WO2020240970A1 - 尾筒、燃焼器、ガスタービン、及びガスタービン設備 - Google Patents

尾筒、燃焼器、ガスタービン、及びガスタービン設備 Download PDF

Info

Publication number
WO2020240970A1
WO2020240970A1 PCT/JP2020/009303 JP2020009303W WO2020240970A1 WO 2020240970 A1 WO2020240970 A1 WO 2020240970A1 JP 2020009303 W JP2020009303 W JP 2020009303W WO 2020240970 A1 WO2020240970 A1 WO 2020240970A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
space
flow path
acoustic
air flow
Prior art date
Application number
PCT/JP2020/009303
Other languages
English (en)
French (fr)
Inventor
泰希 木下
聡介 中村
宏太郎 宮内
佐藤 賢治
健太 谷口
聡 水上
祥成 脇田
赤松 真児
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to KR1020217037825A priority Critical patent/KR20210151973A/ko
Priority to JP2021522640A priority patent/JP7305761B2/ja
Priority to CN202080037059.1A priority patent/CN113841011B/zh
Priority to US17/612,400 priority patent/US20220228530A1/en
Priority to DE112020002536.5T priority patent/DE112020002536T5/de
Publication of WO2020240970A1 publication Critical patent/WO2020240970A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • F05D2260/963Preventing, counteracting or reducing vibration or noise by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03043Convection cooled combustion chamber walls with means for guiding the cooling air flow

