DE112019001278T5 - Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem - Google Patents

Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem Download PDF

Info

Publication number
DE112019001278T5
DE112019001278T5 DE112019001278.9T DE112019001278T DE112019001278T5 DE 112019001278 T5 DE112019001278 T5 DE 112019001278T5 DE 112019001278 T DE112019001278 T DE 112019001278T DE 112019001278 T5 DE112019001278 T5 DE 112019001278T5
Authority
DE
Germany
Prior art keywords
continuous variable
continuous
eigenstate
noise
evaluation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE112019001278.9T
Other languages
English (en)
Inventor
Shuntaro OKADA
Masayoshi Terabe
Masayuki Ohzeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Denso Corp
Original Assignee
Tohoku University NUC
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Denso Corp filed Critical Tohoku University NUC
Publication of DE112019001278T5 publication Critical patent/DE112019001278T5/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3446Details of route searching algorithms, e.g. Dijkstra, A*, arc-flags, using precalculated routes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Linguistics (AREA)
  • Computational Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Eine Aktualisierungseinheit (6) aktualisiert die kontinuierliche Variable durch ein Gradientenverfahren entlang einer winzigen Änderung der Evaluierungsfunktion. Ein Selektor (7) wählt einen Eigenzustand eines harmonischen Oszillators gemäß einer Boltzmann-Verteilung. Ein Addierer (9) fügt den Wert des Eigenzustands als ein kontinuierliches Rauschen der kontinuierlichen Variable unter Verwendung der Existenzwahrscheinlichkeit des ausgewählten Eigenzustands hinzu. Die Aktualisierungseinheit wiederholt Aktualisieren des Gradientenverfahrens unter Verwendung der kontinuierlichen Variable, der das Rauschen durch den Addierer hinzugefügt ist.

