JP6988735B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6988735B2
JP6988735B2 JP2018148065A JP2018148065A JP6988735B2 JP 6988735 B2 JP6988735 B2 JP 6988735B2 JP 2018148065 A JP2018148065 A JP 2018148065A JP 2018148065 A JP2018148065 A JP 2018148065A JP 6988735 B2 JP6988735 B2 JP 6988735B2
Authority
JP
Japan
Prior art keywords
fuel
cylinder
combustion engine
internal combustion
executed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018148065A
Other languages
English (en)
Other versions
JP2020023907A (ja
Inventor
龍介 黒田
正直 井戸側
大吾 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018148065A priority Critical patent/JP6988735B2/ja
Publication of JP2020023907A publication Critical patent/JP2020023907A/ja
Application granted granted Critical
Publication of JP6988735B2 publication Critical patent/JP6988735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、火花点火式の内燃機関に適用される内燃機関の制御装置に関する。
特許文献1には、ガソリンを燃料とする内燃機関の一例が記載されている。この内燃機関の排気浄化装置は、排気通路に設けられている三元触媒と、排気通路における三元触媒よりも下流に配置されているパティキュレートフィルタとを備えている。
特許文献1に記載の内燃機関では、アクセル操作が解消されるなどして内燃機関に対する要求トルクが減少された場合において内燃機関に加わる負荷が低いときには、気筒内での燃焼が停止されることがある。このような燃焼停止期間では、燃料噴射弁の燃料噴射を停止する燃料カット処理、及び、燃料噴射弁から燃料を噴射させ、当該燃料を未燃のまま気筒内から排気通路に流出させる燃料導入処理の何れか一方の処理が選択される。特許文献1によれば、パティキュレートフィルタを再生させる際には、燃料導入処理が実行される。一方、当該再生を行わない際には、燃料カット処理が実行される。
燃料導入処理では、燃料噴射弁から噴射された燃料が空気と共に排気通路を流通することとなる。そして、燃料が三元触媒に導入されると、当該燃料の燃焼によって三元触媒の温度が上昇する。すると、高温のガスがパティキュレートフィルタに流入するようになり、パティキュレートフィルタの温度が上昇する。その結果、パティキュレートフィルタに捕集されているパティキュレート・マターが燃焼される。
米国特許出願公開第2014/0041362号明細書
内燃機関の燃料に硫黄成分が含まれている場合、硫黄成分が三元触媒に堆積することがある。硫黄成分が三元触媒に堆積すると、三元触媒の最大酸素吸蔵量が低下するため三元触媒の浄化効率が低下する。そこで、触媒に堆積した硫黄成分を脱離させる被毒再生として、気筒内での燃焼を停止させて燃料噴射を停止する燃料カット処理を行うことによって三元触媒に酸素を導入し、三元触媒に堆積した硫黄を硫黄酸化物として三元触媒から放出することが行われている。
特許文献1のように燃焼停止期間において燃料カット処理又は燃料導入処理が選択される場合、燃焼停止期間に燃料導入処理が実行されると、燃料導入処理によって三元触媒に到達した燃料が酸素と共に燃焼される。そのため、被毒再生の進行の仕方が燃料カット処理が実行されているときと異なる。すなわち、燃料導入処理が実行される場合には、燃料カット処理が実行される場合とは三元触媒に導入されるガスの空燃比が異なるため、被毒再生を行うための期間を適切に設定できないことがあった。
上記課題を解決するための内燃機関の制御装置は、点火装置の火花放電によって、燃料噴射弁から噴射された燃料を含む混合気を気筒内で燃焼させる内燃機関に適用され、前記内燃機関のクランク軸が回転している状況下で前記気筒内での燃焼を停止させるときには、前記燃料噴射弁の燃料噴射を停止させる燃料カット処理、及び、前記燃料噴射弁から燃料を噴射させ、当該燃料を未燃のまま前記気筒内から排気通路に流出させる燃料導入処理の何れか一方の処理を選択して実行する内燃機関の制御装置であって、前記気筒内での燃焼の停止条件が成立しているか否かを判定する停止判定部と、前記排気通路に配置されている触媒への硫黄堆積量を推定する推定部と、を備え、前記推定部によって推定された硫黄堆積量が堆積閾値以上であるときに前記停止判定部によって前記停止条件が成立していると判定されて前記燃料カット処理又は前記燃料導入処理を開始した場合には、前記停止条件が成立していると前記停止判定部が判定していても前記推定部によって推定される硫黄堆積量が脱離判定値以下になったときに前記気筒内での燃焼を再開させるものであり、前記推定部は、前記燃料カット処理が実行されているときと、前記燃料導入処理が実行されているときとで、前記硫黄堆積量の推定方法を変更することをその要旨とする。
