JP7004595B2 - インペラ、遠心圧縮機、及びガスタービン - Google Patents

インペラ、遠心圧縮機、及びガスタービン Download PDF

Info

Publication number
JP7004595B2
JP7004595B2 JP2018043386A JP2018043386A JP7004595B2 JP 7004595 B2 JP7004595 B2 JP 7004595B2 JP 2018043386 A JP2018043386 A JP 2018043386A JP 2018043386 A JP2018043386 A JP 2018043386A JP 7004595 B2 JP7004595 B2 JP 7004595B2
Authority
JP
Japan
Prior art keywords
turbine
hole
impeller
compressor
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018043386A
Other languages
English (en)
Other versions
JP2019157710A (ja
JP2019157710A5 (ja
Inventor
穣 枡谷
邦明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018043386A priority Critical patent/JP7004595B2/ja
Priority to US16/294,213 priority patent/US11156094B2/en
Priority to CN201910175100.0A priority patent/CN110242613A/zh
Priority to DE102019001588.6A priority patent/DE102019001588A1/de
Publication of JP2019157710A publication Critical patent/JP2019157710A/ja
Publication of JP2019157710A5 publication Critical patent/JP2019157710A5/ja
Application granted granted Critical
Publication of JP7004595B2 publication Critical patent/JP7004595B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3212Application in turbines in gas turbines for a special turbine stage the first stage of a turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/14Micromachining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、インペラ、遠心圧縮機、ガスタービン及びインペラの製造方法に関するものである。
従来、インペラとして、軸心部に円筒形状の吸込口を設けたクローズドタイプのインペラが知られている(例えば、特許文献1参照)。このインペラは、円板部と、円板部の両側から突出する一対の突起部とを有し、片側の突起部の内部に、吸込口が形成され、吸込口に連なる流体流路が、円板部に形成されている。
登録実用新案第3157493号公報
ところで、一般的なクローズドインペラは、ハブ、シュラウド及び複数の羽根からなっている。このようなクローズドインペラを製造する場合、先ず、金属塊をNC加工することで、ハブと複数の羽根とを一体に切り出し、この後、複数の羽根に、シュラウドを溶接やロウ付け等により接合する。この場合、金属塊をNC加工により、ハブと複数の羽根とを含む複雑な形状に切削することから、加工コストの抑制を図ることが困難となる。また、複数の羽根とシュラウドとを接合する場合、接合部が形成されることから、この接合部がインペラの構造強度の低下を招く部位となる可能性がある。
ここで、特許文献1において、円板部には、吸込口に連なる流体流路が形成されており、流体流路は、円板部の中心から外側に向かって直線状に形成されている。しかしながら、インペラの吸込口(流入口)と、吸込口から吐出口(流出口)へ向かう流体流路とは、それぞれ独立した流路として形成されていることから、吸込口と流体流路とを一体に形成することはできず、加工の簡素化を図ることが難しく、加工コストの抑制を図ることが困難となっている。
そこで、本発明は、製造コストの低減を図りつつ、構造強度の向上を図ることができるインペラ、遠心圧縮機、ガスタービン及びインペラの製造方法を提供することを課題とする。
本発明のインペラは、回転軸を中心に回転するハブと、前記回転軸の軸方向において前記ハブに対向して設けられるシュラウドと、前記ハブと前記シュラウドとの間に設けられ、前記回転軸の周方向に並べて設けられる複数の羽根と、前記ハブ、前記シュラウド及び複数の前記羽根により区画され、前記回転軸の軸方向から流体を流入させ、前記回転軸の径方向外側へ向かって流体を流出させる、前記回転軸の周方向に並べて設けられる複数の昇圧流路と、を備え、前記昇圧流路は、前記回転軸の軸方向の端面に形成される流入口と、前記回転軸の径方向の外側の外周面に形成される流出口と、を有し、前記流入口から前記流出口に向かって直線状に貫通形成される貫通孔であることを特徴とする。