Description

  • QUERVERWEIS AUF ZUGEHÖRIGE ANMELDUNG
  • Diese Anmeldung basiert auf der japanischen Patentanmeldung mit der Nummer 2018-045428, eingereicht am 13. März 2018, deren Offenbarung hier durch Bezugnahme aufgenommen ist.
  • TECHNISCHES GEBIET
  • Die vorliegende Offenbarung betrifft eine globale Suchvorrichtung und ein Programm für ein kontinuierliches Optimierungsproblem.
  • STAND DER TECHNIK
  • Es wurde versucht, nach einem globalen Minimalpunkt durch Verwenden des Quantentunneleffekts mit Anwenden einer Fehlerfunktion mit mehreren lokalen Minimalpunkten zu suchen (vgl. beispielsweise Patentdokument 1). Gemäß der in Patentdokument 1 beschriebenen Technik wird der wahre Minimalwert durch den quantenmechanischen Tunneleffekt gemäß einer Entwurfskonstante, die mit einem Abschnitt entsprechend einer Planck-Konstante eines dynamischen Systems zu ersetzen ist, und einen Reibungskoeffizienten berechnet, der eine Änderungsrate einer Austreibung des dynamischen Systems in einer Zeitdifferentialgleichung definiert, die die Zeitentwicklung des dynamischen Systems definiert.
  • Jedoch gibt es gemäß der in Patentdokument 1 beschriebenen Technik, obwohl die Verwendung des quantenmechanischen Tunneleffekts beschrieben ist, keine Beschreibung und keinen Vorschlag, wie die Variablen zu aktualisieren sind und die lokale Lösung zu vermeiden ist. Beispielsweise, wenn die Optimierungsvariable als die Koordinate des physikalischen Systems und die Evaluierungsfunktion als potentielle Funktion bzw. Potentialfunktion des physikalischen Systems in Betracht gezogen werden, gibt es keine Beschreibung oder keinen Vorschlag, welche Quantenfluktuation den Tunneleffekt verursacht, und keinen Vorschlag für die konkrete Form der Zeitdifferentialgleichung, die die Zeitentwicklung des physikalischen Systems definiert. In anderen Worten schlägt die Beschreibung in Patentdokument 1 lediglich vor, dass der Tunneleffekt verwendet wird, und schlägt kein Optimierungsverfahren unter Verwendung des Tunneleffekts vor.
  • LITERATUR DES STANDES DER TECHNIK
  • PATENTLITERATUR
  • Patentdokument 1: JP 2006-59237 A
  • ÜBERBLICK ÜBER DIE ERFINDUNG
  • Eine Aufgabe der vorliegenden Offenbarung ist es, eine globale Suchvorrichtung und ein Programm für ein kontinuierliches Optimierungsproblem bereitzustellen, die ein Optimierungsproblem einer kontinuierlichen Variable mit hoher Genauigkeit unter Verwendung eines Tunneleffekts lösen können.
  • Ein erster Aspekt der vorliegenden Offenbarung ist auf eine globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem gerichtet, die eine Optimallösung sucht, die eine Bedingung erfüllt, dass eine Evaluierungsfunktion, die unter Verwendung einer kontinuierlichen Variable erzeugt wird, einen Minimalwert oder einen Maximalwert hat. Gemäß dem ersten Aspekt wird die kontinuierliche Variable durch das Gradientenverfahren entlang der kleinen Änderung der Evaluierungsfunktion aktualisiert, der Eigenzustand des harmonischen Oszillators wird gemäß der Boltzmann-Verteilung ausgewählt, der Wert des Eigenzustands als kontinuierliches Rauschen wird zu der kontinuierlichen Variable unter Verwendung der Existenzwahrscheinlichkeit des ausgewählten Eigenzustand hinzugefügt und das Aktualisieren durch das Gradientenverfahren wird unter Verwendung der kontinuierlichen Variable, der das Rauschen hinzugefügt ist, wiederholt. Demnach wird es durch Hinzufügen des kontinuierlichen Rauschens zur kontinuierlichen Variable möglich, die lokale Lösung unter Verwendung des Tunneleffekts zu vermeiden, und das Optimierungsproblem der kontinuierlichen Variable kann mit hoher Genauigkeit gelöst werden.
  • Ferner wird gemäß dem zweiten Aspekt der vorliegenden Offenbarung die kontinuierliche Variable durch das Gradientenverfahren entlang der kleinen Änderung der Evaluierungsfunktion aktualisiert, der Eigenzustand des harmonischen Oszillators wird gemäß der Boltzmann-Verteilung ausgewählt, ein Wert wird zufällig als diskretes Rauschen ausgewählt, das eine Bedingung erfüllt, dass die Existenzwahrscheinlichkeit des ausgewählten Eigenzustands ein Spitzenwert wird, die Energiedifferenz vor und nach dem Hinzufügen des diskreten Rauschens wird berechnet, eine Bestimmung wird getätigt, ob eine Wahrscheinlichkeit die von der vorbestimmten Temperatur gemäß der Evaluierungsfunktion abhängt, akzeptiert wird oder nicht. Wenn sie nicht akzeptiert wird, wird das diskrete Rauschen auf 0 festgelegt, und wenn sie akzeptiert wird, wird das ausgewählte diskrete Rauschen zur kontinuierlichen Variable hinzugefügt. Somit wird das Aktualisieren durch das Gradientenverfahren unter Verwendung der kontinuierlichen Variable, der das diskrete Rauschen hinzugefügt ist, wiederholt. Demnach wird es durch Hinzufügen des diskreten Rauschens zur kontinuierlichen Variable möglich, die lokale Lösung unter Verwendung des Tunneleffekts zu vermeiden, und das Optimierungsproblem der kontinuierlichen Variable kann mit hoher Genauigkeit gelöst werden.
  • Figurenliste
  • Die vorstehenden und andere Aufgaben, Merkmale und Vorteile der vorliegenden Offenbarung werden aus der nachfolgenden detaillierten Beschreibung in Zusammenschau mit den Zeichnungen deutlicher. Es zeigen:
    • 1A ein elektrisches Konfigurationsdiagramm, das eine erste Ausführungsform zeigt;
    • 1B ein Funktionsblockschaltbild;
    • 2 ein Beispiel einer Evaluierungsfunktion;
    • 3 ein Diagramm, das einen Eigenwert und Eigenzustand eines quantenmechanischen harmonischen Oszillators zeigt;
    • 4 die Spitzenwertposition des Eigenzustands;
    • 5 ein Ablaufdiagramm, das den Inhalt der Ableitungsverarbeitung der Optimallösung zeigt;
    • 6 ein erläuterndes Diagramm, das ein Verarbeitungsbild des Gradientenverfahrens zeigt;
    • 7 ein erläuterndes Diagramm, das ein Fluchtbild einer lokalen Lösung unter Verwendung eines Tunneleffekts zeigt;
    • 8 ein Ablaufdiagramm, das den Inhalt der Ableitungsverarbeitung einer Optimallösung gemäß der zweiten Ausführungsform zeigt;
    • 9 ein erläuterndes Diagramm, das ein Verarbeitungsbild durch eine simuliertes Glühverfahren zeigt; und
    • 10 ein Ablaufdiagramm, das den Inhalt der Ableitungsverarbeitung einer Optimallösung gemäß der dritten Ausführungsform zeigt.
  • AUSFÜHRUNGSFORMEN ZUR AUSFÜHRUNG DER ERFINDUNG
  • Nachfolgend werden manche Ausführungsformen einer globalen Suchvorrichtung und eines Programms für ein kontinuierliches Optimierungsproblem, die die vorliegende Offenbarung ausbilden, mit Bezug auf die Zeichnungen beschrieben. In den folgenden Ausführungsformen wird ein Teil mit der gleichen Funktion oder ähnlichen Funktion beschrieben, indem er mit den gleichen Bezugszeichen oder ähnlichen Bezugszeichen (beispielsweise durch Hinzufügen eines tiefgestellten „a“) unter den Ausführungsformen bezeichnet wird. Die Beschreibung der verknüpften Operation mit der gleichen oder ähnlichen Funktion wird nach Bedarf weggelassen.
  • (Erste Ausführungsform)
  • 1a bis 7 zeigen erläuternde Diagramme einer ersten Ausführungsform. Die Vorrichtung 1, die in 1a gezeigt ist, ist als eine globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem konfiguriert, die eine Simulation einer Optimierungsverarbeitung eines Optimierungsproblems unter Verwendung quantenmechanischer Eigenschaften ausführt.
  • Die Vorrichtung 1 ist unter Verwendung eines Allzweckcomputers 5 konfiguriert, in dem eine CPU 2, ein Speicher 3 wie ein ROM und ein RAM und eine Eingabe-/Ausgabeschnittstelle 4 über einen Bus verbunden sind. Der Computer 5 führt das Konversionsprogramm, das in dem Speicher 3 gespeichert ist, durch die CPU 2 aus und führt unterschiedliche Prozeduren zum Ausführen der globalen Suchverarbeitung aus. Der Speicher 3 wird als nichtflüchtiges, greifbares Speichermedium verwendet.
  • Die globale Suchverarbeitung, die durch den Computer 5 ausgeführt wird, ist eine Verarbeitung zum Annehmen eines Suchraums einschließlich eines Euklidischen Raums mit einer oder mehreren Dimensionen und zum Erlangen einer kontinuierlichen Variable x, das heißt, einer optimalen Lösung bzw. Optimallösung (A3 in 2), die in diesem Suchraum angeordnet ist und eine Bedingung erfüllt, das eine Evaluierungsfunktion V(), die durch mehrere Anfragen und Einschränkungen erzeugt wird, ein Minimalwert wird. Wie in 1B gezeigt ist, beinhaltet der Computer 5 unterschiedliche Funktionen als eine Aktualisierungseinheit 6, ein Selektor 7, eine Bestimmungseinheit 8 und ein Addierer 9 als die zu realisierenden Funktionen.
