JP6993909B2 - 連続最適化問題の大域的探索装置及びプログラム - Google Patents
連続最適化問題の大域的探索装置及びプログラム Download PDFInfo
- Publication number
- JP6993909B2 JP6993909B2 JP2018045428A JP2018045428A JP6993909B2 JP 6993909 B2 JP6993909 B2 JP 6993909B2 JP 2018045428 A JP2018045428 A JP 2018045428A JP 2018045428 A JP2018045428 A JP 2018045428A JP 6993909 B2 JP6993909 B2 JP 6993909B2
- Authority
- JP
- Japan
- Prior art keywords
- continuous
- noise
- eigenstate
- continuous variable
- evaluation function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims description 30
- 238000000034 method Methods 0.000 claims description 90
- 238000011156 evaluation Methods 0.000 claims description 56
- 230000005281 excited state Effects 0.000 claims description 29
- 230000005283 ground state Effects 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 62
- 230000000694 effects Effects 0.000 description 21
- 238000004364 calculation method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000009795 derivation Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000002922 simulated annealing Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012892 rational function Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3446—Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/60—Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/804—Relative longitudinal speed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
- G06F2218/10—Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computational Linguistics (AREA)
- Computational Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
本発明は、連続最適化問題の大域的探索装置及びプログラムに関する。
局所的な最小点を複数個備えた誤差関数を適用し、量子トンネル効果を利用して大域的な最小点を検索する試みがなされている(例えば、特許文献1参照)。この特許文献1記載の技術によれば、力学システムのプランク定数に相当する部分に置換されるべき設計定数と、力学システムの時間発展を規定する時間微分方程式における該力学システムの散面の変化率を規定する摩擦係数とを具備し、量子力学的トンネル効果を使うことにより真の最小値を計算するようにしている。
しかしながら、この特許文献1記載の技術によれば、量子力学的トンネル効果を用いることについて言及されているものの、具体的に、どのようにして変数を更新して局所解を脱出するのかについて記載も示唆もない。例えば、最適化変数を物理系の座標、評価関数を物理系のポテンシャル関数と見做したとき、どのような量子揺らぎによりトンネル効果を発生させるか記載も示唆もなされておらず、また、力学システムの時間発展を規定する時間微分方程式の具体的な形も示唆されていない。すなわち、特許文献1記載の内容は、トンネル効果を利用することを提起していることに留まるものであり、当該トンネル効果を利用した最適化方法について何ら示されているものではない。
本発明の目的は、トンネル効果を用いて連続変数の最適化問題を高精度に解けるようにした連続最適化問題の大域的探索装置及びプログラムを提供することにある。
請求項1又は7に記載した発明は、連続変数を用いて生成された評価関数が最小値又は最大値となる条件を満たす最適解を探索する連続最適化問題の大域的探索装置を対象としている。この請求項1又は7に記載した発明によれば、評価関数の微小変化に沿う勾配法により前記連続変数を更新し、ボルツマン分布に従って調和振動子の固有状態を選択し、選択された固有状態の存在確率を用いて当該固有状態の値を連続的なノイズとして連続変数に加算し、ノイズが加算された連続変数を用いて勾配法による更新を繰り返している。このため、連続的なノイズを連続変数に加算することで、トンネル効果を用いて局所解を脱出できるようになり、連続変数の最適化問題を高精度に解くことができる。
また、請求項2又は8に記載した発明によれば、評価関数の微小変化に沿う勾配法により連続変数を更新し、ボルツマン分布に従って調和振動子の固有状態を選択し、当該選択された固有状態の存在確率がピークとなる条件を満たす値を離散ノイズとしてランダムに選択し、離散ノイズを加算する前後のエネルギー差を計算し、評価関数に依存して予め設定される温度に依存した確率で受理するか否かを判定し、受理されないときには離散ノイズを0とし受理されたときには選択された離散ノイズを連続変数に加算し、離散ノイズが加算された連続変数を用いて勾配法により更新を繰り返している。このため、離散ノイズを連続変数に加算することで、トンネル効果を用いて局所解を脱出できるようになり、連続変数の最適化問題を高精度に解くことができる。
以下、本発明の連続最適化問題の大域的探索装置、及びプログラムの幾つかの実施形態について図面を参照して説明する。以下の実施形態中では、各実施形態間において、同一機能又は類似機能を備えた部分に同一符号又は類似符号(例えば添え字「a」)を付して説明を行い、同一又は類似機能を備えた連携動作説明を必要に応じて省略する。
(第1実施形態)
図1Aから図7は、第1実施形態の説明図を示している。図1Aに示す装置1は、量子力学的な性質を利用して最適化問題の最適化処理のシミュレーションを実行する連続最適化問題の大域的探索装置として構成される。