この構成によれば、直線状となる貫通孔を貫通形成することで、昇圧流路を形成することができるため、製造コストの低減を図ることができる。また、貫通孔を形成することで昇圧流路を形成できるため、ハブ、シュラウド及び複数の羽根を分割して製造する必要がないことから、ハブ、シュラウド及び複数の羽根へ接合部を形成することなく、一体に形成できる。つまり、ハブ、シュラウド及び複数の羽根を一体に形成することで、接合部の形成を省くことができ、これにより、構造強度の向上を図ることができる。
また、前記回転軸の軸方向から見た面内において、前記流入口から前記流出口へ向かう前記貫通孔の貫通方向は、前記回転軸の中心と前記流入口とを結ぶ線分に対して直交する、前記流入口における接線方向であることが、好ましい。
この構成によれば、回転軸の中心から昇圧流路までの径方向の距離を、流入口から流出口に向かうにつれて大きくすることができる。このため、インペラによる昇圧機能を適切に発揮させることができる。
また、前記回転軸の径方向から見た面内において、前記軸方向の端面に対する前記貫通孔の傾斜方向は、前記流入口に流入する前記流体の相対流入角の方向に沿った方向となっていることが、好ましい。
この構成によれば、流入口を介して流体を昇圧流路に好適に導入させることができる。
また、前記ハブは、軸中心に前記回転軸が挿通される挿通孔が形成された円環形状に形成されており、前記回転軸の軸方向から見た面内において、前記ハブの内周面と前記流入口との間の距離は、前記流入口と前記ハブの外周面との間の距離よりも短いことが、好ましい。
この構成によれば、ハブの内周面と流入口との間の距離を短くすることで、回転軸の中心から流入口までの径方向の距離を短くできる。このため、回転軸の中心から昇圧流路までの径方向の距離を、流入口から流出口に向かうにつれてより大きくすることができ、インペラによる昇圧機能をより高めることができる。
本発明の遠心圧縮機は、上記のインペラと、前記インペラに接続され、前記インペラを回転させる回転軸と、を備えることを特徴とする。
この構成によれば、構造強度が高く、コストの低いインペラを用いた遠心圧縮機を提供することができる。
本発明のガスタービンは、空気を取り込んで圧縮する圧縮機と、前記圧縮機により圧縮した圧縮空気と燃料とを混合して燃焼させる燃焼器と、前記燃焼器により前記燃料を燃焼させることで発生した燃焼ガスにより回転するタービンと、前記圧縮機から抽気した圧縮空気を取り込んで昇圧し、昇圧した圧縮空気を冷却空気として吐出する、上記の遠心圧縮機と、を備えることを特徴とする。
この構成によれば、遠心圧縮機により圧縮空気を昇圧し、冷却空気として供給することができる。
本発明のインペラの製造方法は、回転軸を中心に回転するハブと、前記回転軸の軸方向において前記ハブに対向して設けられるシュラウドと、前記ハブと前記シュラウドとの間に設けられ、前記回転軸の周方向に並べて設けられる複数の羽根と、前記ハブ、前記シュラウド及び複数の前記羽根により区画され、前記回転軸の軸方向から流体を流入させ、前記回転軸の径方向外側へ向かって流体を流出させる、前記回転軸の周方向に並べて設けられる複数の昇圧流路と、を備えるインペラを製造するインペラの製造方法において、前記昇圧流路は、前記回転軸の軸方向の端面に形成される流入口と、前記回転軸の径方向の外側の外周面に形成される流出口と、を有しており、前記流入口から前記流出口に向かって直線状に貫通孔を貫通形成して、前記貫通孔を昇圧流路とする加工工程を行うことを特徴とする。
この構成によれば、加工工程において、直線状となる貫通孔を貫通形成することで、昇圧流路を容易に形成することができるため、加工コストの低減を図ることができる。
また、前記加工工程では、ドリル加工またはフライス加工を行って、前記貫通孔を形成することが、好ましい。
この構成によれば、貫通孔をドリル加工またはフライス加工により貫通形成することで、簡易な加工設備で、効率のよい加工作業を行うことができるため、加工コストの低減をより図ることができる。
また、前記貫通孔の内周面を研磨する研磨工程を、さらに備えることが、好ましい。
この構成によれば、研磨工程により貫通孔の内周面を滑らかにできるため、昇圧流路における流路抵抗の増大を抑制することができる。
図1は、実施形態1に係るガスタービンの概略構成図である。 図2は、実施形態1に係るガスタービンの燃焼器周辺の拡大断面である。 図3は、実施形態1に係るインペラの平面図である。 図4は、実施形態1に係るインペラの側面図である。 図5は、実施形態1に係るインペラの斜視図である。 図6は、実施形態1に係るインペラの子午断面を示す概略断面図である。 図7は、実施形態2に係るインペラの貫通孔の断面図である。 図8は、実施形態2に係るインペラの一部を拡大した側面図である。
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
図1は、実施形態1に係るガスタービンの概略構成図である。図2は、実施形態1に係るガスタービンの燃焼器周辺の拡大断面である。図3は、実施形態1に係るインペラの平面図である。図4は、実施形態1に係るインペラの側面図である。図5は、実施形態1に係るインペラの斜視図である。図6は、実施形態1に係るインペラの子午断面を示す概略断面図である。
