JP7003097B2 - 無人搬送車 - Google Patents

無人搬送車 Download PDF

Info

Publication number
JP7003097B2
JP7003097B2 JP2019197284A JP2019197284A JP7003097B2 JP 7003097 B2 JP7003097 B2 JP 7003097B2 JP 2019197284 A JP2019197284 A JP 2019197284A JP 2019197284 A JP2019197284 A JP 2019197284A JP 7003097 B2 JP7003097 B2 JP 7003097B2
Authority
JP
Japan
Prior art keywords
guided vehicle
automatic guided
unit
force
transported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019197284A
Other languages
English (en)
Other versions
JP2021071855A (ja
Inventor
隆史 園浦
大介 山本
秀樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2019197284A priority Critical patent/JP7003097B2/ja
Publication of JP2021071855A publication Critical patent/JP2021071855A/ja
Application granted granted Critical
Publication of JP7003097B2 publication Critical patent/JP7003097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明の実施形態は、無人搬送車に関する。
物流分野では人手不足やコスト削減のため、省人化の要望がある。例えば、かご台車のような搬送対象物の搬送を自動化する手法の一つとして、搬送対象物を無人搬送車により搬送させる手法が提案されている。このような無人搬送車は、搬送対象物に作用する外力の検知能力のさらなる向上が期待されている。
特開2019-079171号公報 特開2019-119343号公報
本発明が解決しようとする課題は、搬送対象物に作用する外力の検知能力の向上を図ることができる無人搬送車を提供することである。
実施形態の無人搬送車は、移動機構と、移動機構駆動部と、結合部と、力検知部と、を持つ。移動機構駆動部は、移動機構を駆動する。結合部は、搬送対象物に結合可能である。力検知部は、搬送対象物から結合部に作用する力を検知可能である。結合部は、搬送対象物との相対位置が水平面方向において変化しないように、搬送対象物に結合可能である。結合部は、搬送対象物を載置する天板と、天板を昇降させる昇降機構と、を有する。力検知部は、天板と昇降機構との間に配置される。力検知部は、天板および昇降機構のうち少なくとも一方に対して上下方向の相対位置が固定されず、天板および昇降機構の両方に対して水平面方向の相対位置が固定される。

台車および無人搬送車の斜視図。 第1の実施形態の無人搬送車の側面図。 第1の実施形態の無人搬送車の平面図。 無人搬送車の結合動作の第1説明図。 無人搬送車の結合動作の第2説明図。 図2のP部の拡大図。 中間部材の平面図。 第1の実施形態の無人搬送車のブロック図。 第1の実施形態の無人搬送車のシステム説明図。 回転中心の補正の説明図。 第1の実施形態の第2変形例の無人搬送車の側面図。 第1の実施形態の第2変形例の無人搬送車の背面図。 第1の実施形態の第3変形例の無人搬送車の側面図。 第2の実施形態の無人搬送車の側面図。 第2の実施形態の無人搬送車の平面図。 第1の実施形態の第1変形例の無人搬送車の側面図。 第1の実施形態の第1変形例の無人搬送車の平面図。
以下、実施形態の無人搬送車を、図面を参照して説明する。
本願において、直交座標系のX方向、Y方向およびZ方向が以下のように定義される。Z方向は鉛直方向であって、+Z方向は上方向である。X方向は水平方向であって、無人搬送車の前後方向であり、+X方向は無人搬送車の前方向である。Y方向は水平方向であって、X方向に直交する方向であり、無人搬送車の左右方向(幅方向)である。本願において「水平面方向」の用語には、X方向およびY方向に加えて、Z軸周りの周方向が含まれる。
以下の実施形態では、荷物を積載する台車が搬送対象物である場合を例にして説明する。
(第1の実施形態)
図1は、台車および無人搬送車の斜視図である。台車1は、ロールボックスパレット(RBP)のようなかご台車である。台車1は、底板2と、枠体4と、車輪5と、を有する。
底板2は、+Z方向から見て矩形状に形成される。底板2は、アルミニウム等の金属材料または樹脂材料などで形成される。
枠体4は、パイプ材を格子状に組み合わせて形成される。枠体4は、底板2の上面の縁辺から、+Z方向に立設される。枠体4の内側には、荷物(不図示)が積載可能である。
車輪5は、床面に水平な車軸の周りを回転可能である。複数の車輪5が、底板2の下面の四隅に装着される。車輪5は、Z軸の周りを回転自在な自在輪(キャスタ)と、Z軸の周りに回転しない固定輪と、を有する。
図2は、第1の実施形態の無人搬送車の側面図である。図2では、無人搬送車のY方向のバンパの記載を省略している。図3は、第1の実施形態の無人搬送車の平面図である。図3では、天板16が仮想線で記載されている。無人搬送車10は、例えば、オペレータによる操縦が不要な自律移動台車であり、床面に描かれたラインなども不要なラインレスタイプの自律移動台車である。無人搬送車10は、例えば、低床型のAGV(Automatic Guided Vehicle)であり、台車1の下方に潜り込んで台車1に結合され、台車1を搬送する。ただし、無人搬送車10は、上記例に限定されず、別のタイプの無人搬送車でもよい。例えば、無人搬送車10は、オペレータにより操縦されるものでもよい。
図3に示されるように、無人搬送車10は、車体11と、車輪(移動機構)12と、車輪12を駆動する駆動モータ(移動機構駆動部)13と、を有する。
車体11は、直方体の箱状に形成される。車体11は、平面視において無人搬送車10の中央部に配置される。車輪12は、Y方向と平行な車軸を有する。車輪12は、平面視において車体11の四隅の外側に配置される。駆動モータ13は、車体11の四隅の内側に配置される。駆動モータ13は、複数の車輪12を相互に独立して回転駆動する。駆動モータ13には、回転量を検知するエンコーダが付属している。
4個の車輪12は、例えばメカナムホイールを形成する。メカナムホイールは、車輪12の円周上に複数の樽を有する。樽は、車輪12の車軸に対して45度傾いた回転軸の周りを自由回転する。メカナムホイールは、4個の車輪12の回転方向の組み合わせや回転速度を変えることにより、車体11をあらゆる方向に移動させる。4個の車輪12は、通常の2輪独立駆動方式(2個の駆動輪および2個の従動輪)でもよく、アクティブキャスターと呼ばれる操舵輪方式でもよい。
図2に示されるように、無人搬送車10は、搬送対象物との結合部としてリフトユニット15を有する。