図1Aから図7は、第1実施形態の説明図を示している。図1Aに示す装置1は、量子力学的な性質を利用して最適化問題の最適化処理のシミュレーションを実行する連続最適化問題の大域的探索装置として構成される。
この装置1は、CPU2と、ROM、RAM等のメモリ3と、入出力インタフェース4とをバス接続した汎用のコンピュータ5を用いて構成される。このコンピュータ5は、CPU2によってメモリ3に記憶された変換プログラムを実行し、各種手順を実行することで大域的探索処理を実行する。メモリ3は、非遷移的実体的記録媒体として用いられる。
コンピュータ5が実行する大域的探索処理は、1以上のN次元を備えたユークリッド空間からなる探索空間を想定し、この探索空間の中で、複数の要求や制約によって生成された評価関数V()が最小値となる条件を満たす連続変数x、すなわち最適解(図2のA3)を求める処理である。図1Bに示すように、コンピュータ5は、その実現する機能として、更新部6、選択部7、判定部8、及び加算部9としての各種機能を備える。
評価関数V()は、例えば図2に示すように、複数の要求や制約によって生成されており、1以上のN個の連続変数x、すなわちパラメータを用いて生成された数式による関数を示すものであり、例えば任意の多項式、有理関数、無理関数、指数関数、対数関数やその加減乗除等による組み合わせなどを挙げることができる。
図2に示すように、評価関数V()は、連続変数xに応じて変化する関数であり、数々の極小値を含む関数である。この条件下において、コンピュータ5は、評価関数V()の極小値の中でもその最低値を満たす連続変数xの最適解A3として求めることになるが、評価関数V()が極小値となる条件を満たす連続変数xの局所解A1、A2、A4が多数存在する。このため、コンピュータ5がこの問題を解いても局所解A1、A2、A4に陥りやすい。このため、本実施形態においては、コンピュータ5は、量子力学的なトンネル効果を用いて局所解A1、A2、A4を脱出して最適解A3を求めるようにしている。
<量子揺らぎの概念の導入>
評価関数V()の評価値V(x)に量子力学的なトンネル効果を生じさせることで局所解(例えばA4)を脱出するため、本実施形態において、量子揺らぎの概念を導入する。本実施形態では、量子アニーリングのハミルトニアンH^(m)を、下記の(1)式に示すように与える。mは質量を示す。
評価関数V()の評価値V(x)に量子力学的なトンネル効果を生じさせることで局所解(例えばA4)を脱出するため、本実施形態において、量子揺らぎの概念を導入する。本実施形態では、量子アニーリングのハミルトニアンH^(m)を、下記の(1)式に示すように与える。mは質量を示す。
この(1)式では、xを連続変数とすると共に、評価関数V()をポテンシャルとした量子アニーリングを導入している。また(1)式の右辺第2項は、運動量pの演算子p^による量子揺らぎの導入項を示している。この(1)式において、初期状態では質量mを十分小さい値に設定することで、量子揺らぎの導入項、すなわち(1)式の右辺第2項の影響を強くすることが望ましい。そして、探索処理を進めるに連れて質量mを大きくすることで(1)式の右辺第1項の評価関数V()の影響を強めると共に、右辺第2項の量子揺らぎの導入項の影響を弱めるようにすると良い。すると、探索当初は量子揺らぎの影響を受けて例えば大域的に連続変数xが移動するようになり、探索処理を進めるに連れて評価関数V()の影響を大きく受け例えば局所的に最適解A3を導出できるようになる。
<連続変数xの更新処理>
連続変数xの更新処理を量子系に適用する場合には、時間に依存するシュレーディンガー方程式により記述できるが、シュレーディンガー方程式を解くのは膨大な計算が必要なため非現実的である。このため、量子アニーリングの性能を評価するときには、シュレーディンガー方程式を直接解く方法を採用することは稀であり、実際には例えば温度Tを極低温条件とした平衡状態を求めることが望ましい。連続変数xの更新処理においては、平衡状態に収束するように実行する。モンテカルロ法を用いて平衡状態に収束するように計算処理を行うことで、シュレーディンガー方程式を解くよりはるかに少ない計算量で最適化変数を更新できるようになる。
連続変数xの更新処理を量子系に適用する場合には、時間に依存するシュレーディンガー方程式により記述できるが、シュレーディンガー方程式を解くのは膨大な計算が必要なため非現実的である。このため、量子アニーリングの性能を評価するときには、シュレーディンガー方程式を直接解く方法を採用することは稀であり、実際には例えば温度Tを極低温条件とした平衡状態を求めることが望ましい。連続変数xの更新処理においては、平衡状態に収束するように実行する。モンテカルロ法を用いて平衡状態に収束するように計算処理を行うことで、シュレーディンガー方程式を解くよりはるかに少ない計算量で最適化変数を更新できるようになる。
この(2)式において、βは熱ノイズ(=1/T)を示す。また、Trはトレースを示しており行列の対角和を表している。そして、この(2)式を変数分離すると、(3)式のように分配関数を表すことができる。この(3)式では、kを無限大にしてその指数関数expの中身の値の極限値を取得することで||z-x||^2のL2ノルムにより等式制約化していることになる。
この(3)式の分配関数は、評価関数V(z)と、zを中心とする量子力学的な調和振動子との和と解釈できる。このことから、連続変数xを更新処理するときに、評価関数V()の微小変化に沿って連続変数xを更新する勾配法を適用しつつ、量子力学的な調和振動子によるノイズ成分を加算することで、量子トンネル効果により連続変数xが局所解A1、A2、A4を脱出し、最適解A3に至らせることが可能になる。
<量子力学的な調和振動子の説明>
量子力学的な調和振動子の固有値と固有状態を図3に示す。各固有状態の第n励起状態の曲線は、各状態の存在確率Pcを表している。基底状態を第ゼロ励起状態と定義すればn≧0を満たす。また、基底状態~第三励起状態において、存在確率Pcがピーク条件を満たす調和振動子のz-xの位置を図4に示す。
量子力学的な調和振動子の固有値と固有状態を図3に示す。各固有状態の第n励起状態の曲線は、各状態の存在確率Pcを表している。基底状態を第ゼロ励起状態と定義すればn≧0を満たす。また、基底状態~第三励起状態において、存在確率Pcがピーク条件を満たす調和振動子のz-xの位置を図4に示す。
すなわち図4に示すように、基底状態であればピーク条件を満たす位置は0である。また、第一励起状態において存在確率Pcがピーク条件を満たす位置は(4)式である。
ここで、mは質量、kはばね定数を示す。第二励起状態において存在確率Pcがピーク条件を満たす位置は、下記の(5)式である。
また、第三励起状態において存在確率Pcがピーク条件を満たす位置は、下記の(6)式である。
<調和振動子の固有状態を選択>
このような調和振動子の固有状態を考慮した上で、温度T(=1/β)のボルツマン分布に従って固有状態を所定の確率で選択すると良い。このボルツマン分布によれば、第n励起状態(n≧0)の選択確率Posc(n)は、下記の(7-1)式により表すことができる。ここで、Zoscは(7-2)式により表すことができる。