  • Die Evaluierungsfunktion V() wird gemäß mehreren Anforderungen oder Einschränkungen erzeugt, wie beispielsweise in 2 gezeigt ist. Die Funktion wird durch eine Gleichung mit einem oder mehreren N kontinuierlichen Variablen als ein Parameter und beispielsweise ein beliebiges Polynom, eine rationale Funktion, eine irrationale Funktion, eine exponentielle Funktion, eine logarithmische Funktion, eine Kombination dieser verbunden durch Addition, Subtraktion, Multiplikation und Division repräsentiert.
  • Wie in 2 gezeigt ist, ist die Evaluierungsfunktion V() eine Funktion, die sich gemäß der kontinuierlichen Variable x ändert und eine Anzahl von lokalen Minimalwerten beinhaltet. Unter dieser Bedingung erlangt der Computer 5 die optimale Lösung A3 der kontinuierlichen Variable x, die den Minimalwert unter den lokalen Minimalwerten der Evaluierungsfunktion V() erfüllt. Es gibt viele lokale Lösungen A1, A2, A4 der kontinuierlichen Variable x, die die Bedingung erfüllen, so dass die Evaluierungsfunktion V() den lokalen Minimalwert zeigt. Demnach, sogar, wenn der Computer 5 dieses Problem löst, kann er eine von lokalen Lösungen A1, A2 und A4 erlangen. Demnach verwendet in der vorliegenden Ausführungsform der Computer 5 den quantenmechanischen Tunneleffekt zum Vermeiden der lokalen Lösungen A1, A2 und A4 zum Erlangen der optimalen Lösung A3.
  • <Einführung des Konzepts von Quantenfluktuationen>
  • Um eine lokale Lösung (beispielsweise A4) durch Verursachen eines quantenmechanischen Tunneleffekts in dem Evaluierungswert V(x) der Evaluierungsfunktion V() zu vermeiden, wird das Konzept der Quantenfluktuation in dieser Ausführungsform eingeführt. In dieser Ausführungsform ist der Hamiltonian H^(m) des Quantenglühens (Quantum-Annealing), wie in der der folgenden Gleichung (1) gezeigt, gegeben. m gibt eine Masse an.
    (Gleichung 1) H ^ ( m ) = V ( x ^ ) p ^ 2 2 m
    Figure DE112019001278T5_0001
  • In Gleichung (1) ist x eine kontinuierliche Variable und Quantenglühen mit der Evaluierungsfunktion V() als ein Potential wird eingeführt. Der zweite Term auf der rechten Seite der Gleichung (1) repräsentiert einen Einführungsterm für Quantenfluktuation unter Verwendung des Operators p^ des Momentums p. In der Gleichung (1) ist es wünschenswert die Masse m auf einen ausreichend kleinen Wert in dem Anfangszustand festzulegen, um den Einfluss des Einführungsterms der Quantenfluktuation zu stärken, das heißt, den zweiten Term auf der rechten Seite der Gleichung (1). Durch Erhöhen der Masse m, wenn die Suchverarbeitung fortschreitet, wird der Einfluss der Evaluierungsfunktion V() des ersten Terms auf der rechten Seite der Gleichung (1) gestärkt und der Einfluss des Einführungsterms der Quantenfluktuation des zweiten Terms auf der rechten Seite wird verringert. Dann, zu Beginn der Suche, variiert die kontinuierliche Variable x beispielsweise global aufgrund des Einflusses der Quantenfluktuation und wird stark durch die Evaluierungsfunktion V() beeinflusst, wenn die Suchverarbeitung fortschreitet, beispielsweise so, dass die Optimallösung A3 lokal erlangt wird.
  • <Verarbeitung zum Aktualisieren von kontinuierlicher Variable x>
  • Wenn die Aktualisierungsverarbeitung der kontinuierlichen Variable x auf ein Quantensystem angewandt wird, kann sie durch eine zeitabhängige Schrödingergleichung beschrieben werden, wobei es jedoch unrealistisch ist, die Schrödingergleichung zu lösen, da ein riesiger Rechenbetrag erforderlich ist. Demnach wird bei der Evaluierung der Leistung des Quantenglühens selten das Verfahren zum direkten Lösen der Schrödingergleichung verwendet und in der Praxis ist es beispielsweise wünschenswert, einen Gleichgewichtszustand unter einer Bedingung zu erlangen, dass die Temperatur T eine kryogene Temperatur ist. Die Aktualisierungsverarbeitung für die kontinuierliche Variable x wird ausgeführt, um zu einem Gleichgewichtszustand zu konvergieren. Unter Verwendung des Monte-Carlo-Verfahrens zum Ausführen der Rechenverarbeitung, um zum Gleichgewichtszustand zu konvergieren, wird es möglich, die Optimierungsvariable mit einem geringeren Rechenbetrag als beim Lösen der Schrödingergleichung zu aktualisieren.
  • <Interpretation von Partitionsfunktionen und Quantenfluktuationen>
  • Unter Verwendung des Hamiltonians H^m in der Gleichung (1) kann die Partitionsfunktion wie in der Gleichung (2) ausgedrückt werden.
    (Gleichung 2) Z = Tr exp { β [ V ( x ^ ) + p ^ 2 2 m ] }
    Figure DE112019001278T5_0002
  • In der Gleichung (2) repräsentiert β thermisches Rauschen (=1/T). Ferner repräsentiert Tr eine Spur und repräsentiert die diagonale Summe der Matrix. Dann, wenn die Gleichung (2) in Variablen separiert ist, kann die Partitionsfunktion als die Gleichung (3) ausgedrückt werden. In dieser Gleichung (3) wird k unendlich gemacht und der Grenzwert des Inhalts der Exponentialfunktion wird erlangt, so dass die Gleichung durch die L2-Norm von ||zx||^2 eingeschränkt ist.
    (Gleichung 3) Z = Tr  lim k exp { β [ V ( z ^ ) + k 2 z ^ x ^ 2 2 + 1 2 m p ^ x 2 ] }
    Figure DE112019001278T5_0003
  • Die Partitionsfunktion von Gleichung (3) kann als die Summe der Evaluierungsfunktion V(z) und des quantenmechanischen harmonischen Oszillators mit z als eine Mitte interpretiert werden. Aus dieser Tatsache, wenn die kontinuierliche Variable x aktualisiert wird, wird die Rauschkomponente aufgrund des quantenmechanischen harmonischen Oszillators addiert bzw. hinzugefügt, während das Gradientenverfahren zum Aktualisieren der kontinuierlichen Variable x gemäß der winzigen Änderung der Evaluierungsfunktion V() angewandt wird. Somit wird es für die kontinuierliche Variable x möglich, die lokalen Lösungen A1, A2, A4 durch den Quantentunneleffekt zu vermeiden und die Optimallösung A3 zu erreichen.
  • <Erläuterung von quantenmechanischem harmonischem Oszillator>
  • Der Eigenwert und Eigenzustand des quantenmechanischen harmonischen Oszillators sind in 3 gezeigt. Die Kurve des n-ten Anregungszustandes jedes Eigenzustands repräsentiert die Existenzwahrscheinlichkeit Pc jedes Zustandes. Wenn der Grundzustand als der nullte angeregte Zustand definiert ist, dann ist nΓ0 erfüllt. Ferner zeigt 4 z-x-Positionen des harmonischen Oszillators, der eine Bedingung erfüllt, dass die Existenzwahrscheinlichkeit Pc die Spitzenwertbedingung in dem Grundzustand bis zum dritten Anregungszustand erfüllt.
  • Das heißt, wie in 4 gezeigt ist, ist die Position, die die Spitzenwertbedingung erfüllt, 0 in dem Grundzustand. Ferner ist die Position, an der die Existenzwahrscheinlichkeit Pc die Spitzenwertbedingung in dem ersten angeregten Zustand erfüllt, die Gleichung (4).
    (Gleichung 4) ± ( 1 m k ) 1 4
    Figure DE112019001278T5_0004
  • Hierbei ist m eine Masse und k eine Federkonstante. Die Position, an der die Existenzwahrscheinlichkeit Pc die Spitzenwertbedingung in dem zweiten angeregten Zustand erfüllt, ist die folgende Gleichung (5).
    (Gleichung 5) 0, ± 5 2 ( 1 m k ) 1 4
    Figure DE112019001278T5_0005
  • Ferner ist die Position, an der die Existenzwahrscheinlichkeit Pc die Spitzenwertbedingung in dem dritten angeregten Zustand erfüllt, die Gleichung (6).
    (Gleichung 6) + 9 ± 57 4 ( 1 m k ) 1 4 , 9 ± 57 4 ( 1 m k ) 1 4
    Figure DE112019001278T5_0006
  • <Auswahl des Eigenzustands des harmonischen Oszillators>
  • In Anbetracht so eines Eigenzustands des harmonischen Oszillators ist es ratsam, den Eigenzustand mit einer vorbestimmten Wahrscheinlichkeit gemäß der Boltzmann-Verteilung der Temperatur T (=1/β) auszuwählen. Gemäß dieser Boltzmann-Verteilung kann die Auswahlwahrscheinlichkeit Posc(n) des n-ten Anregungszustands (mit n□(0) durch die folgende Gleichung (7-1) ausgedrückt werden. Hierbei kann Zosc durch Gleichung (7-2) ausgedrückt werden.
    (Gleichung 7) P osc ( n ) = 1 Z osc exp [ β k m ( n + 1 2 ) ]
    Figure DE112019001278T5_0007
  • Theoretisch gibt es eine unendliche Anzahl von Eigenzuständen des harmonischen Oszillators, aber, wenn all Eigenzustände berücksichtigt werden, würde der Rechenbetrag hinsichtlich der erforderlichen Genauigkeit stark zunehmen. Somit ist es wünschenswert von angeregten Zuständen in einem vorbestimmten Bereich gemäß der erforderlichen Genauigkeit auszuwählen. Ferner ist es wünschenswert, eine endliche Anzahl Nosc von angeregten Zuständen von dem Grundzustand mit der niedrigsten Energie auszuwählen und einen dieser auszuwählen.