上記構成によれば、硫黄堆積量が脱離判定値以下になったときに燃料カット処理又は燃料導入処理が終了されて気筒内での燃焼が再開される。そして、上記構成では、燃料カット処理が実行されているときと、燃料導入処理が実行されているときとで、硫黄堆積量の推定方法を変更している。そのため、触媒に空気とともに燃料が導入される燃料導入処理を実行している場合には、燃料の導入を考慮して硫黄堆積量を推定することができる。これにより、燃料導入処理を実行している場合と、燃料カット処理を実行している場合とで被毒再生の進行の仕方に違いがあるとしても、それに対応させて硫黄堆積量を適切に推定することができる。したがって、硫黄堆積量に基づいて被毒再生の完了を適切に判定することができる。
内燃機関の制御装置の一実施形態である内燃機関制御ユニットを備える制御装置と、同制御装置が搭載されるハイブリッド車両と、の概略を示す構成図。 同内燃機関制御ユニットの機能構成と、同ハイブリッド車両に搭載される内燃機関の概略構成とを示す図。 同内燃機関制御ユニットにおける停止判定部が実行する処理の流れを示すフローチャート。 燃料噴射弁と点火装置とを制御する処理の流れを示すフローチャート。 燃焼停止期間中に行う処理の流れを示すフローチャート。 被毒再生を行う際の処理の流れを示すフローチャート。 燃焼停止期間中に被毒再生を行う場合のタイミングチャート。
以下、内燃機関の制御装置の一実施形態を図1〜図7に従って説明する。
図1には、ハイブリッド車両の概略構成が図示されている。図1に示すように、ハイブリッド車両は、内燃機関10と、内燃機関10のクランク軸14に接続されている動力配分統合機構40と、動力配分統合機構40に接続されている第1のモータジェネレータ71とを備えている。動力配分統合機構40には、リダクションギア50を介して第2のモータジェネレータ72が連結されるとともに、減速機構60及びディファレンシャル61を介して駆動輪62が連結されている。
動力配分統合機構40は、遊星歯車機構のことであり、外歯歯車のサンギア41と、サンギア41と同軸配置されている内歯歯車のリングギア42とを有している。サンギア41とリングギア42との間には、サンギア41及びリングギア42の双方と噛み合う複数のピニオンギア43が配置されている。各ピニオンギア43は、自転及び公転が自在な状態でキャリア44に支持されている。サンギア41には、第1のモータジェネレータ71が連結されている。キャリア44には、クランク軸14が連結されている。リングギア42にはリングギア軸45が接続されており、このリングギア軸45にリダクションギア50及び減速機構60の双方が連結されている。
内燃機関10の出力トルクがキャリア44に入力されると、当該出力トルクが、サンギア41側とリングギア42側とに分配される。すなわち、第1のモータジェネレータ71に内燃機関10の出力トルクを入力させることにより、第1のモータジェネレータ71に発電させることができる。
一方、第1のモータジェネレータ71を電動機として機能させた場合、第1のモータジェネレータ71の出力トルクがサンギア41に入力される。すると、サンギア41に入力された第1のモータジェネレータ71の出力トルクが、キャリア44側とリングギア42側とに分配される。そして、第1のモータジェネレータ71の出力トルクがキャリア44を介してクランク軸14に入力されることにより、クランク軸14を回転させることができる。本実施形態では、このように第1のモータジェネレータ71の駆動によってクランク軸14を回転させることを「モータリング」という。
リダクションギア50は、遊星歯車機構であり、第2のモータジェネレータ72が連結されている外歯歯車のサンギア51と、サンギア51と同軸配置されている内歯歯車のリングギア52とを有している。リングギア52にリングギア軸45が接続されている。また、サンギア51とリングギア52との間には、サンギア51及びリングギア52の双方と噛み合う複数のピニオンギア53が配置されている。各ピニオンギア53は、自転自在であるものの公転不能になっている。
そして、車両を減速させる際には、第2のモータジェネレータ72を発電機として機能させることにより、第2のモータジェネレータ72の発電量に応じた回生制動力を車両に発生させることができる。また、第2のモータジェネレータ72を電動機として機能させた場合、第2のモータジェネレータ72の出力トルクが、リダクションギア50、リングギア軸45、減速機構60及びディファレンシャル61を介して駆動輪62に入力される。これにより、駆動輪62を回転させることができる、すなわち車両を走行させることができる。
第1のモータジェネレータ71は、第1のインバータ75を介してバッテリ77と電力の授受を行う。第2のモータジェネレータ72は、第2のインバータ76を介してバッテリ77と電力の授受を行う。