このような調和振動子の固有状態を考慮した上で、温度T(=1/β)のボルツマン分布に従って固有状態を所定の確率で選択すると良い。このボルツマン分布によれば、第n励起状態(n≧0)の選択確率Posc(n)は、下記の(7-1)式により表すことができる。ここで、Zoscは(7-2)式により表すことができる。
調和振動子の固有状態は、理論上、無限個存在することになるが、全固有状態を考慮すると、必要な精度に対して計算量が大幅に増えてしまうため、必要な精度を考慮して一定範囲の励起状態の中から選択するすることが望ましい。また、さらにはエネルギーの最低の基底状態から有限個Noscの励起状態を選定し、この中から選択することが望ましい。
<調和振動子に基づく離散ノイズΔquantumの加算方法>
調和振動子によるノイズは、(7-1)式、及び(7-2)式のボルツマン分布により固有状態を選択した後、選択した固有状態の存在確率Pcがピークとなる条件を満たす値を離散ノイズΔquantumとして連続変数xに加算することが望ましい。図3に示すように、存在確率Pcがピークとなる条件を満たす値以外にも高い確率条件を満たす値も存在するが、ピークとなる条件だけ考慮することで計算量を少なくできるためである。しかも、離散ノイズΔquantumを加えることで、トンネル効果により局所解A1、A2、A4を容易に脱出できるようになる。
調和振動子によるノイズは、(7-1)式、及び(7-2)式のボルツマン分布により固有状態を選択した後、選択した固有状態の存在確率Pcがピークとなる条件を満たす値を離散ノイズΔquantumとして連続変数xに加算することが望ましい。図3に示すように、存在確率Pcがピークとなる条件を満たす値以外にも高い確率条件を満たす値も存在するが、ピークとなる条件だけ考慮することで計算量を少なくできるためである。しかも、離散ノイズΔquantumを加えることで、トンネル効果により局所解A1、A2、A4を容易に脱出できるようになる。
<最適解A3の導出方法>
以下では、このような技術的意義の下で、コンピュータ5が実際に最適解A3を導出するための実際の方法について説明する。図5は最適解A3の導出処理内容をフローチャートにより概略的に示している。
以下では、このような技術的意義の下で、コンピュータ5が実際に最適解A3を導出するための実際の方法について説明する。図5は最適解A3の導出処理内容をフローチャートにより概略的に示している。
コンピュータ5は、図5のS1において温度Tとばね定数kとを定数として初期設定し、S2において質量mを変数として初期設定する。温度Tとばね定数kは、評価関数V()に依存して定まるパラメータであるため、例えばシミュレーションを用いて予め定数として算出することが望ましい。また初期状態では、質量mを予め小さい所定の変数値に設定することが望ましい。
さらにコンピュータ5は、S3において連続変数xの初期値を例えばランダムに設定する。そしてコンピュータ5は、評価関数V()に連続変数xの初期値を代入して評価値V(x)を算出し、その後、S4において勾配法を用いて連続変数xを更新する。勾配法では、下記の(8)式に示すように、評価関数V()の微小変化に沿って連続変数xを更新することが望ましい。
さらにコンピュータ5は、S3において連続変数xの初期値を例えばランダムに設定する。そしてコンピュータ5は、評価関数V()に連続変数xの初期値を代入して評価値V(x)を算出し、その後、S4において勾配法を用いて連続変数xを更新する。勾配法では、下記の(8)式に示すように、評価関数V()の微小変化に沿って連続変数xを更新することが望ましい。
ここで、ηは勾配法で用いられる所定の係数を示しており、xは更新前の連続変数を示し、x^*は勾配法による更新後の連続変数を示している。図6は、勾配法による連続変数xの更新イメージを示している。この図6に示すように、評価関数V()の勾配に沿って低下する方向に連続変数xを更新することになる。この後、コンピュータ5は、S5においてボルツマン分布に従って調和振動子の固有状態として第n励起状態を選択する。このとき、前述の(7-1)式、(7-2)式のボルツマン分布に従って第n励起状態を選択する。
前述したように、調和振動子の固有状態は、理論上、無限個存在することになるが、全固有状態を考慮すると、必要な精度に対して計算量が大幅に増えてしまうため、必要な精度を考慮して、一定範囲の第n励起状態の中から選択するすることが望ましい。また、さらには、エネルギーの最低の基底状態から有限個Noscの励起状態を選定し、この中から選択することが望ましい。すると計算量を削減できる。
例えば、コンピュータ5が、S5において第一励起状態、すなわちn=1を選択したときには、S6において当該第一励起状態の(4)式が示す2つのピークとなる条件を満たす値のうち何れかの値をランダムに選択し、離散ノイズΔquantumとする。このとき、コンピュータ5は、選択すべき複数のピークを互いに同一確率、この場合50%の確率で選択し、選択された値を離散ノイズΔquantumとする。その後、コンピュータ5は、S7において連続変数xに離散ノイズΔquantumを加算する前後のエネルギー変化ΔVを下記の(9)式のように計算する。
例えば、コンピュータ5が、S5において第一励起状態、すなわちn=1を選択したときには、S6において当該第一励起状態の(4)式が示す2つのピークとなる条件を満たす値のうち何れかの値をランダムに選択し、離散ノイズΔquantumとする。このとき、コンピュータ5は、選択すべき複数のピークを互いに同一確率、この場合50%の確率で選択し、選択された値を離散ノイズΔquantumとする。その後、コンピュータ5は、S7において連続変数xに離散ノイズΔquantumを加算する前後のエネルギー変化ΔVを下記の(9)式のように計算する。
そしてコンピュータ5は、このエネルギー変化ΔVについて、評価関数V()に依存して設定される温度Tに依存した確率で受理判定を行うと良い。この受理判定方法は、メトロポリス法を用いても良いし熱浴法を用いても良い。例えば、メトロポリス法を用いる場合には、コンピュータ5は、例えばΔV≦0であるときに100%受理し、ΔV>0であるときに温度Tに依存した例えばexp(-ΔV/T)の確率で受理し、その他の場合、破棄する。コンピュータ5が、この内容を受理した場合にはS8でYESと判定し、連続変数xに離散ノイズΔquantumを加算し更新する。
そしてコンピュータ5は、S10において質量mを大きくする。質量mが大きくなると、(1)式はその右辺第1項の評価関数V()の影響が強くなり、同時に右辺第2項の量子揺らぎの導入項の影響が弱くなる。
この後、コンピュータ5は、これらのS4~S10の処理を繰り返すが、質量mを増加させながらこれらのS4~S10の処理を繰り返すため、(1)式の右辺第1項に相当する評価関数V()の影響を徐々に強くしながら、(1)式の右辺第2項に示す量子揺らぎの導入項の影響を徐々に弱めることができる。