Definitions

  • the present invention relates to a tail cylinder having a cylinder on which fuel burns on the inner peripheral side, a combustor including the cylinder, a gas turbine, and gas turbine equipment.
  • a tail cylinder having a cylinder on which fuel burns on the inner peripheral side, a combustor including the cylinder, a gas turbine, and gas turbine equipment.
  • the gas turbine includes a compressor that compresses air to generate compressed air, a combustor that burns fuel in the compressed air, a turbine that is driven by combustion gas generated by combustion of fuel, and an intermediate casing.
  • the compressor has a compressor rotor and a compressor casing that covers the compressor rotor.
  • the combustor has a tail tube (or a combustion tube) in which fuel is burned on the inner peripheral side, and a burner that injects fuel into the tail tube.
  • the turbine has a turbine rotor and a turbine casing that covers the turbine rotor.
  • the compressor casing and the turbine casing are connected via an intermediate casing. Compressed air discharged from the compressor flows into the intermediate casing.
  • the combustor is provided in this intermediate casing.
  • Patent Document 1 discloses the tail tube of a combustor.
  • This tail cylinder has a cylinder in which fuel is burned on the inner peripheral side, an acoustic attenuator that forms an acoustic space on the outer peripheral side of the cylinder, and a cooling air jacket that forms a cooling air space on the outer peripheral side of the cylinder.
  • the acoustic attenuator is provided on the upstream side of the cylinder.
  • the cooling air jacket is provided on the downstream side of the cylinder. Most of the compressed air in the intermediate casing flows into the combustor. Further, a part of the compressed air in the intermediate casing is drawn out of the intermediate casing.
  • the extracted compressed air is boosted by the boost compressor and then flows into the cooling air space as forced cooling air.
  • a cooling air flow path A and a cooling air flow path B are formed between the outer peripheral surface and the inner peripheral surface of the cylinder.
  • an acoustic hole penetrating from the outer peripheral surface to the inner peripheral surface of the cylinder is formed in the portion where the acoustic attenuator is provided.
  • the cooling air flow path A is an inlet that is opened at a portion of the outer peripheral surface of the cylinder where the cooling air jacket is provided, and a portion of the outer peripheral surface of the cylinder where the acoustic attenuator and the cooling air jacket are not provided. It has an open outlet. Forced cooling air in the cooling air space flows into the cooling air flow path A. In the process of passing through the cooling air flow path A, the forced cooling air exchanges heat with the cylinder exposed to the combustion gas to cool the cylinder. After heat exchange with the cylinder, the forced cooling air flows out into the intermediate casing from the outlet of the cooling air flow path A.
  • the cooling air flow path B is an inlet that is open at a portion on the outer peripheral surface of the cylinder where the acoustic attenuator and the cooling air jacket are not provided, and a portion where the acoustic attenuator is provided on the outer peripheral surface of the cylinder. It has an open outlet.
  • Compressed air existing in the intermediate casing which is the space on the outer peripheral side of the cylinder, flows into the cooling air flow path B.
  • the compressed air exchanges heat with the cylinder exposed to the combustion gas to cool the cylinder. After flowing into the acoustic space, this compressed air flows out from the acoustic hole to the space on the inner peripheral side of the cylinder.
  • Compressed air is introduced from the acoustic space through the acoustic hole so that the high-temperature combustion gas generated in the space on the inner peripheral side of the cylinder does not flow into the acoustic space through the acoustic hole. It is leaked to the space on the peripheral side.
  • the mass flow rate of air flowing out from the acoustic space to the space on the inner peripheral side of the cylinder is preferably small from the viewpoint of suppressing the amount of NOx generated. Further, the air flowing out from the acoustic space to the space on the inner peripheral side of the cylinder lowers the temperature of the combustion gas generated in the space on the inner peripheral side of the cylinder, and lowers the efficiency of the gas turbine. It is preferable that the mass flow rate is small.
  • an object of the present invention is to provide a technique capable of suppressing the mass flow rate of air while allowing air to flow out from the acoustic space to the space on the inner peripheral side of the cylinder.
  • a cylinder that forms a cylinder around the axis and burns fuel on the inner peripheral side, a part of the plate that forms the cylinder, and a part of the plate jointly form an acoustic space on the outer peripheral side of the cylinder. It is a space on the outer peripheral side of the cylinder in cooperation with an acoustic attenuator having an acoustic cover, and a part of the plate forming the cylinder except for a portion forming the acoustic attenuator.
  • a cooling air jacket that forms a cooling air space isolated from the outer space is provided.
  • the cylinder has an inlet opening formed at an upstream end on one side in the axial direction in which the axis extends, an outlet opening formed on the downstream end on the other side in the axial direction, and the above.
  • the first air flow path faces the cooling air space, faces the inlet that guides the air in the cooling air space into the first air flow path, and faces the acoustic space, and passes through the first air flow path. It has an outlet that guides the incoming air into the acoustic space.
  • the air in the cooling air space flows into the first air flow path and flows in the first air flow path.
  • the air is heated by heat exchange with the cylinder exposed to the combustion gas, while cooling the cylinder.
  • the air that has passed through the first air flow path flows into the acoustic space from the outlet of the first air flow path.
  • the air that has flowed into the acoustic space flows out from the acoustic holes into the combustion space. Therefore, the combustion gas in the combustion space does not flow into the acoustic space.
  • the pressure difference ⁇ P is proportional to the density ⁇ of the fluid and proportional to the square of the flow velocity v of the fluid, as shown by the following equation. ⁇ P ⁇ ⁇ v 2 As can be understood from the above equation, when the pressure difference ⁇ P is set to a certain value or more, it is more effective to increase the flow velocity v of the fluid than to increase the density ⁇ of the fluid.
  • the cylinder of the comparative example does not have the first air flow path of this embodiment, but has a second air flow path.
  • This second air flow path is formed between the outer peripheral surface and the inner peripheral surface of the cylinder.
  • This second air flow path faces the outer space, the inlet that guides the air in the outer space into the second air flow path, and the air that faces the acoustic space and passes through the second air flow path in the acoustic space.
  • the air in the outer space flows into the second air flow path from the inlet of the second air flow path and flows in the second air flow path.
  • the air In the process of flowing through the second air flow path, the air is heated by heat exchange with the cylinder exposed to the combustion gas, while cooling the cylinder.
  • the air that has passed through the second air flow path flows into the acoustic space from the outlet of the second air flow path.
  • the air that has flowed into the acoustic space flows out from the acoustic holes into the combustion space.
  • the flow path length of the second air flow path is lengthened. There is a way to do it.
  • This method causes the following problems. (1) There is a possibility that the pressure loss in the second air flow path becomes large and the air in the outer space does not reach the acoustic space or does not flow out from the acoustic hole to the combustion space. (2) By the time the air reaches the acoustic space, the temperature of the air becomes extremely high, and the ability to cool the cylinder may be lost.
  • the air in the cooling air space isolated from the outer space flows through the first air flow path. Therefore, in this embodiment, air having a pressure and temperature different from that of the air in the outer space can flow through the first air flow path. Therefore, in this embodiment, as a method of increasing the amount of heating for the air by supplying air having a higher pressure and a lower temperature than the air in the outer space to the cooling air space, the flow path length of the first air flow path Even if the method of lengthening the length and / or the method of forming the first air flow path in the region easily heated by the combustion gas in the cylinder is adopted, the above-mentioned problems (1) and (2) do not occur.
  • the cooling air jacket may be located on the downstream side of the acoustic cover.
  • the temperature on the downstream side of the flame tip formed by the combustion of fuel is higher than the temperature on the upstream side of the flame tip. Therefore, the region on the downstream side in the cylinder is a region that is more easily heated by the combustion gas than the region on the upstream side. Therefore, in the present embodiment, in the present embodiment, the first air flow path is formed in the region on the downstream side where heating is likely to occur in the cylinder, and the amount of heating of the air flowing through the first air flow path is increased. can do.
  • a mounting flange which is an end on the downstream side of the cylinder and extends from the outer peripheral surface of the cylinder to the outer peripheral side is provided. You may have. In this case, the cooling air jacket is in contact with the mounting flange.
  • the cylinder may have a second air flow path formed between the outer peripheral surface and the inner peripheral surface.
  • the second air flow path faces the outer space and faces the inlet that guides the air in the outer space into the second air flow path and the acoustic space, and faces the second air flow path. It has an outlet that guides the passing air into the acoustic space.
  • the portion of the cylinder that cannot be cooled by the air flowing through the first air flow path can be cooled by the air flowing through the second air flow path.
  • the tail tube of any of the above embodiments may have a plurality of the acoustic covers.
  • the outlet of the first air flow path faces the acoustic space formed by at least one acoustic cover among the plurality of acoustic covers.
  • the tube may have a second air flow path formed between the outer peripheral surface and the inner peripheral surface.
  • the second air flow path is an inlet that faces the outer space and guides the air in the outer space into the second air flow path, and at least one of the plurality of acoustic covers. It has an outlet that faces the formed acoustic space and guides air that has passed through the second air flow path into the acoustic space.
  • the portion of the cylinder that cannot be cooled by the air flowing through the first air flow path can be cooled by the air flowing through the second air flow path.
  • the cylinder communicates with the acoustic space formed by the acoustic covers for each of the plurality of acoustic covers. It may have an air flow path and the second air flow path.
  • the inlet of the second air flow path may be located on the upstream side of the acoustic cover.
  • the portion of the cylinder on the upstream side of the acoustic cover can be cooled by the air flowing through the second air flow path.
  • the cylinder may have a third air flow path formed between the outer peripheral surface and the inner peripheral surface.
  • the third air flow path faces the cooling air space, the inlet for guiding the air in the cooling air space into the third air flow path, and the outer space, and the third air flow path. It has an outlet that guides the air that has passed through the inside to the outer space.
  • the portion of the cylinder that cannot be cooled by the air flowing through the first air flow path can be cooled by the air flowing through the third air flow path.
  • the opening area of the outlet that guides the air that has passed through the first air flow path into the acoustic space passes through the second air flow path. It may be larger than the opening area of the outlet that guides the air into the acoustic space.
  • the flow velocity can be reduced, so that the decrease in static pressure in the acoustic space can be suppressed and the air can be introduced into the acoustic space. The inflow of combustion gas can be suppressed.
  • One aspect of the combustor according to the invention for achieving the above object is The tail tube of any of the above aspects and a burner for injecting fuel and air into the combustion space are provided.
  • the combustor, the compressor, the turbine, and the intermediate casing are provided.
  • the compressor has a compressor rotor that rotates about a rotor axis, and a compressor casing that covers the compressor rotor.
  • the turbine has a turbine rotor that rotates integrally with the compressor rotor about the rotor axis, and a turbine casing that covers the turbine rotor.
  • the intermediate casing is arranged between the compressor casing and the turbine casing in the direction of the rotor axis where the rotor axis extends, connects the compressor casing and the turbine casing, and is discharged from the compressor. Compressed air flows in.
  • the combustor is provided in the intermediate casing.
  • the gas turbine of the above aspect a cooling air line that guides the compressed air in the intermediate casing to the outside of the intermediate casing and then leads to the inside of the cooling air jacket, and a cooling air line provided in the cooling air line and in the cooling air line. It is provided with a cooler for cooling the compressed air passing through the air, and a boost compressor provided in the cooling air line for boosting the compressed air cooled by the cooler.
  • the present invention it is possible to suppress the mass flow rate of air while allowing air to flow out from the acoustic space of the acoustic attenuator to the space on the inner peripheral side of the cylinder.
  • FIG. 3 is a sectional view taken along line VV in FIG.
  • FIG. 6 is an arrow view VII in FIG.
  • FIG. 10 is a view taken along the line XI in FIG. It is sectional drawing corresponding to FIG. 6 in the 5th Embodiment which concerns on this invention. It is an arrow view corresponding to FIG. 7 in the fifth embodiment which concerns on this invention. It is an arrow view corresponding to FIG. 13 in the modified example of the 5th Embodiment which concerns on this invention.
  • the gas turbine equipment of the present embodiment includes a gas turbine 10 and a cooling device 70 that cools a part of the components of the gas turbine 10.
  • the gas turbine 10 includes a compressor 20 that compresses air A, a plurality of combustors 40 that burn fuel in the air compressed by the compressor 20 to generate combustion gas G, and a turbine driven by the combustion gas G. It has 30 and.
  • the compressor 20 includes a compressor rotor 21 that rotates about the rotor axis Lr, a compressor casing 25 that rotatably covers the compressor rotor 21, and a plurality of stationary blade rows 26.
  • the direction in which the rotor axis Lr extends is referred to as the rotor axis direction Da
  • one side of the rotor axis direction Da is referred to as the axis upstream side Dau
  • the other side is referred to as the axis downstream side Dad.
  • the circumferential direction centered on the rotor axis Lr is simply referred to as the circumferential direction Dc
  • the direction perpendicular to the rotor axis Lr is defined as the radial direction Dr.
  • the side approaching the rotor axis Lr in the radial direction is the radial inner Dri
  • the opposite side is the radial outer Dro.
  • the compressor rotor 21 has a rotor shaft 22 extending in the rotor axis direction Da along the rotor axis Lr, and a plurality of rotor blade rows 23 attached to the rotor shaft 22.
  • the plurality of blade rows 23 are arranged in the rotor axial direction Da.
  • Each of the moving blade rows 23 is composed of a plurality of moving blades arranged in the circumferential direction Dc. Any one of the plurality of blade rows 26 is arranged on the Dad on the downstream side of each axis of the plurality of blade rows 23.
  • Each vane row 26 is provided inside the compressor casing 25.
  • Each of the vane rows 26 is composed of a plurality of vanes arranged in the circumferential direction Dc.