図2に示すように、内燃機関10は、直列に配置された四つの気筒11を有している直列4気筒の内燃機関である。各気筒11内には、コネクティングロッドを介してクランク軸14に連結されているピストンが往復動可能な態様で収容されている。
各気筒11内には、吸気通路15を介して空気が導入される。また、内燃機関10は、気筒11と同数の燃料噴射弁17を有している。各燃料噴射弁17は、吸気通路15に燃料を噴射する噴射弁である。各気筒11内には、燃料噴射弁17から噴射された燃料と空気とが吸気通路15を介して導入される。そして、各気筒11内では、燃料と空気とを含む混合気が点火装置19の火花放電によって燃焼される。
また、内燃機関10は、吸入空気量GAを検出するエアフロメータ81を吸気通路15に備えている。内燃機関10は、クランク軸14の回転角度を検出するクランク角センサ82を備えている。
混合気の燃焼によって各気筒11内で生じた排気は、排気通路21に排出される。排気通路21には、三元触媒22と、三元触媒22よりも下流側に配置されているパティキュレートフィルタ23とが設けられている。パティキュレートフィルタ23は、排気通路21を流通する排気に含まれるパティキュレート・マターを捕集する機能を有している。
なお、排気通路21における三元触媒22よりも上流には、排気通路21を流れるガス中の酸素濃度、すなわち混合気の空燃比を検出する空燃比センサ83が配置されている。また、排気通路21における三元触媒22とパティキュレートフィルタ23との間には、排気通路21を流れるガスの温度を検出する排気温度センサ84が配置されている。
内燃機関10では、車両が走行しており、且つクランク軸14が回転しているときに、気筒11内での混合気の燃焼が停止されることがある。このようにクランク軸14が回転している状態で気筒11内での燃焼が停止される期間のことを、「燃焼停止期間CSP」という。燃焼停止期間CSPでは、クランク軸14の回転に同期して各ピストンが往復動する。そのため、吸気通路15を介して各気筒11内に導入された空気は、燃焼に供されることなく、排気通路21に流出される。
燃焼停止期間CSPでは、各燃料噴射弁17の燃料噴射を停止する燃料カット処理、及び、各燃料噴射弁17から燃料を噴射させ、当該燃料を未燃のまま各気筒11内から排気通路21に流出させる燃料導入処理のうち何れか一方が選択して実行される。燃料導入処理が実行されると、各燃料噴射弁17から噴射された燃料が空気と共に排気通路21を流通することとなる。そして、燃料が三元触媒22に導入される。このとき、三元触媒22の温度が活性化温度以上である場合、燃料を燃焼させるのに十分な量の酸素が三元触媒22に存在すると、三元触媒22で燃料が燃焼される。これにより、三元触媒22の温度が上昇する。すると、高温のガスがパティキュレートフィルタ23に流入するようになり、パティキュレートフィルタ23の温度が上昇する。そして、パティキュレートフィルタ23に酸素が供給されている場合、パティキュレートフィルタ23の温度が燃焼可能温度以上になると、パティキュレートフィルタ23に捕集されているパティキュレート・マターが燃焼される。
次に、図1及び図2を参照し、ハイブリッド車両の制御構成について説明する。
図1に示すように、ハイブリッド車両の制御装置100は、アクセル開度ACC及び車速VSを基に、リングギア軸45に出力すべきトルクである要求トルクTQRを算出する。アクセル開度ACCは、車両の運転者によるアクセルペダルAPの操作量のことであり、アクセル開度センサ86によって検出された値である。車速VSは、車両の移動速度に対応する値であり、車速センサ87によって検出される。制御装置100は、算出した要求トルクTQRを基に、内燃機関10、各モータジェネレータ71,72を制御する。
制御装置100は、内燃機関10を制御する内燃機関制御ユニット110と、各モータジェネレータ71,72を制御するモータ制御ユニット120とを備えている。内燃機関制御ユニット110が、本実施形態における「内燃機関の制御装置」の一例に相当する。燃焼停止期間CSP中において燃料導入処理が実行される場合、モータ制御ユニット120によって、モータリングを行わせるべく第1のモータジェネレータ71の駆動が制御される。すなわち、モータリングの実行を通じ、燃焼停止期間CSP中におけるクランク軸14の回転速度を制御することができる。
図2には、内燃機関制御ユニット110の機能構成が図示されている。内燃機関制御ユニット110は、機能部として、点火制御部111と、噴射弁制御部112と、停止判定部113と、推定部114とを有している。
内燃機関制御ユニット110には、各種センサからの検出信号が入力される。内燃機関制御ユニット110は、各種センサからの検出信号に基づいて車両及び内燃機関10を制御するためのパラメータを算出する。例えば、クランク角センサ82からの検出信号に基づいてクランク角度CAを算出する。また、クランク角度CAに基づいて内燃機関10の機関回転数NEを算出する。
点火制御部111は、点火装置19を制御する。点火制御部111は、気筒11内で混合気を燃焼させるときには、ピストンが圧縮上死点近傍に達したタイミングで点火装置19に火花放電を行わせる。一方、点火制御部111は、燃焼停止期間CSP中では、点火装置19に火花放電を行わせない。