その後、コンピュータ5は、S11において終了条件を満たしたときに最適化したと見做してS12において解を出力して処理を終了する。S11の終了条件としては、S10にて徐々に増加している質量mが上限値に達することを条件としても良いし、処理を開始してから所定時間経過したことを条件としても良いし、S4~S10の処理を所定回数以上繰り返したことを条件としても良いし、又は、S7で算出したエネルギー変化ΔVが所定値以下となる条件を満たすことを条件としても良い。すなわちS11の終了条件は様々な条件を適用できる。
<技術的イメージの説明>
コンピュータ5が、S4において勾配法により連続変数xを更新すると、図6に技術的イメージを示したように、評価関数V()が低下する方向にだけ連続変数xを更新することになる。このため、一旦、図6に示す局所解A4に嵌ると当該局所解A4から抜け出すことができない。しかしながら、コンピュータ5が、本実施形態のS5~S10の処理を実行し、S8において受理判定されれば、連続変数xに離散ノイズΔquantumを加算したエネルギー変化ΔVに基づくトンネル効果を発生させることができ、図7にそのイメージを示すように、トンネル効果により局所解A4を脱出でき、さらに勾配法を繰り返すことで最適解A3に導かれるようになる。特に量子揺らぎによるトンネル効果を模擬することで、鋭く深い局所解A4に嵌った場合においてもこの局所解A4を効率的に抜け出すことができる。
コンピュータ5が、S4において勾配法により連続変数xを更新すると、図6に技術的イメージを示したように、評価関数V()が低下する方向にだけ連続変数xを更新することになる。このため、一旦、図6に示す局所解A4に嵌ると当該局所解A4から抜け出すことができない。しかしながら、コンピュータ5が、本実施形態のS5~S10の処理を実行し、S8において受理判定されれば、連続変数xに離散ノイズΔquantumを加算したエネルギー変化ΔVに基づくトンネル効果を発生させることができ、図7にそのイメージを示すように、トンネル効果により局所解A4を脱出でき、さらに勾配法を繰り返すことで最適解A3に導かれるようになる。特に量子揺らぎによるトンネル効果を模擬することで、鋭く深い局所解A4に嵌った場合においてもこの局所解A4を効率的に抜け出すことができる。
<本実施形態のまとめ、効果>
以上説明したように、本実施形態によれば、コンピュータ5は、評価関数V()の微小変化に沿う勾配法により連続変数xを更新し、ボルツマン分布に従って調和振動子の固有状態を選択し、当該選択された第n励起状態の存在確率Pcがピークとなる条件を満たす値を離散ノイズΔquantumとしてランダムに選択し、離散ノイズΔquantumを加算する前後のエネルギー差を計算し、評価関数V()に依存して予め設定される温度Tに依存した確率で受理するか否かを判定し、受理されないときには離散ノイズΔquantumを0とし受理されたときには選択された離散ノイズΔquantumを連続変数xに加算し、離散ノイズΔquantumが加算された連続変数xを用いて勾配法により更新を繰り返すようにしている。このため、トンネル効果を用いて局所解A1、A2、A4を脱出して最適解A3を導出できるようになり、連続変数xの最適化問題を高精度に解けるようになる。
以上説明したように、本実施形態によれば、コンピュータ5は、評価関数V()の微小変化に沿う勾配法により連続変数xを更新し、ボルツマン分布に従って調和振動子の固有状態を選択し、当該選択された第n励起状態の存在確率Pcがピークとなる条件を満たす値を離散ノイズΔquantumとしてランダムに選択し、離散ノイズΔquantumを加算する前後のエネルギー差を計算し、評価関数V()に依存して予め設定される温度Tに依存した確率で受理するか否かを判定し、受理されないときには離散ノイズΔquantumを0とし受理されたときには選択された離散ノイズΔquantumを連続変数xに加算し、離散ノイズΔquantumが加算された連続変数xを用いて勾配法により更新を繰り返すようにしている。このため、トンネル効果を用いて局所解A1、A2、A4を脱出して最適解A3を導出できるようになり、連続変数xの最適化問題を高精度に解けるようになる。
(変形例)
前述では、コンピュータ5が、S5において(7-1)式、(7-2)式のボルツマン分布に従って固有状態を選択する形態を示したが、この確率的な選択処理に代えて、調和振動子の固有状態として常に第一励起状態を選択するようにしても良い。このとき、固有状態を選択するための計算量を削減しながら、離散ノイズΔquantumのトンネル効果を用いて局所解A1、A2、A4を脱出でき、連続変数xの最適化問題を高精度に解ける。
前述では、コンピュータ5が、S5において(7-1)式、(7-2)式のボルツマン分布に従って固有状態を選択する形態を示したが、この確率的な選択処理に代えて、調和振動子の固有状態として常に第一励起状態を選択するようにしても良い。このとき、固有状態を選択するための計算量を削減しながら、離散ノイズΔquantumのトンネル効果を用いて局所解A1、A2、A4を脱出でき、連続変数xの最適化問題を高精度に解ける。
(第2実施形態)
図8は、第2実施形態の追加説明図を示している。第2実施形態が、第1実施形態と異なるところは、シミュレーテッド・アニーリング法を適用したところにある。また、温度Tを変数としつつ、離散ノイズΔquantumに併せてガウスノイズΔthermalを加算したところにある。第1実施形態と同一部分には同一符号を付して説明を省略し、以下、異なる部分について説明する。
図8は、第2実施形態の追加説明図を示している。第2実施形態が、第1実施形態と異なるところは、シミュレーテッド・アニーリング法を適用したところにある。また、温度Tを変数としつつ、離散ノイズΔquantumに併せてガウスノイズΔthermalを加算したところにある。第1実施形態と同一部分には同一符号を付して説明を省略し、以下、異なる部分について説明する。
図8は、最適解A3の導出処理内容をフローチャートにより示している。コンピュータ5は、図8のS1aに示すようにばね定数kを定数として設定し、S2aに示すように、質量mと温度Tを変数として初期設定する。本実施形態では、ばね定数kが、評価関数V()に依存して定まるパラメータであるため、例えばシミュレーションを用いて予め定数として算出することが望ましい。
また初期状態では、質量mを予め小さい所定の変数値に設定し、温度Tを予め高い所定値に設定すると良い。その後、コンピュータ5は、S3において連続変数xの初期値を例えばランダムに設定する。そしてコンピュータ5は、評価関数V()に連続変数xの初期値を代入して評価値V(x)を算出し、その後、S4において勾配法を用いて連続変数xを更新する。勾配法は第1実施形態で説明した方法と同様であるため説明を省略する。本実施形態では、コンピュータ5は、S4aにおいて更新した連続変数xにガウスノイズΔthermalを加算する。ここで、このガウスノイズΔthermalは、下記の(10)式のように表すことができる。
この(10)式において、Tは温度、ηは勾配法の係数、N(0,1)は平均0,分散1のガウス分布を示している。