  • <Verfahren zum Hinzufügen von diskretem Rauschen Δquantum basierend auf harmonischem Oszillator>
  • Das Rauschen aufgrund des harmonischen Oszillators ist derart, dass, nach dem Auswählen des Eigenzustands durch die Boltzmann-Verteilungen der Gleichungen (7-1) und (7-2), der Wert, der die Bedingung erfüllt, dass die Existenzwahrscheinlichkeit Pc des ausgewählten Eigenzustands ein Spitzenwert wird, zur kontinuierlichen Variable x als das diskrete Rauschen Δquantum hinzugefügt wird. Wie in 3 gezeigt ist, gibt es Werte, die die Hochwahrscheinlichkeitsbedingung erfüllen, zusätzlich zu dem Wert, der die Bedingung erfüllt, dass die Existenzwahrscheinlichkeit Pc ein Spitzenwert wird, aber der Rechenbetrag kann reduziert werden, indem nur die Bedingung berücksichtigt wird, die zu einem Spitzenwert führt. Ferner können durch Hinzufügen des diskreten Rauschens Δquantum die lokalen Lösungen A1, A2, A4 einfach durch den Tunneleffekt vermieden werden.
  • <Ableitungsverfahren von Optimallösung A3>
  • Nachfolgend wird ein tatsächliches Verfahren für den Computer 5 zum tatsächlichen Ableiten der Optimallösung A3 unter einer solchen technischen Bedeutung beschrieben. 5 ist ein Ablaufdiagramm, das schematisch die Details der Ableitungsverarbeitung der Optimallösung A3 zeigt.
  • Der Computer 5 initialisiert die Temperatur T und die Federkonstante k als Konstanten bei S1 von 5 und initialisiert die Masse m als eine Variable bei S2. Da die Temperatur T und die Federkonstante k Parameter sind, die abhängig von der Evaluierungsfunktion V() bestimmt werden, ist es wünschenswert, sie vorab als eine Konstante unter Verwendung beispielsweise einer Simulation zu berechnen. Ferner ist es in dem Anfangszustand wünschenswert, die Masse m vorab als einen kleinen vorbestimmten variablen Wert festzulegen.
  • Ferner legt der Computer 5 bei S3 beispielsweise beliebig den Anfangswert der kontinuierlichen Variable x fest. Dann setzt der Computer 5 den Anfangswert der kontinuierlichen Variable x in die Evaluierungsfunktion V() zum Berechnen des Evaluierungswerts V(x) ein und aktualisiert dann bei S4 die kontinuierliche Variable x unter Verwendung des Gradientenverfahrens. In dem Gradientenverfahren ist es wünschenswert, die kontinuierliche Variable x entlang einer winzigen Änderung in der Evaluierungsfunktion V() zu aktualisieren, wie in der folgenden Gleichung (8) gezeigt ist.
    (Gleichung 8) x * = x η V ( x )
    Figure DE112019001278T5_0008
  • Hierbei repräsentiert η einen vorbestimmten Koeffizienten, der in dem Gradientenverfahren verwendet wird, x repräsentiert eine kontinuierliche Variable vor der Aktualisierung und x^* repräsentiert eine kontinuierliche Variable nach der Aktualisierung durch das Gradientenverfahren. 6 zeigt ein Bild zum Aktualisieren der kontinuierlichen Variable x durch das Gradientenverfahren. Wie in 6 gezeigt ist, wird die kontinuierliche Variable x in Richtung des Abnehmens entlang dem Gradienten der Evaluierungsfunktion V() aktualisiert. Danach wählt der Computer 5 den n-ten angeregten Zustand als den Eigenzustand des harmonischen Oszillators gemäß der Boltzmann-Verteilung bei S5 aus. Zu dieser Zeit wird der n-te angeregte Zustand gemäß der Boltzmann-Verteilung der Gleichungen (7-1) und (7-2) ausgewählt.
  • Wie vorstehend beschrieben ist, gibt es theoretisch es eine unendliche Anzahl von Eigenzuständen des harmonischen Oszillators, aber, wenn alle Eigenzustände berücksichtigt werden, würde der Rechenbetrag hinsichtlich der erforderlichen Genauigkeit stark zunehmen. Somit ist es wünschenswert von dem n-ten angeregten Zustand in einem vorbestimmten Bereich gemäß der erforderlichen Genauigkeit auszuwählen. Ferner ist es wünschenswert, eine endliche Anzahl Nosc von angeregten Zuständen von dem Grundzustand mit der niedrigsten Energie auszuwählen und einen dieser auszuwählen. Dann kann der Rechenbetrag reduziert werden.
  • Beispielsweise, wenn der Computer 5 den ersten angeregten Zustand bei S5 auswählt, das heißt, n=1 gilt, wird irgendeiner der Werte, der die Bedingung von zwei Spitzenwerten erfüllt, die durch die Gleichung (4) des ersten angeregten Zustands bei S6 repräsentiert wird, zufällig ausgewählt, so dass der Wert ausgewählt wird, um das diskrete Rauschen Δquantum zu sein. Zu dieser Zeit wählt der Computer 5 mehrere Spitzenwerte, die in diesem Fall mit der gleichen Wahrscheinlichkeit von 50% auszuwählen sind, und legt den ausgewählten Wert als das diskrete Rauschen Δquantum fest. Danach berechnet der Computer 5 die Energieänderung ΔV vor und nach Hinzufügen des diskreten Rauschens Δquantum zur kontinuierlichen Variable x bei S7 gemäß der folgenden Gleichung (9).
    (Gleichung 9) Δ V = V ( x * + Δ quantum ) V ( x * )
    Figure DE112019001278T5_0009
  • Dann kann der Computer 5 Akzeptanzbestimmung für diese Energieänderung ΔV mit einer Wahrscheinlichkeit abhängig von der Temperatur T, die abhängig von der Evaluierungsfunktion V() festgelegt wird, ausführen. Die Akzeptanzbestimmung kann das Metropolis-Verfahren oder das Wärmebadverfahren sein. Beispielsweise, wenn das Metropolis-Verfahren verwendet wird, akzeptiert der Computer 5 100%, wenn ΔV⊔0 gilt, und wenn ΔV>0 gilt, akzeptiert der Computer 5 die Wahrscheinlichkeit exp(-ΔV/T) abhängig von der Temperatur T. Und in anderen Fällen verwirft der Computer 5 die Akzeptanz. Wenn der Computer 5 diesen Inhalt akzeptiert, bestimmt er bei S8 JA und fügt das diskrete Rauschen Δquantum der kontinuierlichen Variable x hinzu, um die Variable x zu aktualisieren.
  • Dann erhöht der Computer 5 die Masse m bei S10. Wenn die Masse m zunimmt, wird der Einfluss der Evaluierungsfunktion V() des ersten Terms auf der rechten Seite der Gleichung (1) stärker und gleichzeitig wird der Einfluss des Quantenfluktuationseinführungsterms des zweiten Terms auf der rechten Seite schwächer.
  • Danach wiederholt der Computer 5 die Verarbeitungen von S4 bis S10. Insbesondere wiederholt der Computer 5 die Verarbeitungen von S4 bis S10, während er die Masse m erhöht. Demnach wird der Einfluss der Evaluierungsfunktion V() entsprechend dem ersten Term auf der rechten Seite der Gleichung (1) fortlaufend erhöht und der Einfluss des Einführungsterms der Quantenfluktuation, der in dem zweiten Term auf der rechten Seite der Gleichung (1) gezeigt ist, wird fortlaufend verringert.
  • Danach geht der Computer 5 davon aus, dass die Optimierung ausgeführt ist, wenn die Beendigungsbedingung bei S11 erfüllt ist, und gibt die Lösung bei S12 aus und beendet die Verarbeitung. Die Beendigungsbedingung bei S11 kann eine Bedingung sein, dass die Masse m, die bei S10 fortlaufend zunimmt, den oberen Grenzwert erreicht, oder eine Bedingung, dass eine vorbestimmte Zeit von dem Start der Verarbeitung abgelaufen ist, oder eine Bedingung, dass die Verarbeitungen von S4 bis S10 eine vorbestimmte numerische Anzahl von Malen oder mehr wiederholt wurden, oder eine Bedingung, dass die Energieänderung ΔV, die bei S7 berechnet wird, ein vorbestimmter Wert oder weniger wird. Das heißt, unterschiedliche Bedingungen können als die Beendigungsbedingung von S11 angewendet werden.
  • <Erläuterung von technischem Bild>
  • Wenn der Computer 5 die kontinuierliche Variable x durch das Gradientenverfahren bei S4 aktualisiert, wie in dem technischen Bild in 6 gezeigt ist, wird die kontinuierliche Variable x nur in der Richtung aktualisiert, in der die Evaluierungsfunktion V() abnimmt. Demnach kann, wenn die lokale Lösung A4, die in 6 gezeigt ist, einmal eingepasst ist, die lokale Lösung A4 nicht vermieden werden. Jedoch, wenn der Computer 5 die Verarbeitungen von S5 bis S10 der vorliegenden Ausführungsform ausführt und die Akzeptanzbestimmung bei S8 getätigt ist, ist es möglich, den Tunneleffekt basierend auf der Energieänderung ΔV zu erzeugen, in der das diskrete Rauschen Δquantum der kontinuierlichen Variable x hinzugefügt ist. Wie in dem Bild in 7 gezeigt ist, kann der lokalen Lösung A4 durch den Tunneleffekt entkommen werden und durch Wiederholen des Gradientenverfahrens kann die Optimallösung A3 erlangt werden. Insbesondere ist es durch Simulieren des Tunneleffekts aufgrund von Quantenfluktuation möglich, effizient dieser lokalen Lösung A4 zu entkommen, sogar, wenn sie in eine scharfe und tiefe lokale Lösung A4 passt.
  • <Zusammenfassung dieser Ausführungsform, Wirkungen>