結合部は、搬送対象物に対して着脱可能に結合する。本願でいう「結合」とは、「2つの対象を関係付ける」程度の広い概念を意味し、搬送対象物を支持する(例えば下方から持ち上げる)ことや、搬送対象物に係合する(例えば引っ掛かる)ことなども該当する。結合部であるリフトユニット15は、搬送対象物である台車1の重量の少なくとも一部を支持する。以下には、台車1の重量の一部を支持することを「台車1を半支持する」と言う場合がある。
リフトユニット15は、台車1を載置する天板16と、天板16を昇降させる昇降機構17と、を有する。
天板16は、平面視において略矩形の平板状に形成される。天板16は、車体11の+Z方向に配置される。昇降機構17は、天板16の-Z方向に配置される。一対の昇降機構17が、X方向に離れて配置される。昇降機構17の個数は、2個に限られず、1個でもよく、3個以上でもよい。昇降機構17は、リンク機構と、モータやアクチュエータなどの動力源(不図示)と、を含む。リンク機構の上端部は天板16に接続され、下端部は車体11に接続される。動力源は、リンク機構をZ方向に伸縮させる。これにより、リンク機構に接続された天板16がZ方向に昇降する。昇降機構17は、直動アクチュエータにより直接的に天板16を昇降させてもよい。
図4は無人搬送車の結合動作の第1説明図であり、図5は第2説明図である。図4に示されるように、無人搬送車10は、後述されるLRFで台車1の車輪5の位置を把握しながら、台車1の下方に進入する。無人搬送車10は、天板16を下降させた状態で、台車1の底板2と床面との間に進入する。図5に示されるように、無人搬送車10は、昇降機構17により天板16を上昇させ、天板16を台車1の底板2に当接させる。無人搬送車10は、さらに天板16を上昇させ、台車1を支持または半支持する。無人搬送車10の天板16と台車1の底板2との間の摩擦力により、無人搬送車10と台車1との水平面方向の相対移動が抑制される。すなわち、結合部であるリフトユニット15は、無人搬送車10と台車1との相対位置が水平面方向において変化しないように、無人搬送車10と台車1とを結合する。
無人搬送車10が台車1の全重量を支持するとき、台車1の車輪5は床面から浮上する。無人搬送車10が台車1の重量の一部を半支持するとき、台車1の車輪5は床面に接地した状態(以下「半接地状態」と言う場合がある。)になる。無人搬送車10は、台車1を支持または半支持した状態で、床面に沿って移動する。無人搬送車10は、目的地まで台車1を搬送する。
無人搬送車10が台車1を半支持する場合でも、半支持する重量が十分であれば、天板16と台車1との間に十分な摩擦力が生じる。そのため、台車1の車輪5を半接地状態として無人搬送車10が移動しても、無人搬送車10と台車1との水平面方向の相対移動が抑制される。台車1の車輪5を半接地状態とすることで、台車1の車輪5が台車1の重量の残部を支えるので、台車1の姿勢が安定する。台車1の荷物が偏って搭載されている場合や、無人搬送車10の旋回動作による遠心力または急加減速による慣性力が作用する場合でも、台車1が転倒(天板16から脱落)しにくくなる。これにより、台車1を完全に持ち上げて車輪5を浮上させる場合と比べて、台車1の安定性が向上する。
無人搬送車10が台車1の重量を支持または半支持することで、無人搬送車10の車輪12と床面との摩擦力が増加するので、車輪12のグリップ力が向上する。そのため、車輪12を空転させることなく、重い台車1を搬送することができる。台車1を半支持することにより、リフトユニット15の持ち上げ可能重量を超える重量の台車1を搬送することも可能である。
図3に示されるように、無人搬送車10は、バンパ20と、接触センサ21と、物体検知センサ23と、を有する。
バンパ20は、車体11の±X方向および±Y方向に配置される。±Y方向のバンパ20は、車輪12のY方向の外側に配置される。バンパ20と車体11との間には、感圧センサが配置される。感圧センサの出力信号により、無人搬送車10のバンパ20と物体との接触が検知可能である。接触センサ21は、無人搬送車10の四隅に配置される。接触センサ21は、車体11から放射状に延びるアームの先端に装着される。接触センサ21の出力信号により、無人搬送車10と物体との接触が検知可能である。
物体検知センサ23は、例えば空間中の1平面をレーザ走査するレーザレンジファインダ(LRF)である。物体検知センサ23のレーザ走査面は、床面と平行であって床面から所定高さの平面である。物体検知センサ23のレーザ走査範囲は、例えば270°の範囲である。LRFが照射したレーザの反射の有無により、物体の存在が検知可能である。LRFが照射したレーザの反射の度合いにより、物体までの距離が検出可能である。物体検知センサ23は、無人搬送車10の±X方向および±Y方向に配置される。
図2に示されるように、無人搬送車10は、力検知部として力覚センサ25を有する。力検知部である力覚センサ25は、結合部であるリフトユニット15に作用する力を検知可能である。
力覚センサ25は、力またはモーメントの作用により物理量が変化する検出素子(不図示)を有する。力覚センサ25は、検出素子のひずみなどの物理量に対応する電気信号を出力する。力覚センサ25の出力信号により、力覚センサ25に作用する各軸方向の力および各軸周りのモーメントが検知可能である。力覚センサ25は、リフトユニット15の天板16と昇降機構17との間に配置される。一対の昇降機構17に対応して、一対の力覚センサ25が配置される。天板16に作用する全ての力およびモーメントは、一対の力覚センサ25に伝達される。一対の力覚センサ25で計測された力およびモーメントを合成することで、天板16に作用する力を推定することができる。力覚センサ25の個数は、2個に限定されず、1個でもよく、3個以上でもよい。
図6は、図2のP部の拡大図であり、図7のV-V線における側面断面図である。図6に示されるように、力覚センサ25の-Z方向の端部は、昇降機構17に固定される。力覚センサ25の+Z方向の端部には、板状の中間部材26が配置される。中間部材26は、固定部材27により力覚センサ25に固定される。中間部材26は、天板16に固定されていない。すなわち、力覚センサ25は、天板16に対してZ方向の相対位置が固定されていない。昇降機構17により天板16を下降させたとき、天板16の-Z面が異物に接触すると、天板16が中間部材26から浮上する。これにより、力覚センサ25の破損が防止される。力覚センサ25は、昇降機構17に対してZ方向の相対位置が固定されていなくてもよい。すなわち、力覚センサ25は、天板16および昇降機構17のうち少なくとも一方に対してZ方向の相対位置が固定されていなければよい。
図7は、中間部材の平面図である。図7では、天板16が仮想線で記載されている。中間部材26は、平面視において、Y方向を長手方向とする長方形状に形成される。力覚センサ25は、平面視において円形状に形成される。平面視において、中間部材26の面積は、力覚センサ25の面積より大きい。これにより、台車1から天板16に作用する力が、バランスよく力覚センサ25に伝達される。
図6に示されるように、天板16の-Z面には凹部16dが形成される。凹部16dには、中間部材26の+Z方向の端部が収容される。図7に示されるように、凹部16dは、X方向およびY方向において中間部材26を隙間なく収容する。すなわち、中間部材26に固定された力覚センサ25は、天板16に対して水平面方向の相対位置が固定される。力覚センサ25は、天板16および昇降機構17の両方に対して、水平面方向の相対位置が固定される。これにより、力覚センサ25は、台車1から天板16に作用する水平面方向の力を検知可能である。