図1に示すように、ガスタービン101は、圧縮機1と燃焼器2とタービン3とを備えている。このガスタービン101は、圧縮機1、燃焼器2およびタービン3の中心部に、回転軸であるタービン軸4が貫通して配置されている。圧縮機1、燃焼器2およびタービン3は、タービン軸4の軸心Cに沿い、空気の流れの前側から後側に向かって順に並設されている。なお、以下の説明において、タービン軸方向とは軸心Cに平行な方向をいい、タービン周方向とは軸心Cを中心とした周り方向をいい、タービン径方向とは軸心Cに直交する方向をいう。また、タービン径方向内側はタービン径方向において軸心Cに向かう側で、タービン径方向外側はタービン径方向において軸心Cから離れる側である。
圧縮機1は、空気を圧縮して圧縮空気とするものである。圧縮機1は、空気を取り込む空気取入口11を有した円筒形状の圧縮機ケーシング12内に圧縮機静翼13および圧縮機動翼14が設けられている。圧縮機静翼13は、圧縮機ケーシング12側に取り付けられてタービン周方向に複数並設されている。また、圧縮機動翼14は、タービン軸4側に取り付けられてタービン軸4を中心としたタービン周方向に複数並設されている。これら圧縮機静翼13と圧縮機動翼14とは、タービン軸方向に沿って交互に設けられている。圧縮機1は、出口16に最終段静翼13aがタービン周方向に複数並設されている。また、圧縮機1は、出口16において最終段静翼13aよりも下流に出口案内静翼15がタービン周方向に複数並設される場合がある。
燃焼器2は、圧縮機1で圧縮された圧縮空気に対して燃料を供給することで、高温・高圧の燃焼ガスを生成するものである。燃焼器2は、圧縮空気と燃料を混合して燃焼させる燃焼筒21と、燃焼筒21から燃焼ガスをタービン3に導く尾筒22とを有している。燃焼筒21は、車室Rをなす円筒形状の燃焼器ケーシング23内においてタービン軸4を中心としたタービン周方向に複数(例えば16個)並設されている。
各燃焼筒21は、図2に示すように、筒型に形成され、その内部の中心にパイロット燃焼バーナ21Aが配置されている。また、燃焼筒21は、その内周面に沿ってパイロット燃焼バーナ21Aを取り囲むように複数のメイン燃焼バーナ21Bが配置されている。パイロット燃焼バーナ21Aは、燃焼筒21に支持されたパイロットコーン21Aaと、パイロットコーン21Aaの内部に配置されたパイロットノズル21Abとから構成されている。また、各メイン燃焼バーナ21Bは、メインノズル21Baと、メインノズル21Baの外周部に設けられる旋回翼(スワラーベーン)21Bbとから構成されている。また、燃焼筒21は、図示しないパイロット燃料ラインがパイロットノズル21Abに連結され、図示しないメイン燃焼ラインが各メインノズル21Baに連結されている。また、燃焼筒21は、パイロット燃焼バーナ21Aを囲む内筒21Cにより、当該内筒21Cの内側にパイロット燃焼バーナ21A側に圧縮空気を送る流路が形成され、内筒21Cの外側にメイン燃焼バーナ21B側に圧縮空気を送る流路が形成される。この燃焼筒21は、筒型の軸がタービン軸方向に沿って配置され、給気口24が筒型の開口部とされて、当該給気口24を圧縮機1の出口16側に向けて配置される。この燃焼筒21は、高温・高圧の圧縮空気の空気流が給気口24から内部に流れ込むと、この圧縮空気がメイン燃焼バーナ21Bから噴射された燃料と混合され、予混合気の旋回流となる。また、圧縮空気は、パイロット燃焼バーナ21Aから噴射された燃料と混合され、図示しない種火により着火されて燃焼し、燃焼ガスとなって燃焼筒21内に噴出される。このとき、燃焼ガスの一部が燃焼筒21内に火炎を伴って周囲に拡散するように噴出されることで、各メイン燃焼バーナ21Bから燃焼筒21内に流れ込んだ予混合気に着火されて燃焼する。すなわち、パイロット燃焼バーナ21Aから噴射されたパイロット燃料による拡散火炎により、メイン燃焼バーナ21Bからの希薄予混合燃料の安定燃焼を行うための保炎を行うことができる。
また、各燃焼筒21は、圧縮機1に対して圧縮機ディフューザ5を介して接続されている。圧縮機ディフューザ5は、圧縮機1からの圧縮空気を燃焼筒21に導く空気通路をなす筒体であり、一端51が圧縮機1における出口16に接続され、他端52が燃焼器2における燃焼筒21の給気口24に接側されて、圧縮機1と個々の燃焼器2とを繋ぐ。
タービン3は、燃焼器2で燃焼された燃焼ガスにより回転動力を生じるものである。タービン3は、円筒形状のタービンケーシング31内にタービン静翼32およびタービン動翼33が設けられている。タービン静翼32は、タービンケーシング31側に取り付けられてタービン周方向に複数並設されている。また、タービン動翼33は、タービン軸4側に取り付けられてタービン周方向に複数並設されている。これらタービン静翼32とタービン動翼33とは、タービン軸方向に沿って交互に設けられている。また、タービンケーシング31の後側には、タービン3に連続する排気ディフューザ34aを有した排気室34が設けられている。
タービン軸4は、圧縮機1側の端部が軸受部41により支持され、排気室34側の端部が軸受部42により支持されて、軸心Cを中心として回転自在に設けられている。そして、タービン軸4は、図には明示しないが、圧縮機1側の端部に発電機の駆動軸が連結されている。
このようなガスタービン101は、圧縮機1の空気取入口11から取り込まれた空気が、複数の圧縮機静翼13と圧縮機動翼14とを通過して圧縮されることで高温・高圧の圧縮空気となる。この圧縮空気に対し、燃焼器2において燃料が混合されて燃焼されることで高温・高圧の燃焼ガスが生成される。そして、この燃焼ガスがタービン3のタービン静翼32とタービン動翼33とを通過することでタービン軸4が回転駆動され、このタービン軸4に連結された発電機に回転動力を付与することで発電を行う。そして、タービン軸4を回転駆動した後の排気ガスは、排気室34の排気ディフューザ34aを経て排気ガスとして大気に放出される。