  • Wie vorstehend beschrieben ist, aktualisiert gemäß dieser Ausführungsform der Computer 5 die kontinuierliche Variable x durch das Gradientenverfahren entlang der winzigen Änderung der Evaluierungsfunktion V() und wählt den Eigenzustand des harmonischen Oszillators gemäß der Boltzmann-Verteilung, wählt zufällig einen Wert als das diskrete Rauschen Δquantum, der die Bedingung erfüllt, dass die Existenzwahrscheinlichkeit Pc des ausgewählten n-ten angeregten Zustands ein Spitzenwert wird, berechnet die Energiedifferenz vor und nach dem Hinzufügen des diskreten Rauschens Δquantum und bestimmt, ob eine Wahrscheinlichkeit abhängig von der vorfestgelegten Temperatur T, die vorab abhängig von der Evaluierungsfunktion V() festgelegt wird, akzeptiert ist, legt das diskrete Rauschen Δquantum auf 0 fest, wenn nicht akzeptiert wird, fügt das ausgewählte diskrete Rauschen Δquantum der kontinuierlichen Variable x hinzu, wenn akzeptiert wird, und aktualisiert wiederholt durch das Gradientenverfahren unter Verwendung der kontinuierlichen Variable x, der das diskrete Rauschen Δquantum hinzugefügt ist. Demnach kann der lokalen Lösung A1, A2, A4 unter Verwendung des Tunneleffekts entkommen werden, um die Optimallösung A3 abzuleiten, und das Optimierungsproblem der kontinuierlichen Variable x kann mit hoher Genauigkeit gelöst werden.
  • (Modifikation)
  • In der vorstehenden Beschreibung hat der Computer 5 den Modus, in dem der Eigenzustand gemäß den Boltzmann-Verteilungen der Gleichungen (7-1) und (7-2) bei S5 ausgewählt wird. Alternativ kann anstelle dieser stochastischen Auswahlverarbeitung der erste angeregte Zustand immer als der Eigenzustand des harmonischen Oszillators ausgewählt werden. Zu dieser Zeit kann den lokalen Lösungen A1, A2 und A4 unter Verwendung des Tunneleffekts des diskreten Rauschens Δquantum entkommen werden, während der Rechenbetrag zum Auswählen des Eigenzustands reduziert wird, und das Optimierungsproblem der kontinuierlichen Variable x kann mit hoher Genauigkeit gelöst werden.
  • (Zweite Ausführungsform)
  • 8 zeigt ein zusätzliches erläuterndes Diagramm der zweiten Ausführungsform. Die zweite Ausführungsform unterscheidet sich von der ersten Ausführungsform darin, dass das simulierte Glühverfahren angewandt wird. Ferner wird das Gaußsche Rauschen Δthermal dem diskreten Rauschen Δquantum hinzugefügt, während die Temperatur als eine Variable verwendet wird. Nachfolgend werden zur ersten Ausführungsform identische Teile der Einfachheit halber mit den gleichen Bezugszeichen bezeichnet. Nachfolgend werden nur Unterschiede zur ersten Ausführungsform beschrieben.
  • 8 ist ein Ablaufdiagramm, das die Details der Ableitungsverarbeitung für die Optimallösung A3 zeigt. Der Computer 5 legt die Federkonstante k als eine Konstante fest, wie in S1a von 8 gezeigt ist, und initialisiert die Masse m und die Temperatur T als Variablen, wie in S2a gezeigt ist. Da die die Federkonstante k ein Parameter ist, der in der vorliegenden Ausführungsform abhängig von der Evaluierungsfunktion V() bestimmt wird, ist es wünschenswert, ihn vorab als eine Konstante unter Verwendung beispielsweise einer Simulation zu berechnen.
  • Ferner kann in dem Anfangszustand die Masse m vorab auf einen kleinen vorbestimmten variablen Wert festgelegt werden und die Temperatur kann vorab auf einen hohen vorbestimmten Wert festgelegt werden. Danach legt der Computer 5 bei S3 beispielsweise beliebig den Anfangswert der kontinuierlichen Variable x fest. Dann setzt der Computer 5 den Anfangswert der kontinuierlichen Variable x in die Evaluierungsfunktion V() zum Berechnen des Evaluierungswerts V(x) ein und aktualisiert dann bei S4 die kontinuierliche Variable x unter Verwendung des Gradientenverfahrens. Da das Gradientenverfahren das gleiche wie das Verfahren ist, das in der ersten Ausführungsform beschrieben ist, wird dessen Beschreibung weggelassen. In der vorliegenden Ausführungsform fügt der Computer 5 bei S4a das Gaußsche Rauschen Δthermal der aktualisierten kontinuierlichen Variable x hinzu. Hierbei kann das Gaußsche Rauschen Δthermal wie in der folgenden Gleichung (10) ausgedrückt werden.
    (Gleichung 10) 2 T η N ( 0,1 )
    Figure DE112019001278T5_0010
  • In dieser Gleichung (10) ist T Temperatur, η ist ein Koeffizient des Gradientenverfahrens und N(0,1) ist eine Gauß-Verteilung mit einem Mittelwert von 0 und einer Varianz von 1.
  • Danach wählt der Computer 5 bei S5 den Eigenzustand des harmonischen Oszillators mit einer vorbestimmten Wahrscheinlichkeit gemäß der Boltzmann-Verteilung aus. Zu dieser Zeit kann der Computer 5 den Eigenzustand gemäß beispielsweise der Boltzmann-Verteilung auswählen, die in den Gleichungen (7-1) und (7-2) gezeigt ist. Wenn der Computer 5 beispielsweise den ersten angeregten Zustand in S5 auswählt, wählt der Computer 5 bei S6 zufällig einen der zwei Spitzenwerte aus, die durch die Gleichung (4) des ersten angeregten Zustands repräsentiert sind. Zu dieser Zeit wählt der Computer 5 mehrere Spitzenwerte, die in diesem Fall mit der gleichen Wahrscheinlichkeit von 50% auszuwählen sind, und legt den ausgewählten Wert als das diskrete Rauschen Δquantum fest.
  • Danach berechnet der Computer 5 bei S7 die Energieänderung ΔV vor und nach Hinzufügen des diskreten Rauschens Δquantum zur kontinuierlichen Variable x wie in der Gleichung (9) und führt die Akzeptanzbestimmung bei S8 wie in der vorstehenden Ausführungsform aus. Das heißt, unter der Annahme, dass die kontinuierliche Variable x unmittelbar, nachdem sie durch das Gradientenverfahren aktualisiert ist, als x^* definiert ist, wird die Energieänderung ΔV vor und nach Hinzufügen des diskreten Rauschens Δquantum beispielsweise durch die folgende Gleichung (11) berechnet.
    (Gleichung 11) Δ V = V ( x * + Δ thermal + Δ quantum ) V ( x * + Δ thermal )
    Figure DE112019001278T5_0011
  • Danach trifft der Computer 5 eine Akzeptanzentscheidung für diese Energieänderung ΔV mit einer Wahrscheinlichkeit abhängig von der Temperatur T. Das Akzeptanzbestimmungsverfahren kann das Metropolis-Verfahren oder das Wärmebadverfahren sein. Beispielsweise, wenn das Metropolis-Verfahren verwendet wird, akzeptiert der Computer 5 100%, wenn ΔV⊏0 gilt, akzeptiert es mit einer Wahrscheinlichkeit von exp(-ΔV/T), wenn ΔV>0 gilt, und verweigert andernfalls die Akzeptanz. Wenn der Computer 5 diesen Inhalt akzeptiert, bestimmt er bei S8 JA und fügt bei S9 das diskrete Rauschen Δquantum der kontinuierlichen Variable x̂*+Δthermal hinzu, um die Variable x zu aktualisieren.
  • Dann, bei S10a, verringert der Computer 5 die Temperatur T, während er die Masse m erhöht. Wie in der ersten Ausführungsform beschrieben ist, wenn die Masse m zunimmt, wird die Wirkung der Evaluierungsfunktion V() des ersten Terms auf der rechten Seite der Gleichung (1) stärker und gleichzeitig wird die Wirkung des Einführungsterms der Quantenfluktuation des zweiten Terms auf der rechten Seite der Gleichung (1) schwächer. Ferner, wenn die Temperatur T abnimmt, schwächt sich auch der Einfluss des Gaußschen Rauschens Δthermal in dem Ausdruck (10) ab.
  • Danach wiederholt der Computer 5 die Verarbeitungen von S4 bis S10a und wiederholt insbesondere die Verarbeitungen von S4 bis S10, während er die Masse m erhöht und die Temperatur T verringert. Demnach wird der Einfluss der Evaluierungsfunktion V() entsprechend dem ersten Term auf der rechten Seite der Gleichung (1) fortlaufend gestärkt und der Einfluss des Einführungsterms der Quantenfluktuation, der in dem zweiten Term auf der rechten Seite der Gleichung (1) gezeigt ist, wird fortlaufend geschwächt und ferner wird der Einfluss des Gaußschen Rauschens Δthermal fortlaufend geschwächt.
  • Der Computer 5 wiederholt die Verarbeitung von S4 bis S10a, geht davon aus, dass die Optimierung ausgeführt ist, wenn die Beendigungsbedingung bei S11 erfüllt ist, gibt eine Lösung bei S12 aus und beendet die Verarbeitung. Da die gleiche Bedingung wie in der ersten Ausführungsform als die Beendigungsbedingung von S11 verwendet werden kann, wird die Beschreibung davon weggelassen.
  • <Erläuterung von technischem Bild>