また初期状態では、質量mを予め小さい所定の変数値に設定し、温度Tを予め高い所定値に設定すると良い。その後、コンピュータ5は、S3において連続変数xの初期値を例えばランダムに設定する。そしてコンピュータ5は、評価関数V()に連続変数xの初期値を代入して評価値V(x)を算出し、その後、S4において勾配法を用いて連続変数xを更新する。勾配法は第1実施形態で説明した方法と同様であるため説明を省略する。本実施形態では、コンピュータ5は、S4aにおいて更新した連続変数xにガウスノイズΔthermalを加算する。ここで、このガウスノイズΔthermalは、下記の(10)式のように表すことができる。
その後、コンピュータ5は、S5においてボルツマン分布に従って調和振動子の固有状態を所定の確率で選択する。このときコンピュータ5は、例えば前述の(7-1)式、(7-2)式に示すボルツマン分布に従って固有状態を選択すると良い。コンピュータ5が、S5において例えば第一励起状態を選択したときには、S6において当該第一励起状態の(4)式が示す2つのピークのうち何れかのピークをランダムに選択する。このときコンピュータ5は、選択すべき複数のピークを互いに同一確率、この場合、50%の確率で選択し、選択された値を離散ノイズΔquantumとする。
その後、コンピュータ5は、S7において連続変数xに離散ノイズΔquantumを加算する前後のエネルギー変化ΔVを(9)式のように計算し、前述実施形態と同様にS8において受理判定する。すなわち、勾配法により更新された直後の連続変数xをx^*とすれば、離散ノイズΔquantumを加算する前後のエネルギー変化ΔVは例えば下記の(11)式のように計算される。
その後、コンピュータ5は、このエネルギー変化ΔVについて、温度Tに依存した確率で受理判定を行う。この受理判定方法は、メトロポリス法を用いても良いし熱浴法を用いても良い。例えばメトロポリス法を用いる場合には、コンピュータ5は、ΔV≦0であるときに100%受理し、ΔV>0であるときにexp(-ΔV/T)の確率で受理し、その他の場合、破棄する。コンピュータ5が、この内容を受理した場合にはS8でYESと判定し、S9において連続変数x^*+Δthermalに離散ノイズΔquantumを加算、更新する。
そしてコンピュータ5は、S10aにおいて質量mを大きくしつつ温度Tを減少させる。第1実施形態でも説明したように、質量mが大きくなると、(1)式はその右辺第1項の評価関数V()の影響が強くなり、同時に右辺第2項の量子揺らぎの導入項の影響が弱くなる。また、温度Tが減少すると、(10)式に示すガウスノイズΔthermalの影響も弱くなる。
この後、コンピュータ5は、これらのS4~S10aの処理を繰り返すが、質量mを増加させると共に温度Tを減少させながら、これらのS4~S10の処理を繰り返すため、(1)式の右辺第1項に相当する評価関数V()の影響を徐々に強くしながら、(1)式の右辺第2項に示す量子揺らぎの導入項の影響を徐々に弱めることができ、更にガウスノイズΔthermalの影響も徐々に弱めることができる。
コンピュータ5は、これらのS4~S10aの処理を繰り返し、S11において終了条件を満たしたときに最適化したと見做してS12において解を出力して処理を終了する。S11の終了条件としては、第1実施形態と同一条件を用いれば良いため、説明を省略する。
<技術的イメージの説明>
コンピュータ5が、S4において勾配法により連続変数xを更新すると、図6にイメージを示したように、評価関数V()が低下する方向にだけ連続変数xを更新することになる。例えば、図9に示すように、評価関数V()が比較的緩やかに変化する場合を想定したとしても、一旦、局所解A5に嵌ると当該局所解A5から抜け出すことができない。しかしながら、コンピュータ5が、連続変数xにガウスノイズΔthermalを加入したシミュレーテッドアニーリング法を用いることで、例えば図9に示すように、評価関数V()が比較的緩やかに変化する連続変数xの領域においても、評価関数V()が緩やかに上昇する方向へ更新させることができ、評価関数V()の極値の山を昇ることができ、局所解A5から脱出できるようになる。この結果、緩やかで幅が広い谷に対してもガウスノイズΔthermalを加算することで効率的に局所解A5を脱出できる。
コンピュータ5が、S4において勾配法により連続変数xを更新すると、図6にイメージを示したように、評価関数V()が低下する方向にだけ連続変数xを更新することになる。例えば、図9に示すように、評価関数V()が比較的緩やかに変化する場合を想定したとしても、一旦、局所解A5に嵌ると当該局所解A5から抜け出すことができない。しかしながら、コンピュータ5が、連続変数xにガウスノイズΔthermalを加入したシミュレーテッドアニーリング法を用いることで、例えば図9に示すように、評価関数V()が比較的緩やかに変化する連続変数xの領域においても、評価関数V()が緩やかに上昇する方向へ更新させることができ、評価関数V()の極値の山を昇ることができ、局所解A5から脱出できるようになる。この結果、緩やかで幅が広い谷に対してもガウスノイズΔthermalを加算することで効率的に局所解A5を脱出できる。
また本実施形態では、離散ノイズΔquantumと共にガウスノイズΔthermalを導入しているため、鋭くて高い谷と緩やかで幅が広い谷が混在する評価関数V()においても高精度な探索が可能となる。
以上説明したように、本実施形態によれば、コンピュータ5が、連続変数xの更新を繰り返すときに温度Tを徐々に低下させると共に、連続変数xに離散ノイズΔquantumと共に温度Tに依存するガウスノイズΔthermalを加算するようにしているため、評価関数V()の極値の山を昇ることで局所解A5から脱出でき、しかも鋭くて高い谷と緩やかで幅が広い谷が混在する評価関数V()でも高精度に探索できるようになる。
(第3実施形態)
図10は、第3実施形態の追加説明図を示している。第3実施形態が、第1実施形態と異なるところは、第n励起状態の値を連続的なノイズとして連続変数xに加算したところにある。第1実施形態と同一部分には同一符号を付して説明を省略し、以下、異なる部分について説明する。
図10は、第3実施形態の追加説明図を示している。第3実施形態が、第1実施形態と異なるところは、第n励起状態の値を連続的なノイズとして連続変数xに加算したところにある。第1実施形態と同一部分には同一符号を付して説明を省略し、以下、異なる部分について説明する。
図10は、最適解A3の導出処理内容をフローチャートにより示している。コンピュータ5は、第1実施形態に示したように、図10のS1~S5の処理を実行する。ここでコンピュータ5は、S5においてボルツマン分布に従って調和振動子の固有状態を所定の確率で選択する。このとき、前述の(7-1)式、(7-2)式に示すボルツマン分布に従って固有状態を選択する。その後、コンピュータ5は、選択された固有状態の存在確率Pcを用いて調和振動子の第n励起状態の値を連続的なノイズとして連続変数xに加算する(S9a)。ここでは受理/破棄の判定を行うことなくノイズを加算するため判定処理を削減できる。