実施形態1のガスタービン101は、圧縮機ディフューザ5に抽気部55が設けられている。抽気部55は、圧縮機ディフューザ5から圧縮空気を抽気するため圧縮機ディフューザ5の内外に通じる穴として形成されている。実施形態1において、抽気部55は、圧縮機ディフューザ5の一端51と他端52との少なくとも一方に設けられている。例えば、抽気部55は、圧縮機ディフューザ5の一端51の縁部分や他端52の縁部分に形成された穴である。従って、抽気部55により、圧縮機ディフューザ5を介して圧縮機1から燃焼筒21に送られる圧縮空気Pの一部が、車室Rをなす円筒形状の燃焼器ケーシング23内に取り出される。
この抽気部55に関連し、ガスタービン101は、タービン軸4の外周に、タービン周方向に沿ってリング形状をなす中間軸カバー6が装着されている。そして、この中間軸カバー6の外周において、燃焼器ケーシング23内であって複数の燃焼筒21の外側に車室Rが区画される。
そして、実施形態1のガスタービン101は、冷却装置7を有している。冷却装置7は、車室Rから燃焼器ケーシング23の外部に通じる排気管71と、燃焼器ケーシング23の外部から燃焼器ケーシング23を貫通して中間軸カバー6の内部(タービン軸4側)に通じる給気管72と、排気管71と給気管72とを連通する冷却管73と、冷却管73の途中に設けられた熱交換器(TCAクーラ)74と、を有する。
従って、抽気部55により車室Rに取り出された圧縮空気Pは、排気管71から燃焼器ケーシング23の外部の冷却管73に排気され熱交換器74にて冷媒と熱交換されて冷却空気となり、給気管72を介して中間軸カバー6の内部に供給される。そして、この圧縮空気Pの冷却空気により、タービン静翼32やタービン動翼33やタービン軸4などを冷却することができる。
さらに、実施形態1のガスタービン101は、昇圧装置8と、ディフューザ9と、マニホールド10と、を有している。
昇圧装置8は、中間軸カバー6の内部であってタービン静翼(実施形態1ではタービン3の入口部に配置された第一段タービン静翼)32のタービン径方向内側に設けられている。昇圧装置8は、タービン軸4に固定されるクローズタイプのインペラ81からなる、いわゆる遠心圧縮機として構成されている。インペラ81は、シュラウド8aと、シュラウド8aにタービン軸方向で対向するハブ8bと、シュラウド8aとハブ8bとの間に設けられた羽根8cとを有しており、シュラウド8aとハブ8bとの間にタービン軸方向からタービン径方向外側に向く昇圧流路8dが形成されている。この昇圧装置8は、タービン軸4の回転に伴ってシュラウド8a、ハブ8bおよび羽根8cが回転することで、冷却装置7により中間軸カバー6の内部に供給された圧縮空気Pの冷却空気をタービン軸方向からシュラウド8aとハブ8bとの間の昇圧流路8dに吸い込んでタービン径方向外側に向け昇圧しつつ昇圧流路8dから吐出する。
ディフューザ9は、タービンケーシング31に固定されており、昇圧装置8のタービン径方向外側でタービン周方向に連続して設けられている。ディフューザ9は、板材がリング状に形成された1対の案内板9aがタービン軸方向で対向しタービン軸4を中心として配置されることでタービン径方向外側に向かって断面積が増大する通路9bを形成している。そして、通路9bは、そのタービン径方向内側端が昇圧装置8における昇圧流路8dの吐出口であるタービン径方向外側端に向き合って設けられている。従って、ディフューザ9は、昇圧装置8のタービン径方向外側において昇圧装置8で昇圧されて昇圧流路8dから吐出された圧縮空気Pの冷却空気をタービン径方向外側に案内しつつ減速させる。なお、ディフューザ9は、案内板9aを有さずにタービンケーシング31に形成された環状の空間により通路9bが形成されていてもよい。また、ディフューザ9は、通路9b内に圧縮空気Pの冷却空気のタービン径方向外側への流れを整える固定の羽根が設けられていてもよい。
マニホールド10は、タービンケーシング31に固定されており、図に示すように、タービン周方向に複数並設されたタービン静翼32と、ディフューザ9との間に配置されている。マニホールド10は、タービン軸4を中心としてタービン周方向に連続するリング状通路10aが形成されている。マニホールド10は、リング状通路10aのタービン径方向内側がタービン周方向に連続して開放された開口部10bを有しており、当該開口部10bがディフューザ9における通路9bのタービン径方向外側端に連通するようにディフューザ9に連結されている。また、マニホールド10は、リング状通路10aのタービン径方向外側がタービン径方向に貫通し、タービン周方向に複数並設された穴部10cを有しており、当該穴部10cが各タービン静翼32に設けられた冷却通路32aに連通するように各タービン静翼32のシュラウド部32bに連結されている。冷却通路32aは、1つのタービン静翼32の内部に複数形成され、タービン径方向内側のシュラウド部32bにおいて1つの入口部32baにまとめられ、穴部10cは、この入口部32baに連通するように形成されている。従って、マニホールド10は、ディフューザ9によりタービン径方向外側に案内された圧縮空気Pの冷却空気をタービン周方向に案内しつつ各タービン静翼32の冷却通路32aに供給する。
このようなガスタービン101によれば、昇圧装置8で昇圧された圧縮空気Pの冷却空気をディフューザ9によりタービン径方向外側に案内し、かつディフューザ9によりタービン径方向外側に案内された圧縮空気Pの冷却空気をマニホールド10により各タービン静翼32の冷却通路32aに供給する。このため、昇圧装置8で昇圧されて各タービン静翼32に供給する圧縮空気Pの冷却空気の圧力損失を低減することができる。
