地電位に対する第1電位を前記第1電極に付与し前記第2電極に前記接地電位に対する第2電位を付与して静電吸着力が発生し、前記第2被吸着体は吸着せずに前記第1被吸着体を前記静電チャックに吸着する第1吸着段階と、
前記接地電位に対する第3電位を前記第1電極に付与し前記接地電位に対する第4電位を前記第2電極に付与し、前記第1被吸着体を挟んで前記第2被吸着体を前記静電チャックに吸着する第2吸着段階とを含み、
前記第3電位と前記第4電位との電位差は、第1電位と前記第2電位との電位差と同一であり、
前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする吸着方法。
It is a method for adsorbing a second adsorbed body by sandwiching the first adsorbed body and the first adsorbed body on an electrostatic chuck having a first electrode and a second electrode.
A first potential with respect to the ground potential is applied to the first electrode, a second potential with respect to the ground potential is applied to the second electrode to generate an electrostatic adsorption force , and the second object to be adsorbed is not adsorbed. The first adsorption step of adsorbing the first object to be adsorbed to the electrostatic chuck and
A third potential with respect to the ground potential is applied to the first electrode, a fourth potential with respect to the ground potential is applied to the second electrode, and the second adsorbed body is electrostatically charged with the first adsorbed body interposed therebetween. Including the second adsorption step of adsorption to the chuck
The potential difference between the third potential and the fourth potential is the same as the potential difference between the first potential and the second potential.
An adsorption method characterized in that the absolute value of the sum of the third potential and the fourth potential is larger than the absolute value of the sum of the first potential and the second potential.
前記第1電位と前記第2電位は、絶対値の大きさは同じで、極性は反対であることを特徴とする請求項9に記載の吸着方法。 The adsorption method according to claim 9, wherein the first potential and the second potential have the same absolute value and opposite polarities. 前記第3電位と前記第4電位のうち一つは、0Vであることを特徴とする請求項9または10に記載の吸着方法。 The adsorption method according to claim 9 or 10, wherein one of the third potential and the fourth potential is 0V. 前記第1電極と前記第2電極は、交互に配置されていることを特徴とする請求項9から11のいずれか一項に記載の吸着方法。 The adsorption method according to any one of claims 9 to 11, wherein the first electrode and the second electrode are arranged alternately. 前記第1被吸着体は絶縁性の基板であり、前記第2被吸着体は金属性のマスクであるこ
とを特徴とする請求項9から12のいずれか一項に記載の吸着方法。
The adsorption method according to any one of claims 9 to 12, wherein the first adsorbed body is an insulating substrate, and the second adsorbed body is a metallic mask.
第1電極と第2電極を有する静電チャックに基板と該基板を挟んでマスクを吸着し、成膜材料を成膜する成膜方法であって、
真空容器内にマスクを搬入する段階と、
前記真空容器内に基板を搬入する段階と、
接地電位に対する第1電位を前記第1電極に付与し前記接地電位に対する第2電位を前記第2電極に付与し、前記マスクは吸着せずに前記基板を前記静電チャックに吸着する段階と、
前記接地電位に対する第3電位を前記第1電極に付与し前記接地電位に対する第4電位を前記第2電極に付与し、前記基板を挟んで前記マスクを前記静電チャックに吸着する段階と、
前記静電チャックに前記基板及び前記マスクが吸着された状態で、前記成膜材料を放出させて、前記マスクを介して前記基板に前記成膜材料を成膜する段階とを含み、
前記第3電位と前記第4電位との電位差は、前記第1電位と前記第2電位との電位差と同一であり、
前記第3電位と前記第4電位との和の絶対値は、前記第1電位と前記第2電位との和の絶対値よりも大きいことを特徴とする成膜方法。
It is a film forming method for forming a film forming material by sandwiching a substrate and the substrate on an electrostatic chuck having a first electrode and a second electrode and adsorbing the mask.
At the stage of bringing the mask into the vacuum container,
The stage of carrying the substrate into the vacuum container and
A step of applying a first potential with respect to the ground potential to the first electrode, applying a second potential to the ground potential to the second electrode, and adsorbing the substrate to the electrostatic chuck without adsorbing the mask.
A step of applying a third potential with respect to the ground potential to the first electrode, applying a fourth potential to the ground potential to the second electrode, sandwiching the substrate, and adsorbing the mask to the electrostatic chuck.
This includes a step of releasing the film-forming material in a state where the substrate and the mask are adsorbed on the electrostatic chuck, and forming the film-forming material on the substrate through the mask.
The potential difference between the third potential and the fourth potential is the same as the potential difference between the first potential and the second potential.
A film forming method characterized in that the absolute value of the sum of the third potential and the fourth potential is larger than the absolute value of the sum of the first potential and the second potential.
請求項14の成膜方法を用いて、電子デバイスを製造することを特徴とする電子デバイスの製造方法。 A method for manufacturing an electronic device, which comprises manufacturing an electronic device by using the film forming method according to claim 14.
JP2020141210A 2019-09-07 2020-08-24 Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device Active JP7007688B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190111120A KR102520050B1 (en) 2019-09-07 2019-09-07 Suction apparatus, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
KR10-2019-0111120 2019-09-07