  • Wenn der Computer 5 die kontinuierliche Variable x durch das Gradientenverfahren bei S4 aktualisiert, wie in dem Bild in 6 gezeigt ist, wird die kontinuierliche Variable x nur in der Richtung aktualisiert, in der die Evaluierungsfunktion V() abnimmt. Wie beispielsweise in 9 gezeigt ist, sogar, wenn angenommen wird, dass die Evaluierungsfunktion V() sich relativ sanft ändert, kann sie, wenn sie einmal an die lokale Lösung A5 angepasst ist, der lokalen Lösung A5 nicht entkommen. Jedoch, wenn der Computer 5 das simulierte Glühverfahren verwendet, in dem das Gaußsche Rauschen Δthermal der kontinuierlichen Variable x hinzugefügt ist, kann in dem Bereich der kontinuierlichen Variable x, in dem sich die Evaluierungsfunktion V() relativ sanft ändert, wie in 9 gezeigt ist, die Evaluierungsfunktion V() beispielsweise in einer Richtung aktualisiert werden, in der sie fortlaufend ansteigt, der Spitzenwert des Extremwerts der Evaluierungsfunktion V() kann erhöht werden und der lokalen Lösung A5 entkommen werden. Demzufolge kann der lokalen Lösung A5 effizient entkommen werden, sogar von einem sanften und breiten Tal durch Hinzufügen des Gaußschen Rauschens Δthermal.
  • Ferner ist es in der vorliegenden Ausführungsform, da das Gaußsche Rauschen Δthermal zusammen mit dem diskreten Rauschen Δquantum eingeführt wird, möglich, eine hochgenaue Suche sogar in der Evaluierungsfunktion V() auszuführen, in der scharfe und hohe Täler mit sanften und breiten Tälern vermischt sind.
  • Wie vorstehend beschrieben ist, senkt gemäß der vorliegenden Ausführungsform der Computer 5 fortlaufend die Temperatur T, wenn er das Aktualisieren der kontinuierlichen Variable x wiederholt, und fügt das Gaußsche Rauschen, das von der Temperatur abhängt, zusammen mit dem diskreten Rauschen Δquantum der kontinuierlichen Variable x hinzu. Somit ist es möglich, der lokalen Lösung A5 zu entkommen, in dem der extreme Spitzenwert der Evaluierungsfunktion V() bestiegen wird, und die Optimallösung mit hoher Genauigkeit sogar in der Evaluierungsfunktion V() zu suchen, in der scharfe und hohe Täler und sanfte und breite Täler vermischt sind.
  • (Dritte Ausführungsform)
  • 10 zeigt ein zusätzliches erläuterndes Diagramm der dritten Ausführungsform. Die dritte Ausführungsform unterscheidet sich von der ersten Ausführungsform darin, dass der Wert des n-ten angeregten Zustands der kontinuierlichen Variable x als ein kontinuierliches Rauschen hinzugefügt wird. Nachfolgend werden zur ersten Ausführungsform identische Teile der Einfachheit halber mit den gleichen Bezugszeichen bezeichnet. Nachfolgend werden nur Unterschiede zur ersten Ausführungsform beschrieben.
  • 10 ist ein Ablaufdiagramm, das die Details der Ableitungsverarbeitung der Optimallösung A3 zeigt. Der Computer 5 führt die Verarbeitungen von S1 bis S5 von 10 aus, wie in der ersten Ausführungsform gezeigt ist. Hierbei wählt der Computer 5 bei S5 den Eigenzustand des harmonischen Oszillators mit einer vorbestimmten Wahrscheinlichkeit gemäß der Boltzmann-Verteilung aus. Zu dieser Zeit wird der Eigenzustand gemäß der Boltzmann-Verteilung ausgewählt, die in den Gleichungen (7-1) und (7-2) gezeigt ist. Danach fügt der Computer 5 den Wert des n-ten angeregten Zustands des harmonischen Oszillators als ein kontinuierliches Rauschen der kontinuierlichen Variable x durch Verwenden der Existenzwahrscheinlichkeit Pc des ausgewählten Eigenzustands hinzu (bei S9a). Da das Rauschen hinzugefügt wird, ohne die Akzeptanz-/Verwerfungsbestimmung auszuführen, kann die Bestimmungsverarbeitung reduziert werden.
  • Dann erhöht der Computer 5 die Masse m bei S10. Wenn die Masse m zunimmt, wird der Einfluss der Evaluierungsfunktion V() des ersten Terms auf der rechten Seite der Gleichung (1) stärker und gleichzeitig wird der Einfluss des Quantenfluktuationseinführungsterms des zweiten Terms auf der rechten Seite schwächer. Danach wiederholt der Computer 5 die Verarbeitungen von S4 bis S10. Insbesondere wiederholt der Computer 5 die Verarbeitungen von S4 bis S10, während er die Masse m erhöht. Demnach wird der Einfluss der Evaluierungsfunktion V() entsprechend dem ersten Term auf der rechten Seite der Gleichung (1) fortlaufend erhöht und der Einfluss des Einführungsterms der Quantenfluktuation, der in dem zweiten Term auf der rechten Seite der Gleichung (1) gezeigt ist, wird fortlaufend verringert.
  • Danach geht der Computer 5 davon aus, dass die Optimierung ausgeführt ist, wenn die Beendigungsbedingung bei S11 erfüllt ist, und gibt die Lösung bei S12 aus und beendet die Verarbeitung. Da die gleiche Bedingung wie in der ersten Ausführungsform als die Beendigungsbedingung von S11 verwendet werden kann, wird die Beschreibung davon weggelassen.
  • Wie vorstehend beschrieben ist, wird gemäß der vorliegenden Ausführungsform die kontinuierliche Variable durch das Gradientenverfahren entlang der winzigen Änderung der Evaluierungsfunktion V() aktualisiert, der Eigenzustand des harmonischen Oszillators wird gemäß der Boltzmann-Verteilung ausgewählt und der Wert des n-ten angeregten Zustands wird der kontinuierlichen Variable x als das kontinuierliche Rauschen unter Verwendung der Existenzwahrscheinlichkeit Pc des ausgewählten Eigenzustands hinzugefügt und das Aktualisieren durch das Gradientenverfahren wird unter Verwendung der kontinuierlichen Variable x, dem das Rauschen hinzugefügt ist, ausgeführt und wiederholt. Sogar, wenn so eine Verarbeitung ausgeführt wird, können die gleichen Wirkungen wie die der ersten Ausführungsform erlangt werden und die Optimallösung A3 kann mit hoher Genauigkeit unter Verwendung des Tunneleffekts abgeleitet werden.
  • (Weitere Ausführungsformen)
  • Die vorliegende Offenbarung ist nicht auf die vorstehend beschriebenen Ausführungsformen beschränkt, das heißt, kann auf die folgende Weise modifiziert oder erweitert werden.
  • Obwohl die Form beschrieben ist, in der der Minimalwert der Evaluierungsfunktion V() als die Optimallösung A3 gesucht wird, kann der Maximalwert als die Optimallösung A3 angewandt werden.
  • Der Computer 5 und das Verfahren, die in der vorliegenden Offenbarung beschrieben sind, können durch einen Spezialcomputer implementiert werden, der mit einem Speicher und einem Prozessor konfiguriert ist, die für die Ausführung einer oder mehrerer bestimmter Funktionen programmiert sind, die in Computerprogrammen des Speichers ausgebildet sind. Alternativ können der Computer 5 und das Verfahren, die in der vorliegenden Offenbarung beschrieben sind, durch einen Spezialcomputer implementiert werden, der als ein Prozessor mit einer oder mehreren speziellen Hardwarelogikschaltungen konfiguriert ist. Alternativ können der Computer 5 und das Verfahren, die in der vorliegenden Offenbarung beschrieben sind, von einem oder mehreren Spezialcomputern, der als eine Kombination aus einem Prozessor und einem Speicher konfiguriert ist, die für die Ausführung einer oder mehrerer Funktionen programmiert sind, und einem Prozessor implementiert werden, der mit einer oder mehreren Hardware-Logikschaltungen konfiguriert ist. Die Computerprogramme können als Anweisungen, die von einem Computer auszuführen sind, in einem greifbaren, nichtflüchtigen, computerlesbaren Medium gespeichert werden.
  • Es ist auch möglich, die Konfigurationen und Verarbeitungsinhalte der vorstehend beschriebenen Ausführungsformen zu kombinieren. Darüber hinaus geben die in den Ansprüchen beschriebenen Bezugszeichen in Klammern Korrespondenzbeziehungen mit bestimmten Vorrichtungen an, die in den oben beschriebenen Ausführungsformen als einen Aspekt der vorliegenden Offenbarung beschrieben sind, und der technische Umfang der vorliegenden Offenbarung ist nicht begrenzt. Ein Teil der vorstehend beschriebenen Ausführungsform kann eliminiert werden, solange das im Abschnitt „Stand der Technik“ identifizierte Problem lösbar ist. Auch alle denkbaren Aspekte, die nicht von dem in den Ansprüchen definierten Wesen abweichen, können als Ausführungsformen betrachtet werden.
  • Obwohl die vorliegende Offenbarung auf der Grundlage der vorstehend beschriebenen Ausführungsformen erfolgt, beschränkt sich die vorliegende Offenbarung nicht auf die offenbarten Ausführungsformen und Konfigurationen. Die vorliegende Offenbarung deckt unterschiedliche Modifikationsbeispiele und äquivalente Anordnungen ab. Darüber hinaus können verschiedene Modi/Kombinationen, eines oder mehrere Elemente, die hinzugefügt oder entfernt wurden, auch als die vorliegende Offenbarung angesehen werden und als technischer Gedanke davon verstanden werden.
  • In der Zeichnung ist 1 eine Vorrichtung (das heißt, globale Suchvorrichtung für kontinuierliches Optimierungsproblem), 5 ist ein Computer, 6 ist eine Aktualisierungseinheit, 7 ist eine Auswahleinheit, 8 ist eine Bestimmungseinheit und 9 ist eine Addiereinheit.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • JP 2006059237 A [0005]