次に、図3から図6を参照して、昇圧装置8のインペラ81について説明する。インペラ81は、タービン軸4に固定されることから、円環形状となっている。このインペラ81は、タービン軸4が大径となる一方で、インペラ81を設置するスペースに制限があることから、内径及び外径が大きく、内外径差が小さいものとなっている。また、インペラ81は、タービン軸方向における幅も狭いものとなっている。
インペラ81は、タービン軸方向から流体としての冷却空気(圧縮空気P)を導入し、タービン径方向外側へ向かって冷却空気を吐出する。インペラ81は、上記したように、ハブ8bと、シュラウド8aと、複数の羽根8cとを有し、ハブ8b、シュラウド8a及び複数の羽根8cにより複数の昇圧流路8dが区画されている。換言すれば、このインペラ81は、円環形状となる部材に対して、複数の昇圧流路8dを形成することで、ハブ8b、シュラウド8a及び複数の羽根8cが一体となったインペラ81として形成される。
昇圧流路8dは、タービン軸方向の端面に形成される流入口83と、タービン径方向の外側の外周面に形成される流出口84と、を有している。また、昇圧流路8dは、流入口83から流出口84に向かって直線状に貫通形成される貫通孔82により形成されている。このため、複数の昇圧流路8dは、上記の貫通孔82が、軸心Cを中心にして、タービン周方向に点対称に複数並べて形成されることで配置される。また、貫通孔82は、断面円形となる丸穴に形成される。
図3に示すように、タービン軸方向の端面に形成される流入口83は、その中心と軸心Cとを結ぶタービン径方向の線分に対して、直交する接線方向に延在して形成されている。つまり、タービン軸方向から見た平面内において、貫通孔82は、流入口83の中心から接線方向へ向かう方向に貫通形成されている。
また、図4に示すように、タービン径方向外側の外周面に形成される流出口84は、その延在する方向が、タービン軸方向に直交する面に対して傾斜して形成されている。つまり、タービン径方向から見た側面内において、貫通孔82は、タービン軸方向に直交する面に対して所定の貫通方向(傾斜方向)に延在している。換言すれば、貫通孔82は、タービン軸方向に直交する面に対して傾斜角度θが所定の傾斜角度となるように貫通形成されている。ここで、貫通孔82の貫通方向は、流入口83に流入する冷却空気の相対流入角の方向に沿った方向となっており、具体的に、貫通孔82の所定の傾斜角度θとしては、例えば、流入口83に流入する冷却空気の相対流入角に対して±5°程度の範囲となっている。
再び、図3を参照するに、インペラ81は、軸心Cから昇圧流路8dまでの径方向の距離を、流入口83から流出口84に向かうにつれて大きくすることで、圧縮性能を高めることができる。つまり、軸心Cから流入口83までのタービン径方向の距離と、軸心Cから流出口84までのタービン径方向の距離との差分が大きければ大きいほど、インペラ81の圧縮性能を高いものとすることができる。このため、タービン軸方向から見た面内において、ハブ8bの内周面と流入口83(の中心)との間のタービン径方向における距離Liは、流入口83(の中心)とシュラウド8aの外周面との間の距離Loよりも短くなっている。これにより、流入口83を軸心C側に近づけることができるため、上記の差分を大きくすることが可能となる。なお、実施形態1では、距離Liを、距離Loよりも短くしたが、特に限定されず、距離Liと距離Loとが同じ距離であってもよい。
次に、上記のインペラ81を製造する製造方法について説明する。上記のインペラ81を製造する場合、先ず、ハブ8b、シュラウド8a及び複数の羽根8cの外形を含む円環形状の部材を用意する。つまり、複数の昇圧流路8dが形成される前の形状となる円環形状の部材を用意する。この円環形状の部材に対して、貫通孔82を貫通形成して昇圧流路8dを形成する加工工程を実行する。
この加工工程では、ドリル加工またはフライス加工等の切削加工によって、円環形状の部材に対し、直線状の貫通孔82を貫通形成する。このとき、貫通孔82の貫通方向は、タービン軸方向から見た面内において、形成される流入口83の中心から、タービン径方向に直交する接線方向へ向かう方向となっている。また、貫通孔82の貫通方向は、タービン径方向から見た面内において、流入口83に流入する冷却空気の相対流入角となる傾斜角度θの方向となっている。
そして、加工工程の実行後、貫通孔82の内面を研磨する研磨加工を行ってもよい。研磨工程では、貫通孔82の内面が滑らかとなるように研磨することで、貫通孔82の流路抵抗を低減する。
以上のように、実施形態1によれば、直線状となる貫通孔82を貫通形成することで、簡易な加工により昇圧流路8dを形成することができるため、製造コストの低減を図ることができる。また、貫通孔82を形成することで昇圧流路8dを形成できるため、ハブ8b、シュラウド8a及び複数の羽根8cを分割して製造する必要がないことから、ハブ8b、シュラウド8a及び複数の羽根8cへ接合部を形成することなく、一体に形成できる。つまり、ハブ8b、シュラウド8a及び複数の羽根8cを一体に形成することで、接合部の形成を省くことができ、これにより、インペラ81の構造強度の向上を図ることができる。
また、実施形態1によれば、貫通孔82の貫通方向を、流入口83の中心から接線方向へ向かう方向としているため、軸心Cから昇圧流路8dまでの径方向の距離を、流入口83から流出口84に向かうにつれて大きくすることができる。このため、昇圧機能を適切に発揮できるインペラ81とすることができる。