Publications (2)

Publication Number Publication Date
JP2021042467A JP2021042467A (en) 2021-03-18
JP7007688B2 true JP7007688B2 (en) 2022-01-25

Family

ID=74833995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141210A Active JP7007688B2 (en) 2019-09-07 2020-08-24 Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device

Country Status (3)

Country Link
JP (1) JP7007688B2 (en)
KR (1) KR102520050B1 (en)
CN (1) CN112458437A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347457A (en) * 2021-12-28 2022-04-15 广州国显科技有限公司 Attaching system and attaching method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093895A (en) 2000-09-11 2002-03-29 Sharp Corp Electrostatic chucking device
JP2008147430A (en) 2006-12-11 2008-06-26 Tomoegawa Paper Co Ltd Electrostatic sucking method
JP2011181462A (en) 2010-03-03 2011-09-15 Hitachi Displays Ltd Method of manufacturing display panel
JP2016539489A (en) 2013-09-20 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate carrier with integrated electrostatic chuck
JP2019502017A (en) 2016-12-12 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus for holding a substrate in a vacuum deposition process, system for depositing a layer on a substrate, and method for holding a substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310589A (en) * 1993-04-26 1994-11-04 Sony Corp Electrostatic absorption method and device
KR101289345B1 (en) * 2005-07-19 2013-07-29 주성엔지니어링(주) Shadow mask and alignment apparatus using the same
US20070195482A1 (en) * 2006-02-23 2007-08-23 Varian Semiconductor Equipment Associates, Inc. Johnsen-Rahbek electrostatic chuck driven with AC voltage
JP4620766B2 (en) * 2008-07-31 2011-01-26 東京エレクトロン株式会社 Peeling device and peeling method
US20130199445A1 (en) * 2010-10-19 2013-08-08 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, and method for producing organic electroluminescence display device
JP6075555B2 (en) * 2013-07-05 2017-02-08 日新イオン機器株式会社 Electrostatic chuck system and semiconductor manufacturing apparatus
KR102490641B1 (en) * 2015-11-25 2023-01-20 삼성디스플레이 주식회사 Deposition device and depositing method
KR102520693B1 (en) * 2016-03-03 2023-04-11 엘지디스플레이 주식회사 Deposition Apparatus
KR102008581B1 (en) * 2017-11-29 2019-08-07 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093895A (en) 2000-09-11 2002-03-29 Sharp Corp Electrostatic chucking device
JP2008147430A (en) 2006-12-11 2008-06-26 Tomoegawa Paper Co Ltd Electrostatic sucking method
JP2011181462A (en) 2010-03-03 2011-09-15 Hitachi Displays Ltd Method of manufacturing display panel
JP2016539489A (en) 2013-09-20 2016-12-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate carrier with integrated electrostatic chuck
JP2019502017A (en) 2016-12-12 2019-01-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus for holding a substrate in a vacuum deposition process, system for depositing a layer on a substrate, and method for holding a substrate

Also Published As

Publication number Publication date
CN112458437A (en) 2021-03-09
KR102520050B1 (en) 2023-04-07
JP2021042467A (en) 2021-03-18
KR20210029899A (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP7010800B2 (en) Film forming device, film forming method, and manufacturing method of organic EL display device
JP7278541B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
CN111128828B (en) Adsorption and alignment method, adsorption system, film forming method and apparatus, and method for manufacturing electronic device
KR102505832B1 (en) Adsorption apparatus, position adjusting method, and method for forming film
JP7024044B2 (en) Film forming equipment, film forming method using this, and manufacturing method of electronic devices
JP7007688B2 (en) Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
JP2020021926A (en) Electrostatic chuck system, film forming apparatus, suction method, film forming method, and electronic device manufacturing method
JP7021318B2 (en) Film forming equipment and control method of film forming equipment
JP7271242B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7127765B2 (en) Electrostatic chuck, film forming apparatus, substrate adsorption method, film forming method, and electronic device manufacturing method
KR102430370B1 (en) Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
KR102421610B1 (en) Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
JP2021098884A (en) Film deposition apparatus, film deposition method and manufacturing method of electronic device
JP7078696B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP2020050952A (en) Electrostatic chuck system, film deposition device, adsorbed body separation method, film deposition method, and electronic device manufacturing method
KR20200014109A (en) Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
JP7162845B2 (en) Electrostatic chuck system, film forming apparatus, adsorption and separation method, film forming method, and electronic device manufacturing method
JP6956244B2 (en) Film formation equipment and film formation method
JP7224167B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
CN113005398B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
JP7224172B2 (en) ELECTROSTATIC CHUCK SYSTEM, FILM FORMING APPARATUS, ATTACHED BODY SEPARATING METHOD, FILM FORMING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
KR102481907B1 (en) Film forming apparatus, film forming method and manufacturinh method of electronic device
JP2020053662A (en) Electrostatic chuck system, deposition device, adsorbed body separation method, deposition method and manufacturing method for electronic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7007688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150