Claims (12)

  1. Globale Suchvorrichtung (1) für ein kontinuierliches Optimierungsproblem, die nach einer Optimallösung sucht, die eine Bedingung erfüllt, dass eine Evaluierungsfunktion, die unter Verwendung einer kontinuierlichen Variable erzeugt wird, einen Minimalwert oder einen Maximalwert hat, wobei die globale Suchvorrichtung für das kontinuierliche Optimierungsproblem aufweist: eine Aktualisierungseinheit (6) zum Aktualisieren der kontinuierlichen Variable durch ein Gradientenverfahren entlang einer winzigen Änderung der Evaluierungsfunktion; einen Selektor (7) zum Auswählen eines Eigenzustands eines harmonischen Oszillators gemäß einer Boltzmann-Verteilung; und einen Addierer (9) zum Hinzufügen eines Werts eines ausgewählten Eigenzustands zur kontinuierlichen Variable als ein kontinuierliches Rauschen unter Verwendung einer Existenzwahrscheinlichkeit des ausgewählten Eigenzustands, wobei: die Aktualisierungseinheit Aktualisieren der kontinuierlichen Variable durch das Gradientenverfahren durch Hinzufügen des kontinuierlichen Rauschens zu der kontinuierlichen Variable durch den Addierer wiederholt.
  2. Globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem, die nach einer Optimallösung sucht, die eine Bedingung erfüllt, dass eine Evaluierungsfunktion, die unter Verwendung einer kontinuierlichen Variable erzeugt wird, einen Minimalwert oder einen Maximalwert hat, wobei die globale Suchvorrichtung für das kontinuierliche Optimierungsproblem aufweist: eine Aktualisierungseinheit (6) zum Aktualisieren der kontinuierlichen Variable durch ein Gradientenverfahren entlang einer winzigen Änderung der Evaluierungsfunktion; einen Selektor (7) zum Auswählen eines Eigenzustands eines harmonischen Oszillators gemäß einer Boltzmann-Verteilung und zufälligen Auswählen als ein diskretes Rauschen eines Werts, der eine Bedingung erfüllt, dass eine Existenzwahrscheinlichkeit eines ausgewählten Eigenzustands ein Spitzenwert wird; eine Bestimmungseinheit (8) zum Berechnen einer Energiedifferenz vor und nach Hinzufügen des diskreten Rauschens und zum Bestimmen, ob eine Wahrscheinlichkeit abhängig von einer vorbestimmten Temperatur, die von der Evaluierungsfunktion abhängt, akzeptierbar ist; und einen Addierer (9) zum Festlegen des diskreten Rauschens auf 0, wenn die Wahrscheinlichkeit nicht akzeptiert wird, und zum Hinzuzufügen des diskreten Rauschens, das durch den Selektor ausgewählt wird, zu der kontinuierlichen Variable, wenn die Wahrscheinlichkeit akzeptiert wird, wobei: die Aktualisierungseinheit Aktualisieren der kontinuierlichen Variable durch das Gradientenverfahren durch Hinzufügen des diskreten Rauschens zu der kontinuierlichen Variable durch den Addierer wiederholt.
  3. Globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem gemäß Anspruch 2, wobei: die Temperatur auf einen vorbestimmten Variablenwert in einem Anfangszustand festgelegt ist; wenn die Aktualisierungseinheit Aktualisieren der kontinuierlichen Variable wiederholt, die Temperatur fortlaufend verringert wird (S10a); der Addierer das diskrete Rauschen zusammen mit einem Gaußschen Rauschen der kontinuierlichen Variable hinzufügt (S9a); und das Gaußsche Rauschen von der Temperatur abhängt.
  4. Globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem gemäß einem der Ansprüche 1 bis 3, wobei: wenn der Selektor den Eigenzustand des harmonischen Oszillators auswählt, der Selektor einen von angeregten Zuständen in einem vorbestimmten Bereich auswählt.
  5. Globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem gemäß Anspruch 4, wobei: wenn der Selektor den Eigenzustand des harmonischen Oszillators auswählt, der Selektor eine endliche numerische Anzahl von angeregten Zuständen von einem Grundzustand mit einer niedrigsten Energie auswählt und einen der angeregten Zustände auswählt.
  6. Globale Suchvorrichtung für ein kontinuierliches Optimierungsproblem gemäß einem der Ansprüche 1 bis 5, wobei: der Selektor immer einen ersten angeregten Zustand als den Eigenzustand des harmonischen Oszillators auswählt.
  7. Programm zum Suchen einer Optimallösung, die eine Bedingung erfüllt, dass eine Evaluierungsfunktion, die unter Verwendung einer kontinuierlichen Variable erzeugt wird, einen Minimalwert oder einen Maximalwert hat, wobei das Programm eine globale Suchvorrichtung (1) für ein kontinuierliches Optimierungsproblem veranlasst, auszuführen: einen Schritt (S4) zum Aktualisieren der kontinuierlichen Variable durch ein Gradientenverfahren entlang einer winzigen Änderung der Evaluierungsfunktion; einen Schritt (S5) zum Auswählen eines Eigenzustands eines harmonischen Oszillators gemäß einer Boltzmann-Verteilung; einen Schritt (S9a) zum Hinzufügen eines Werts eines ausgewählten Eigenzustands zur kontinuierlichen Variable als ein kontinuierliches Rauschen unter Verwendung einer Existenzwahrscheinlichkeit des ausgewählten Eigenzustands; und Wiederholen des Aktualisierens der kontinuierlichen Variable durch das Gradientenverfahren durch Hinzufügen des kontinuierlichen Rauschens zu der kontinuierlichen Variable.
  8. Programm zum Suchen einer Optimallösung, die eine Bedingung erfüllt, dass eine Evaluierungsfunktion, die unter Verwendung einer kontinuierlichen Variable erzeugt wird, einen Minimalwert oder einen Maximalwert hat, wobei das Programm eine globale Suchvorrichtung (1) für ein kontinuierliches Optimierungsproblem veranlasst, auszuführen: einen Schritt (S4) zum Aktualisieren der kontinuierlichen Variable durch ein Gradientenverfahren entlang einer winzigen Änderung der Evaluierungsfunktion; einen Schritt (S6) zum Auswählen eines Eigenzustands eines harmonischen Oszillators gemäß einer Boltzmann-Verteilung und zufälligen Auswählen als ein diskretes Rauschen eines Werts, der eine Bedingung erfüllt, dass eine Existenzwahrscheinlichkeit eines ausgewählten Eigenzustands ein Spitzenwert wird; einen Schritt (S8) zum Berechnen einer Energiedifferenz vor und nach Hinzufügen des diskreten Rauschens und zum Bestimmen, ob eine Wahrscheinlichkeit abhängig von einer Temperatur, die festgelegt ist und von der Evaluierungsfunktion abhängt, akzeptierbar ist; einen Schritt (S9) zum Festlegen des diskreten Rauschens auf 0, wenn die Wahrscheinlichkeit nicht akzeptiert wird, und zum Hinzufügen des diskreten Rauschens zu der kontinuierlichen Variable, wenn die Wahrscheinlichkeit akzeptiert wird; und Wiederholen des Aktualisierens der kontinuierlichen Variable durch das Gradientenverfahren durch Hinzufügen des diskreten Rauschens zu der kontinuierlichen Variable.
  9. Programm zum Suchen der Optimallösung gemäß Anspruch 8, wobei das Programm die globale Suchvorrichtung veranlasst, ferner auszuführen: Festlegen der Temperatur auf einen vorbestimmten Variablenwert in einem Anfangszustand; fortlaufendes Verringern der Temperatur (S10a), wenn die Aktualisierung der kontinuierlichen Variable wiederholt wird; und Hinzufügen des diskreten Rauschens zusammen mit einem Gaußschen Rauschen zu der kontinuierlichen Variable (S9a), wobei: das Gaußsche Rauschen von der Temperatur abhängt.
  10. Programm zum Suchen der Optimallösung gemäß einem der Ansprüche 7 bis 9, wobei: das Auswählen des Eigenzustands des harmonischen Oszillators beinhaltet: Auswählen von einem von angeregten Zuständen in einem vorbestimmten Bereich.
  11. Programm zum Suchen der Optimallösung gemäß Anspruch 10, wobei: das Auswählen des Eigenzustands des harmonischen Oszillators beinhaltet: Auswählen einer endlichen numerischen Anzahl von angeregten Zuständen von einem Grundzustand mit einer niedrigsten Energie; und Auswählen von einem der angeregten Zustände.
  12. Programm zum Suchen der Optimallösung gemäß einem der Ansprüche 7 bis 11, wobei: das Auswählen des Eigenzustands des harmonischen Oszillators beinhaltet: immer Auswählen eines ersten angeregten Zustands als den Eigenzustand des harmonischen Oszillators.
DE112019001278.9T 2018-03-13 2019-03-05 Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem Pending DE112019001278T5 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-045428 2018-03-13
JP2018045428A JP6993909B2 (ja) 2018-03-13 2018-03-13 連続最適化問題の大域的探索装置及びプログラム
PCT/JP2019/008617 WO2019176647A1 (ja) 2018-03-13 2019-03-05 連続最適化問題の大域的探索装置及びプログラム