噴射弁制御部112は、燃料噴射弁17の駆動を制御する。燃料噴射弁17の処理手順については後述する。
停止判定部113は、気筒11内での混合気の燃焼の停止条件が成立しているか否かを判定する。
また、停止判定部113は、燃焼の停止条件が成立しているときに、被毒再生に係る一連の処理を実行する。当該処理の流れについては後述する。
推定部114は、三元触媒22の温度を燃料導入処理の実行中に燃料噴射弁17から噴射した燃料の量に基づいて推定し、触媒温度TCとして算出する。
また、推定部114は、三元触媒22に堆積している硫黄成分の堆積量として硫黄堆積量SDPを推定する。推定部114は、堆積値から脱離値を減ずることによって硫黄堆積量SDPを算出する。硫黄堆積量SDPの算出に用いられる堆積値は、燃料噴射量の積算値に基づいて算出される。硫黄堆積量SDPの算出に用いられる脱離値は、三元触媒22から放出される硫黄成分の量として算出される。
推定部114は、燃料導入処理が実行されているときには、触媒温度TCと排気空燃比AFとに基づいて脱離値を算出する。なお、排気空燃比AFは、燃料導入処理が実行される場合における燃料噴射量の要求値QPRを算出する際に参照される値である。排気空燃比AFは、触媒温度TCの目標値に基づいて設定される。ここで、触媒温度TCが高いほど三元触媒22から硫黄成分が放出されやすい。したがって、触媒温度TCが高いほど脱離値が大きい値として算出される。また、三元触媒22に供給される酸素の量が多いほど三元触媒22から硫黄成分が放出されやすい。したがって、排気空燃比AFがリーン側の値であるほど脱離値が大きい値として算出される。一方、燃料導入処理が実行されていないとき、すなわち燃料カット処理が実行されているときには、推定部114は、排気空燃比AFに基づいて脱離値を算出する。このように、脱離値は、燃料カット処理が実行されているときと、燃料導入処理が実行されているときとで、その算出方法が切り換えられる。
以上のように推定部114は、燃料カット処理が実行されているときと、燃料導入処理が実行されているときとで、硫黄堆積量の推定方法を変更する。
図3には、停止判定部113が実行する処理の流れを示している。この処理は、所定の周期毎に繰り返し実行される。
本処理の実行が開始されると、まずステップS101において、気筒11内での燃焼の停止条件が成立しているか否かが判定される。例えば、停止判定部113は、内燃機関10に対する出力トルクの要求値が「0」以下であるときには、停止条件が成立しているとの判定をなす。一方、停止判定部113は、内燃機関10に対する出力トルクの要求値が「0」よりも大きいときには、停止条件が成立しているとの判定をなさない、すなわち停止条件が非成立であると判定する。停止条件が成立していない場合(S101:NO)、処理がステップS102に移行される。ステップS102では、燃焼停止フラグFLG1にオフがセットされる。その後、本処理ルーチンが一旦終了される。
一方、停止条件が成立している場合(S101:YES)、処理がステップS103に移行される。ステップS103では、燃焼停止フラグFLG1にオンがセットされる。その後、本処理ルーチンが一旦終了される。
停止判定部113は、燃焼停止フラグFLG1がオフの状態からオンにされたときに、気筒11内での混合気の燃焼の停止を要求する。停止判定部113は、燃焼停止フラグFLG1がオンの状態からオフにされたときに、気筒11内での混合気の燃焼の再開を要求する。
図4を参照し、噴射弁制御部112によって燃料噴射弁17の駆動を制御する際の処理手順について説明する。なお、図4に示す一連の処理は、各燃料噴射弁17に対して実行される。
この一連の処理が実行されると、まずステップS104では、燃焼停止フラグFLG1がオンであるか否かが判定される。
燃焼停止フラグFLG1がオフである場合(S104:NO)、処理がステップS105に移行される。ステップS105では、燃料噴射弁17の燃料噴射量の要求値QPRを算出するための第1の算出処理が行われる。第1の算出処理では、例えば、空燃比検出値AFSが空燃比目標値AFTrとなるように要求値QPRが算出される。空燃比検出値AFSは、空燃比センサ83によって検出された空燃比のことである。また、気筒11内で混合気を燃焼させる場合、空燃比目標値AFTrは、例えば理論空燃比、又は理論空燃比近傍の値に設定される。そして、要求値QPRが算出されると、処理が次のステップS106に移行される。ステップS106において、ステップS105で算出した要求値QPRを基に燃料噴射弁17の駆動が制御される。続いて、次のステップS107では、火花放電を行わせるように点火制御部111によって点火装置19が制御される。すなわち、気筒11内で混合気が燃焼される。そして、一連の処理が一旦終了される。