  • the turbine 30 is arranged on the downstream side Dad of the compressor 20.
  • the turbine 30 includes a turbine rotor 31 that rotates about the rotor axis Lr, a turbine casing 35 that rotatably covers the turbine rotor 31, and a plurality of stationary blade rows 36.
  • the turbine rotor 31 has a rotor shaft 32 extending in the rotor axis direction Da along the rotor axis Lr, and a plurality of rotor blade rows 33 attached to the rotor shaft 32.
  • the plurality of blade rows 33 are arranged in the rotor axial direction Da.
  • Each of the rotor blade rows 33 is composed of a plurality of rotor blades arranged in the circumferential direction Dc.
  • any one of the plurality of blade rows 36 is arranged on the upstream Dau of the axis of each of the plurality of blade rows 33.
  • Each vane row 36 is provided inside the turbine casing 35.
  • Each of the stationary blade rows 36 is composed of a plurality of stationary blades arranged in the circumferential direction Dc.
  • the annular space between the radial outer Dro of the rotor shaft 32 and the radial inner Dri of the turbine casing 35 in the region where the vanes and moving blades are arranged in the rotor axial direction Da is from the combustor 40. It forms a combustion gas flow path through which the combustion gas G of the above flows.
  • the compressor rotor 21 and the turbine rotor 31 are located on the same rotor axis Lr and are connected to each other to form the gas turbine rotor 11.
  • the rotor of the generator GEN is connected to the gas turbine rotor 11.
  • the gas turbine 10 further includes a tubular intermediate casing 16 centered on the rotor axis Lr.
  • the intermediate casing 16 is arranged between the compressor casing 25 and the turbine casing 35 in the rotor axial direction Da.
  • the compressor casing 25 and the turbine casing 35 are connected via the intermediate casing 16.
  • the compressor casing 25, the intermediate casing 16 and the turbine casing 35 are connected to each other to form the gas turbine casing 15. Compressed air Acom from the compressor 20 flows into the intermediate casing 16.
  • the plurality of combustors 40 are provided in the intermediate casing 16.
  • the cooling device 70 includes a cooling air line 71, a cooler 75, and a boost compressor 76.
  • the cooling air line 71 draws the compressed air Acom in the intermediate casing 16 from the intermediate casing 16 and guides the compressed air Acom to the combustor 40.
  • the cooling air line 71 includes an bleed air line 72, a cooling air main line 73, and a plurality of cooling air branch lines 74.
  • the bleed air line 72 is connected to the intermediate casing 16 and guides the compressed air Acom in the intermediate casing 16 to the boost compressor 76.
  • the cooling air main line 73 is connected to the discharge port of the boost compressor 76. Forced cooling air Acc, which is the air boosted by the boost compressor 76, flows through the cooling air main line 73.
  • the cooling air branch line 74 is a line branched from the cooling air main line 73 for each of the plurality of combustors 40. Each of the plurality of cooling air branch lines 74 guides forced cooling air Acc to any one combustor 40.
  • the cooler 75 and the boost compressor 76 are provided in the bleeding line 72 in the cooling air line 71.
  • the cooler 75 cools the compressed air Acom flowing through the bleed air line 72.
  • the boost compressor 76 boosts the compressed air Acom cooled by the cooler 75 and sends the compressed air Acom to the combustor 40 as forced cooling air Acl.
  • the combustor 40 has a tail cylinder (or combustion cylinder) 50 that sends high-temperature and high-pressure combustion gas G into the combustion gas flow path of the turbine 30, and fuel in the tail cylinder 50 together with compressed air Acom. It has a fuel injector 41 that injects F.
  • the fuel injector 41 has a plurality of burners 42 for injecting fuel F into the tail cylinder 50, and a frame 43 for supporting the plurality of burners 42.
  • a fuel line 45 is connected to each burner 42.
  • the fuel line 45 is provided with a fuel flow rate adjusting valve 46 for adjusting the flow rate of the fuel F supplied to the plurality of burners 42.
  • the tail tube 50 of the combustor 40 is arranged in the intermediate casing 16.
  • the tail cylinder 50 forms a tubular cylinder 51 around the combustor axis Lcom, an acoustic attenuator 61 that forms an acoustic space Ss on the outer peripheral side of the cylinder 51, and a cooling air space Sa on the outer peripheral side of the cylinder 51. It has a cooling air jacket 65 and a mounting flange 66.
  • the direction in which the combustor axis Lcom extends is referred to as the combustor axis direction Dcom (hereinafter, simply referred to as the axis direction Dcom).
  • one side of the axial Dcom is referred to as the combustor upstream Dcu (hereinafter, simply referred to as the upstream Dcu), and the other side of the axial Dcom is referred to as the combustor downstream Dcd (hereinafter, simply referred to as the downstream Dcd). And.
  • the cylinder 51 has an inlet opening 54i formed at the end of the upstream Dcu, an outlet opening 54o formed at the end of the downstream Dcd, an outer peripheral surface 55o facing the outer peripheral side, and an inner circumference facing the inner peripheral side. It has a surface 55i and.
  • the space on the inner peripheral side of the cylinder 51 is a combustion space Sc in which the fuel F burns and the combustion gas G generated thereby flows.
  • the mounting flange 66 extends from the outer peripheral surface 55o of the cylinder 51 to the outer peripheral side at the end of the Dcd on the downstream side of the cylinder 51.
  • the mounting flange 66 is a flange for mounting the cylinder 51 to the turbine casing 35.
  • the acoustic attenuator 61 has a part of a plate forming the cylinder 51 and an acoustic cover 62 for forming an acoustic space Ss on the outer peripheral side of the cylinder 51 in cooperation with the part of the cylinder 51.
  • the acoustic cover 62 is provided on the upstream side Dcu portion of the cylinder 51.
  • the acoustic cover 62 extends in the circumferential direction with respect to the combustor axis Lcom.
  • the cooling air jacket 65 forms a cooling air space Sa on the outer peripheral side of the cylinder 51 in cooperation with the other part of the plate forming the cylinder 51 except the portion forming the acoustic attenuator 61 and the mounting flange 66. To do. Therefore, a part of the edge of the cooling air jacket 65 is in contact with the mounting flange 66, and the rest of the edge of the cooling air jacket 65 is in contact with the cylinder 51.
  • the cooling air space Sa is isolated from the outer space So, which is the space on the outer peripheral side of the cylinder 51.
  • the outer space So is a space on the outer peripheral side of the cylinder 51 and inside the intermediate casing 16, excluding the acoustic space Ss and the cooling air space Sa.
  • the compressed air Acom discharged from the compressor 20 during the operation of the gas turbine 10 exists. Further, the fact that the cooling air space Sa is isolated from the outer space So means that the compressed air Acom in the outer space So does not directly flow into the cooling air space Sa.
  • the cooling air jacket 65 is located on the downstream side Dcd of the acoustic cover 62 because it is in contact with the mounting flange 66 provided at the end of the downstream side Dcd of the cylinder 51.
  • the cooling air branch line 74 of the cooling device 70 described above is connected to the cooling air jacket 65. Therefore, the forced cooling air Acc from the cooling device 70 flows into the cooling air space Sa.
  • the cylinder 51 has a plurality of acoustic holes 59, a plurality of first air flow paths 56, and a plurality of third air flow paths 58.
  • FIG. 3 is a cross-sectional view of a main part of the tail tube 50 on a virtual surface including the combustor axis Lcom
  • FIG. 4 is an IV arrow view in FIG.
  • the acoustic hole 59 penetrates the plate forming the cylinder 51 from the acoustic space Ss to the combustion space Sc. Therefore, the acoustic hole 59 is a portion of the cylinder 51 covered with the acoustic cover 62, and is a hole penetrating from the outer peripheral surface 55o of the cylinder 51 to the inner peripheral surface 55i.
  • Both the first air flow path 56 and the third air flow path 58 are formed between the outer peripheral surface 55o and the inner peripheral surface 55i of the cylinder 51.
  • the first air flow path 56 faces the inlet 56i that faces the cooling air space Sa and guides the air in the cooling air space Sa into the first air flow path 56, and faces the acoustic space Ss and enters the first air flow path 56. It has an outlet 56o that guides the passing air into the acoustic space Ss. Therefore, the inlet 56i of the first air flow path 56 is formed on the outer peripheral surface 55o of the cylinder 51 and is covered with the cooling air jacket 65.
  • the outlet 56o of the first air flow path 56 is formed in a portion of the outer peripheral surface 55o of the cylinder 51 covered with the acoustic cover 62.
  • the third air flow path 58 faces the inlet 58i that faces the cooling air space Sa and guides the air in the cooling air space Sa into the third air flow path 58, and faces the outer space So and enters the third air flow path 58. It has an outlet 58o that guides the passing air to the outer space So. Therefore, the inlet 58i of the third air flow path 58 is formed on the outer peripheral surface 55o of the cylinder 51 and is covered with the cooling air jacket 65.
  • the outlet 58o of the third air flow path 58 is formed in a portion of the outer peripheral surface 55o of the cylinder 51 that is not covered by the acoustic cover 62 and the cooling air jacket 65.
  • the outlet 58o of some of the third air flow paths 58 is a portion of the outer peripheral surface 55o of the cylinder 51 and a portion of Dcu on the upstream side of the portion covered by the acoustic cover 62. Is formed in.
  • the plate forming the cylinder 51 is formed by joining the outer peripheral wall plate 52o and the inner peripheral wall plate 52i by brazing or the like.
  • the outer peripheral wall plate 52o and the inner peripheral wall plate 52i one wall plate is recessed in a direction away from the other side, and a plurality of grooves 53 long in the axial direction Dcom are formed.
  • An air flow path 56 (58) through which air flows is formed between the inner surface of the groove 53 and the surface of the other wall plate.
  • the groove 53 is formed in the outer peripheral wall plate 52o.
  • the compressor 20 sucks in the outside air A and compresses this air in the process of passing through the air compression flow path.
  • the compressed air that is, the compressed air Acom
  • This compressed air Acom flows into the intermediate casing 16 from the air compression flow path of the compressor 20.
  • This compressed air Acom is supplied into the cylinder 51 of the tail cylinder 50 via the fuel injector 41 of the combustor 40.
  • Fuel F is injected into the cylinder 51 of the tail cylinder 50 from the plurality of burners 42 of the fuel injector 41. This fuel F burns in the compressed air Acom supplied to the combustion space Sc of the cylinder 51.
  • combustion gas G is generated, and this combustion gas G flows from the tail tube 50 into the combustion gas flow path of the turbine 30.
  • the turbine rotor 31 rotates.
  • the boost compressor 76 of the cooling device 70 is driving. Therefore, the compressed air Acom in the outer space So, in other words, a part of the compressed air Acom in the intermediate casing 16 is drawn from the intermediate casing 16 and flows into the cooler 75 of the cooling device 70, where It is cooled.
  • the compressed air Acom cooled by the cooler 75 is boosted by the boost compressor 76 and then flows into the cooling air space Sa of the tail cylinder 50 as forced cooling air Acl. Since the forced cooling air Acc is air that has been pressurized after cooling the compressed air Acom in the intermediate casing 16, the temperature is lower and the pressure is higher than the compressed air Acom in the intermediate casing 16.
  • the forced cooling air Acc in the cooling air space Sa flows into the first air flow path 56 and the third air flow path 58 of the cylinder 51, and flows through these air flow paths 56 and 58.
  • the forced cooling air Acc is heated by heat exchange with the cylinder 51 exposed to the high-temperature combustion gas G in the process of flowing through the air channels 56 and 58, while cooling the cylinder 51.
  • the forced cooling air Acc that has passed through the third air flow path 58 flows out from the outlet 58o of the third air flow path 58 to the outer space So and mixes with the compressed air Acom existing in the outer space So. Further, the forced cooling air Acc that has passed through the first air flow path 56 flows into the acoustic space Ss from the outlet 58o of the first air flow path 56. The forced cooling air Acc that has flowed into the acoustic space Ss flows out from the acoustic hole 59 into the combustion space Sc. Therefore, the combustion gas G in the combustion space Sc does not flow into the acoustic space Ss.
  • Ps-Pc> 0) needs to be greater than or equal to a certain value.
  • the pressure difference ⁇ P is proportional to the density ⁇ of the fluid and proportional to the square of the flow velocity v of the fluid, as shown by the following equation. ⁇ P ⁇ ⁇ v 2
  • the cylinder of the comparative example does not have the first air flow path 56, but has the second air flow path 57 shown by the imaginary line (dashed line) in FIG.
  • the second air flow path 57 is formed between the outer peripheral surface 55o and the inner peripheral surface 55i of the cylinder 51.
  • the second air flow path 57 faces the inlet 57i that faces the outer space So and guides the air in the outer space So into the second air flow path 57, and faces the acoustic space Ss and passes through the second air flow path 57. It has an outlet 57o that guides the incoming air into the acoustic space Ss.
  • the inlet 57i of the second air flow path 57 is located on the upstream side Dcu from the acoustic cover 62.
  • the air in the outer space So flows into the second air flow path 57 from the inlet 57i of the second air flow path 57 and flows in the second air flow path 57.
  • the air is heated by heat exchange with the cylinder 51 exposed to the combustion gas G, while cooling the cylinder 51.
  • the air that has passed through the second air flow path 57 flows into the acoustic space Ss from the outlet 57o of the second air flow path 57.
  • the air that has flowed into the acoustic space Ss flows out from the acoustic hole 59 into the combustion space Sc.
  • the comparative example as a method of increasing the amount of heating for the air flowing through the second air flow path 57 when the pressure and temperature of the air in the outer space So, that is, the compressed air Acom is constant, for example, the second air flow.
  • This method causes the following problems. (1) There is a possibility that the pressure loss in the second air flow path 57 becomes large and the air in the outer space So does not reach the acoustic space Ss or flows out from the acoustic hole 59 to the combustion space Sc. (2) By the time the air reaches the acoustic space Ss, the temperature of the air becomes extremely high, and the ability to cool the cylinder 51 may be lost.
  • the forced cooling air Acc in the cooling air space Sa isolated from the outer space So flows through the first air flow path 56. Therefore, in the present embodiment, air having a pressure and temperature different from that of the compressed air Acom in the outer space So can flow through the first air flow path 56. Therefore, in the present embodiment, the forced cooling air Acc, which has a higher pressure and a lower temperature than the compressed air Acom in the outer space So, is flowed through the first air flow path 56. Therefore, in the present embodiment, as a method of increasing the amount of heating for air, a method of lengthening the flow path length of the first air flow path 56 and / or a region in the cylinder 51 that is easily heated by the combustion gas G. Even if the method of forming the first air flow path 56 is adopted, the above-mentioned problems (1) and (2) do not occur.
  • the mass flow rate of the air flowing out from the acoustic space Ss to the combustion space Sc on the inner peripheral side of the cylinder 51 can be suppressed, so that the amount of NOx generated can be suppressed. Further, in the present embodiment, since the amount of dilution of the combustion gas G by the air flowing out to the combustion space Sc is reduced, the temperature drop of the gas sent to the turbine 30 can be suppressed, and the efficiency drop of the gas turbine 10 can be suppressed. be able to.
  • the cooling air jacket 65 is provided in the downstream Dcd portion of the cylinder 51, and is arranged in the cooling air space Sa in the cooling air jacket 65 and the upstream Dcu portion of the cylinder 51.