無人搬送車10は、力検知部として、力覚センサ25に代えて、変位センサ25bを有してもよい。変位センサ25bは、作用する力に応じた変位に対応する信号を出力する。例えば、変位センサ25bは、ひずみゲージや静電センサ、ロードセルなどである。
無人搬送車10は、力検知部として、力覚センサ25に代えて、感圧センサ25cを有してもよい。感圧センサ25cは、作用する力に応じた信号を段階的に出力する。例えば、感圧センサ25cは、所定値以上の大きさの力が作用するときに信号を出力する。
図3に示されるように、無人搬送車10は制御部30を有する。
図8は、第1の実施形態の無人搬送車のブロック図である。図9は、第1の実施形態の無人搬送車のシステム説明図である。以下には、文章中に括弧を付けて図9中の符号を引用することにより、無人搬送車のシステムを説明する。
制御部30の各機能部は、例えば、少なくとも一部が、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのハードウェアプロセッサが記憶部に格納されたプログラム(ソフトウェア)を実行することにより実現される。また、制御部30の各機能部の一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェア(回路部;circuitry)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
図8に示されるように、制御部30は、駆動モータ13の動作を制御する移動制御部13cと、昇降機構17の動作を制御する昇降制御部17cと、を有する。移動制御部13cは、駆動モータ13を駆動して車輪12を回転させ、無人搬送車10を移動させる。昇降制御部17cは、昇降機構17を駆動して天板16を昇降させ、台車1を支持する。
移動制御部13cは、移動目標に向けた無人搬送車10の一般動作を生成する(S50)。移動制御部13cは、後述される無人搬送車10の現在位置の情報を用いて、無人搬送車10の位置制御を行う(S54)。速度出力許可(衝突判定)(S55)は後述される。回転中心シフト(S56)は後述される。移動制御部13cは、逆運動学(S58)により、目標速度が実現されるように駆動モータ13を制御する(S59)。これにより、無人搬送車10の移動動作が実現される(S60)。
制御部30は、物理モデル獲得部31と、物理現象推定部33と、外力推定部35と、を有する。
物理モデル獲得部31は、無人搬送車10および台車1の物理モデルを獲得する。物理モデル獲得部31は、無人搬送車10のサイズや重量、車輪12の配置、車輪12の直径など、移動動作に関連するパラメータを既知情報として保有している。無人搬送車10が決められた台車1を扱う場合には、台車1のサイズや重量、車輪5の配置などの物理モデルが、既知情報として予め物理モデル獲得部31に入力されている。未知の台車1の場合には、荷積み作業など別の作業時や荷積み作業終了後に、台車1の重量を計測しておく。計測した台車1の重量は、個々の台車1と紐付けて記憶させておき、ネットワーク等を用いて物理モデル獲得部31に通知されてもよい。物理モデル獲得部31の重心位置推定部32については後述される。
物理モデル獲得部31は、次のように台車1の質量を獲得することも可能である。
物理モデル獲得部31は、台車1の持ち上げ前に力覚センサ25に作用する垂直荷重の合計値を計測する。物理モデル獲得部31は、台車1を完全に持ち上げた状態で、力覚センサ25に作用する垂直荷重の合計値を計測する。物理モデル獲得部31は、台車1の持上げ前後の垂直荷重の差分ΔFを計算する。物理モデル獲得部31は、台車1の質量MをM=ΔF/Gにより計算する。Gは重力加速度である。物理モデル獲得部31は、台車1が完全に持ち上がると垂直荷重の合計値が変化しなくなることを利用して、台車1の持ち上げ完了を判定する。
物理モデル獲得部31は、無人搬送車10が半支持している台車1の質量の一部を、次のように獲得することも可能である。
物理モデル獲得部31は、台車1を完全に持ち上げずに半接地状態とする。物理モデル獲得部31は、無人搬送車10に任意の加速度aで直進動作を行わせる。このとき、無人搬送車10の動作生成を、物理モデル推定用動作生成(S52)に切り替える(S76)。物理モデル獲得部31は、力覚センサ25が計測する合力のうち、動作と逆方向に発生した力成分F´を求める。物理モデル獲得部31は、台車1の質量の一部Mを、M=F´/aとして求める。無人搬送車10の直進動作時には、外部からの衝突等の影響がないことが保証されるようにする。すなわち、無人搬送車10の動作により生じる慣性力のみが、力覚センサ25の計測値に上乗せされるような意図的な環境下でテスト動作を行わせるようにする。
物理現象推定部33は、無人搬送車10および台車1の物理モデルを用いて、車体11の動作により生じる物理現象を推定する。
無人搬送車10の車輪12の駆動モータ13には、それぞれエンコーダが備わっている(S61)。物理現象推定部33は、エンコーダが出力する単位時間あたりの車軸の回転量から、順運動学(Direct Kinematics、デッドレコニング、S62)により、無人搬送車10の移動量を算出する。これにより、物理現象推定部33は、無人搬送車10の自己位置(現在位置)を推定する(S63)。
物理現象推定部33は、エンコーダが出力する単位時間あたりの車軸の回転量から、車輪12の回転速度を算出する。物理現象推定部33は、この情報を用いて、車輪12の回転速度を自在に制御するとともに、無人搬送車10の移動速度の推定を行う。無人搬送車10は、加速度センサ(S64)やジャイロなどを含む慣性センサを搭載してもよい。物理現象推定部33は、慣性センサを用いて、無人搬送車10の移動速度や加速度などを直接的に計測することも可能である。物理現象推定部33は、無人搬送車10の移動量の二階微分(S65)により、加速度を算出することも可能である。
物理現象推定部33は、慣性力推定部34を有する。慣性力推定部34は、車両の加減速により生じる慣性力を推定する。
慣性力推定部34は、無人搬送車10の加速度aと力覚センサ25(S66)の出力値とを常に監視している。慣性力推定部34は、無人搬送車10の並進加速度aと無人搬送車10の質量Mとを用いて、慣性力F=-Maを推定する(S68)。慣性力推定部34は、複数の力覚センサ25の合力FにFを合成する。これにより、慣性力推定部34は、力覚センサ25が計測した合力から慣性力成分を除外した外部入力(外力)F´=F+Fを推定する(S69)。
制御部30は、動作制御部40を有する。動作制御部40は、外力推定部35により推定された外力に応じて無人搬送車10の動作を制御する。動作制御部40は、複数の動作制御モード(動作遮断モード、移動補助(アシスト)モード、動作確認モード、回転中心補正モード)を有する。
制御部30は、制御モード選択部48を有する。制御モード選択部48は、動作制御部40における無人搬送車10の動作の制御モードを選択する。制御モード選択部48は、どのモードで動作出力するかをフラグにより切り替えて、モード管理(S75)を行う。フラグは、システム上のシーケンス管理により自動的に切り替えられる場合のほか、タッチパネルやスイッチなど外部入力インタフェースからの入力により手動で切り替えられる場合がある。
動作制御部40は、動作遮断部42を有する。動作遮断部42は、動作遮断モードを実行する。動作遮断部42は、外力推定部35により推定された外力の大きさが第1閾値を超える場合に、無人搬送車10の動作を遮断する。