一方、燃焼停止フラグFLG1がオンである場合(S104:YES)、処理がステップS108に移行される。ステップS108では、燃料噴射弁17の燃料噴射量の要求値QPRを算出するための第2の算出処理が行われる。第2の算出処理では、燃料カット処理が実行されている場合、要求値QPRが「0」とされる。一方、第2の算出処理では、燃料導入処理が実行されている場合、要求値QPRが「0」よりも大きい値となるように算出される。ただし、燃料導入処理が実行されている場合の燃料噴射量の要求値QPRは、気筒11内で混合気を燃焼させる際における要求値QPRよりも小さい。そのため、ステップS108で算出された要求値QPRに基づいて燃料噴射弁17から噴射された燃料が気筒11内に導入された場合、当該気筒11内の空燃比は、気筒11内で混合気を燃焼させる際の空燃比(すなわち、理論空燃比)と比較してリーン側の値となる。
ここで、燃焼停止期間CSP中における燃料カット処理と燃料導入処理の選択方法について説明する。すなわち、燃焼停止期間CSPが開始された以降において、以下に示す条件(1)及び(2)の少なくとも一方が成立していないときには、燃料カット処理が実行される。一方、燃焼停止期間CSP中において条件(1)及び(2)の両者が成立すると、燃料導入処理が実行される。
(1)触媒温度TCが活性化温度以上であると判定できること。
(2)パティキュレートフィルタ23におけるパティキュレート・マターの捕集量の推定値が判定捕集量以上であること。
未燃の燃料を三元触媒22に導入しても、三元触媒22の温度が低いと、燃料を燃焼させることができないことがある。そこで、三元触媒22に導入された未燃の燃料を燃焼させることができるか否かの判断基準として、活性化温度が設定されている。
パティキュレートフィルタ23におけるパティキュレート・マターの捕集量が多いほど、パティキュレートフィルタ23の目詰まりが進行する。そこで、パティキュレートフィルタ23の再生が必要なほど目詰まりが進行しているか否かの判断基準として、判定捕集量が設定されている。捕集量が増えると、排気通路21における三元触媒22とパティキュレートフィルタ23との間の部分と、排気通路21におけるパティキュレートフィルタ23よりも下流の部分との差圧が大きくなりやすい。そこで、例えば、当該差圧を基に捕集量の推定値を算出することができる。
ステップS108で要求値QPRが算出されると、処理が次のステップS109に移行される。ステップS109において、ステップS108で算出した要求値QPRを基に燃料噴射弁17の駆動が制御される。すなわち、燃料カット処理が実行されている場合には、要求値QPRが「0」であるため、燃料噴射弁17から燃料が噴射されない。一方、燃料導入処理が実行されている場合には、要求値QPRが「0」よりも大きいため、燃料噴射弁17から燃料が噴射される。続いて、次のステップS110では、火花放電を行わせないように点火制御部111によって点火装置19が制御される。そして、一連の処理が一旦終了される。
図5及び図6を参照して、被毒再生に係る一連の処理の流れについて説明する。
図5に示す一連の処理は、燃焼停止フラグFLG1がオンであるときに、所定の周期毎に繰り返し実行される。
この処理が開始されると、ステップS201において、硫黄堆積量SDPが堆積閾値SDPTh以上であるか否かが判定される。硫黄堆積量SDPが増加すると三元触媒22の最大酸素吸蔵量が低下して浄化効率が低下する。堆積閾値SDPThは、三元触媒22が被毒再生を要する状態にあるか否かを判定するために設定されている。硫黄堆積量SDPが堆積閾値SDPThよりも少ない場合(S201:NO)、一連の処理が一旦終了される。
一方、硫黄堆積量SDPが堆積閾値SDPTh以上である場合(S201:YES)、処理がステップS202に移行される。ステップS202では、被毒再生フラグFLG2にオンがセットされる。その後、処理がステップS203に移行される。
ステップS203では、劣化抑制処理が禁止される。これによって、後述する劣化抑制処理が実行されない。その後、一連の処理が一旦終了される。
図6に示す一連の処理は、被毒再生フラグFLG2がオンであるときに所定の周期毎に繰り返し実行される。
この処理が開始されると、まずステップS204において、硫黄堆積量SDPが脱離判定値SDCTh以下か否かが判定される。脱離判定値SDCThは、三元触媒22に堆積した硫黄の脱離が完了したか否かを判定するために設定される値である。脱離判定値SDCThとしては、例えば「0」を設定することができる。また、「0」よりも大きい値を脱離判定値SDCThとして設定することもできる。硫黄堆積量SDPが脱離判定値SDCThよりも大きい場合(S204:NO)、一連の処理が一旦終了される。
一方、硫黄堆積量SDPが脱離判定値SDCTh以下である場合(S204:YES)、処理がステップS205に移行される。ステップS205では、劣化抑制処理が許可される。このため、実行条件が成立したときには劣化抑制処理が実行されるようになる。その後、処理がステップS206に移行される。
ステップS206では、被毒再生フラグFLG2にオフがセットされる。その後、処理がステップS207に移行される。
ステップS207では、燃焼再開処理が実行される。燃焼再開処理が実行されると、気筒11内での混合気の燃焼の停止条件が成立していても混合気の燃焼が要求される。具体的には、燃焼再開処理が実行されると燃焼停止フラグFLG1にオフがセットされる。さらに、燃焼再開処理が実行されると、図3に示した処理の実行が規定期間において禁止される。ステップS207の処理が実行されると一連の処理が終了される。