そしてコンピュータ5は、S10において質量mを大きくする。質量mが大きくなると、(1)式はその右辺第1項の評価関数V()の影響が強くなり、同時に右辺第2項の量子揺らぎの導入項の影響が弱くなる。この後、コンピュータ5は、これらのS4~S10の処理を繰り返すが、質量mを増加させながらこれらのS4~S10の処理を繰り返すため、(1)式の右辺第1項に相当する評価関数V()の影響を徐々に強くしながら、(1)式の右辺第2項に示す量子揺らぎの導入項の影響を徐々に弱めることができる。
その後、コンピュータ5は、S11において終了条件を満たしたときに最適化したと見做してS12において解を出力して処理を終了する。S11の終了条件としては第1実施形態と同一条件を用いれば良いため説明を省略する。
以上説明したように、本実施形態によれば、評価関数V()の微小変化に沿う勾配法により連続変数xを更新し、ボルツマン分布に従って調和振動子の固有状態を選択し、選択された固有状態の存在確率Pcを用いて当該第n励起状態の値を連続的なノイズとして連続変数xに加算し、ノイズが加算された連続変数xを用いて勾配法による更新を繰り返すようにしている。このような処理を行ったとしても第1実施形態と同様の作用効果を奏し、トンネル効果を用いて高精度に最適解A3を導出できるようになる。
(他の実施形態)
本開示は、前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。
評価関数V()の最小値を最適解A3として探索する形態を示したが、最大値を最適解A3として探索する形態に適用しても良い。
前述実施形態の構成、処理内容を組み合わせて構成することもできる。また、特許請求の範囲に記載した括弧内の符号は、本発明の一つの態様として前述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において、考え得るあらゆる態様も実施形態と見做すことが可能である。
本開示は、前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。
評価関数V()の最小値を最適解A3として探索する形態を示したが、最大値を最適解A3として探索する形態に適用しても良い。
前述実施形態の構成、処理内容を組み合わせて構成することもできる。また、特許請求の範囲に記載した括弧内の符号は、本発明の一つの態様として前述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において、考え得るあらゆる態様も実施形態と見做すことが可能である。
また本発明は、前述した実施形態に準拠して記述したが、本発明は当該実施形態や構造に限定されるものではないと理解される。本発明は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。
図面中、1は装置(連続最適化問題の大域的探索装置)、5はコンピュータ、6は更新部、7は選択部、8は判定部、9は加算部、を示す。
Claims (12)
- 連続変数を用いて生成された評価関数が最小値又は最大値となる条件を満たす最適解を探索する連続最適化問題の大域的探索装置(1)であって、
前記評価関数の微小変化に沿う勾配法により前記連続変数を更新する更新部(6)と、
ボルツマン分布に従って調和振動子の固有状態を選択する選択部(7)と、
前記選択された前記固有状態の存在確率を用いて前記固有状態の値を連続的なノイズとして前記連続変数に加算する加算部(9)と、を備え、
前記更新部は、前記加算部によりノイズが加算された前記連続変数を用いて勾配法による更新を繰り返す連続最適化問題の大域的探索装置。 - 連続変数を用いて生成された評価関数が最小値又は最大値となる条件を満たす最適解を探索する連続最適化問題の大域的探索装置であって、
前記評価関数の微小変化に沿う勾配法により前記連続変数を更新する更新部(6)と、
ボルツマン分布に従って調和振動子の固有状態を選択し、当該選択された前記固有状態の存在確率がピークとなる条件を満たす値を離散ノイズとしてランダムに選択する選択部(7)と、
前記離散ノイズを加算する前後のエネルギー差を計算し、前記評価関数に依存して予め設定される温度に依存した確率で受理するか否かを判定する判定部(8)と、
前記受理されないときには前記離散ノイズを0とし前記受理されたときには前記選択部により選択された前記離散ノイズを前記連続変数に加算する加算部(9)と、を備え、
前記更新部は、前記加算部により前記離散ノイズが加算された前記連続変数を用いて勾配法により更新を繰り返す連続最適化問題の大域的探索装置。 - 初期状態では前記温度を所定の変数値とし、前記更新部が前記連続変数の更新を繰り返すときに、前記温度を徐々に減少させ(S10a)、前記加算部は前記連続変数に前記離散ノイズと共に前記温度に依存するガウスノイズを加算する(S9a)請求項2記載の連続最適化問題の大域的探索装置。
- 前記選択部が、前記調和振動子の固有状態を選択するときには、一定範囲の励起状態の中から選択する請求項1から3の何れか一項に記載の連続最適化問題の大域的探索装置。
- 前記選択部が、前記調和振動子の固有状態を選択するときには、エネルギーが最低の基底状態から有限個の励起状態を選定しこの中から選択する請求項4記載の連続最適化問題の大域的探索装置。
- 前記選択部は、前記調和振動子の固有状態として常に第一励起状態を選択する請求項1から5の何れか一項に記載の連続最適化問題の大域的探索装置。
- 連続変数を用いて生成された評価関数が最小値又は最大値となる条件を満たす最適解を探索するプログラムであって、
連続最適化問題の大域的探索装置(1)に、
前記評価関数の微小変化に沿う勾配法により前記連続変数を更新する手順(S4)と、
ボルツマン分布に従って調和振動子の固有状態を選択する手順(S5)と、
前記選択された前記固有状態の存在確率を用いて前記固有状態の値を連続的なノイズとして前記連続変数に加算する手順(S9a)と、実行させると共に、
前記ノイズが加算された前記連続変数を用いて前記勾配法による更新を繰り返すように実行させるプログラム。 - 連続変数を用いて生成された評価関数が最小値又は最大値となる条件を満たす最適解を探索するプログラムであって、
連続最適化問題の大域的探索装置(1)に、
前記評価関数の微小変化に沿う勾配法により前記連続変数を更新する手順(S4)と、
ボルツマン分布に従って調和振動子の固有状態を選択し、当該選択された前記固有状態の存在確率がピークとなる条件を満たす値を離散ノイズとしてランダムに選択する手順(S6)と、
前記離散ノイズを加算する前後のエネルギー差を計算し、前記評価関数に依存して設定される温度に依存した確率で受理するか否かを判定する手順(S8)と、
前記受理されないときには前記離散ノイズを0とし前記受理されたときには前記選択された前記離散ノイズを前記連続変数に加算する手順(S9)と、を実行させると共に、