  • the temperature of the Dcd on the downstream side of the tip of the flame formed by the combustion of the fuel F is higher than the temperature of the Dcu on the upstream side of the tip of the flame. Therefore, the region of the downstream Dcd in the cylinder 51 is a region that is more easily heated by the combustion gas G than the region of the upstream Dcu. Therefore, in the present embodiment, the first air flow path 56 is formed in the region of the downstream Dcd that is easily heated in the cylinder 51.
  • the gas turbine equipment of the present embodiment differs from the gas turbine equipment of the first embodiment only in the configuration of the tail tube of the combustor. Therefore, the configuration of the tail tube 50a of the present embodiment will be mainly described below.
  • the tail cylinder 50a of the present embodiment has a cylinder 51a, an acoustic attenuator 61, a cooling air jacket 65, and a mounting flange 66, as in the first embodiment. Similar to the cylinder 51a of the first embodiment, the cylinder 51a has an inlet opening 54i, an outlet opening 54o, an outer peripheral surface 55o, an inner peripheral surface 55i, a plurality of first air flow paths 56, and a plurality of third air. It has a flow path 58 and.
  • the cylinder 51a of the present embodiment further has a plurality of second air flow paths 57. The second air flow path 57 is formed between the outer peripheral surface 55o and the inner peripheral surface 55i of the cylinder 51a.
  • the second air flow path 57 faces the inlet 57i that faces the outer space So and guides the compressed air Acom in the outer space So into the second air flow path 57, and faces the acoustic space Ss and is inside the second air flow path 57. It has an outlet 57o that guides the compressed air Acom that has passed through into the acoustic space Ss.
  • the inlet 57i of the second air flow path 57 is located on the upstream side Dcu from the acoustic cover 62.
  • the cylinder 51a of the present embodiment has the third air flow path 58, it does not have to have the third air flow path 58.
  • the forced cooling air Acc in the cooling air space Sa flows into the first air flow path 56 and the third air flow path 58 of the cylinder 51a, and these air flow paths It flows in 56,58.
  • the forced cooling air Acc is heated by heat exchange with the cylinder 51a exposed to the high-temperature combustion gas G in the process of flowing through the air channels 56 and 58, while cooling the cylinder 51a.
  • the forced cooling air Acc that has passed through the third air flow path 58 flows out from the outlet 58o of the third air flow path 58 to the outer space So and mixes with the compressed air Acom existing in the outer space So.
  • the forced cooling air Acc that has passed through the first air flow path 56 flows into the acoustic space Ss from the outlet 56o of the first air flow path 56.
  • the compressed air Acom in the outer space So flows into the second air flow path 57 from the inlet 57i of the second air flow path 57 and flows in the second air flow path 57.
  • the compressed air Acom is heated by heat exchange with the cylinder 51a exposed to the combustion gas G in the process of flowing through the second air flow path 57, while cooling the cylinder 51a.
  • the compressed air Acom that has passed through the second air flow path 57 flows into the acoustic space Ss from the outlet 57o of the second air flow path 57.
  • the forced cooling air Acc that has flowed through the first air flow path 56 and the compressed air Acom that has flowed through the second air flow path 57 flow into the acoustic space Ss.
  • the air that has flowed into the acoustic space Ss flows out to the combustion space Sc through the acoustic hole 59.
  • the air flowing out from the acoustic space Ss to the combustion space Sc through the acoustic hole 59 is the forced cooling air Acc that has flowed through the first air flow path 56 as in the first embodiment. Is included, so that air having a large amount of heating with respect to air can flow out to the combustion space Sc. Therefore, also in the present embodiment, as in the first embodiment, it is possible to suppress the mass flow rate of the air while causing the air to flow out from the acoustic space Ss to the combustion space Sc.
  • the portion of the cylinder 51a on the upstream side Dcu from the acoustic cover 62 is cooled by the air flowing through the third air flow path 58.
  • the amount of heat of the air flowing through the third air flow path 58 up to the acoustic cover 62 is large.
  • the portion of the cylinder 51a on the upstream side Dcu from the acoustic cover 62 is cooled by the air flowing through the second air flow path 57.
  • the temperature of the air flowing through the second air flow path 57 is lower than the temperature of the air flowing through the third air flow path 58 in the portion of the cylinder 51a on the upstream side Dcu of the acoustic cover 62. Therefore, in the present embodiment, the cooling capacity of the portion of the cylinder 51a upstream of the acoustic cover 62 Dcu can be increased as compared with the first embodiment.
  • the tail cylinder 50b of the present embodiment has a cylinder 51b, acoustic attenuators 61a and 61b, a cooling air jacket 65, and a mounting flange 66, as in the first embodiment.
  • the tail tube 50b of the present embodiment has a plurality of acoustic attenuators 61a and 61b.
  • the cylinder 51b Similar to the cylinder 51 of the first embodiment, the cylinder 51b has an inlet opening 54i, an outlet opening 54o, an outer peripheral surface 55o, an inner peripheral surface 55i, a plurality of first air flow paths 56, and a plurality of third air. It has a flow path 58 and.
  • the outlet 56o of the first air flow path 56 of the present embodiment faces only the first acoustic space Ssa of the first acoustic attenuator 61a among the plurality of acoustic attenuators 61a and 61b, and the second acoustic attenuator 61b. It does not face the second acoustic space Ssb. Therefore, in the present embodiment, the forced cooling air Acl in the cooling air space Sa flows into the first acoustic space Ssa through the first air flow path 56, but does not flow into the second acoustic space Ssb.
  • the cylinder 51b of the present embodiment further has a plurality of second air flow paths 57.
  • the second air flow path 57 is formed between the outer peripheral surface 55o and the inner peripheral surface 55i of the cylinder 51b.
  • the second air flow path 57 faces only the inlet 57i that faces the outer space So and guides the air in the outer space So into the second air flow path 57 and the second acoustic space Ssb, and faces only the second air flow path 57. It has an outlet 57o that guides the air that has passed through the inside into the second acoustic space Ssb. Therefore, in the present embodiment, the compressed air Acom in the outer space So flows into the second acoustic space Ssb via the second air flow path 57, but does not flow into the first acoustic space Ssa.
  • the inlet 57i of the second air flow path 57 is located on the upstream side Dcu of the acoustic covers 62 of the plurality of acoustic attenuators 61a and 61b, respectively.
  • the cylinder 51b of the present embodiment has the third air flow path 58, it does not have to have the third air flow path 58.
  • the forced cooling air Acc in the cooling air space Sa flows into the first air flow path 56 and the third air flow path 58 of the cylinder 51b, and these air flow paths It flows in 56 and 58.
  • the forced cooling air Acc is heated by heat exchange with the cylinder 51b exposed to the high-temperature combustion gas G in the process of flowing through the air channels 56 and 58, while cooling the cylinder 51b.
  • the air that has passed through the third air flow path 58 flows out from the outlet 58o of the third air flow path 58 to the outer space So and mixes with the compressed air Acom existing in the outer space So.
  • the forced cooling air Acc that has passed through the first air flow path 56 flows into the first acoustic space Ssa from the outlet 56o of the first air flow path 56.
  • the air that has flowed into the first acoustic space Ssa flows out from the first acoustic hole 59a of the first acoustic attenuator 61a to the combustion space Sc.
  • the compressed air Acom in the outer space So flows into the second air flow path 57 from the inlet 57i of the second air flow path 57 and flows in the second air flow path 57.
  • the compressed air Acom is heated by heat exchange with the cylinder 51b exposed to the combustion gas G in the process of flowing through the second air flow path 57, while cooling the cylinder 51b.
  • the compressed air Acom that has passed through the second air flow path 57 flows into the second acoustic space Ssb from the outlet 57o of the second air flow path 57.
  • the compressed air Acom that has flowed into the second acoustic space Ssb flows out into the combustion space Sc from the second acoustic hole 59b of the second acoustic attenuator 61b.
  • the forced cooling air Acc that has flowed through the first air flow path 56 flows into the first acoustic space Ssa.
  • the air that has flowed into the first acoustic space Ssa flows out to the combustion space Sc through the first acoustic hole 59a. Therefore, in the present embodiment, from all the acoustic spaces Ssa and Ssb to the combustion space Sc, rather than when only the compressed air Acom flowing through the second air flow path 57 flows into all the acoustic spaces Ssa and Ssb.
  • the total mass flow rate of the outflowing air can be suppressed.
  • the portion of the cylinder 51b upstream of the acoustic cover 62 is cooled as compared with the first embodiment. You can improve your ability.
  • the gas turbine equipment of the present embodiment is a modification of the third embodiment, and is different from the gas turbine equipment of the third embodiment only in the configuration of the tail tube of the combustor. Therefore, in the following, the configuration of the tail tube 50c of the present embodiment will be mainly described.
  • the tail cylinder 50c of the present embodiment has a cylinder 51c, a plurality of acoustic attenuators 61a and 61b, a cooling air jacket 65, and a mounting flange 66, as in the third embodiment.
  • the cylinder 51c has an inlet opening 54i, an outlet opening 54o, an outer peripheral surface 55o, an inner peripheral surface 55i, a plurality of first air flow paths 56, and a plurality of second airs, similarly to the cylinder 51b of the third embodiment. It has a flow path 57 and.
  • the outlet 56o of some of the first air flow paths 56 among the plurality of first air flow paths 56 is the first of the first acoustic attenuators 61a among the plurality of acoustic attenuators 61a and 61b. It faces only the acoustic space Ssa and does not face the second acoustic space Ssb of the second acoustic attenuator 61b. Further, among the plurality of first air flow paths 56, the outlet 56o of some of the other first air flow paths 56 is the second sound of the second sound attenuator 61b among the plurality of sound attenuators 61a and 61b.
  • the forced cooling air Acc in the cooling air space Sa is one of the plurality of first air flow paths 56. Inflow through.
  • the outlet 57o of some of the second air flow paths 57 among the plurality of second air flow paths 57 is the first of the first acoustic attenuators 61a among the plurality of acoustic attenuators 61a and 61b.
  • the outlet 57o of some of the other second air flow paths 57 is the second sound of the second sound attenuator 61b among the plurality of sound attenuators 61a and 61b. It faces only the space Ssb and does not face the first acoustic space Ssa of the first acoustic attenuator 61a.
  • the compressed air Acom in the outer space So passes through any one of the plurality of second air flow paths 57. Inflow.
  • the forced cooling air Acc that has flowed through the first air flow path 56 in the acoustic spaces Ss and Sub for each of the plurality of acoustic attenuators 61a and 61b, as in the second embodiment.
  • the compressed air Acom that has flowed through the second air flow path 57 flow in.
  • the air that has flowed into the first acoustic space Ssa flows out to the combustion space Sc through the first acoustic hole 59a.
  • the air that has flowed into the second acoustic space Ssb flows out to the combustion space Sc through the second acoustic hole 59b. Therefore, also in the present embodiment, as in the second embodiment, it is possible to suppress the mass flow rate of the air while causing the air to flow out from the acoustic space Ss and Sub to the combustion space Sc on the inner peripheral side of the cylinder 51c.
  • the cylinder 51c of the present embodiment does not have the third air flow path 58 in each of the above embodiments. However, the cylinder 51c of the present embodiment may have a third air flow path 58.
  • the tail cylinder 50d of the present embodiment has a cylinder 51a, an acoustic attenuator 61, a cooling air jacket 65, and a mounting flange 66, as in the second embodiment. Similar to the cylinder 51a of the second embodiment, the cylinder 51a has an inlet opening 54i, an outlet opening 54o, an outer peripheral surface 55o, an inner peripheral surface 55i, a plurality of first air flow paths 56, and a plurality of third air. It has a flow path 58 and. The cylinder 51a of the present embodiment further has a plurality of second air flow paths 57. Although the cylinder 51a of the present embodiment has the third air flow path 58, it does not have to have the third air flow path 58.
  • the forced cooling air Acc in the cooling air space Sa flows into the first air flow path 56 and the third air flow path 58 of the cylinder 51a, and these air flow paths It flows in 56,58.
  • the forced cooling air Acc is heated by heat exchange with the cylinder 51a exposed to the high-temperature combustion gas G in the process of flowing through the air channels 56 and 58, while cooling the cylinder 51a.
  • the forced cooling air Acc that has passed through the third air flow path 58 flows out from the outlet 58o of the third air flow path 58 to the outer space So and mixes with the compressed air Acom existing in the outer space So.
  • the forced cooling air Acc that has passed through the first air flow path 56 flows into the acoustic space Ss from the outlet 156o of the first air flow path 56.
  • the compressed air Acom in the outer space So flows into the second air flow path 57 from the inlet 57i of the second air flow path 57 and flows in the second air flow path 57.
  • the compressed air Acom is heated by heat exchange with the cylinder 51a exposed to the combustion gas G in the process of flowing through the second air flow path 57, while cooling the cylinder 51a.
  • the compressed air Acom that has passed through the second air flow path 57 flows into the acoustic space Ss from the outlet 57o of the second air flow path 57.
  • the forced cooling air Acl flowing through the first air flow path 56 and the compressed air Acom flowing through the second air flow path 57 are at outlets 156o and 57o. Inflow from each.
  • the air that has flowed into the acoustic space Ss flows out to the combustion space Sc through the acoustic hole 59.
  • the air flowing out from the acoustic space Ss to the combustion space Sc through the acoustic hole 59 is the forced cooling air Acl flowing through the first air flow path 56 as in the first embodiment. Is included, so that air having a large amount of heating with respect to air can flow out to the combustion space Sc. Therefore, also in the present embodiment, as in the second embodiment, it is possible to suppress the mass flow rate of the air while causing the air to flow out from the acoustic space Ss to the combustion space Sc.
  • the forced cooling air Acc that has passed through the first air flow path 56 is used as an acoustic space.
  • the opening area of the outlet 156o leading into the Ss is larger than the opening area of the outlet 57o leading the compressed air Acom passing through the second air flow path 57 into the acoustic space Ss. Therefore, in the present embodiment, the flow velocity of the forced cooling air Accl flowing into the acoustic space Ss from the outlet 156o is lower than the flow velocity of the forced cooling air Accl flowing into the acoustic space Ss from the outlet 56o of the second embodiment. can do.
  • the flow velocity of the forced cooling air Acc flowing into the acoustic space Ss is reduced to reduce the flow velocity of the combustion gas G into the acoustic space Ss, as in the case of the fifth embodiment. Can be suppressed.
  • the outlet 56o of the third embodiment and the fourth embodiment the outlet 156o of the fifth embodiment and the outlet 256o of the modified example of the fifth embodiment may be provided.
  • the present invention it is possible to suppress the mass flow rate of air while allowing air to flow out from the acoustic space of the acoustic attenuator to the space on the inner peripheral side of the cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