ここで、劣化抑制処理について説明する。劣化抑制処理は、三元触媒22の劣化を抑制するために実行される処理である。触媒温度TCが高温であるときに酸素が供給されると、三元触媒22において酸素の酸化が急激に進行する虞がある。劣化抑制処理では、これを抑制するために三元触媒22への酸素の供給を抑制する。具体的には、劣化抑制処理は、停止条件が成立しているか否かに関わらず気筒11内での混合気の燃焼の停止を禁止する。劣化抑制処理は、例えば、触媒温度TCが制限温度TCTh以上であるときに実行される。制限温度TCThは、三元触媒22が高温であるか否かを判定するための値として設定される。制限温度TCThは、三元触媒22の活性化温度よりも高い値である。
本実施形態の作用及び効果について説明する。
図7には、燃焼停止期間CSPに被毒再生が行われる例を示している。図7に示す例では、タイミングt1において気筒11内での混合気の燃焼の停止条件が成立している。そして図7に実線で示す例では、タイミングt2において燃料導入処理の実行条件が成立していると判定されている。すなわち、実線で示す例では燃焼停止期間CSPにおいて燃料カット処理及び燃料導入処理が実行される。一方、図7に破線で示す例では、燃料導入処理の実行条件が成立していないと判定されている。すなわち、破線で示す例では燃焼停止期間CSPにおいて燃料カット処理が実行される。
まず、図7に破線で示す例について説明する。タイミングt1において停止条件が成立すると、図7の(a)に示すように気筒11内での混合気の燃焼が停止される。燃料導入処理の実行条件が成立していないため、タイミングt1以降では、燃料カット処理が実行される。燃料カット処理によって、吸気通路15から気筒11に吸入された空気が燃焼されることなく排気通路21に排出される。三元触媒22に空気が到達することによって、図7の(c)に示すようにタイミングt1以降では触媒温度TCが低下する。また、燃料カット処理によって三元触媒22に酸素が供給されるため、三元触媒22から硫黄成分が放出される。これによって図7の(d)に示すように、タイミングt1以降では硫黄堆積量SDPが低下し始める。そして、硫黄堆積量SDPは、タイミングt5において「0」に達する。硫黄堆積量SDPが「0」、すなわち硫黄堆積量SDPが脱離判定値SDCTh以下になると、燃焼復帰処理が実行される(S207)。このためタイミングt5において、図7の(a)に示すように燃焼が再開される。
続いて図7に実線で示す例について説明する。タイミングt1において停止条件が成立すると、図7の(a)に示すように気筒11内での混合気の燃焼が停止される。
タイミングt1からタイミングt2までの期間では燃料導入処理の実行条件が成立していないため、燃料カット処理が実行されている。燃料カット処理によって、吸気通路15から気筒11に吸入された空気が燃焼されることなく排気通路21に排出される。三元触媒22に空気が到達することによって、図7の(c)に示すように触媒温度TCが低下する。また、三元触媒22への酸素の供給によって、三元触媒22から硫黄成分が放出される。このため図7の(d)に示すように、硫黄堆積量SDPが低下し始める。
タイミングt2において燃料導入処理の実行が開始される。未燃燃料が三元触媒22に導入されるため、三元触媒22において燃料が燃焼することによって図7の(c)に示すようにタイミングt2以降から触媒温度TCが上昇を開始する。触媒温度TCは、タイミングt3において制限温度TCThに達する。すなわち劣化抑制処理の実行条件が成立するが、ここでは、停止条件が成立すると判定されるタイミングt1以前において図7の(d)に示すように硫黄堆積量SDPが堆積閾値SDPTh以上であるため、劣化抑制処理の実行が禁止されている(S203)。したがって、劣化抑制処理が実行されることなく燃焼の停止が継続される。
タイミングt2以降では、燃料導入処理によって導入された燃料の影響によって、三元触媒22への硫黄成分の堆積が生じやすくなる。さらに、燃料導入処理によって導入された燃料とともに酸素が三元触媒22において燃焼するため、三元触媒22から放出される硫黄酸化物が生成されるための酸素量が不足しやすくなる。このため、図7の(d)に示すように、硫黄堆積量SDPの減少速度が一旦緩やかになる。しかし、硫黄堆積量SDPの減少速度は、触媒温度TCの増加に伴って次第に増加する。そして硫黄堆積量SDPは、タイミングt5よりも前の時点であるタイミングt4において「0」に達する。
硫黄堆積量SDPが「0」、すなわち硫黄堆積量SDPが脱離判定値SDCTh以下になると、劣化抑制処理の実行が許可される(S205)。さらに、燃焼復帰処理が実行される(S207)。このためタイミングt4において、図7の(b)に示すように燃料導入処理が停止されるとともに、図7の(a)に示すように燃焼が再開される。燃料導入処理が停止されたことによって、図7の(c)に示すように触媒温度TCは、タイミングt4以降において低下し始める。タイミングt4からタイミングt6までの期間においては、触媒温度TCが制限温度TCTh以上であるため、劣化抑制処理が実行されることによって燃焼の停止が禁止される。
このように、本実施形態によれば、硫黄堆積量SDPが脱離判定値SDCTh以下になったときに燃料カット処理又は燃料導入処理が終了されて気筒11内での燃焼が再開される。