外力推定部35により推定された外力の大きさが第1閾値Aを超える場合(|F´|>A)には、無人搬送車10の動きにより台車1に発生した慣性力以外の力が、外部から台車1に加わったとみなすことができる。例えば、台車1と物体との衝突による衝撃力が、台車1に作用した可能性がある。このとき、動作遮断部42は、移動制御部13cが出力している無人搬送車10の移動速度を、直ちに0にまで下げる(S55、衝突判定)。すなわち、動作遮断部42は、無人搬送車10の動作を遮断する。これにより、台車1と物体との衝突時に、台車1および周囲に対して大きな力を加えてしまう事態を回避することができる。
前述されたように、力覚センサ25は、無人搬送車10と台車1との結合部に配置される。これにより、台車1を外部障害物との接触検知機構の一部に組み込むことができる。すなわち、台車1に接触検知センサを具備した場合と同等の効果を発揮させることができる。この場合、LRFや伸縮バンパのような一部範囲のみの衝突検知ではなく、台車1のどの部分にどの方向から加えられた力も検出可能である。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
動作制御部40は、移動補助部43を有する。移動補助部43は、移動補助モードを実行する。移動補助部43は、外力推定部35により推定された外力に応じた無人搬送車10の移動を補助(アシスト)するように車体11を移動させる。例えば、台車1が作業者により所定方向に押されたときに、移動補助部43は、無人搬送車10の同方向への移動を補助するように、無人搬送車10を同方向に移動させる。
無人搬送車10に備えられたアシストモード有効化スイッチ(S77)をONにすると、それまで有効であった動作遮断モードが無効になり、代わりに移動補助モードが有効になる。また、動作遮断モードに使用する第1閾値の大きさF1と、移動補助モードにおける作業者の操作入力の大きさF2が、F1>F2の大小関係でさらに十分差がある場合には、動作遮断モードを無効にせず同時に有効にしたままでもよい。
移動補助部43は、全ての力覚センサ25により検出された合力のうち、移動平面に対して水平方向に対応する並進成分F=(F,F)と、移動平面に対して垂直方向に対応する回転成分Mを利用する。移動補助部43には、アシスト動作に対応する台車1の仮想的な質量Mおよび慣性モーメントIが設定されている。移動補助部43は、検出した外力F,Mに対応して、仮想的な並進加速度av=F/M,回転角加速度wv=M/Iを算出する。移動補助部43は、算出した加速度av,wvに対応した、次の制御ステップ(時間間隔Δt)における並進速度v(t+Δt)=v(t)+avΔt,回転角速度ω(t+Δt)=ω(t)+wvΔtを算出する(S71)。移動補助部43は、逆運動学(Inverse Kinematics、S58)に応じて各車輪12の車軸の回転速度φnを求め、各車輪12の駆動モータ13の制御を行う(S59)。
これにより、無人搬送車10と結合した台車1に対して作業員が手で力を加えると、その力に応じて無人搬送車10は台車1を床面内で自在に移動させる。搬送対象物である台車1を入力装置として利用するので、入力装置分の無駄なスペースを占有する必要がなく、またコストを抑制することができる。
台車1の仮想的な質量Mおよび慣性モーメントIを、実際の台車1の値より小さく設定してもよい。この場合には、同じ大きさの入力に対して大きな加速が実現されるため、作業員は実際の台車1より軽いものを扱っているような感覚で、台車1を動かすことができる。
力覚センサ25の計測値から各車輪12の速度出力を生成するためのアルゴリズムは上記に限定されない。例えば、加速度の算出の際に、現在の速度に比例した逆方向の力(減衰力)を生じさせるダンピング項を追加して、外力が働かない場合でもカゴ台車が一定加速度で停止するような制御則にしても良い。
無人搬送車10が台車1を半支持すると、台車1の車輪5が半接地状態になる。この状態で、制御部30は、直ちに台車1の搬送を開始せずに、動作確認モードおよび回転中心補正モードを順に実行する。制御モード選択部48は、動作遮断モードを無効化し、動作確認モードおよび回転中心補正モードを順に有効化する。
動作制御部40は、動作確認部44を有する。動作確認部44は、動作確認モードを実行する。動作確認部44は、無人搬送車10の移動を試行したとき、外力推定部35により推定された外力が第2閾値を超える場合に、車体11の動作を遮断するとともに警報を出力する。例えば、動作確認部44は、台車1の搬送開始時に、台車1が車輪ロック等により移動不能になっていないか確認する。
動作確認部44は、台車1の搬送開始時に、数センチ程度の前進動作を試行する。このとき、外力推定部35により推定された外力が第2閾値を超える場合には、台車1が移動不能であると判断する。例えば、台車1の車輪ロック機構がONになっていたり、車輪留めが施してあったりすることが考えられる。動作確認部44は、その後の移動タスクを中断し、その場に停止した状態で警報を出力する。例えば、異常を示すランプを点灯することでオペレータに通知する。異常通知の手段はランプによる視覚提示に限らず、特別なパターン音で通知しても構わないし、ネットワーク経由で統合管理システムに通知するなどしてもよい。動作確認部44は、前方向と同様に横方向や旋回方向に対しても微小移動を試み、台車1が移動不能でないか確認する。
制御モード選択部48は、動作確認モードが実行された後、制御フラグを回転中心補正モードに切り替える。
動作制御部40は、回転中心補正部45を有する。回転中心補正部45は、予め設定された回転中心に基づいて無人搬送車10の移動を試行したとき、外力推定部35によって推定された外力が第3閾値を超える場合に、回転中心を補正する。
図10は、回転中心の補正の説明図であり、台車1および無人搬送車10の平面図である。例えば、無人搬送車10は、台車1のY方向の中央部であって、+X方向の端部に進入して、台車1と結合する。
前述されたように、台車1は、Z軸の周りを回転自在な自在輪(キャスタ)5rと、Z軸の周りに回転しない固定輪5sと、を有する。例えば、台車1の+X方向の2輪が自在輪5rであり、-X方向の2輪が固定輪5sである。固定輪5sの車軸はY方向に平行である。台車1をZ軸の周りに回動させるとき、一対の固定輪5sの中間点O´を回動中心とすれば、回動抵抗が最も小さくなる。台車1を水平移動させるとき、一対の固定輪5sの車軸と直交する方向に移動させれば、移動抵抗が最も小さくなる。回転中心補正部45は、台車1の回動の回転中心を、無人搬送車10の中心点Oから、一対の固定輪5sの中間点O´にシフトする。回転中心シフト量Sを(Sx,Sy,Sz)とする。SxはX方向の移動量、SyはY方向の移動量、SzはZ軸の周りの回転量である。
無人搬送車10は、搬送する台車1のサイズや車輪の種類および位置など、台車1の個体情報を事前に入手している。無人搬送車10は、台車1のどの位置から進入してどの位置に移動して台車1に接合するべきか、予め把握している。また無人搬送車10は、台車1と接合した後に、固定輪5sの動作干渉を回避するためにどの位置を回転中心として移動動作出力を行うべきか、予め把握している。台車1の個体情報の入手方法に関しては、特に限定されない。例えば、台車1にタグやバーコードなどを添付しておき、ドッキング時にそれをスキャンして個体情報を取得してもよい。また、上位管理システムからネットワーク経由で個体情報を入手してもよい。