また、実施形態1によれば、貫通孔82の貫通方向を、流入口83に流入する冷却空気の相対流入角の方向に沿った方向にすることができる。具体的には前述のとおり、貫通孔82の傾斜角度θを、冷却空気の相対流入角に対して±5°程度の範囲にすることにより、流入口83を介して冷却空気を昇圧流路8dに好適に導入させることができる。
また、実施形態1によれば、ハブ8bの内周面と流入口83との間の距離を短くすることで、軸心Cから流入口83までの径方向の距離を短くできる。このため、軸心Cから昇圧流路8dまでの径方向の距離を、流入口83から流出口84に向かうにつれてより大きくすることができ、インペラ81による昇圧機能をより高めることができる。
また、実施形態1によれば、貫通孔82をドリル加工またはフライス加工により貫通形成することで、簡易な加工設備で、効率のよい加工作業を行うことができるため、加工コストの低減をより図ることができる。
また、実施形態1によれば、研磨工程により貫通孔82の内周面を滑らかにできるため、昇圧流路8dにおける流路抵抗の増大を抑制することができる。
[実施形態2]
次に、図7及び図8を参照して、実施形態2に係るインペラ81について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図7は、実施形態2に係るインペラの貫通孔の断面図である。図8は、実施形態2に係るインペラの一部を拡大した側面図である。
実施形態2のインペラ81は、流入口83から流出口84に亘って形成される貫通孔82の流路断面積を、実施形態1の貫通孔82に比して広くしたものである。具体的に、実施形態1の貫通孔82は、断面円形となる丸穴であったが、実施形態2の貫通孔82は、図7に示すように、断面長円形となる長穴となっている。つまり、実施形態2の貫通孔82は、実施形態1の貫通孔82を隣接してつなげた形状となっている。
実施形態2の貫通孔82は、貫通方向に直交する面で切った断面において、半円形状と2つの円弧と、向かい合う円弧の両端部同士をそれぞれ結ぶ2つの直線と、からなる形状となっている。実施形態2の貫通孔82は、ドリル加工を行う場合、例えば、2つの丸穴を平行に連ねることで、長穴とする。また、実施形態2の貫通孔82は、フライス加工を行う場合、フライスを平行移動させることで、長穴とする。
なお、実施形態2の貫通孔82は、複数の丸穴を平行に連ねて形成することで、長穴をしたが、この構成に限定されない。昇圧流路8dの流入口83側から流出口84側へ向かって流路断面積が大きくなるように、1つの丸穴に対して他の丸穴を斜めになるようにして、連ねて形成してもよい。つまり、流入口83から流出口84側へ向かって複数の丸穴同士が広がるように、複数の丸穴を連ねて形成してもよい。
以上のように、実施形態2によれば、実施形態1に比して貫通孔82の流路断面積を広くすることができるため、冷却空気を多く取り込むことができ、また、圧縮した冷却空気を多く吐出することができる。
また、実施形態2によれば、流入口83側から流出口84側へ向かって流路断面積が大きくなるように貫通孔82を形成することで、流出口84における冷却空気の流速を減速させることができ、これにより、圧縮効率の向上を図ることができる。
なお、実施形態1及び実施形態2では、ドリル加工またはフライス加工を考慮したため、貫通孔82の形状を丸穴または長穴としたが、例えば、貫通孔82の流路断面積を更に広くとる場合には、貫通孔82の形状を、断面矩形状となる角穴としてもよく、この場合、放電加工等により角穴となる貫通孔82を形成してもよい。
1 圧縮機
11 空気取入口
12 圧縮機ケーシング
13 圧縮機静翼
13a 最終段静翼
14 圧縮機動翼
15 出口案内静翼
16 出口
2 燃焼器
21 燃焼筒
21A パイロット燃焼バーナ
21Aa パイロットコーン
21Ab パイロットノズル
21B メイン燃焼バーナ
21Ba メインノズル
21Bb 旋回翼
21C 内筒
22 尾筒
23 燃焼器ケーシング
24 給気口
3 タービン
31 タービンケーシング
32 タービン静翼
32a 冷却通路
32b シュラウド部
32ba 入口部
33 タービン動翼
34 排気室
34a 排気ディフューザ
4 タービン軸(回転軸)
41 軸受部
42 軸受部
5 圧縮機ディフューザ
51 一端
52 他端
55 抽気部
6 中間軸カバー
7 冷却装置
71 排気管
72 給気管
73 冷却管
74 熱交換器
8 昇圧装置
8a シュラウド
8b ハブ
8c 羽根
8d 昇圧流路
81 インペラ
82 貫通孔
83 流入口
84 流出口
9 ディフューザ
9a 案内板
9b 通路
10 マニホールド
10a リング状通路
10b 開口部
10c 穴部
101 ガスタービン
C 軸心
P 圧縮空気
R 車室

Claims (3)

  1. 回転軸を中心に回転するハブと、
    前記回転軸の軸方向において前記ハブに対向して設けられるシュラウドと、
    前記ハブと前記シュラウドとの間に設けられ、前記回転軸の周方向に並べて設けられる複数の羽根と、
    前記ハブ、前記シュラウド及び複数の前記羽根により区画され、前記回転軸の軸方向から流体を流入させ、前記回転軸の径方向外側へ向かって流体を流出させる、前記回転軸の周方向に並べて設けられる複数の昇圧流路と、を備え、
    前記昇圧流路は、前記回転軸の軸方向の端面に形成される流入口と、前記回転軸の径方向の外側の外周面に形成される流出口と、を有し、前記流入口から前記流出口に向かって直線状に貫通形成される貫通孔であり、
    前記回転軸の軸方向から見た面内において、前記流入口から前記流出口へ向かう前記貫通孔の貫通方向は、前記回転軸の中心と前記流入口の中心とを結ぶ線分に対して直交する、前記流入口の中心における接線方向であり、
    前記貫通孔は、前記貫通方向に直交する面で切った断面において、半円形状の2つ の円弧と、向かい合う円弧の両端部同士をそれぞれ結ぶ2つの直線と、からなる形状となっており、
    前記回転軸の径方向から見た面内において、前記軸方向の端面に対する前記貫通孔の傾斜方向は、前記流入口に流入する前記流体の相対流入角の方向に沿った方向となっていることを特徴とするインペラ。
  2. 請求項に記載のインペラと、
    前記インペラに接続され、前記インペラを回転させる回転軸と、を備えることを特徴とする遠心圧縮機。
  3. 空気を取り込んで圧縮する圧縮機と、
    前記圧縮機により圧縮した圧縮空気と燃料とを混合して燃焼させる燃焼器と、
    前記燃焼器により前記燃料を燃焼させることで発生した燃焼ガスにより回転するタービンと、
    前記圧縮機から抽気した圧縮空気を取り込んで昇圧し、昇圧した圧縮空気を冷却空気として吐出する、請求項に記載の遠心圧縮機と、を備えることを特徴とするガスタービン。
JP2018043386A 2018-03-09 2018-03-09 インペラ、遠心圧縮機、及びガスタービン Active JP7004595B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018043386A JP7004595B2 (ja) 2018-03-09 2018-03-09 インペラ、遠心圧縮機、及びガスタービン
US16/294,213 US11156094B2 (en) 2018-03-09 2019-03-06 Impeller, centrifugal compressor, gas turbine, and method of manufacturing impeller
CN201910175100.0A CN110242613A (zh) 2018-03-09 2019-03-07 叶轮、离心式压缩机、燃气轮机以及叶轮的制造方法
DE102019001588.6A DE102019001588A1 (de) 2018-03-09 2019-03-07 Laufrad, radialverdichter, gasturbine und herstellungsverfahren eines laufrads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043386A JP7004595B2 (ja) 2018-03-09 2018-03-09 インペラ、遠心圧縮機、及びガスタービン

Publications (3)

Publication Number Publication Date
JP2019157710A JP2019157710A (ja) 2019-09-19
JP2019157710A5 JP2019157710A5 (ja) 2021-03-25
JP7004595B2 true JP7004595B2 (ja) 2022-01-21

Family

ID=67701763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043386A Active JP7004595B2 (ja) 2018-03-09 2018-03-09 インペラ、遠心圧縮機、及びガスタービン

Country Status (4)

Country Link
US (1) US11156094B2 (ja)
JP (1) JP7004595B2 (ja)
CN (1) CN110242613A (ja)
DE (1) DE102019001588A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798453A1 (de) * 2019-09-26 2021-03-31 Siemens Aktiengesellschaft Strömungsführung einer radialturbomaschine, rückführstufe, radialturbomaschine, verfahren zur herstellung
CN112096521A (zh) * 2020-09-24 2020-12-18 萍乡北京理工大学高新技术研究院 立式流线隧道轮燃气轮机
CN112539086A (zh) * 2020-10-27 2021-03-23 哈尔滨广瀚燃气轮机有限公司 涡轮动叶冷却空气分段旋转增压装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198078A (ja) 2016-04-25 2017-11-02 三菱重工業株式会社 ガスタービン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276404A (en) 1939-10-10 1942-03-17 Wright Aeronautical Corp Shrouded impeller
JP2573796Y2 (ja) * 1993-08-17 1998-06-04 日機装株式会社 ソリッドインペラ
JP3192083B2 (ja) * 1996-03-19 2001-07-23 株式会社日立製作所 遠心送風機の羽根車及びその製造方法
US6254340B1 (en) * 1997-04-23 2001-07-03 Metaullics Systems Co., L.P. Molten metal impeller
US6303074B1 (en) * 1999-05-14 2001-10-16 Paul V. Cooper Mixed flow rotor for molten metal pumping device
JP4067709B2 (ja) * 1999-08-23 2008-03-26 三菱重工業株式会社 ロータ冷却空気供給装置
JP2003201994A (ja) * 2001-12-28 2003-07-18 Ebara Corp 遠心ポンプ
US7798388B2 (en) * 2007-05-31 2010-09-21 Applied Materials, Inc. Method of diffusion bonding a fluid flow apparatus
US8562285B2 (en) * 2007-07-02 2013-10-22 United Technologies Corporation Angled on-board injector
JP3157493U (ja) 2009-12-04 2010-02-18 サニタリーエンジニアリング株式会社 遠心ポンプ用インペラおよび遠心式サニタリーポンプ
JP6223111B2 (ja) 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
CN107202032A (zh) * 2016-03-16 2017-09-26 江苏国泉泵业制造有限公司 一种离心式恒扬程泵叶轮水力设计方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198078A (ja) 2016-04-25 2017-11-02 三菱重工業株式会社 ガスタービン

Also Published As

Publication number Publication date
DE102019001588A1 (de) 2019-09-12
JP2019157710A (ja) 2019-09-19
CN110242613A (zh) 2019-09-17
US20190277140A1 (en) 2019-09-12
US11156094B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
US20170248155A1 (en) Centrifugal compressor diffuser passage boundary layer control
EP2351967B1 (en) Connecting structure for combustor
JP6647952B2 (ja) ガスタービン
US20100275612A1 (en) Direct transfer axial tangential onboard injector system (tobi) with self-supporting seal plate
JP7004595B2 (ja) インペラ、遠心圧縮機、及びガスタービン
JP2015524895A (ja) 動翼
CA2687800A1 (en) Turbine cooling air from a centrifugal compressor
JP2015086872A (ja) ガスタービンのセグメント間隙の冷却用および/またはパージ用の微細チャネル排出装置
JP2017145824A (ja) 交差穴を有する翼形部
JP2015092076A (ja) タービンアセンブリに冷却を提供するための方法およびシステム
EP3581763A1 (en) High solidity and low entrance angle impellers on turbine rotor disk
JP2016539276A (ja) 遠心圧縮機の湾曲した拡散流路部
US20190218925A1 (en) Turbine engine shroud
US20180171804A1 (en) Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement
JP2017082783A (ja) シュラウド内に出口経路を有するタービンバケット
JP6564872B2 (ja) 燃焼用筒、ガスタービン燃焼器及びガスタービン
JP2017150469A (ja) タービンエンジンのためのステータリム
US10670270B2 (en) Gas turbine combustion chamber with wall contouring
JP6961340B2 (ja) 回転機械
JP6586389B2 (ja) 圧縮機ディフューザおよびガスタービン
CN107438701A (zh) 涡轮机翼型件的在两个压力下的冷却
WO2020240970A1 (ja) 尾筒、燃焼器、ガスタービン、及びガスタービン設備
KR101955116B1 (ko) 터빈 베인, 터빈 및 이를 포함하는 가스터빈
US10995668B2 (en) Turbine vane, turbine, and gas turbine including the same
JP2004197696A (ja) 旋回ノズルを備えたガスタービン

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7004595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150