尾筒(50)は、筒(51)と、筒(51)の外周側に音響空間(Ss)を形成する音響減衰器(61)と、筒(51)の外周側の空間である外側空間(So)から隔離された冷却空気空間(Sa)を形成する冷却空気ジャケット(65)と、を備える。筒(51)は、外周面(55o)と内周面(55i)との間に形成されている第一空気流路(56)と、音響空間(Ss)から筒(51c)の内周側の空間である燃焼空間(Sc)に貫通する音響孔(59)と、を有する。第一空気流路(56)は、冷却空気空間(Sa)に臨み、冷却空気空間(Sa)内の空気を第一空気流路(56)内に導く入口(56i)と、音響空間(Ss)に臨み、第一空気流路(56)内を通ってきた空気を音響空間(Ss)内に導く出口(56o)と、を有する。

Description

尾筒、燃焼器、ガスタービン、及びガスタービン設備
 本発明は、内周側で燃料が燃焼する筒を有する尾筒、これを備える燃焼器、ガスタービン、ガスタービン設備に関する。
 本願は、2019年5月24日に日本に出願された特願2019-097550号について優先権を主張し、その内容をここに援用する。
 ガスタービンは、空気を圧縮して圧縮空気を生成する圧縮機と、圧縮空気中で燃料を燃焼させる燃焼器と、燃料の燃焼で生成された燃焼ガスにより駆動するタービンと、中間ケーシングと、を備える。圧縮機は、圧縮機ロータと、この圧縮機ロータを覆う圧縮機ケーシングと、を有する。燃焼器は、内周側で燃料が燃焼する尾筒(又は燃焼筒)と、尾筒内に燃料を噴射するバーナと、を有する。タービンは、タービンロータと、このタービンロータとを覆うタービンケーシングと、を有する。圧縮機ケーシングとタービンケーシングとは、中間ケーシングを介して接続されている。中間ケーシング内には、圧縮機から吐出された圧縮空気が流入する。燃焼器は、この中間ケーシングに設けられている。
 以下の特許文献1には、燃焼器の尾筒について開示されている。この尾筒は、内周側で燃料が燃焼する筒と、筒の外周側に音響空間を形成する音響減衰器と、筒の外周側に冷却空気空間を形成する冷却空気ジャケットと、を有する。音響減衰器は、筒の上流側の部分に設けられている。また、冷却空気ジャケットは、筒の下流側の部分に設けられている。中間ケーシング内の圧縮空気のほとんどは、燃焼器に流入する。また、中間ケーシング内の圧縮空気の一部は、中間ケーシング外に抽気される。抽気された圧縮空気は、ブースト圧縮機で昇圧された後、強制冷却空気として、冷却空気空間に流入する。筒の外周面と内周面との間には、冷却空気流路Aと、冷却空気流路Bとが形成されている。筒を形成する板中で、音響減衰器が設けられている部分には、筒の外周面から内周面に貫通する音響孔が形成されている。
 冷却空気流路Aは、筒の外周面中で冷却空気ジャケットが設けられている部分で開口している入口と、筒の外周面中で音響減衰器及び冷却空気ジャケットが設けられていない部分で開口している出口と、を有する。冷却空気流路Aには、冷却空気空間内の強制冷却空気が流入する。この強制冷却空気は、冷却空気流路Aを通過する過程で、燃焼ガスに晒される筒と熱交換して、筒を冷却する。この強制冷却空気は、筒との熱交換後に、冷却空気流路Aの出口から、中間ケーシング内に流出する。
 冷却空気流路Bは、筒の外周面中で音響減衰器及び冷却空気ジャケットが設けられていない部分で開口している入口と、筒の外周面中で音響減衰器が設けられている部分で開口している出口と、を有する。冷却空気流路Bには、筒の外周側の空間である中間ケーシング内に存在する圧縮空気が流入する。この圧縮空気は、冷却空気流路Bを通過する過程で、燃焼ガスに晒される筒と熱交換して、筒を冷却する。この圧縮空気は、音響空間内に流入した後、音響孔から筒の内周側の空間に流出する。音響空間内には、音響孔を介して、筒の内周側の空間で生成された高温の燃焼ガスが流入しないよう、この音響空間内から、音響孔を介して、圧縮空気を筒の内周側の空間に流出させている。
特開2012-077660号公報
 音響空間内から筒の内周側の空間に流出する空気の質量流量は、NOxの発生量を抑える観点から、少ない方が好ましい。また、音響空間内から筒の内周側の空間に流出する空気は、筒の内周側の空間で生成された燃焼ガスの温度を下げて、ガスタービンの効率を低下させるため、この空気の質量流量は少ない方が好ましい。
 そこで、本発明は、音響空間内から筒の内周側の空間に空気を流出させつつも、この空気の質量流量を抑えることができる技術を提供することを目的とする。
 上記目的を達成するための発明に係る一態様の尾筒は、
 軸線回りに筒状を成し、内周側で燃料が燃焼する筒と、前記筒を形成する板の一部と、前記板の一部と共同して前記筒の外周側に音響空間を形成する音響カバーと、を有する音響減衰器と、前記筒を形成する前記板のうちで前記音響減衰器を形成する部分を除く他の一部と共同して、前記筒の外周側の空間である外側空間から隔離された冷却空気空間を形成する冷却空気ジャケットと、を備える。前記筒は、前記軸線が延びる軸線方向における一方側である上流側の端に形成されている入口開口と、前記軸線方向における他方側である下流側に端に形成されている出口開口と、前記外周側を向く外周面と、前記内周側を向く内周面と、前記外周面と前記内周面との間に形成されている第一空気流路と、前記音響空間から前記筒の内周側の空間である燃焼空間に貫通する音響孔と、を有する。前記第一空気流路は、前記冷却空気空間に臨み、前記冷却空気空間内の空気を前記第一空気流路内に導く入口と、前記音響空間に臨み、前記第一空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する。
 本態様では、冷却空気空間内の空気が第一空気流路に流入し、この第一空気流路内を流れる。空気は、第一空気流路を流れる過程で、燃焼ガスに晒される筒との熱交換で加熱される一方で、筒を冷却する。第一空気流路内を通ってきた空気は、第一空気流路の出口から音響空間内に流入する。音響空間内に流入した空気は、音響孔から燃焼空間に流出する。このため、燃焼空間内の燃焼ガスは、音響空間内に流入しない。
 燃焼空間内の燃焼ガスが確実に音響空間内に流入しないようにするためには、音響空間内の圧力Psが燃焼空間内の圧力Pcよりも高く、両圧力差ΔP(=Ps-Pc>0)が一定の値以上である必要がある。
 圧力差ΔPは、以下の式で示されるように、流体の密度ρに比例し、且つ流体の流速vの二乗に比例する。
  ΔP∝ρ・v
 上記式から理解できるように、圧力差ΔPを一定の値以上にする場合、流体の密度ρを大きくするよりも、流体の流速vを大きくする方が効果的である。また、流体の密度ρを小さくしつつ流体の体積を増加させて、流体の流速vを大きくすることで、音響空間から燃焼空間に流出させる流体の質量流量を抑えることができる。流体の密度ρを小さくしつつ流体の体積を増加させる方法としては、流体に対する加熱量を多くして、流体を膨張させる方法がある。
 ここで、以下の説明を分かり易くするために、本態様の比較例について説明する。比較例の筒は、本態様の第一空気流路を有せず、第二空気流路を有する。この第二空気流路は、筒の外周面と内周面との間に形成されている。この第二空気流路は、外側空間に臨み、外側空間内の空気を第二空気流路内に導く入口と、音響空間に臨み、第二空気流路内を通ってきた空気を音響空間内に導く出口と、を有する。外側空間内の空気は、第二空気流路の入口から第二空気流路内に流入し、この第二空気流路内を流れる。空気は、第二空気流路を流れる過程で、燃焼ガスに晒される筒との熱交換で加熱される一方で、筒を冷却する。第二空気流路内を通ってきた空気は、第二空気流路の出口から音響空間内に流入する。音響空間内に流入した空気は、音響孔から燃焼空間に流出する。
 比較例では、外側空間内の空気の圧力及び温度が一定である場合に、第二空気流路を流れる空気に対する加熱量を多くする方法として、例えば、第二空気流路の流路長を長くする方法がある。この方法では、以下のような不具合が生じる。
(1)第二空気流路での圧力損失が大きくなり、外側空間内の空気が音響空間に至らない、若しくは音響孔から燃焼空間に流出しない、可能性がある。
(2)空気が音響空間に至るまでに、この空気の温度が極めて高温になり、筒を冷却する能力がなくなる可能性がある。
 また、他の方法として、筒中で、燃焼ガスで加熱され易い領域に第二空気流路を形成する方法もある。この方法でも、上記(2)の不具合が生じる。
 本態様では、外側空間に対して隔離された冷却空気空間内の空気が第一空気流路を流れる。よって、本態様では、第一空気流路には、外側空間内の空気とは異なる圧力及び温度の空気を流すことができる。このため、本態様では、冷却空気空間に、外側空間内の空気よりも高圧で且つ低温の空気を供給することで、空気に対する加熱量を多くする方法として、第一空気流路の流路長を長くする方法、及び/又は、筒中で、燃焼ガスで加熱され易い領域に第一空気流路を形成する方法を採用しても、上記(1)(2)の不具合が生じない。
 従って、本態様では、音響空間内の圧力Psと燃焼空間Sc内の圧力Pcとの圧力差ΔP(=Ps-Pc)を一定の値以上にして、音響空間内から筒の内周側の燃焼空間に空気を流出させつつも、この空気の質量流量を抑えることができる。
 ここで、前記一態様の尾筒において、前記冷却空気ジャケットは、前記音響カバーよりも前記下流側に位置してもよい。
 燃焼空間中で、燃料の燃焼で形成される火炎の先端部よりも下流側の温度は、火炎の先端部より上流側の温度よりも高い。よって、筒中で下流側の領域は、上流側の領域よりも燃焼ガスで加熱され易い領域である。このため、本態様では、本実施形態では、筒中で加熱され易い下流側の領域に第一空気流路が形成されていることになり、この第一空気流路を流れる空気の加熱量を多くすることができる。
 前記冷却空気ジャケットが前記音響カバーより下流側に位置している前記態様の尾筒において、前記筒の前記下流側の端であって前記筒の前記外周面から、前記外周側に広がる取付フランジを有してもよい。この場合、前記冷却空気ジャケットは、前記取付フランジに接している。
 また、以上のいずれかの前記態様の尾筒において、前記筒は、前記外周面と前記内周面との間に形成されている第二空気流路を有してもよい。この場合、前記第二空気流路は、前記外側空間に臨み、前記外側空間内の空気を前記第二空気流路内に導く入口と、前記音響空間に臨み、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する。
 本態様では、筒中で第一空気流路を流れる空気で冷却できない部分を、第二空気流路を流れる空気により冷却することができる。
 また、以上のいずれかの前記態様の尾筒において、複数の前記音響カバーを有してもよい。この場合、前記第一空気流路の出口は、前記複数の音響カバーのうち、少なくとも一の音響カバーで形成される前記音響空間に臨んでいる。
 複数の前記音響カバーを有する前記態様の尾筒において、前記筒は、前記外周面と前記内周面との間に形成されている第二空気流路を有してもよい。この場合、前記第二空気流路は、前記外側空間に臨み、前記外側空間内の空気を前記第二空気流路内に導く入口と、前記複数の音響カバーのうち、少なくとも一の音響カバーで形成される前記音響空間に臨み、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する。
 本態様では、筒中で第一空気流路を流れる空気で冷却できない部分を、第二空気流路を流れる空気により冷却することができる。
 複数の前記音響カバーと前記第二空気流路とを有する前記態様の尾筒において、前記筒は、前記複数の音響カバー毎に、各音響カバーで形成される前記音響空間に連通する前記第一空気流路と前記第二空気流路とを有してもよい。
 前記第二空気流路を有する、以上のいずれかの前記態様の尾筒において、前記第二空気流路の前記入口は、前記音響カバーよりも前記上流側に位置してもよい。
 本態様では、筒中で音響カバーより上流側の部分を、第二空気流路を流れる空気により冷却することができる。
 以上のいずれかの前記態様の尾筒において、前記筒は、前記外周面と前記内周面との間に形成されている第三空気流路を有してもよい。この場合、前記第三空気流路は、前記冷却空気空間に臨み、前記冷却空気空間内の空気を前記第三空気流路内に導く入口と、前記外側空間に臨み、前記第三空気流路内を通ってきた空気を前記外側空間に導く出口と、を有する。
 本態様では、筒中で第一空気流路を流れる空気で冷却できない部分を、第三空気流路を流れる空気により冷却することができる。
 前記第二空気流路を有する前記態様の尾筒において、前記第一空気流路内を通ってきた空気を前記音響空間内に導く出口の開口面積は、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口の開口面積よりも大きくしてもよい。
 本態様では、第一空気流路内を通ってきた空気が音響空間に流入する際に、その流速を低下させることができるため、音響空間内の静圧低下を抑えて、音響空間内への燃焼ガスの流入を抑えることができる。
 上記目的を達成するための発明に係る一態様の燃焼器は、
 以上のいずれかの前記態様の尾筒と、前記燃焼空間に燃料及び空気を噴射するバーナと、を備える。
 上記目的を達成するための発明に係る一態様のガスタービンは、
 前記燃焼器と、圧縮機と、タービンと、中間ケーシングと、を備える。前記圧縮機は、ロータ軸線を中心として回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、有する。前記タービンは、前記ロータ軸線を中心として、前記圧縮機ロータと一体回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有する。前記中間ケーシングは、前記ロータ軸線が延びるロータ軸線方向で、前記圧縮機ケーシングと前記タービンケーシングとの間に配置され、前記圧縮機ケーシングと前記タービンケーシングとを接続し、前記圧縮機から吐出された圧縮空気が流入する。前記燃焼器は、前記中間ケーシングに設けられている。
 上記目的を達成するための発明に係る一態様のガスタービン設備は、
 前記態様のガスタービンと、前記中間ケーシング内の前記圧縮空気を前記中間ケーシング外に導いてから、前記冷却空気ジャケット内に導く冷却空気ラインと、前記冷却空気ラインに設けられ、前記冷却空気ライン内を通る前記圧縮空気を冷却する冷却器と、前記冷却空気ラインに設けられ、前記冷却器で冷却された前記圧縮空気を昇圧するブースト圧縮機と、を備える。
 本発明の一態様によれば、音響減衰器の音響空間内から筒の内周側の空間に空気を流出させつつも、この空気の質量流量を抑えることができる。
本発明に係る第一実施形態におけるガスタービン設備の構成を示す概念図である。 本発明に係る第一実施形態におけるガスタービン設備の要部断面図である。 本発明に係る第一実施形態における尾筒の要部断面図である。 図3におけるIV矢視図である。 図3におけるV-V線断面図である。 本発明に係る第二実施形態における尾筒の要部断面図である。 図6における矢視図VIIである。 本発明に係る第三実施形態における尾筒の要部断面図である。 図8におけるIX矢視図である。 本発明に係る第四実施形態における尾筒の要部断面図である。 図10におけるXI矢視図である。 本発明に係る第五実施形態における図6に相当する断面図である。 本発明に係る第五実施形態における図7に相当する矢視図である。 本発明に係る第五実施形態の変形例における図13に相当する矢視図である。
 以下、本発明に係るガスタービン設備の各種実施形態及びその変形例について、図面を参照して詳細に説明する。
 「第一実施形態」
 以下、本発明に係るガスタービン設備の第一実施形態について、図1~図5を参照して説明する。
 本実施形態のガスタービン設備は、図1に示すように、ガスタービン10と、このガスタービン10の構成部品の一部を冷却する冷却装置70と、を備える。
 ガスタービン10は、空気Aを圧縮する圧縮機20と、圧縮機20で圧縮された空気中で燃料を燃焼させて燃焼ガスGを生成する複数の燃焼器40と、燃焼ガスGにより駆動するタービン30と、を備えている。
 圧縮機20は、ロータ軸線Lrを中心として回転する圧縮機ロータ21と、圧縮機ロータ21を回転可能に覆う圧縮機ケーシング25と、複数の静翼列26と、を有する。なお、以下では、ロータ軸線Lrが延びる方向をロータ軸線方向Da、このロータ軸線方向Daの一方側を軸線上流側Dau、他方側を軸線下流側Dadとする。また、このロータ軸線Lrを中心とした周方向を単に周方向Dcとし、ロータ軸線Lrに対して垂直な方向を径方向Drとする。さらに、径方向Drでロータ軸線Lrに近づく側を径方向内側Driとし、その反対側を径方向外側Droとする。
 圧縮機ロータ21は、ロータ軸線Lrに沿ってロータ軸線方向Daに延びるロータ軸22と、このロータ軸22に取り付けられている複数の動翼列23と、を有する。複数の動翼列23は、ロータ軸線方向Daに並んでいる。各動翼列23は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列23のそれぞれの軸線下流側Dadには、複数の静翼列26のうちのいずれかの静翼列26が配置されている。各静翼列26は、圧縮機ケーシング25の内側に設けられている。各静翼列26は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。ロータ軸22の径方向外側Droと圧縮機ケーシング25の径方向内側Driとの間であって、ロータ軸線方向Daで静翼及び動翼が配置されている領域の環状の空間は、空気が流れつつ圧縮される空気圧縮流路を成す。