回転中心補正部45は、回転中心シフト量Sに対し、微小変化量ΔS=(ΔSx,ΔSy,ΔSz)を加えた補正回転中心シフト量S´=(Sx+ΔSx,Sy+ΔSy,Sz+ΔSz)を設定する。回転中心補正部45は、並進移動や旋回動作など既定の動作パターン(S51)を、補正回転中心シフト量S´に適用して動作速度を生成する。回転中心補正部45は、微小変化量ΔSを変化させて、既定の動作パターンを繰り返し実施する。回転中心補正部45は、外力推定部35により推定された外力を確認する。回転中心補正部45は、推定外力のスカラ最大値が一番小さくなる組合せS´minを、実際の接続に適応した回転中心シフト量に決定する(S72)。回転中心補正部45は、決定された回転中心シフト量を、他の動作モード(別制御フラグ時)でも使用する(S56)。
無人搬送車10は、台車1の底部に進入して台車1に接合する。このとき、台車1と無人搬送車10との理想的な相対位置関係に対して位置ずれが生じやすい。位置ずれがある場合には、台車1の搬送に伴って固定輪5sが床面から抵抗力を受けるため、台車1の搬送が不安定になりやすい。これに対して、回転中心補正部45は、既定の動作パターンを繰り返し実施して、推定外力が最小になるように、回転中心を補正する。これにより、台車1の固定輪5sが床面から抵抗力を受けにくい方向に台車1を搬送することが可能になり、台車1の搬送が安定する。
制御部30は、重量監視制御部37を有する。重量監視制御部37は、台車1に搭載された荷物の落下を検知する。
無人搬送車10は、各種データを記憶する記憶部50を有する。記憶部50は、台車1の重量を記憶する重量記憶部57を有する。力覚センサ25は、無人搬送車10に結合された台車1の重量を検知可能である。重量監視制御部37は、力覚センサ25により台車1の重量を計測する。重量監視制御部37は、計測した台車1の重量を重量記憶部57に保存する。
重量監視制御部37は、台車1の搬送ジョブの開始前に、台車1の重量Wを計測して、重量記憶部57に保存する。台車1の重量には、台車1に搭載された荷物の重量が含まれている。重量監視制御部37は、所定時間ごとに、台車1の重量Wを計測する。重量監視制御部37は、重量記憶部57に記憶された台車1の重量Wと、新たに計測された台車1の重量Wとを比較する。台車1に搭載されていた荷物が、台車1の搬送中に台車1から落下していれば、重量Wは重量Wより小さくなる。重量監視制御部37は、重量Wと重量Wとの差が第4閾値を超える場合に、荷物の落下が発生したと判断する。この場合に、重量監視制御部37は、無人搬送車10の動作を変更する。例えば、重量監視制御部37は、無人搬送車10の動作を遮断し、無人搬送車10を停止させる。重量監視制御部37は、荷物の落下に関する警報を出力する。
制御部30は、重心位置監視制御部38を有する。重心位置監視制御部38は、台車1の内部における荷崩れの発生を検知する。
物理モデル獲得部31は、重心位置推定部32を有する。重心位置推定部32は、力覚センサ25により検知された力および物理現象推定部33により推定された物理現象により、台車1の重心位置を推定する。
重心位置推定部32は、力覚センサ25により台車1の重量を検知する。重心位置推定部32は、複数の力覚センサ25により検知した力のバランスから、X方向およびY方向の重心位置を検知する。重心位置推定部32は、無人搬送車10を所定加速度で微小移動させる。重心位置推定部32は、物理現象推定部33の慣性力推定部34により、物理現象として台車1に作用する慣性力を推定する。重心位置推定部32は、複数の力覚センサ25により検知した力、並びに台車1の重心位置に作用する台車1の重量および慣性力の、モーメントのつり合いから、Z方向の重心位置を検知する。
記憶部50は、台車1の重心位置を記憶する重心位置記憶部58を有する。重心位置監視制御部38は、重心位置推定部32により台車1の重心位置を推定する。重心位置監視制御部38は、推定した台車1の重心位置を重心位置記憶部58に保存する。
重心位置監視制御部38は、台車1の搬送ジョブの開始前に、台車1の重心位置Pを計測して、重心位置記憶部58に保存する。重量監視制御部37は、所定時間ごとに、台車1の重心位置Pを計測する。重量監視制御部37は、重心位置記憶部58に記憶された台車1の重心位置Pと、新たに計測された台車1の重心位置Pとを比較する。台車1の内部で荷崩れが発生していれば、重心位置Pは重心位置Pからずれている。重量監視制御部37は、重心位置Pと重心位置Pとの距離が第5閾値を超える場合に、荷崩れが発生したと判断する。この場合に、重量監視制御部37は、無人搬送車10の動作を変更する。例えば、重量監視制御部37は、無人搬送車10の動作を遮断し、無人搬送車10を停止させる。重量監視制御部37は、荷崩れに関する警報を出力する。
以上に詳述されたように、無人搬送車10は、車輪12と、駆動モータ13と、リフトユニット15と、力覚センサ25と、を持つ。駆動モータ13は、車輪12を駆動する。リフトユニット15は、台車1に結合可能である。力覚センサ25は、台車1からリフトユニット15に作用する力を検知可能である。リフトユニット15は、台車1との相対位置が水平面方向において変化しないように、台車1に結合可能である。
台車1に作用する力は、リフトユニット15に伝達され、力覚センサ25により検知される。これにより、台車1を外部障害物との接触検知機構の一部に組み込むことができる。力覚センサ25は、各方向の力およびモーメントを検知可能である。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
無人搬送車10は、物理現象推定部33と、外力推定部35と、を有する。物理現象推定部33は、無人搬送車10および台車1の物理モデルを用いて、無人搬送車10の動作により生じる物理現象を推定する。外力推定部35は、物理現象推定部33により推定された物理現象と、力覚センサ25により検知された力の情報から、外部から台車1に作用する外力を推定する。
物理現象推定部33は、無人搬送車10の加減速により生じる慣性力を推定する慣性力推定部34を有する。外力推定部35は、力覚センサ25により検知された力から、慣性力推定部34により推定された慣性力を除外することで、外部から台車1に作用する外力を推定する。
これにより、台車1に作用する外力が精度よく検知される。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
無人搬送車10は、外力推定部35により推定された外力に応じて無人搬送車10の動作を制御する動作制御部40を有する。
動作制御部40は、外力推定部35により推定された外力の大きさが第1閾値を超える場合に、無人搬送車10の動作を遮断する動作遮断部42を有する。
これにより、台車1および周囲の物体を保護することができる。
動作制御部40は、外力推定部35により推定された外力に応じた無人搬送車10の移動を補助するように無人搬送車10を移動させる移動補助部43を有する。
これにより、無人搬送車10と結合した台車1に対して作業員が手で力を加えると、その力に応じて無人搬送車10は台車1を床面内で自在に移動させる。搬送対象物である台車1を入力装置として利用するので、入力装置分の無駄なスペースを占有する必要がなく、またコストを抑制することができる。
動作制御部40は、無人搬送車10の移動を試行したとき、外力推定部35により推定された外力が第2閾値を超える場合に、無人搬送車10の動作を遮断するとともに警報を出力する動作確認部44を有する。