さらに、推定部114は、燃料カット処理が実行されているときと、燃料導入処理が実行されているときとで、硫黄堆積量SDPの推定方法を変更している。
燃料導入処理を実行している場合には、触媒温度TCが高いほど三元触媒22から硫黄成分が放出されやすい。このため、被毒再生が完了するまでの時間は、燃料導入処理が実行されているときの触媒温度TCによって変化する。図7には、燃料導入処理の実行を伴う実線で示す例が破線で示す例よりも被毒再生が早く完了する場合を示したが、燃料導入処理の実行を伴う例における被毒再生がタイミングt5以降において完了する場合もある。この点、本実施形態の推定部114は、燃料カット処理が実行されているときと、燃料導入処理が実行されているときとで、硫黄堆積量SDPの推定方法を変更している。具体的には、燃料導入処理を実行している場合には、燃料の導入によって上昇する触媒温度TCを考慮して硫黄堆積量SDPを推定している。これによって、燃料導入処理を実行している場合と、燃料カット処理を実行している場合とで被毒再生の進行の仕方に違いがあるとしても、それに対応させて硫黄堆積量SDPを適切に推定することができる。したがって、硫黄堆積量SDPに基づいて被毒再生の完了を適切に判定することができる。
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、直列4気筒の内燃機関10を例示しているが、内燃機関の気筒数及び気筒配列はこれに限られるものではない。
・上記実施形態では、燃料導入処理の実行中には、点火装置19に火花放電を行わせないようにしている。しかし、燃料導入処理の実行中では、気筒11内で混合気が燃焼しない時期に火花放電を点火装置19に行わせるようにしてもよい。例えば、ピストンが下死点近傍に位置するときに火花放電を行わせた場合、火花放電が行われた気筒11内では混合気が燃焼されない。そのため、燃料導入処理の実行中では、火花放電が行われても、燃料噴射弁17から噴射された燃料を未燃のまま気筒11内から排気通路21に流出させることができる。
・内燃機関の制御装置が適用される内燃機関は、気筒11内に直接燃料を噴射する燃料噴射弁である筒内噴射弁を備えるものであってもよい。この場合、燃料導入処理の実行中では、筒内噴射弁から燃料を気筒11内に噴射させ、当該燃料を未燃のまま排気通路21に流出させるようにしてもよい。これにより、未燃の燃料を三元触媒22に導入させることができる。
・ハイブリッド車両のシステムは、モータの駆動によってクランク軸14の回転速度を制御することができるのであれば、図1に示したようなシステムとは異なる別のシステムであってもよい。
・内燃機関の制御装置を、内燃機関以外の他の動力源を備えない車両に搭載される内燃機関に適用される装置に具体化してもよい。このような車両に搭載される内燃機関でも、推定部114によって推定される硫黄堆積量SDPが脱離判定値SDCTh以下になったときに気筒11内での燃焼を再開させるように構成すれば、上記実施形態と同様の効果を奏することができる。
10…内燃機関、11…気筒、14…クランク軸、15…吸気通路、17…燃料噴射弁、19…点火装置、21…排気通路、22…三元触媒、23…パティキュレートフィルタ、40…動力配分統合機構、41…サンギア、42…リングギア、43…ピニオンギア、44…キャリア、45…リングギア軸、50…リダクションギア、51…サンギア、52…リングギア、53…ピニオンギア、60…減速機構、61…ディファレンシャル、62…駆動輪、71…第1のモータジェネレータ、72…第2のモータジェネレータ、75…第1のインバータ、76…第2のインバータ、77…バッテリ、81…エアフロメータ、82…クランク角センサ、83…空燃比センサ、84…排気温度センサ、86…アクセル開度センサ、87…車速センサ、100…制御装置、110…内燃機関制御ユニット、111…点火制御部、112…噴射弁制御部、113…停止判定部、114…推定部、120…モータ制御ユニット。

Claims (1)

  1. 点火装置の火花放電によって、燃料噴射弁から噴射された燃料を含む混合気を気筒内で燃焼させる内燃機関に適用され、
    前記内燃機関のクランク軸が回転している状況下で前記気筒内での燃焼を停止させるときには、前記燃料噴射弁の燃料噴射を停止させる燃料カット処理、及び、前記燃料噴射弁から燃料を噴射させ、当該燃料を未燃のまま前記気筒内から排気通路に流出させる燃料導入処理の何れか一方の処理を選択して実行する内燃機関の制御装置であって、
    前記気筒内での燃焼の停止条件が成立しているか否かを判定する停止判定部と、
    前記排気通路に配置されている触媒への硫黄堆積量を推定する推定部と、を備え、
    前記推定部によって推定された硫黄堆積量が堆積閾値以上であるときに前記停止判定部によって前記停止条件が成立していると判定されて前記燃料カット処理又は前記燃料導入処理を開始した場合には、前記停止条件が成立していると前記停止判定部が判定していても前記推定部によって推定される硫黄堆積量が脱離判定値以下になったときに前記気筒内での燃焼を再開させるものであり、