Publications (1)

Publication Number Publication Date
DE112019001278T5 true DE112019001278T5 (de) 2020-12-17

Family

ID=67906717

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112019001278.9T Pending DE112019001278T5 (de) 2018-03-13 2019-03-05 Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem

Country Status (4)

Country Link
US (1) US20200408547A1 (de)
JP (1) JP6993909B2 (de)
DE (1) DE112019001278T5 (de)
WO (1) WO2019176647A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339539B2 (ja) 2020-01-15 2023-09-06 富士通株式会社 最適化装置、最適化装置の温度設定方法及び最適化装置の温度設定プログラム
JP7515110B2 (ja) 2020-01-24 2024-07-12 株式会社デンソー 情報処理システム、組合せ最適解演算方法、及び組合せ最適解演算プログラム
US20230125808A1 (en) * 2020-03-13 2023-04-27 Nec Corporation Information processing device, control method, and storage medium
CN113094979B (zh) * 2021-03-25 2023-12-12 中山大学 一种基于状态变换差分进化的混合离散变量优化方法及系统
CN117556967B (zh) * 2024-01-11 2024-05-03 宁波安得智联科技有限公司 调度方法、装置、设备及存储介质
CN118310537B (zh) * 2024-06-07 2024-09-13 南京信息工程大学 一种自适应策略改进减法平均优化算法的路径规划方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059237A (ja) 2004-08-23 2006-03-02 Babcock Hitachi Kk 大域的最適化装置の操作方法
US9634459B2 (en) * 2014-09-05 2017-04-25 Comsats Institute Of Information Technology Generation of a high power pulse-laser using field generated coherence
JP6530326B2 (ja) 2015-10-07 2019-06-12 株式会社東芝 量子計算装置、及び、方法
WO2017078731A1 (en) * 2015-11-06 2017-05-11 Rigetti & Co., Inc. Analyzing quantum information processing circuits
EP3380996A4 (de) * 2015-11-27 2018-11-14 Qoherence Instruments Corp. Systeme, vorrichtungen und verfahren zur interaktion mit in spins gespeicherten quanteninformationen
US20170161612A1 (en) * 2015-12-07 2017-06-08 Microsoft Technology Licensing, Llc Partial Reinitialization for Optimizers
JP6524933B2 (ja) 2016-02-03 2019-06-05 富士通株式会社 ボルツマンマシン、ボルツマンマシンの制御方法及びボルツマンマシンを有する情報処理装置
JP6659957B2 (ja) * 2016-06-06 2020-03-04 富士通株式会社 情報処理装置、イジング装置及び情報処理装置の制御方法
JP6892599B2 (ja) * 2017-07-05 2021-06-23 富士通株式会社 最適化装置及び最適化装置の制御方法
JP6993571B2 (ja) * 2018-01-17 2022-01-13 富士通株式会社 最適化装置及び最適化装置の制御方法

Also Published As

Publication number Publication date
JP6993909B2 (ja) 2022-01-14
US20200408547A1 (en) 2020-12-31
WO2019176647A1 (ja) 2019-09-19
JP2019159782A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
DE112019001278T5 (de) Globale suchvorrichtung und programm für ein kontinuierliches optimierungsproblem
DE102017125256A1 (de) Suche nach einer neuronalen Architektur
EP2999998B1 (de) Methode zur ermittlung eines modells einer ausgangsgrösse eines technischen systems
DE112020004471T5 (de) Folgerungsvorrichtung, Trainingsvorrichtung, Folgerungsverfahren und Trainingsverfahren
DE202018102632U1 (de) Vorrichtung zum Erstellen einer Modellfunktion für ein physikalisches System
DE202019106332U1 (de) Kontrollierte adaptive Optimierung
DE102016222814A1 (de) Verfahren zum berechnen einer ausgabe eines neuronalen netzes
CN106779839A (zh) 一种中奖概率调整方法及系统
DE10013068C2 (de) Potenzierungsoperationsvorrichtung
DE69027874T2 (de) Lernmaschine mit Mehreingangs- Einausgangsschaltungen, die in einer hierarchischen Struktur verbunden sind
DE102021209769A1 (de) Effizientes Erzeugen von Kalibrierdaten für Mehrphasen-Festkörper mit heterogener Mikrostruktur unter Verwendung von maschinellem Lernen
DE102020213888A1 (de) Computerimplementiertes Verfahren zum Bestimmen von Kritikalitätswerten eines technischen Systems
DE10222700B4 (de) Computergestütztes Verfahren zur Massen- und/oder Funktionsoptimierung von Fahrzeugkomponenten und -strukturen
DE68928071T2 (de) Vorrichtung und Verfahren zum Erzeugen von Regeln für unscharfe Inferenz
DE10222699A1 (de) Regelbasiertes Optimierungsverfahren
EP1257904B1 (de) Verfahren zum erzeugen einer folge von zufallszahlen eines 1/f-rauschens
DE102020206325A1 (de) Computerimplementiertes Verfahren zum Testen eines technischen Systems
DE102013224694A1 (de) Verfahren und Vorrichtung zum Ermitteln eines Gradienten eines datenbasierten Funktionsmodells
DE10064688A1 (de) Verfahren zum bedarfsorientierten Erzeugen einzelner Zufallszahlen einer Folge von Zufallszahlen eines 1/f-Rauschens
DE102018209901A1 (de) Recheneinheit, Verfahren und Computerprogramm zum Multiplizieren zumindest zweier Multiplikanden
DE102022206949A1 (de) Rechenvorrichtung und Rechenverfahren
DE112021006880T5 (de) Zufallszahlengenerator, Zufallszahlen-Erzeugungsverfahren und nichtflüchtiges, computerlesbares Medium das ein Programm speichert
DE102021202564A1 (de) Vorrichtung und insbesondere computerimplementiertes Verfahren zur Klassifizierung von Datensätzen
DE102020213366A1 (de) Verfahren zum Bereitstellen eines Algorithmus maschinellen Lernens, Verfahren und System zur Klassifikation und/oder Regression von Prozessdaten und/oder Prozess-Metadaten
DE102020129701A1 (de) Eine zusammengesetzte neuronale netzwerkarchitektur zur vorhersage der spannungsverteilung

Legal Events

Date Code Title Description
R012 Request for examination validly filed