 タービン30は、圧縮機20の軸線下流側Dadに配置されている。このタービン30は、ロータ軸線Lrを中心として回転するタービンロータ31と、タービンロータ31を回転可能に覆うタービンケーシング35と、複数の静翼列36と、を有する。タービンロータ31は、ロータ軸線Lrに沿ってロータ軸線方向Daに延びるロータ軸32と、このロータ軸32に取り付けられている複数の動翼列33と、を有する。複数の動翼列33は、ロータ軸線方向Daに並んでいる。各動翼列33は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列33のそれぞれの軸線上流側Dauには、複数の静翼列36のうちのいずれかの静翼列36が配置されている。各静翼列36は、タービンケーシング35の内側に設けられている。各静翼列36は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。ロータ軸32の径方向外側Droとタービンケーシング35の径方向内側Driとの間であって、ロータ軸線方向Daで静翼及び動翼が配置されている領域の環状の空間は、燃焼器40からの燃焼ガスGが流れる燃焼ガス流路を成す。
 圧縮機ロータ21とタービンロータ31とは、同一ロータ軸線Lr上に位置し、互いに接続されてガスタービンロータ11を成す。このガスタービンロータ11には、例えば、発電機GENのロータが接続されている。ガスタービン10は、さらに、ロータ軸線Lrを中心として筒状の中間ケーシング16を備える。中間ケーシング16は、ロータ軸線方向Daで、圧縮機ケーシング25とタービンケーシング35との間に配置されている。圧縮機ケーシング25とタービンケーシング35とは、この中間ケーシング16を介して接続されている。圧縮機ケーシング25と中間ケーシング16とタービンケーシング35とは、互い接続されてガスタービンケーシング15を成す。中間ケーシング16内には、圧縮機20からの圧縮空気Acomが流入する。複数の燃焼器40は、この中間ケーシング16に設けられている。
 冷却装置70は、冷却空気ライン71と、冷却器75と、ブースト圧縮機76と、を有する。冷却空気ライン71は、中間ケーシング16内の圧縮空気Acomをこの中間ケーシング16内から抽気して、この圧縮空気Acomを燃焼器40に導く。冷却空気ライン71は、抽気ライン72と、冷却空気メインライン73と、複数の冷却空気分岐ライン74と、を有する。抽気ライン72は、中間ケーシング16に接続され、中間ケーシング16内の圧縮空気Acomをブースト圧縮機76に導く。冷却空気メインライン73は、ブースト圧縮機76の吐出口に接続されている。この冷却空気メインライン73には、ブースト圧縮機76で昇圧された空気である強制冷却空気Aclが流れる。冷却空気分岐ライン74は、冷却空気メインライン73から複数の燃焼器40毎に分岐したラインである。複数の冷却空気分岐ライン74のそれぞれは、いずれか一の燃焼器40に強制冷却空気Aclを導く。冷却器75及びブースト圧縮機76は、冷却空気ライン71中の抽気ライン72に設けられている。冷却器75は、抽気ライン72を流れる圧縮空気Acomを冷却する。ブースト圧縮機76は、冷却器75で冷却された圧縮空気Acomを昇圧して、この圧縮空気Acomを強制冷却空気Aclとして燃焼器40に送る。
 燃焼器40は、図2に示すように、高温高圧の燃焼ガスGをタービン30の燃焼ガス流路内に送る尾筒(又は燃焼筒)50と、この尾筒50内に圧縮空気Acomと共に燃料Fを噴射する燃料噴射器41と、を有する。燃料噴射器41は、尾筒50内に燃料Fを噴射する複数のバーナ42と、複数のバーナ42を支持する枠43を有する。各バーナ42には、燃料ライン45が接続されている。燃料ライン45には、複数のバーナ42へ供給する燃料Fの流量を調節する燃料流量調節弁46が設けられている。燃焼器40の尾筒50は、中間ケーシング16内に配置されている。
 尾筒50は、燃焼器軸線Lcom回りに筒状を成す筒51と、筒51の外周側に音響空間Ssを形成する音響減衰器61と、筒51の外周側に冷却空気空間Saを形成する冷却空気ジャケット65と、取付フランジ66と、を有する。なお、以下では、燃焼器軸線Lcomが延びる方向を燃焼器軸線方向Dcom(以下、単に軸線方向Dcomとする)とする。また、この軸線方向Dcomの一方側を燃焼器上流側Dcu(以下、単に上流側Dcuとする)とし、この軸線方向Dcomの他方側を燃焼器下流側Dcd(以下、単に下流側Dcdとする)とする。
 筒51は、上流側Dcuの端に形成されている入口開口54iと、下流側Dcdの端に形成されている出口開口54oと、外周側を向く外周面55oと、内周側を向く内周面55iと、を有する。この筒51の内周側の空間は、燃料Fが燃焼して、これによって生成された燃焼ガスGが流れる燃焼空間Scである。取付フランジ66は、筒51の下流側Dcdの端で且つ筒51の外周面55oから外周側に広がっている。この取付フランジ66は、筒51をタービンケーシング35に取り付けるためのフランジである。
 音響減衰器61は、筒51を形成する板の一部と、この筒51の一部と共同して、筒51の外周側に音響空間Ssを形成する音響カバー62と、を有する。この音響カバー62は、筒51の上流側Dcuの部分に設けられている。音響カバー62は、燃焼器軸線Lcomに対する周方向に延びている。
 冷却空気ジャケット65は、筒51を形成する板のうちで音響減衰器61を形成する部分を除く他の一部及び取付フランジ66と共同して、筒51の外周側に冷却空気空間Saを形成する。このため、冷却空気ジャケット65の縁の一部が取付フランジ66に接し、冷却空気ジャケット65の縁の残りが筒51に接している。この冷却空気空間Saは、筒51の外周側の空間である外側空間Soから隔離されている。なお、外側空間Soとは、筒51の外周側の空間で且つ中間ケーシング16内の空間であって、音響空間Ss及び冷却空気空間Saを除く空間のことである。この外側空間Soには、ガスタービン10の運転中、圧縮機20から吐出された圧縮空気Acomが存在する。また、冷却空気空間Saが外側空間Soから隔離されているとは、外側空間So中の圧縮空気Acomが冷却空気空間Sa内に直接流入しない構成になっていることである。前述したように、冷却空気ジャケット65は、筒51の下流側Dcdの端に設けられている取付フランジ66に接している関係で、音響カバー62よりも下流側Dcdに位置している。この冷却空気ジャケット65には、前述した冷却装置70の冷却空気分岐ライン74が接続されている。よって、冷却空気空間Saには、冷却装置70からの強制冷却空気Aclが流入する。
 筒51は、図3及び図4に示すように、複数の音響孔59と、複数の第一空気流路56と、複数の第三空気流路58と、を有する。なお、図3は、燃焼器軸線Lcomを含む仮想面での尾筒50の要部断面図であり、図4は、図3におけるIV矢視図である。
 音響孔59は、筒51を形成する板を音響空間Ssから燃焼空間Scに貫通している。よって、この音響孔59は、音響カバー62で覆われている筒51の部分で、筒51の外周面55oから内周面55iに貫通した孔である。
 第一空気流路56及び第三空気流路58は、いずれも、筒51の外周面55oと内周面55iとの間に形成されている。第一空気流路56は、冷却空気空間Saに臨み、冷却空気空間Sa内の空気を第一空気流路56内に導く入口56iと、音響空間Ssに臨み、第一空気流路56内を通ってきた空気を音響空間Ss内に導く出口56oと、を有する。よって、第一空気流路56の入口56iは、筒51の外周面55oであって冷却空気ジャケット65で覆われている部分に形成されている。また、第一空気流路56の出口56oは、筒51の外周面55oであって音響カバー62で覆われている部分に形成されている。第三空気流路58は、冷却空気空間Saに臨み、冷却空気空間Sa内の空気を第三空気流路58内に導く入口58iと、外側空間Soに臨み、第三空気流路58内を通ってきた空気を外側空間Soに導く出口58oと、を有する。よって、第三空気流路58の入口58iは、筒51の外周面55oであって冷却空気ジャケット65で覆われている部分に形成されている。また、第三空気流路58の出口58oは、筒51の外周面55oであって音響カバー62及び冷却空気ジャケット65で覆われていない部分に形成されている。複数の第三空気流路58のうち、一部の第三空気流路58の出口58oは、筒51の外周面55oであって音響カバー62で覆われている部分よりも上流側Dcuの部分に形成されている。
 筒51を形成する板は、図5に示すように、外周壁板52oと内周壁板52iとがろう付け等で接合されて形成されている。外周壁板52oと内周壁板52iとのうち、一方の壁板には、他方側から離れる方向に凹み、軸線方向Dcomに長い複数の溝53が形成されている。この溝53の内面と他方の壁板の面との間は、空気が流れる空気流路56(58)を成している。なお、本実施形態では、外周壁板52oに溝53が形成されている。
 次に、以上で説明したガスタービン10の動作について説明する。
 圧縮機20は、外気Aを吸込んで、これが空気圧縮流路を通る過程でこの空気を圧縮する。圧縮された空気、つまり圧縮空気Acomは、圧縮機20の空気圧縮流路から中間ケーシング16内に流入する。この圧縮空気Acomは、燃焼器40の燃料噴射器41を介して、尾筒50の筒51内に供給される。燃料噴射器41の複数のバーナ42からは、尾筒50の筒51内に燃料Fが噴射される。この燃料Fは、筒51の燃焼空間Scに供給された圧縮空気Acom中で燃焼する。この燃焼の結果、燃焼ガスGが生成され、この燃焼ガスGが尾筒50からタービン30の燃焼ガス流路内に流入する。この燃焼ガスGが燃焼ガス流路を通ることで、タービンロータ31が回転する。
 燃料Fが燃焼空間Sc内で燃焼している間、冷却装置70のブースト圧縮機76は、駆動している。このため、外側空間So内の圧縮空気Acom、言い換えると、中間ケーシング16内の圧縮空気Acomの一部は、中間ケーシング16内から抽気されて、冷却装置70の冷却器75に流入し、ここで冷却される。冷却器75で冷却された圧縮空気Acomは、ブースト圧縮機76で昇圧されてから、強制冷却空気Aclとして、尾筒50の冷却空気空間Sa内に流入する。この強制冷却空気Aclは、中間ケーシング16内の圧縮空気Acomを冷却した後、昇圧した空気であるため、中間ケーシング16内の圧縮空気Acomよりも、温度が低く且つ圧力が高い。
 冷却空気空間Sa内の強制冷却空気Aclは、筒51の第一空気流路56及び第三空気流路58に流入し、これらの空気流路56,58内を流れる。強制冷却空気Aclは、空気流路56,58を流れる過程で、高温の燃焼ガスGに晒されている筒51との熱交換で、加熱される一方で、筒51を冷却する。
 第三空気流路58内を通ってきた強制冷却空気Aclは、第三空気流路58の出口58oから外側空間Soに流出し、外側空間So中に存在する圧縮空気Acomに混ざる。また、第一空気流路56内を通ってきた強制冷却空気Aclは、第一空気流路56の出口58oから音響空間Ss内に流入する。音響空間Ss内に流入した強制冷却空気Aclは、音響孔59から燃焼空間Scに流出する。このため、燃焼空間Sc内の燃焼ガスGは、音響空間Ss内に流入しない。
 燃焼空間Sc内の燃焼ガスGが確実に音響空間Ss内に流入しないようにするためには、音響空間Ss内の圧力Psが燃焼空間Sc内の圧力Pcよりも高く、両圧力差ΔP(=Ps-Pc>0)が一定の値以上である必要がある。
 圧力差ΔPは、以下の式で示されるように、流体の密度ρに比例し、且つ流体の流速vの二乗に比例する。
  ΔP∝ρ・v
 上記式から理解できるように、圧力差ΔPを一定の値以上にする場合、流体の密度ρを大きくするよりも、流体の流速vを大きくする方が効果的である。また、流体の密度ρを小さくしつつ流体の体積を増加させて、流体の流速vを大きくすることで、音響空間Ssから燃焼空間Scに流出させる流体の質量流量を抑えることができる。流体の密度ρを小さくしつつ流体の体積を増加させる方法としては、流体に対する加熱量を多くして、流体を膨張させる方法がある。
 ここで、以下の説明を分かり易くするために、本態様の比較例について説明する。比較例の筒は、第一空気流路56を有せず、図3中の想像線(二点鎖線)で示す第二空気流路57を有する。この第二空気流路57は、筒51の外周面55oと内周面55iとの間に形成されている。この第二空気流路57は、外側空間Soに臨み、外側空間So内の空気を第二空気流路57内に導く入口57iと、音響空間Ssに臨み、第二空気流路57内を通ってきた空気を音響空間Ss内に導く出口57oと、を有する。第二空気流路57の入口57iは、音響カバー62よりも上流側Dcuに位置している。外側空間So内の空気は、第二空気流路57の入口57iから第二空気流路57内に流入し、この第二空気流路57内を流れる。空気は、第二空気流路57を流れる過程で、燃焼ガスGに晒される筒51との熱交換で加熱される一方で、筒51を冷却する。第二空気流路57内を通ってきた空気は、第二空気流路57の出口57oから音響空間Ss内に流入する。音響空間Ss内に流入した空気は、音響孔59から燃焼空間Scに流出する。
 比較例では、外側空間So内の空気、つまり圧縮空気Acomの圧力及び温度が一定である場合に、第二空気流路57を流れる空気に対する加熱量を多くする方法として、例えば、第二空気流路57の流路長を長くする方法がある。この方法では、以下のような不具合が生じる。
(1)第二空気流路57での圧力損失が大きくなり、外側空間So内の空気が音響空間Ssに至らない、若しくは音響孔59から燃焼空間Scに流出しない、可能性がある。
(2)空気が音響空間Ssに至るまでに、この空気の温度が極めて高温になり、筒51を冷却する能力がなくなる可能性がある。
 また、他の方法として、筒51中で、燃焼ガスGで加熱され易い領域に第二空気流路57を形成する方法もある。この方法でも、上記(2)の不具合が生じる。
 本実施形態では、外側空間Soに対して隔離された冷却空気空間Sa内の強制冷却空気Aclが第一空気流路56を流れる。よって、本実施形態では、第一空気流路56には、外側空間So内の圧縮空気Acomとは異なる圧力及び温度の空気を流すことができる。そこで、本実施形態では、外側空間So内の圧縮空気Acomよりも高圧で且つ低温の強制冷却空気Aclを第一空気流路56に流す。このため、本実施形態では、空気に対する加熱量を多くする方法として、第一空気流路56の流路長を長くする方法、及び/又は、筒51中で、燃焼ガスGで加熱され易い領域に第一空気流路56を形成する方法を採用しても、上記(1)(2)の不具合が生じない。
 従って、本実施形態では、音響空間Ss内の圧力Psと燃焼空間Sc内の圧力Pcとの圧力差ΔP(=Ps-Pc)を一定の値以上にして、音響空間Ss内から筒51の内周側の燃焼空間Scに空気を流出させつつも、この空気の質量流量を抑えることができる。
 以上のように、本実施形態では、音響空間Ss内から筒51の内周側の燃焼空間Scに流出する空気の質量流量を抑えることができるので、NOxの発生量を抑えることができる。さらに、本実施形態では、燃焼空間Scに流出する空気による燃焼ガスGの希釈量が少なくなるので、タービン30に送られるガスの温度低下を抑えることができて、ガスタービン10の効率低下を抑えることができる。
 ところで、本実施形態では、空気に対する加熱量を多くする方法として、第一空気流路56の流路長を長くする方法、及び、筒51中で、燃焼ガスGで加熱され易い領域に第一空気流路56を形成する方法を採用している。具体的に、本実施形態では、筒51の下流側Dcdの部分に冷却空気ジャケット65を設け、この冷却空気ジャケット65内の冷却空気空間Saと筒51の上流側Dcuの部分に配置されている音響減衰器61内の音響空間Ssとを第一空気流路56で連通させることで、この第一空気流路56の流路長を長くしている。筒51の燃焼空間Sc中で、燃料Fの燃焼で形成される火炎の先端部よりも下流側Dcdの温度は、火炎の先端部より上流側Dcuの温度よりも高い。よって、筒51中で下流側Dcdの領域は、上流側Dcuの領域よりも燃焼ガスGで加熱され易い領域である。そこで、本実施形態では、筒51中で加熱され易い下流側Dcdの領域に第一空気流路56を形成している。
 なお、本実施形態では、以上のように、空気に対する加熱量を多くする方法として、第一空気流路56の流路長を長くする方法と、筒51中で、燃焼ガスGで加熱され易い領域に第一空気流路56を形成する方法との両方を採用している。しかしながら、以上の二つの方法のうち、一方のみを採用してもよい。
 「第二実施形態」
 以下、本発明に係るガスタービン設備の第二実施形態について、図6及び図7を参照して説明する。なお、本実施形態のガスタービン設備は、燃焼器の尾筒の構成のみが第一実施形態のガスタービン設備と異なる。よって、以下では、本実施形態の尾筒50aの構成について主として説明する。
 本実施形態の尾筒50aは、第一実施形態と同様、筒51aと、音響減衰器61と、冷却空気ジャケット65と、取付フランジ66と、を有する。筒51aは、第一実施形態の筒51aと同様、入口開口54iと、出口開口54oと、外周面55oと、内周面55iと、複数の第一空気流路56と、複数の第三空気流路58と、を有する。本実施形態の筒51aは、さらに、複数の第二空気流路57を有する。第二空気流路57は、筒51aの外周面55oと内周面55iとの間に形成されている。この第二空気流路57は、外側空間Soに臨み、外側空間So内の圧縮空気Acomを第二空気流路57内に導く入口57iと、音響空間Ssに臨み、第二空気流路57内を通ってきた圧縮空気Acomを音響空間Ss内に導く出口57oと、を有する。第二空気流路57の入口57iは、音響カバー62よりも上流側Dcuに位置している。なお、本実施形態の筒51aは、第三空気流路58を有しているが、この第三空気流路58を有していなくてもよい。
 本実施形態においても、第一実施形態と同様、冷却空気空間Sa内の強制冷却空気Aclは、筒51aの第一空気流路56及び第三空気流路58に流入し、これらの空気流路56,58内を流れる。強制冷却空気Aclは、空気流路56,58を流れる過程で、高温の燃焼ガスGに晒されている筒51aとの熱交換で、加熱される一方で、筒51aを冷却する。第三空気流路58内を通ってきた強制冷却空気Aclは、第三空気流路58の出口58oから外側空間Soに流出し、外側空間So中に存在する圧縮空気Acomに混ざる。また、第一空気流路56内を通ってきた強制冷却空気Aclは、第一空気流路56の出口56oから音響空間Ss内に流入する。
 外側空間So内の圧縮空気Acomは、第二空気流路57の入口57iから第二空気流路57内に流入し、この第二空気流路57内を流れる。圧縮空気Acomは、第二空気流路57を流れる過程で、燃焼ガスGに晒される筒51aとの熱交換で加熱される一方で、筒51aを冷却する。第二空気流路57内を通ってきた圧縮空気Acomは、第二空気流路57の出口57oから音響空間Ss内に流入する。
 よって、本実施形態では、音響空間Ss内には、第一空気流路56を流れてきた強制冷却空気Aclと、第二空気流路57を流れてきた圧縮空気Acomとが流入する。音響空間Ss内に流入した空気は、音響孔59を介して、燃焼空間Scに流出する。このように、本実施形態では、音響空間Ssから音響孔59を介して燃焼空間Scに流出する空気には、第一実施形態と同様、第一空気流路56を流れてきた強制冷却空気Aclが含まれるので、空気に対する加熱量の多い空気を燃焼空間Scに流出させることができる。従って、本実施形態でも、第一実施形態と同様、音響空間Ss内から燃焼空間Scに空気を流出させつつも、この空気の質量流量を抑えることができる。
 第一実施形態では、筒51a中で音響カバー62よりも上流側Dcuの部分を、第三空気流路58を流れる空気で冷却する。第三空気流路58を流れる空気は、音響カバー62に至るまでの加熱量が大きい。一方、本実施形態では、筒51a中で音響カバー62よりも上流側Dcuの部分を、第二空気流路57を流れる空気で冷却する。筒51a中で音響カバー62よりも上流側Dcuの部分で、第二空気流路57を流れる空気の温度は、第三空気流路58を流れる空気の温度よりも低い。このため、本実施形態では、第一実施形態よりも、筒51a中で音響カバー62よりも上流側Dcuの部分の冷却能力を高めることができる。
 「第三実施形態」
 以下、本発明に係るガスタービン設備の第三実施形態について、図8及び図9を参照して説明する。なお、本実施形態のガスタービン設備は、燃焼器の尾筒の構成のみが第一実施形態のガスタービン設備と異なる。よって、以下では、本実施形態の尾筒50bの構成を主として説明する。
 本実施形態の尾筒50bは、第一実施形態と同様、筒51bと、音響減衰器61a,61bと、冷却空気ジャケット65と、取付フランジ66と、を有する。但し、本実施形態の尾筒50bは、複数の音響減衰器61a,61bを有する。筒51bは、第一実施形態の筒51と同様、入口開口54iと、出口開口54oと、外周面55oと、内周面55iと、複数の第一空気流路56と、複数の第三空気流路58と、を有する。本実施形態の第一空気流路56の出口56oは、複数の音響減衰器61a,61bのうち、第一音響減衰器61aの第一音響空間Ssaのみに臨んでおり、第二音響減衰器61bの第二音響空間Ssbに臨んでいない。よって、本実施形態では、冷却空気空間Sa内の強制冷却空気Aclは、第一空気流路56を介して、第一音響空間Ssaに流入するものの、第二音響空間Ssbには流入しない。本実施形態の筒51bは、さらに、複数の第二空気流路57を有する。第二空気流路57は、筒51bの外周面55oと内周面55iとの間に形成されている。この第二空気流路57は、外側空間Soに臨み、外側空間So内の空気を第二空気流路57内に導く入口57iと、第二音響空間Ssbのみに臨み、第二空気流路57内を通ってきた空気を第二音響空間Ssb内に導く出口57oと、を有する。よって、本実施形態では、外側空間So内の圧縮空気Acomは、第二空気流路57を介して、第二音響空間Ssbに流入するものの、第一音響空間Ssaには流入しない。第二空気流路57の入口57iは、複数の音響減衰器61a,61bがそれぞれ有する音響カバー62よりも上流側Dcuに位置している。なお、本実施形態の筒51bは、第三空気流路58を有しているが、この第三空気流路58を有していなくてもよい。
 本実施形態においても、第一実施形態と同様、冷却空気空間Sa内の強制冷却空気Aclは、筒51bの第一空気流路56及び第三空気流路58に流入し、これらの空気流路56,58内を流れる。強制冷却空気Aclは、空気流路56,58を流れる過程で、高温の燃焼ガスGに晒されている筒51bとの熱交換で、加熱される一方で、筒51bを冷却する。第三空気流路58内を通ってきた空気は、第三空気流路58の出口58oから外側空間Soに流出し、外側空間So中に存在する圧縮空気Acomに混ざる。また、第一空気流路56内を通ってきた強制冷却空気Aclは、第一空気流路56の出口56oから第一音響空間Ssa内に流入する。第一音響空間Ssa内に流入した空気は、第一音響減衰器61aの第一音響孔59aから燃焼空間Scに流出する。
 外側空間So内の圧縮空気Acomは、第二空気流路57の入口57iから第二空気流路57内に流入し、この第二空気流路57内を流れる。圧縮空気Acomは、第二空気流路57を流れる過程で、燃焼ガスGに晒される筒51bとの熱交換で加熱される一方で、筒51bを冷却する。第二空気流路57内を通ってきた圧縮空気Acomは、第二空気流路57の出口57oから第二音響空間Ssb内に流入する。第二音響空間Ssb内に流入した圧縮空気Acomは、第二音響減衰器61bの第二音響孔59bから燃焼空間Scに流出する。
 以上のように、本実施形態では、複数の音響空間Ssのうち、第一音響空間Ssa内には、第一空気流路56を流れてきた強制冷却空気Aclが流入する。第一音響空間Ssa内に流入した空気は、第一音響孔59aを介して、燃焼空間Scに流出する。このため、本実施形態では、全ての音響空間Ssa,Ssbに、第二空気流路57を流れてきた圧縮空気Acomのみを流入させる場合よりも、全ての音響空間Ssa,Ssbから燃焼空間Scに流出する空気の総質量流量を抑えることができる。
 また、本実施形態では、第二実施形態と同様、第二空気流路57を有しているので、第一実施形態よりも、筒51b中で音響カバー62よりも上流側Dcuの部分の冷却能力を高めることができる。
 「第四実施形態」
 以下、本発明に係るガスタービン設備の第四実施形態について、図10及び図11を参照して説明する。なお、本実施形態のガスタービン設備は、第三実施形態の変形例で、燃焼器の尾筒の構成のみが第三実施形態のガスタービン設備と異なる。よって、以下では、本実施形態の尾筒50cの構成を主として説明する。
 本実施形態の尾筒50cは、第三実施形態と同様、筒51cと、複数の音響減衰器61a,61bと、冷却空気ジャケット65と、取付フランジ66と、を有する。筒51cは、第三実施形態の筒51bと同様、入口開口54iと、出口開口54oと、外周面55oと、内周面55iと、複数の第一空気流路56と、複数の第二空気流路57と、を有する。本実施形態では、複数の第一空気流路56のうち、一部の第一空気流路56の出口56oは、複数の音響減衰器61a,61bのうち、第一音響減衰器61aの第一音響空間Ssaのみに臨んでおり、第二音響減衰器61bの第二音響空間Ssbに臨んでいない。また、複数の第一空気流路56のうち、他の一部の第一空気流路56の出口56oは、複数の音響減衰器61a,61bのうち、第二音響減衰器61bの第二音響空間Ssbのみに臨んでおり、第一音響減衰器61aの第一音響空間Ssaに臨んでいない。よって、本実施形態では、複数の音響減衰器61a,61b毎の音響空間Ss,Sabには、冷却空気空間Sa内の強制冷却空気Aclが、複数の第一空気流路56のうちのいずれかを介して流入する。本実施形態では、複数の第二空気流路57のうち、一部の第二空気流路57の出口57oは、複数の音響減衰器61a,61bのうち、第一音響減衰器61aの第一音響空間Ssaのみに臨んでおり、第二音響減衰器61bの第二音響空間Ssbに臨んでいない。また、複数の第二空気流路57のうち、他の一部の第二空気流路57の出口57oは、複数の音響減衰器61a,61bのうち、第二音響減衰器61bの第二音響空間Ssbのみに臨んでおり、第一音響減衰器61aの第一音響空間Ssaに臨んでいない。よって、本実施形態では、複数の音響減衰器61a,61b毎の音響空間Ssa,Sabには、外側空間So内の圧縮空気Acomが、複数の第二空気流路57のうちのいずれかを介して流入する。
 以上のように、本実施形態では、複数の音響減衰器61a,61b毎の音響空間Ss,Sab内には、第二実施形態と同様、第一空気流路56を流れてきた強制冷却空気Aclと、第二空気流路57を流れてきた圧縮空気Acomとが流入する。第一音響空間Ssa内に流入した空気は、第一音響孔59aを介して、燃焼空間Scに流出する。第二音響空間Ssb内に流入した空気は、第二音響孔59bを介して、燃焼空間Scに流出する。従って、本実施形態でも、第二実施形態と同様、音響空間Ss,Sab内から筒51cの内周側の燃焼空間Scに空気を流出させつつも、この空気の質量流量を抑えることができる。
 なお、本実施形態の筒51cは、以上の各実施形態における第三空気流路58を有していない。しかしながら、本実施形態の筒51cは、第三空気流路58を有してもよい。
 「第五実施形態」
 以下、本発明に係るガスタービン設備の第五実施形態について、図12及び図13を参照して説明する。なお、本実施形態のガスタービン設備は、燃焼器の尾筒の構成のみが第二実施形態のガスタービン設備と異なる。よって、以下では、本実施形態の尾筒50dの構成を主として説明する。
 本実施形態の尾筒50dは、第二実施形態と同様、筒51aと、音響減衰器61と、冷却空気ジャケット65と、取付フランジ66と、を有する。筒51aは、第二実施形態の筒51aと同様、入口開口54iと、出口開口54oと、外周面55oと、内周面55iと、複数の第一空気流路56と、複数の第三空気流路58と、を有する。本実施形態の筒51aは、さらに、複数の第二空気流路57を有する。なお、本実施形態の筒51aは、第三空気流路58を有しているが、この第三空気流路58を有していなくてもよい。
 本実施形態においても、第二実施形態と同様、冷却空気空間Sa内の強制冷却空気Aclは、筒51aの第一空気流路56及び第三空気流路58に流入し、これらの空気流路56,58内を流れる。強制冷却空気Aclは、空気流路56,58を流れる過程で、高温の燃焼ガスGに晒されている筒51aとの熱交換で、加熱される一方で、筒51aを冷却する。第三空気流路58内を通ってきた強制冷却空気Aclは、第三空気流路58の出口58oから外側空間Soに流出し、外側空間So中に存在する圧縮空気Acomに混ざる。また、第一空気流路56内を通ってきた強制冷却空気Aclは、第一空気流路56の出口156oから音響空間Ss内に流入する。
 外側空間So内の圧縮空気Acomは、第二空気流路57の入口57iから第二空気流路57内に流入し、この第二空気流路57内を流れる。圧縮空気Acomは、第二空気流路57を流れる過程で、燃焼ガスGに晒される筒51aとの熱交換で加熱される一方で、筒51aを冷却する。第二空気流路57内を通ってきた圧縮空気Acomは、第二空気流路57の出口57oから音響空間Ss内に流入する。
 よって、本実施形態では、音響空間Ss内には、第一空気流路56を流れてきた強制冷却空気Aclと、第二空気流路57を流れてきた圧縮空気Acomとが出口156o及び出口57oからそれぞれ流入する。音響空間Ss内に流入した空気は、音響孔59を介して、燃焼空間Scに流出する。このように、本実施形態では、音響空間Ssから音響孔59を介して燃焼空間Scに流出する空気には、第一実施形態と同様、第一空気流路56を流れてきた強制冷却空気Aclが含まれるので、空気に対する加熱量の多い空気を燃焼空間Scに流出させることができる。従って、本実施形態でも、第二実施形態と同様、音響空間Ss内から燃焼空間Scに空気を流出させつつも、この空気の質量流量を抑えることができる。
 上述した第二実施形態では、出口56oの開口面積と出口57o開口面積とが同一の場合を例示したが、本実施形態では、第一空気流路56を通ってきた強制冷却空気Aclを音響空間Ss内に導く出口156oの開口面積が、第二空気流路57を通ってきた圧縮空気Acomを音響空間Ss内に導く出口57oの開口面積よりも大きい。このため、本実施形態では、第二実施形態の出口56oから音響空間Ss内へ流入する強制冷却空気Aclの流速よりも、出口156oから音響空間Ss内へ流入する強制冷却空気Aclの流速を低くすることができる。これにより、第二実施形態よりも、強制冷却空気Aclが流入することによる音響空間Ss内の静圧低下を抑えることができるため、音響孔59を介して燃焼空間Sc内の燃焼ガスGが音響空間Ssに流入することを抑えることができる。また、本実施形態では、第二空気流路57よりも質量流量の大きい第一空気流路56の開口156oの開口面積を大きく形成しているため、効率よく音響空間Ss内の静圧低下を抑えることが可能となっている。
 「第五実施形態の変形例」
 上述した第五実施形態では、筒51に出口57oよりも開口面積の大きい出口156oを形成する場合を例示した。言い換えれば、第五実施形態では、一つの第一空気流路56に対して一つの出口156oを設ける場合について説明した。しかし、図14に示すように、一つの第一空気流路56に対して音響空間Ss内に臨む複数(例えば、二つ)の出口256oを設けるようにしてもよい。これら一つの第一空気流路56に設けられた複数の出口256oの開口面積の合計は、一つの出口57oの開口面積よりも大きい。このような第五実施形態の変形例においても、上記第五実施径と同様に、音響空間Ss内へ流入する強制冷却空気Aclの流速を低下させて、音響空間Ssへの燃焼ガスGの流入を抑えることができる。
 なお、第三実施形態及び第四実施形態の出口56oの代わりに、第五実施形態の出口156o及び第五実施形態の変形例の出口256oを設けるようにしてもよい。
 本発明の一態様によれば、音響減衰器の音響空間内から筒の内周側の空間に空気を流出させつつも、この空気の質量流量を抑えることができる。
10:ガスタービン
11:ガスタービンロータ
15:ガスタービンケーシング
16:中間ケーシング
20:圧縮機
21:圧縮機ロータ
22:ロータ軸
23:動翼列
25:圧縮機ケーシング
26:静翼列
30:タービン
31:タービンロータ
32:ロータ軸
33:動翼列
35:タービンケーシング
36:静翼列
40:燃焼器
41:燃料噴射器
42:バーナ
43:枠
45:燃料ライン
46:燃料流量調節弁
50,50a,50b,50c,50d:尾筒(又は燃焼筒)
51,51a,51b,51c:筒
52i:内周壁板
52o:外周壁板
53:溝
54i:入口開口
54o:出口開口
55i:内周面
55o:外周面
56:第一空気流路
56i:入口
56o,156o,256o:出口
57:第二空気流路
57i:入口
57o:出口
58:第三空気流路
58i:入口
58o:出口
59:音響孔
59a:第一音響孔
59b:第二音響孔
61:音響減衰器
61a:第一音響減衰器
61b:第二音響減衰器
62:音響カバー
65:冷却空気ジャケット
66:取付フランジ
70:冷却装置
71:冷却空気ライン
72:抽気ライン
73:冷却空気メインライン
74:冷却空気分岐ライン
75:冷却器
76:ブースト圧縮機
A:空気
Acom:圧縮空気
Acl:強制冷却空気
G:燃焼ガス
Lcom:燃焼器軸線(又は単に軸線)
Lr:ロータ軸線
Da:ロータ軸線方向
Dau:軸線上流側
Dad:軸線下流側
Dc:周方向
Dr:径方向
Dri:径方向内側
Dro:径方向外側
Dcom:燃焼器軸線方向(又は単に軸線方向)
Dcu:燃焼器上流側(又は単に上流側)
Dcd:燃焼器下流側(又は単に下流側)
Sc:燃焼空間
Ss:音響空間
Ssa:第一音響空間
Ssb:第二音響空間
Sa:冷却空気空間
So:外側空間