    前記推定部は、前記燃料カット処理が実行されているときと、前記燃料導入処理が実行されているときとで、前記硫黄堆積量の推定方法を変更する
    内燃機関の制御装置。
JP2018148065A 2018-08-07 2018-08-07 内燃機関の制御装置 Active JP6988735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018148065A JP6988735B2 (ja) 2018-08-07 2018-08-07 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018148065A JP6988735B2 (ja) 2018-08-07 2018-08-07 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2020023907A JP2020023907A (ja) 2020-02-13
JP6988735B2 true JP6988735B2 (ja) 2022-01-05

Family

ID=69619395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018148065A Active JP6988735B2 (ja) 2018-08-07 2018-08-07 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6988735B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098666B1 (en) * 2020-09-28 2021-08-24 GM Global Technology Operations LLC System and method for controlling amount of sulfur on three-way catalyst by limiting deceleration cylinder cut off

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747693B2 (ja) * 1999-07-02 2006-02-22 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2001152837A (ja) * 1999-11-22 2001-06-05 Mazda Motor Corp エンジンの排気浄化装置
JP2002155724A (ja) * 2000-09-07 2002-05-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP4995154B2 (ja) * 2008-07-15 2012-08-08 本田技研工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2020023907A (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
US11325579B2 (en) Controller and control method for hybrid vehicle
US11440529B2 (en) Controller for hybrid vehicle
US10774763B2 (en) Controller and control method for internal combustion engine
JP7020337B2 (ja) 内燃機関の制御装置
US10774769B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP7020338B2 (ja) 内燃機関の制御装置
JP7040358B2 (ja) 内燃機関の制御装置
JP4420024B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP6988735B2 (ja) 内燃機関の制御装置
US11067025B2 (en) Controller for vehicle and method for controlling vehicle
CN110821608B (zh) 车辆的控制装置及控制方法
JP2008038779A (ja) 内燃機関の排ガス浄化装置
JP6992702B2 (ja) 内燃機関の制御装置
JP7103047B2 (ja) 内燃機関の制御装置
JP7070218B2 (ja) 車両の制御装置
JP7073974B2 (ja) 内燃機関の制御装置
JP7110813B2 (ja) 内燃機関の制御装置
JP2020185965A (ja) ハイブリッド車両の制御装置
JP7107079B2 (ja) 内燃機関の制御装置
JP2020023891A (ja) 内燃機関の制御装置
JP2020131789A (ja) ハイブリッド車両の制御装置
JP2015218713A (ja) 内燃機関の制御装置
JP2022116895A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151