前記離散ノイズが加算された前記連続変数を用いて前記勾配法による更新を繰り返すように実行させるプログラム。 - 初期状態では前記温度を所定の変数値とし、前記連続変数を更新を繰り返すときに前記温度を徐々に減少させ(S10a)、前記離散ノイズと共に前記温度に依存するガウスノイズを加算する手順(S9a)、を備える請求項8記載のプログラム。
- 前記調和振動子の固有状態を選択するときには、一定範囲の励起状態の中から選択する請求項7から9の何れか一項に記載のプログラム。
- 前記調和振動子の固有状態を選択するときには、エネルギーが最低の基底状態から有限個の励起状態を選定しこの中から選択する請求項10記載のプログラム。
- 前記調和振動子の固有状態として常に第一励起状態を選択する請求項7から11の何れか一項に記載のプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045428A JP6993909B2 (ja) | 2018-03-13 | 2018-03-13 | 連続最適化問題の大域的探索装置及びプログラム |
PCT/JP2019/008617 WO2019176647A1 (ja) | 2018-03-13 | 2019-03-05 | 連続最適化問題の大域的探索装置及びプログラム |
DE112019001278.9T DE112019001278T5 (de) | 2018-03-13 | 2019-03-05 | Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem |
US17/017,886 US20200408547A1 (en) | 2018-03-13 | 2020-09-11 | Optimum route search device, global search device for continuous optimization problem and non-transitory tangible computer-readable storage medium for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018045428A JP6993909B2 (ja) | 2018-03-13 | 2018-03-13 | 連続最適化問題の大域的探索装置及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019159782A JP2019159782A (ja) | 2019-09-19 |
JP6993909B2 true JP6993909B2 (ja) | 2022-01-14 |
Family
ID=67906717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018045428A Active JP6993909B2 (ja) | 2018-03-13 | 2018-03-13 | 連続最適化問題の大域的探索装置及びプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200408547A1 (ja) |
JP (1) | JP6993909B2 (ja) |
DE (1) | DE112019001278T5 (ja) |
WO (1) | WO2019176647A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7339539B2 (ja) | 2020-01-15 | 2023-09-06 | 富士通株式会社 | 最適化装置、最適化装置の温度設定方法及び最適化装置の温度設定プログラム |
JP7515110B2 (ja) | 2020-01-24 | 2024-07-12 | 株式会社デンソー | 情報処理システム、組合せ最適解演算方法、及び組合せ最適解演算プログラム |
US20230125808A1 (en) * | 2020-03-13 | 2023-04-27 | Nec Corporation | Information processing device, control method, and storage medium |
CN113094979B (zh) * | 2021-03-25 | 2023-12-12 | 中山大学 | 一种基于状态变换差分进化的混合离散变量优化方法及系统 |
CN117556967B (zh) * | 2024-01-11 | 2024-05-03 | 宁波安得智联科技有限公司 | 调度方法、装置、设备及存储介质 |
CN118310537B (zh) * | 2024-06-07 | 2024-09-13 | 南京信息工程大学 | 一种自适应策略改进减法平均优化算法的路径规划方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006059237A (ja) | 2004-08-23 | 2006-03-02 | Babcock Hitachi Kk | 大域的最適化装置の操作方法 |
JP2017073106A (ja) | 2015-10-07 | 2017-04-13 | 株式会社東芝 | 量子計算装置、及び、方法 |
JP2017138760A (ja) | 2016-02-03 | 2017-08-10 | 富士通株式会社 | ボルツマンマシン、ボルツマンマシンの制御方法及びボルツマンマシンを有する情報処理装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9634459B2 (en) * | 2014-09-05 | 2017-04-25 | Comsats Institute Of Information Technology | Generation of a high power pulse-laser using field generated coherence |
WO2017078731A1 (en) * | 2015-11-06 | 2017-05-11 | Rigetti & Co., Inc. | Analyzing quantum information processing circuits |
EP3380996A4 (en) * | 2015-11-27 | 2018-11-14 | Qoherence Instruments Corp. | Systems, devices, and methods to interact with quantum information stored in spins |
US20170161612A1 (en) * | 2015-12-07 | 2017-06-08 | Microsoft Technology Licensing, Llc | Partial Reinitialization for Optimizers |
JP6659957B2 (ja) * | 2016-06-06 | 2020-03-04 | 富士通株式会社 | 情報処理装置、イジング装置及び情報処理装置の制御方法 |