Claims (13)

  1.  軸線回りに筒状を成し、内周側で燃料が燃焼する筒と、
     前記筒を形成する板の一部と、前記板の一部と共同して前記筒の外周側に音響空間を形成する音響カバーと、を有する音響減衰器と、
     前記筒を形成する前記板のうちで前記音響減衰器を形成する部分を除く他の一部と共同して、前記筒の外周側の空間である外側空間から隔離された冷却空気空間を形成する冷却空気ジャケットと、
     を備え、
     前記筒は、
     前記軸線が延びる軸線方向における一方側である上流側の端に形成されている入口開口と、
     前記軸線方向における他方側である下流側に端に形成されている出口開口と、
     前記外周側を向く外周面と、
     前記内周側を向く内周面と、
     前記外周面と前記内周面との間に形成されている第一空気流路と、
     前記音響空間から前記筒の内周側の空間である燃焼空間に貫通する音響孔と、
     を有し、
     前記第一空気流路は、前記冷却空気空間に臨み、前記冷却空気空間内の空気を前記第一空気流路内に導く入口と、前記音響空間に臨み、前記第一空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する、
     尾筒。
  2.  請求項1に記載の尾筒において、
     前記冷却空気ジャケットは、前記音響カバーよりも前記下流側に位置する、
     尾筒。
  3.  請求項2に記載の尾筒において、
     前記筒の前記下流側の端であって前記筒の前記外周面から、前記外周側に広がる取付フランジを有し、
     前記冷却空気ジャケットは、前記取付フランジに接している、
     尾筒。
  4.  請求項1から3のいずれか一項に記載の尾筒において、
     前記筒は、前記外周面と前記内周面との間に形成されている第二空気流路を有し、
     前記第二空気流路は、前記外側空間に臨み、前記外側空間内の空気を前記第二空気流路内に導く入口と、前記音響空間に臨み、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する、
     尾筒。
  5.  請求項1から3のいずれか一項に記載の尾筒において、
     複数の前記音響カバーを有し、
     前記第一空気流路の出口は、前記複数の音響カバーのうち、少なくとも一の音響カバーで形成される前記音響空間に臨んでいる、
     尾筒。
  6.  請求項5に記載の尾筒において、
     前記筒は、前記外周面と前記内周面との間に形成されている第二空気流路を有し、
     前記第二空気流路は、前記外側空間に臨み、前記外側空間内の空気を前記第二空気流路内に導く入口と、前記複数の音響カバーのうち、少なくとも一の音響カバーで形成される前記音響空間に臨み、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口と、を有する、
     尾筒。
  7.  請求項6に記載の尾筒において、
     前記筒は、前記複数の音響カバー毎に、各音響カバーで形成される前記音響空間に連通する前記第一空気流路と前記第二空気流路とを有する、
     尾筒。
  8.  請求項4、6及び7のいずれか一項に記載の尾筒において、
     前記第二空気流路の前記入口は、前記音響カバーよりも前記上流側に位置する、
     尾筒。
  9.  請求項1から8のいずれか一項に記載の尾筒において、
     前記筒は、前記外周面と前記内周面との間に形成されている第三空気流路を有し、
     前記第三空気流路は、前記冷却空気空間に臨み、前記冷却空気空間内の空気を前記第三空気流路内に導く入口と、前記外側空間に臨み、前記第三空気流路内を通ってきた空気を前記外側空間に導く出口と、を有する、
     尾筒。
  10.  請求項4に記載の尾筒において、
     前記第一空気流路内を通ってきた空気を前記音響空間内に導く出口の開口面積は、前記第二空気流路内を通ってきた空気を前記音響空間内に導く出口の開口面積よりも大きい、
     尾筒。
  11.  請求項1から10のいずれか一項に記載の尾筒と、
     前記燃焼空間に燃料及び空気を噴射するバーナと、
     を備える燃焼器。
  12.  請求項11に記載の燃焼器と、
     圧縮機と、
     タービンと、
     中間ケーシングと、
     を備え、
     前記圧縮機は、ロータ軸線を中心として回転する圧縮機ロータと、前記圧縮機ロータを覆う圧縮機ケーシングと、有し、
     前記タービンは、前記ロータ軸線を中心として、前記圧縮機ロータと一体回転するタービンロータと、前記タービンロータを覆うタービンケーシングと、を有し、
     前記中間ケーシングは、前記ロータ軸線が延びるロータ軸線方向で、前記圧縮機ケーシングと前記タービンケーシングとの間に配置され、前記圧縮機ケーシングと前記タービンケーシングとを接続し、前記圧縮機から吐出された圧縮空気が流入し、
     前記燃焼器は、前記中間ケーシングに設けられている、
     ガスタービン。
  13.  請求項12に記載のガスタービンと、
     前記中間ケーシング内の前記圧縮空気を前記中間ケーシング外に導いてから、前記冷却空気ジャケット内に導く冷却空気ラインと、
     前記冷却空気ラインに設けられ、前記冷却空気ライン内を通る前記圧縮空気を冷却する冷却器と、
     前記冷却空気ラインに設けられ、前記冷却器で冷却された前記圧縮空気を昇圧するブースト圧縮機と、
     を備えるガスタービン設備。
PCT/JP2020/009303 2019-05-24 2020-03-05 尾筒、燃焼器、ガスタービン、及びガスタービン設備 WO2020240970A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217037825A KR20210151973A (ko) 2019-05-24 2020-03-05 미통, 연소기, 가스 터빈, 및 가스 터빈 설비
JP2021522640A JP7305761B2 (ja) 2019-05-24 2020-03-05 尾筒、燃焼器、ガスタービン、及びガスタービン設備
CN202080037059.1A CN113841011B (zh) 2019-05-24 2020-03-05 尾筒、燃烧器、燃气轮机及燃气轮机设备
US17/612,400 US20220228530A1 (en) 2019-05-24 2020-03-05 Transition piece, combustor, gas turbine, and gas turbine equipment
DE112020002536.5T DE112020002536T5 (de) 2019-05-24 2020-03-05 Übergangsstück, brennkammer, gasturbine und gasturbinenausrüstung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-097550 2019-05-24
JP2019097550 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020240970A1 true WO2020240970A1 (ja) 2020-12-03

Family

ID=73553316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009303 WO2020240970A1 (ja) 2019-05-24 2020-03-05 尾筒、燃焼器、ガスタービン、及びガスタービン設備

Country Status (6)

Country Link
US (1) US20220228530A1 (ja)
JP (1) JP7305761B2 (ja)
KR (1) KR20210151973A (ja)
CN (1) CN113841011B (ja)
DE (1) DE112020002536T5 (ja)
WO (1) WO2020240970A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326399B2 (ja) * 2021-09-30 2023-08-15 三菱重工業株式会社 トランジションピース、燃焼器及びガスタービンエンジン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171038A (ja) * 1998-12-08 2000-06-23 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2008274774A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
JP2012077660A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 回収式空気冷却ガスタービン燃焼器冷却構造
JP2015222022A (ja) * 2014-05-22 2015-12-10 三菱日立パワーシステムズ株式会社 冷却装置、これを備えているガスタービン設備、冷却装置の運転方法
JP2016108964A (ja) * 2014-12-02 2016-06-20 三菱日立パワーシステムズ株式会社 燃焼器及びガスタービン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3999644B2 (ja) * 2002-12-02 2007-10-31 三菱重工業株式会社 ガスタービン燃焼器、及びこれを備えたガスタービン
JP5804872B2 (ja) * 2011-09-27 2015-11-04 三菱日立パワーシステムズ株式会社 燃焼器の尾筒、これを備えているガスタービン、及び尾筒の製造方法
JP6754595B2 (ja) * 2016-03-30 2020-09-16 三菱日立パワーシステムズ株式会社 ガスタービン
KR20190065879A (ko) 2017-12-04 2019-06-12 재단법인 환동해산업연구원 민물장어의 황체형성 호르몬에 특이적인 항체 및 그의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171038A (ja) * 1998-12-08 2000-06-23 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP2008274774A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
JP2012077660A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 回収式空気冷却ガスタービン燃焼器冷却構造
JP2015222022A (ja) * 2014-05-22 2015-12-10 三菱日立パワーシステムズ株式会社 冷却装置、これを備えているガスタービン設備、冷却装置の運転方法
JP2016108964A (ja) * 2014-12-02 2016-06-20 三菱日立パワーシステムズ株式会社 燃焼器及びガスタービン

Also Published As

Publication number Publication date
KR20210151973A (ko) 2021-12-14
US20220228530A1 (en) 2022-07-21
CN113841011B (zh) 2023-03-28
DE112020002536T5 (de) 2022-02-24
JPWO2020240970A1 (ja) 2020-12-03
JP7305761B2 (ja) 2023-07-10
CN113841011A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US10309653B2 (en) Bundled tube fuel nozzle with internal cooling
US8079802B2 (en) Gas turbine
US7958734B2 (en) Cover assembly for gas turbine engine rotor
US20100154433A1 (en) Turbine cooling air from a centrifugal compressor
JP2010169076A (ja) ベンチュリ冷却システム
JP6310284B2 (ja) ガスタービンのタービンセクションにおける熱伝達を改善するための方法および装置
JP2009501861A (ja) シュラウドの半径方向脚部に配置されるタービンシュラウドセグメント用フェザーシール
JP2008286199A (ja) タービンエンジンを冷却する方法及び装置
JP2008274774A (ja) ガスタービン燃焼器およびガスタービン
JP6647952B2 (ja) ガスタービン
CA2429425C (en) Combustor turbine successive dual cooling
JP2015200211A (ja) タービンの換気構造
JP5281685B2 (ja) ガスタービン燃焼器およびガスタービン
US10422249B2 (en) Exhaust frame
JP6564872B2 (ja) 燃焼用筒、ガスタービン燃焼器及びガスタービン
US11156094B2 (en) Impeller, centrifugal compressor, gas turbine, and method of manufacturing impeller
WO2020240970A1 (ja) 尾筒、燃焼器、ガスタービン、及びガスタービン設備
JP2011237167A (ja) ガスターボ機械用の流体冷却噴射ノズル組立体
JP2012140955A (ja) タービンエンジン用燃焼器組立体及びその組み立て方法
US11149557B2 (en) Turbine vane, ring segment, and gas turbine including the same
JP6961340B2 (ja) 回転機械
KR102314661B1 (ko) 라이너 냉각장치, 연소기 및 이를 포함하는 가스터빈
JP2023050983A (ja) トランジションピース、燃焼器及びガスタービンエンジン
US10648350B2 (en) Retainer for gas turbine blade, turbine unit and gas turbine using the same
JPWO2020240970A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217037825

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20814175

Country of ref document: EP

Kind code of ref document: A1