これにより、台車1の移動不能を判断して報知することができる。
動作制御部40は、予め設定された回転中心に基づいて無人搬送車10の移動を試行したとき、外力推定部35によって推定された外力が第3閾値を超える場合に、回転中心を補正する回転中心補正部45を有する。
これにより、台車1の固定輪5sが床面から抵抗力を受けにくい方向に台車1を搬送することが可能になる。したがって、台車1の搬送が安定する。
無人搬送車10は、動作制御部40による無人搬送車10の動作の制御モードを選択する制御モード選択部48を有する。
これにより、複数の制御モードを適時に選択して実行することができる。
リフトユニット15は、台車1を載置する天板16と、天板16を昇降させる昇降機構17と、を有する。
無人搬送車10は、台車1の下方に潜り込み、台車1を支持または半支持して搬送する。これにより、台車1を改造することなく、多くの台車1を搬送することができる。
力覚センサ25は、天板16と昇降機構17との間に配置される。力覚センサ25は、天板16および昇降機構17のうち少なくとも一方に対して上下方向の相対位置が固定されない。力覚センサ25は、天板16および昇降機構17の両方に対して水平面方向の相対位置が固定される。
力覚センサ25の上下方向の相対位置が固定されない。これにより、昇降機構17により天板16を下降させたとき、天板16の下面が異物に接触すると、天板16が昇降機構17から離れる。したがって、力覚センサ25の破損が防止される。一方、力覚センサ25の水平面方向の相対位置が固定される。これにより、力覚センサ25は水平面方向の力およびモーメントを検知可能である。
無人搬送車10は、台車1の重量を記憶する重量記憶部57を有する。力覚センサ25は、結合された台車1の重量を検知可能である。無人搬送車10は、重量記憶部57に記憶された台車1の重量と、力覚センサ25により新たに検知された台車1の重量との差が第4閾値を超える場合に、無人搬送車10の動作を変更する重量監視制御部37を有する。
これにより、台車1からの荷物の落下を検知することができる。
無人搬送車10は、台車1の重心位置を記憶する重心位置記憶部58を有する。無人搬送車10は、力覚センサ25により検知された力および物理現象推定部33により推定された物理現象により台車1の重心位置を推定する重心位置推定部32を有する。無人搬送車10は、重心位置記憶部58に記憶された台車1の重心位置と、重心位置推定部32により新たに推定された台車1の重心位置との距離が第5閾値を超える場合に、無人搬送車10の動作を変更する重心位置監視制御部38を有する。
これにより、台車1の内部における荷崩れを検知することができる。
第1の実施形態の第1変形例について説明する。
図6に示されるように、第1変形例の無人搬送車10は、天板16の上面に摩擦部材16fを有する点で、第1の実施形態とは異なる。第1の実施形態と同様である点についての第1変形例の説明は省略される。
図6に二点鎖線で示されるように、天板16の上面には、天板16の上面より摩擦係数が大きい摩擦部材16fが配置される。天板16がステンレス等の金属材料であるのに対して、摩擦部材16fはウレタンシートやゴムシートなどである。摩擦部材16fとして、樹脂やゲル素材など、他の柔軟素材シートを使用してもよい。
図16は第1の実施形態の第1変形例の無人搬送車の側面図であり、図17は平面図である。天板16あるいは摩擦部材16fの上面に対して、(タイヤのような波目状の)溝状の加工を施すことで、台車1の底板2との接触時における摩擦力のさらなる向上を図ってもよい。複数の溝部16gを形成することにより、天板16または摩擦部材16fの上面には複数の突状部(突条部)16rが形成される。
第1変形例の無人搬送車10は、天板16の上面に配置され、天板16の上面より摩擦係数が大きい摩擦部材16fを有する。
摩擦部材16fにより、台車1の底板2との摩擦力が大きくなる。これにより、無人搬送車10と台車1との水平面方向の相対移動が抑制される。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
第1の実施形態の第2変形例について説明する。
図11は第1の実施形態の第2変形例の無人搬送車の側面図であり、図12は背面図である。第2変形例の無人搬送車10は、天板16の上面に固定機構を有する点で、第1の実施形態とは異なる。第1の実施形態と同様である点についての第2変形例の説明は省略される。
第2変形例の無人搬送車10は、固定機構として一対のグリッパ82を有する。一対のグリッパ82は、X方向に沿って平行に伸びる。一対のグリッパ82は、アクチュエータ(不図示)等により、相互に接近または離反するように、Y方向に移動可能である。一対のグリッパ82は、台車1の底板2の下面に存在する被把持部2Bを挟み込むことが可能である。被把持部2Bは、一対のグリッパ82の形状に合せて、新たに台車1に設置される。被把持部2Bは、予め台車1の底板2の下面に設置されているフレームなどでもよい。
第2変形例の無人搬送車10は、天板16の上面に配置され、天板16と台車1との水平面方向の相対位置を固定する固定機構を有する。
固定機構である一対のグリッパ82が台車1の被把持部2Bを挟み込むことにより、無人搬送車10と台車1との水平面方向の相対位置が固定される。これにより、台車1に作用する力が、天板16に伝達され、力覚センサ25により検知される。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
第1の実施形態の第3変形例について説明する。
図13は、第1の実施形態の第3変形例の無人搬送車の側面図である。第3変形例の無人搬送車10は、天板16の上面に係合部材84を有する点で、第1の実施形態とは異なる。第1の実施形態と同様である点についての第3変形例の説明は省略される。
第3変形例の無人搬送車10は、固定機構として一対の係合部材84を有する。係合部材84は、+Z方向に向かって先細る円錐台状に形成される。一対の係合部材84が、X方向に離れて配置される。一対の係合部材84は、X方向およびY方向において力覚センサ25と同じ位置に配置されてもよい。
台車1の底板2は、Z方向に厚く形成される。底板2の底面には、+Z方向に窪む凹部2Cが形成される。凹部2Cの内周面の形状は、係合部材84の外周面の形状に合わせて、円錐面状に形成される。一対の係合部材84に対応して、一対の凹部2Cが、X方向に離れて配置される。
天板16を上昇させると、係合部材84が凹部2Cに入り込む。係合部材84の外周面および凹部2Cの内周面は円錐面状に形成されている。そのため、係合部材84と凹部2Cとの水平面方向の位置がずれていても、天板16の上昇に合せて位置ずれが補正される。天板16の上昇中に力覚センサ25が検知する力をモニタして、その力が作用する方向に無人搬送車10を移動させながら結合作業を行ってもよい。一対の係合部材84と一対の凹部2Cとが係合すると、無人搬送車10と台車1との水平面方向の相対位置が固定される。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
(第2の実施形態)
図14は第2の実施形態の無人搬送車の側面図であり、図15は平面図である。第2の実施形態の無人搬送車210は、台車1の牽引ユニット215を有する点で、第1の実施形態とは異なる。第1の実施形態と同様である点についての第2の実施形態の説明は省略される。
第2の実施形態の無人搬送車210は、台車1との結合部として牽引ユニット215を有する。牽引ユニット215は、台車1を牽引可能な牽引部材216と、牽引部材216を台車1に結合させる結合機構217と、を有する。
牽引部材216は、円柱状に形成され、中心軸をZ方向と平行にして配置される。牽引部材216は、車体11のY方向の中央部であって、車体11の-X方向に配置される。
結合機構217は、車体11に固定され、牽引部材216をZ方向に昇降させる。牽引部材216と結合機構217との間には、力覚センサ25が配置される。
台車1は、牽引部材216が挿入される孔部206を有する。孔部206は、台車1から+X方向に突出する板部材207に形成される。孔部206は、板部材207をZ方向に貫通する。
無人搬送車210は、牽引部材216を下降させた状態で、台車1に接近する。無人搬送車210は、結合機構217により牽引部材216を上昇させて、孔部206に挿入する。これにより、牽引部材216が台車1に結合し、無人搬送車10と台車1との水平面方向の相対位置が固定される。
第2の実施形態の無人搬送車210は、台車1を牽引可能な牽引部材216と、牽引部材216を台車1に結合させる結合機構217と、を有する。
牽引部材216が台車1に結合すると、無人搬送車10と台車1との水平面方向の相対位置が固定される。したがって、台車1に作用する外力の検知能力の向上を図ることができる。
以上説明した少なくともひとつの実施形態によれば、結合部に作用する力を検知可能な力覚センサ25を持つ。結合部は、台車1と車体11との相対位置が水平面方向において変化しないように車体11と台車1とを結合する。これにより、台車1に作用する外力の検知能力の向上を図ることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…台車(搬送対象物)、10…無人搬送車、11…車体、12…車輪(移動機構)、13…駆動モータ(移動機構駆動部)、15…リフトユニット(結合部)、16…天板、16f…摩擦部材、16r…突状部、17…昇降機構、25…力覚センサ(力検知部)、32…重心位置推定部、33…物理現象推定部、34…慣性力推定部、35…外力推定部、40…動作制御部、42…動作遮断部、43…移動補助部、44…動作確認部、45…回転中心補正部、48…制御モード選択部、37…重量監視制御部、38…重心位置監視制御部、57…重量記憶部、58…重心位置記憶部、82…グリッパ(固定機構)、84…係合部材(固定機構)、215…牽引ユニット(結合部)、216…牽引部材、217…結合機構。

Claims (17)

  1. 移動機構と、
    前記移動機構を駆動する移動機構駆動部と、
    搬送対象物に結合可能な結合部と、
    前記搬送対象物から前記結合部に作用する力を検知可能な力検知部と、を有し、
    前記結合部は、前記搬送対象物との相対位置が水平面方向において変化しないように、前記搬送対象物に結合可能であり、
    前記結合部は、前記搬送対象物を載置する天板と、前記天板を昇降させる昇降機構と、を有し、
    前記力検知部は、前記天板と前記昇降機構との間に配置され、前記天板および前記昇降機構のうち少なくとも一方に対して上下方向の相対位置が固定されず、前記天板および前記昇降機構の両方に対して水平面方向の相対位置が固定される、
    無人搬送車。
  2. 前記無人搬送車および前記搬送対象物の物理モデルを用いて、前記無人搬送車の動作により生じる物理現象を推定する物理現象推定部と、
    前記物理現象推定部により推定された物理現象と、前記力検知部により検知された力の情報から、外部から前記搬送対象物に作用する外力を推定する外力推定部と、を有する、
    請求項1に記載の無人搬送車。
  3. 前記外力推定部により推定された外力に応じて前記無人搬送車の動作を制御する動作制御部を有する、
    請求項2に記載の無人搬送車。
  4. 前記物理現象推定部は、前記無人搬送車の加減速により生じる慣性力を推定する慣性力推定部を有し、
    前記外力推定部は、前記力検知部により検知された力から、前記慣性力推定部により推定された慣性力を除外することで、外部から前記搬送対象物に作用する外力を推定する、
    請求項3に記載の無人搬送車。
  5. 前記動作制御部は、前記外力推定部により推定された外力の大きさが第1閾値を超える場合に、前記無人搬送車の動作を遮断する動作遮断部を有する、
    請求項3または4に記載の無人搬送車。
  6. 前記動作制御部は、前記外力推定部により推定された外力に応じた前記無人搬送車の移動を補助するように前記無人搬送車を移動させる移動補助部を有する、
    請求項3または4に記載の無人搬送車。
  7. 前記動作制御部は、前記無人搬送車の移動を試行したとき、前記外力推定部により推定された外力が第2閾値を超える場合に、前記無人搬送車の動作を遮断するとともに警報を出力する動作確認部を有する、
    請求項3または4に記載の無人搬送車。
  8. 移動機構と、
    前記移動機構を駆動する移動機構駆動部と、
    搬送対象物に結合可能な結合部と、
    前記搬送対象物から前記結合部に作用する力を検知可能な力検知部と、を有し、
    前記結合部は、前記搬送対象物との相対位置が水平面方向において変化しないように、前記搬送対象物に結合可能であり、
    前記結合部は、前記搬送対象物を載置する天板と、前記天板を昇降させる昇降機構と、を有し、
    前記力検知部は、前記天板と前記昇降機構との間に配置され、
    無人搬送車および前記搬送対象物の物理モデルを用いて、前記無人搬送車の動作により生じる物理現象を推定する物理現象推定部と、
    前記物理現象推定部により推定された物理現象と、前記力検知部により検知された力の情報から、外部から前記搬送対象物に作用する外力を推定する外力推定部と、
    前記外力推定部により推定された外力に応じて前記無人搬送車の動作を制御する動作制御部と、をさらに有し、
    前記動作制御部は、予め設定された回転中心に基づいて前記無人搬送車の移動を試行したとき、前記外力推定部によって推定された外力が第3閾値を超える場合に、前記回転中心を補正する回転中心補正部を有する
    人搬送車。
  9. 前記動作制御部による前記無人搬送車の動作の制御モードを選択する制御モード選択部を有する、
    請求項3から8のいずれか1項に記載の無人搬送車。
  10. 前記力検知部は、力覚センサを有する、
    請求項1から9のいずれか1項に記載の無人搬送車。
  11. 前記力検知部は、変位センサの出力に基づいて前記結合部に作用する力を検知する、
    請求項1から9のいずれか1項に記載の無人搬送車。
  12. 前記力検知部は、感圧センサの出力に基づいて前記結合部に作用する力を検知する、
    請求項1から9のいずれか1項に記載の無人搬送車。
  13. 前記天板の上面に配置され、前記天板の上面より摩擦係数が大きい摩擦部材を有する、
    請求項1から9のいずれか1項に記載の無人搬送車。
  14. 前記天板または前記摩擦部材の上面に複数の突状部を有する、
    請求項13に記載の無人搬送車。
  15. 前記天板の上面に配置され、前記天板と前記搬送対象物との水平面方向の相対位置を固定する固定機構を有する、
    請求項1から9のいずれか1項に記載の無人搬送車。
  16. 前記搬送対象物の重量を記憶する重量記憶部を有し、
    前記力検知部は、結合された前記搬送対象物の重量を検知可能であり、
    前記重量記憶部に記憶された前記搬送対象物の重量と、前記力検知部により新たに検知された前記搬送対象物の重量との差が第4閾値を超える場合に、前記無人搬送車の動作を変更する重量監視制御部を有する、
    請求項1に記載の無人搬送車。
  17. 前記搬送対象物の重心位置を記憶する重心位置記憶部を有し、
    前記力検知部により検知された力および前記物理現象推定部により推定された物理現象により前記搬送対象物の重心位置を推定する重心位置推定部を有し、
    前記重心位置記憶部に記憶された前記搬送対象物の重心位置と、前記重心位置推定部により新たに推定された前記搬送対象物の重心位置との距離が第5閾値を超える場合に、前記無人搬送車の動作を変更する重心位置監視制御部を有する、
    請求項2に記載の無人搬送車。
JP2019197284A 2019-10-30 2019-10-30 無人搬送車 Active JP7003097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197284A JP7003097B2 (ja) 2019-10-30 2019-10-30 無人搬送車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197284A JP7003097B2 (ja) 2019-10-30 2019-10-30 無人搬送車

Publications (2)

Publication Number Publication Date
JP2021071855A JP2021071855A (ja) 2021-05-06
JP7003097B2 true JP7003097B2 (ja) 2022-01-20

Family

ID=75713150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197284A Active JP7003097B2 (ja) 2019-10-30 2019-10-30 無人搬送車

Country Status (1)

Country Link
JP (1) JP7003097B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230120473A (ko) * 2022-02-09 2023-08-17 유버 주식회사 자율주행 가능한 포크형 화물운송로봇

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120561A (ja) 2014-12-25 2016-07-07 トヨタ自動車株式会社 搬送ロボット、及びその制御方法
JP2016145758A (ja) 2015-02-09 2016-08-12 株式会社Ladvik ホースクランプの締付力測定装置
WO2016181627A1 (ja) 2015-05-13 2016-11-17 パナソニックIpマネジメント株式会社 搬送装置およびこれに搭載されるラック
WO2019054208A1 (ja) 2017-09-13 2019-03-21 日本電産シンポ株式会社 移動体および移動体システム
JP2019117431A (ja) 2017-12-26 2019-07-18 トヨタ自動車株式会社 自律移動ロボット
JP2019131392A (ja) 2018-02-02 2019-08-08 パナソニックIpマネジメント株式会社 搬送装置、受信機能付き搬送装置、搬送システム、上位システム、搬送装置の制御方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255366B2 (ja) * 2008-08-11 2013-08-07 株式会社日立産機システム 搬送ロボットシステム
JP5601048B2 (ja) * 2009-08-28 2014-10-08 富士通株式会社 移動体装置
JP2019059460A (ja) * 2017-09-22 2019-04-18 トピー工業株式会社 荷台搬送用ロボット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016120561A (ja) 2014-12-25 2016-07-07 トヨタ自動車株式会社 搬送ロボット、及びその制御方法
JP2016145758A (ja) 2015-02-09 2016-08-12 株式会社Ladvik ホースクランプの締付力測定装置
WO2016181627A1 (ja) 2015-05-13 2016-11-17 パナソニックIpマネジメント株式会社 搬送装置およびこれに搭載されるラック
WO2019054208A1 (ja) 2017-09-13 2019-03-21 日本電産シンポ株式会社 移動体および移動体システム
JP2019117431A (ja) 2017-12-26 2019-07-18 トヨタ自動車株式会社 自律移動ロボット
JP2019131392A (ja) 2018-02-02 2019-08-08 パナソニックIpマネジメント株式会社 搬送装置、受信機能付き搬送装置、搬送システム、上位システム、搬送装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
JP2021071855A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5255366B2 (ja) 搬送ロボットシステム
WO2020203253A1 (ja) 重量推定システム
JP4766031B2 (ja) 倒立型移動体および倒立型移動体の制御方法
JP7350958B2 (ja) 無人搬送車および無人搬送車の制御方法
JP2020193061A (ja) フォークリフトの荷役制御装置
US11845415B2 (en) AGV having dynamic safety zone
JP7003097B2 (ja) 無人搬送車
JP2022075659A (ja) 自動走行車、搬送装置、自動走行車の制御方法、及び搬送装置の制御方法
JP2022146514A (ja) 無人搬送車、無人搬送システム及び搬送プログラム
JP6350412B2 (ja) ロボットの転倒抑制方法
JP7303660B2 (ja) 搬送車
WO2022264673A1 (ja) 走行システム
JP5228560B2 (ja) 倒立走行ロボット及びその制御方法
JP2022136757A (ja) 自律走行体
WO2022215115A1 (ja) 移動体
CN116848033A (zh) 移动体
JP2021189800A (ja) 移動体、距離計測方法および距離計測プログラム
JP7334708B2 (ja) 自律移動体
JP7014193B2 (ja) 移動ロボット
EP4235335A1 (en) Automatic moving device and control method for automatic moving device
JP7397045B2 (ja) 無人搬送装置
JP2022176713A (ja) 無人搬送車の走行制御装置
WO2024057487A1 (ja) 移動体および移動体システム
JP2023084219A (ja) 位置推定装置、自律走行車両及び位置推定プログラム
WO2022137746A1 (ja) ロボット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228