JP6892599B2 (ja) * | 2017-07-05 | 2021-06-23 | 富士通株式会社 | 最適化装置及び最適化装置の制御方法 |
JP6993571B2 (ja) * | 2018-01-17 | 2022-01-13 | 富士通株式会社 | 最適化装置及び最適化装置の制御方法 |
-
2018
- 2018-03-13 JP JP2018045428A patent/JP6993909B2/ja active Active
-
2019
- 2019-03-05 WO PCT/JP2019/008617 patent/WO2019176647A1/ja active Application Filing
- 2019-03-05 DE DE112019001278.9T patent/DE112019001278T5/de active Pending
-
2020
- 2020-09-11 US US17/017,886 patent/US20200408547A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006059237A (ja) | 2004-08-23 | 2006-03-02 | Babcock Hitachi Kk | 大域的最適化装置の操作方法 |
JP2017073106A (ja) | 2015-10-07 | 2017-04-13 | 株式会社東芝 | 量子計算装置、及び、方法 |
JP2017138760A (ja) | 2016-02-03 | 2017-08-10 | 富士通株式会社 | ボルツマンマシン、ボルツマンマシンの制御方法及びボルツマンマシンを有する情報処理装置 |
Non-Patent Citations (2)
Title |
---|
大関 真之,量子アニーリングが拓く機械学習と計算技術の新時代(量子シ ステム推定の数理),数理解析研究所講究録,京都大学,2017年10月,pp.13-23,URL: https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/237210 |
宇都宮 聖子,量子コンピュータの新潮流:量子アニーリングとD-Wave,人工知能,日本,(一社)人工知能学会,2014年03月01日,第29巻, 第2号,pp.190-194 |
Also Published As
Publication number | Publication date |
---|---|
US20200408547A1 (en) | 2020-12-31 |
WO2019176647A1 (ja) | 2019-09-19 |
DE112019001278T5 (de) | 2020-12-17 |
JP2019159782A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6993909B2 (ja) | 連続最適化問題の大域的探索装置及びプログラム | |
JP2019537132A (ja) | アクション選択ニューラルネットワークをトレーニングすること | |
US11150615B2 (en) | Optimization device and control method of optimization device | |
US10311176B2 (en) | Simulation method, simulation apparatus, and simulation program | |
JP6517537B2 (ja) | 単語ベクトル学習装置、自然言語処理装置、方法、及びプログラム | |
KR101544457B1 (ko) | 최적 설계 파라미터 탐색을 위한 최적화 방법 | |
US12056424B2 (en) | Simulation of microstructure evolution of material as solved based on exponential time-difference format | |
US20190107852A1 (en) | Simulation method, simulation apparatus, and program | |
Fadugba et al. | Analysis of the properties of a third order convergence numerical method derived via transcendental function of exponential form | |
WO2020218246A1 (ja) | 最適化装置、最適化方法、及びプログラム | |
JP2016018323A (ja) | パラメータ推定方法、装置、及びプログラム | |
Schöbi et al. | PC-Kriging: A new meta-modelling method and its application to quantile estimation | |
US10402509B2 (en) | Method and device for ascertaining a gradient of a data-based function model | |
US20210232656A1 (en) | Calculation apparatus, calculation method and program | |
CN106815858A (zh) | 一种运动目标提取方法及装置 | |
JP5503577B2 (ja) | データ極性判定装置、方法、及びプログラム | |
JP6394630B2 (ja) | 情報処理装置、方法、及びプログラム | |
JP6452580B2 (ja) | パラメータ推定方法、装置、及びプログラム | |
JP2019102066A (ja) | 移動経路推定装置、移動経路推定方法、およびプログラム | |
JP7455769B2 (ja) | 情報処理装置、情報処理方法、プログラム、および情報処理システム | |
Cianci et al. | WKB versus generalized van Kampen system-size expansion: The stochastic logistic equation | |
Valmir et al. | Numerical solution for semi linear hyperbolic differential equations | |
JP2018156614A (ja) | 演算装置、演算方法および演算プログラム | |
CN117289337A (zh) | 瑞雷面波反演方法、装置、电子设备及存储介质 | |
JP6562395B2 (ja) | 多結晶形状記憶合金の相変態挙動推定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6993909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |