JP6988361B2 - RH type vacuum degassing device - Google Patents

RH type vacuum degassing device Download PDF

Info

Publication number
JP6988361B2
JP6988361B2 JP2017202019A JP2017202019A JP6988361B2 JP 6988361 B2 JP6988361 B2 JP 6988361B2 JP 2017202019 A JP2017202019 A JP 2017202019A JP 2017202019 A JP2017202019 A JP 2017202019A JP 6988361 B2 JP6988361 B2 JP 6988361B2
Authority
JP
Japan
Prior art keywords
sectional area
cross
vacuum degassing
molten steel
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017202019A
Other languages
Japanese (ja)
Other versions
JP2019073782A (en
Inventor
秀平 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017202019A priority Critical patent/JP6988361B2/en
Publication of JP2019073782A publication Critical patent/JP2019073782A/en
Application granted granted Critical
Publication of JP6988361B2 publication Critical patent/JP6988361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼中に懸濁している介在物を除去する清浄化能力の高いRH式真空脱ガス処理装置に関する。 The present invention relates to an RH type vacuum degassing apparatus having a high cleaning ability for removing inclusions suspended in molten steel.

鋼材中の非金属介在物は鋼材性能を低下させるため、清浄度の高い鋼を製造するためには、溶鋼の精錬処理により非金属介在物を多く除去する必要がある。特に、精錬プロセスの最終工程では、RH式真空脱ガス処理装置が広く一般に用いられており、RH式真空脱ガス処理装置の清浄化能力を高めることによって、鋼材を高級化することができる。 Since non-metal inclusions in steel materials deteriorate the performance of steel materials, it is necessary to remove a large amount of non-metal inclusions by refining the molten steel in order to produce steel with high cleanliness. In particular, in the final step of the refining process, the RH type vacuum degassing treatment device is widely and generally used, and the steel material can be upgraded by increasing the cleaning capacity of the RH type vacuum degassing treatment device.

RH式真空脱ガス処理では、溶鋼中に懸濁している非金属介在物を凝集合体させ、その後、凝集合体した非金属介在物を取鍋スラグへ浮上させることによって非金属介在物を溶鋼から除去する。非金属介在物を凝集合体させ、取鍋スラグへ浮上させて除去するためには、溶鋼の攪拌動力密度または環流量を増加させる方法が有効であることが知られている。 In the RH vacuum degassing treatment, the non-metal inclusions suspended in the molten steel are agglomerated and coalesced, and then the non-metal inclusions that have been agglomerated and coalesced are levitated to the ladle slag to remove the non-metal inclusions from the molten steel. do. It is known that a method of increasing the stirring power density or the ring flow rate of the molten steel is effective for aggregating and coalescing the non-metal inclusions and floating them on the ladle slag for removal.

特許文献1には、環流量を150〜200t/minの範囲まで高める方法が提案されており、特許文献2には、環流量を高めるために下降管を上昇管の1〜1.4倍に大きくする方法が提案されている。さらに特許文献3には、RH式真空脱ガス処理中の攪拌動力密度を6WH/t以上にする方法が提案されている。 Patent Document 1 proposes a method of increasing the ring flow rate to the range of 150 to 200 t / min, and Patent Document 2 increases the ring flow rate to 1 to 1.4 times that of the ascending tube in order to increase the ring flow rate. A method to increase it has been proposed. Further, Patent Document 3 proposes a method of increasing the stirring power density during the RH type vacuum degassing treatment to 6 WH / t or more.

一方、環流量が増加し過ぎると、真空槽内に付着した地金が汚染源として溶鋼に溶け込んでしまい、非金属介在物が溶鋼内に生成されてしまう可能性がある。そこで特許文献4には、RH式真空脱ガス処理の前半における環流量を180〜210t/minまで高め、後半における環流量を110〜140t/minに低下させる方法が提案されている。 On the other hand, if the ring flow rate increases too much, the bare metal adhering to the vacuum chamber may melt into the molten steel as a pollution source, and non-metal inclusions may be generated in the molten steel. Therefore, Patent Document 4 proposes a method of increasing the ring flow rate in the first half of the RH type vacuum degassing treatment to 180 to 210 t / min and reducing the ring flow rate in the latter half to 110 to 140 t / min.

特開2010−189691号公報Japanese Unexamined Patent Publication No. 2010-189691 特開2009−203539号公報Japanese Unexamined Patent Publication No. 2009-2053539 特開平10−219335号公報Japanese Unexamined Patent Publication No. 10-219335 特開2008−303406号公報Japanese Unexamined Patent Publication No. 2008-303406

従来の技術では、非金属介在物を除去するために、環流量を処理の前半と後半とで変化させる方法などが行われていた。その一方で、条件によっては自ずと介在物除去速度が制限されたり、処理時間が長くなってしまったりするという課題があった。 In the conventional technique, in order to remove non-metal inclusions, a method of changing the ring flow rate between the first half and the second half of the treatment has been performed. On the other hand, depending on the conditions, there are problems that the inclusion removal speed is naturally limited and the processing time becomes long.

本発明は前述の問題点を鑑み、非金属介在物を溶鋼から効率良く除去することが可能なRH式真空脱ガス処理装置を提供することを目的とする。 In view of the above-mentioned problems, it is an object of the present invention to provide an RH type vacuum degassing apparatus capable of efficiently removing non-metal inclusions from molten steel.

本発明者らは、環流量が同じであっても、介在物除去速度をより高めることを可能とするRH式真空脱ガス処理装置について検討した。即ち、非金属介在物は取鍋表面に浮上することで除去されるが、溶鋼の流速が大きいと、非金属介在物が浮上する前に浸漬管開口部を通過する溶鋼の流れに吸引されて再度取鍋の底部または真空槽内まで運ばれてしまう。但し、環流量を低減して開口部付近で溶鋼の流速を低下させた場合、取鍋内の攪拌が不十分となり、非金属介在物の取鍋表面への浮上除去速度が低下してしまう。そのため、環流量を低減することなく、開口部付近での溶鋼の流速を低下させる必要がある。 The present inventors have studied an RH type vacuum degassing treatment apparatus capable of further increasing the inclusion removal rate even if the ring flow rate is the same. That is, the non-metal inclusions are removed by floating on the surface of the ladle, but when the flow velocity of the molten steel is high, the non-metal inclusions are attracted to the flow of the molten steel passing through the opening of the immersion tube before the non-metal inclusions float. It will be carried to the bottom of the ladle or into the vacuum chamber again. However, when the flow rate of the molten steel is reduced in the vicinity of the opening by reducing the ring flow rate, the stirring in the ladle becomes insufficient, and the floating removal speed of the non-metal inclusions on the ladle surface decreases. Therefore, it is necessary to reduce the flow velocity of the molten steel in the vicinity of the opening without reducing the ring flow rate.

そこで、本発明者らは、環流量を低減せずに、開口部付近で溶鋼の流速を低下させる方法として、浸漬管の下端の開口部を上部に対して拡幅し、断面積を拡大する方法を見出した。環流量は浸漬管を介した上昇流又は下降流の流路の中で最も細くなっている箇所の内径によって決まるため、例えば浸漬管の下端の開口部のみが拡幅されたとしても、環流量は変化しない。したがって、従来よりも非金属介在物が溶鋼の流れに吸引されずに取鍋表面に浮上しやすくなり、非金属介在物を溶鋼から効率良く除去することができる。 Therefore, as a method of reducing the flow velocity of molten steel in the vicinity of the opening without reducing the ring flow rate, the present inventors have widened the opening at the lower end of the immersion pipe with respect to the upper portion to expand the cross-sectional area. I found. Since the ring flow rate is determined by the inner diameter of the narrowest part of the ascending or descending flow path through the immersion tube, for example, even if only the opening at the lower end of the immersion tube is widened, the ring flow rate is widened. It does not change. Therefore, the non-metal inclusions are more likely to float on the surface of the ladle without being sucked by the flow of the molten steel, and the non-metal inclusions can be efficiently removed from the molten steel.

本発明は、このような検討の結果なされたもので、その要旨は以下のとおりである。
(1)上昇流の円筒状の形状の浸漬管と下降流の円筒状の形状の浸漬管との流路を介して溶鋼を環流させて溶鋼の脱ガス処理を行うRH式真空脱ガス処理装置であって、
前記上昇流と下降流の両浸漬管内にストレート部とテーパー部とが設けられており、前記テーパー部の底面の開口部の断面積が前記ストレート部での断面積よりも大きくなるようにし、
前記テーパー部の底面の開口部の断面積が、前記浸漬管を介した上昇流又は下降流の流路の最小の断面積の1.1〜2.8倍であることを特徴とするRH式真空脱ガス処理装置。
(2)前記開口部の断面積が、前記上昇流又は下降流の流路において最大の断面積であることを特徴とする上記(1)に記載のRH式真空脱ガス処理装置。
The present invention has been made as a result of such studies, and the gist thereof is as follows.
(1) RH type vacuum degassing treatment device that performs degassing treatment of molten steel by circulating molten steel through the flow path between the cylindrically shaped immersion pipe of the ascending flow and the cylindrical immersion pipe of the descending flow. And,
A straight portion and a tapered portion are provided in both the ascending flow and the descending flow immersion pipes, so that the cross-sectional area of the opening on the bottom surface of the tapered portion is larger than the cross-sectional area of the straight portion.
The RH type is characterized in that the cross-sectional area of the opening on the bottom surface of the tapered portion is 1.1 to 2.8 times the minimum cross-sectional area of the flow path of the ascending or descending flow through the dipping pipe. Vacuum degassing equipment.
(2) The RH type vacuum degassing treatment apparatus according to (1) above, wherein the cross-sectional area of the opening is the maximum cross-sectional area in the flow path of the ascending flow or the descending flow.

本発明によれば、環流量を下げないようにして清浄化能力を高めることができる。これにより、清浄化に要する処理時間を短縮したり、環流ガス量を削減したりすることができ、処理コストを削減できる。 According to the present invention, the cleaning ability can be enhanced without lowering the ring flow rate. As a result, the processing time required for cleaning can be shortened, the amount of recirculated gas can be reduced, and the processing cost can be reduced.

RH式真空脱ガス処理装置の概要を説明するための図である。It is a figure for demonstrating the outline of the RH type vacuum degassing processing apparatus. テーパーを有する浸漬管の一例を示す図である。It is a figure which shows an example of the immersion tube which has a taper. 比K/K0と比Aa/Atとの関係を示す図である。It is a figure which shows the relationship between the ratio K / K 0 and the ratio A a / A t.

以下、図面を参照しながら本発明によるRH式真空脱ガス処理装置について述べる。
図1は、RH式真空脱ガス処理装置の例を示しており、図1(a)は、本実施形態に係るRH式真空脱ガス処理装置の例を示し、図1(b)は、従来のRH式真空脱ガス処理装置の例を示している。
図1に示すように、浸漬管を除くRH式真空脱ガス処理装置の構成は広く一般に用いられる構成でよい。以下、図1(a)に示す浸漬管2の具体的な構造について説明する。
Hereinafter, the RH type vacuum degassing treatment apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an RH type vacuum degassing treatment apparatus, FIG. 1A shows an example of an RH type vacuum degassing treatment apparatus according to the present embodiment, and FIG. 1B shows a conventional example. An example of the RH type vacuum degassing treatment apparatus is shown.
As shown in FIG. 1, the configuration of the RH type vacuum degassing treatment device excluding the immersion tube may be a widely generally used configuration. Hereinafter, the specific structure of the immersion tube 2 shown in FIG. 1A will be described.

浸漬管2は円筒状の形状であり、浸漬管2の耐火物厚みは200〜350mmが望ましい。浸漬管2の耐火物の厚みが200mmより小さいと、浸漬管の内側に設けられている形状を維持するための芯金への熱影響が大きくなり、処理前後の温度変化により変形してしまう場合がある。一方、350mmより大きいと、耐火物コストが高くなることに加え、取鍋内に浸漬管を収容する必要があることから内径が小さくなってしまう場合がある。 The immersion tube 2 has a cylindrical shape, and the refractory thickness of the immersion tube 2 is preferably 200 to 350 mm. If the thickness of the refractory material of the immersion tube 2 is smaller than 200 mm, the thermal effect on the core metal for maintaining the shape provided inside the immersion tube becomes large, and the immersion tube 2 may be deformed due to temperature changes before and after the treatment. There is. On the other hand, if it is larger than 350 mm, the cost of the refractory material increases and the inner diameter may become smaller because the immersion tube needs to be housed in the ladle.

上昇流側の浸漬管2に設けられる環流ガス吹き込み羽口3の位置は、浸漬管の下端部4である底面から150〜600mmの高さにあることが望ましい。底面から150mmより低い位置では、底面からの熱影響が大きくなることで羽口に繋がる配管が変形してしまう場合がある。また、底面から600mmより高い位置では、環流ガスを吹き込む羽口と湯面との距離が近くなり、環流ガスの気泡により脱ガス処理が不十分になる場合がある。 It is desirable that the position of the recirculation gas blowing tuyere 3 provided in the immersion pipe 2 on the ascending flow side is at a height of 150 to 600 mm from the bottom surface of the lower end portion 4 of the immersion pipe. At a position lower than 150 mm from the bottom surface, the pipe connected to the tuyere may be deformed due to the large heat effect from the bottom surface. Further, at a position higher than 600 mm from the bottom surface, the distance between the tuyere for blowing the recirculated gas and the surface of the molten metal becomes short, and the degassing treatment may be insufficient due to the bubbles of the recirculated gas.

図2は、浸漬管2の拡大図である。本実施形態においては、浸漬管2にテーパー部5が設けられている。浸漬管2内に設けるテーパー部5は、浸漬管2のどの位置に設けてもよいが、底面の開口部7の断面積がストレート部6での断面積よりも大きくなるようにする必要があり、底面の開口部7の断面積が最も大きくなることが望ましい。また、テーパー部5の長さは100mm以上が望ましい。100mm未満では、浸漬管内での圧損が大きくなり、環流量が低下してしまう場合があるからである。図1(a)及び図1(b)を比較すると、このようにテーパー部5を設けることにより、従来よりも非金属介在物8が溶鋼の流れに吸引されずに取鍋表面に浮上しやすくなり、非金属介在物8を溶鋼から効率良く除去することができる。 FIG. 2 is an enlarged view of the immersion tube 2. In the present embodiment, the dipping tube 2 is provided with a tapered portion 5. The tapered portion 5 provided in the dipping tube 2 may be provided at any position of the dipping tube 2, but it is necessary to make the cross-sectional area of the opening 7 on the bottom surface larger than the cross-sectional area of the straight portion 6. It is desirable that the cross-sectional area of the opening 7 on the bottom surface is the largest. Further, the length of the tapered portion 5 is preferably 100 mm or more. This is because if it is less than 100 mm, the pressure loss in the immersion tube becomes large and the ring flow rate may decrease. Comparing FIGS. 1 (a) and 1 (b), by providing the tapered portion 5 in this way, the non-metal inclusions 8 are more likely to float on the surface of the ladle without being sucked by the flow of molten steel. Therefore, the non-metal inclusions 8 can be efficiently removed from the molten steel.

また、図1(a)に示す例では、ストレート部6での流路の断面積が最小で、開口部7における断面積がそれより大きくなっているが、このような形状に限定されず、上昇流又は下降流の流路において開口部7の断面積が最小にならなければよい。つまり、環流量は、浸漬管を介した上昇流又は下降流の流路の中の最小の断面積によって決まるため、それよりも開口部7の断面積が大きければ、開口部付近での溶鋼の流速を小さくすることができる。つまり、ストレート部のように流路の断面積が最小で一定である範囲を必ず設ける必要はない。 Further, in the example shown in FIG. 1A, the cross-sectional area of the flow path in the straight portion 6 is the minimum, and the cross-sectional area in the opening 7 is larger than that, but the cross-sectional area is not limited to such a shape. It is sufficient that the cross-sectional area of the opening 7 is not minimized in the ascending or descending flow path. That is, since the ring flow rate is determined by the minimum cross-sectional area in the ascending or descending flow path through the immersion pipe, if the cross-sectional area of the opening 7 is larger than that, the molten steel in the vicinity of the opening The flow velocity can be reduced. That is, it is not always necessary to provide a range in which the cross-sectional area of the flow path is the minimum and constant as in the straight portion.

次に、底面の開口部7の断面積をどの程度大きくすればより効果が得られるかを確認するため、図1(a)に示すような浸漬管2の下端の開口部7を拡幅したRH式真空脱ガス処理装置1を使用した時の清浄度への影響を、300トンの溶鋼を用いて調査した。調査方法は以下のとおりである。 Next, in order to confirm how much the cross-sectional area of the opening 7 on the bottom surface should be increased to obtain a more effective effect, the RH in which the opening 7 at the lower end of the dipping tube 2 as shown in FIG. 1A is widened. The influence on the cleanliness when the type vacuum degassing treatment apparatus 1 was used was investigated using 300 tons of molten steel. The survey method is as follows.

取鍋9に収容したC濃度が0.04〜0.3質量%、Si濃度が0.05〜0.4質量%、Mn濃度が0.5〜1.8質量%、Al濃度が0.01〜0.08質量%、T.O濃度が0.0040〜0.0045質量%、その他に合金成分や不純物成分が合計で2質量%以下である300トンの溶鋼10に、真空槽11に取り付けられた浸漬管2を浸漬した。真空槽11内を67〜1330Paまで真空排気しながら、片方の浸漬管2内面に設けられた環流ガス吹き込み羽口3から環流ガスを合計1.5〜2.0Nm3/min導入し、溶鋼10の環流を開始した。18〜20分の環流後、RH式真空脱ガス処理を終了した。処理の前後で、溶鋼中に懸濁する酸化物からなる非金属系介在物8の量の指標となるT.O濃度の変化を測定した。 The C concentration contained in the ladle 9 was 0.04 to 0.3% by mass, the Si concentration was 0.05 to 0.4% by mass, the Mn concentration was 0.5 to 1.8% by mass, and the Al concentration was 0. 01-0.08% by mass, T.I. The dipping tube 2 attached to the vacuum chamber 11 was immersed in 300 tons of molten steel 10 having an O concentration of 0.0040 to 0.0045% by mass and a total alloy component and impurity component of 2% by mass or less. While evacuating the inside of the vacuum chamber 11 from 67 to 1330 Pa, a total of 1.5 to 2.0 Nm 3 / min of recirculated gas was introduced from the recirculated gas blowing tuyere 3 provided on the inner surface of one of the immersion pipes 2, and the molten steel 10 was introduced. Started to recirculate. After 18 to 20 minutes of recirculation, the RH vacuum degassing treatment was completed. Before and after the treatment, T.I. The change in O concentration was measured.

ここで、図1(a)に示すRH式真空脱ガス処理装置1に設けられた浸漬管2は円筒状の形状であり、ストレート部6の内側直径が650mmまたは750mmで、耐火物厚みは280mmとした。また、底面から高さ150〜200mmまでの範囲にテーパーを付与し、浸漬管2の下端部4における耐火物厚みを80〜280mmとした。なお、下端部4の耐火物厚みが280mmである例は、比較のためにテーパーを付与しない条件である。環流ガス吹き込み羽口3は底面から高さ300〜400mmに設けた。そして、溶鋼中の処理前のT.O濃度と処理後のT.O濃度とを測定した。 Here, the immersion tube 2 provided in the RH type vacuum degassing device 1 shown in FIG. 1A has a cylindrical shape, the inner diameter of the straight portion 6 is 650 mm or 750 mm, and the refractory thickness is 280 mm. And said. Further, a taper was provided in a range from the bottom surface to a height of 150 to 200 mm, and the thickness of the refractory material at the lower end portion 4 of the immersion tube 2 was set to 80 to 280 mm. The example in which the refractory thickness of the lower end portion 4 is 280 mm is a condition in which no taper is provided for comparison. The recirculation gas blowing tuyere 3 was provided at a height of 300 to 400 mm from the bottom surface. Then, T.I. O concentration and T.I. after treatment. The O concentration was measured.

ここで、テーパーの大きさの指標として、開口部7の断面積(Aa)とストレート部6での流路の断面積(At)との比Aa/Atを用いて評価を行った。ここで、テーパーを設けた場合の溶鋼中の処理前のT.O濃度と処理後のT.O濃度との変化率(処理後T.O濃度/処理前T.O濃度)をKと定義し、テーパーを設けていない場合の溶鋼中の処理前のT.O濃度と処理後のT.O濃度との変化率(処理後T.O濃度/処理前T.O濃度)をK0と定義する。図3には、変化率Kと変化率K0との比K/K0と、比Aa/Atとの関係を示す。 Here, as an index of the size of the taper, the evaluation is performed using the ratio A a / A t of the cross-sectional area (A a ) of the opening 7 and the cross-sectional area (A t ) of the flow path in the straight portion 6. rice field. Here, when the taper is provided, the T.I. O concentration and T.I. after treatment. The rate of change from the O concentration (TO concentration after treatment / TO concentration before treatment) is defined as K, and T.I. O concentration and T.I. after treatment. The rate of change from the O concentration (TO concentration after treatment / TO concentration before treatment) is defined as K 0. 3 shows, the ratio K / K 0 of the rate of change K and the change rate K 0, showing the relationship between the ratio A a / A t.

図3に示したように、比Aa/Atが1より大きくなるほど比K/K0は小さくなった。比K/K0が小さくなるほど、処理後のT.O濃度は低くなることから、比Aa/Atが1より大きくなるほど処理中の溶鋼の清浄化能力が向上した。特に、比Aa/Atが1.1以上でその効果が顕著になった。これは、浸漬管の開口部を通過する溶鋼の流速が低下し、開口部周辺に懸濁している酸化物系介在物が、溶鋼流に吸引される割合が低下したためであると考えられる。 As shown in FIG. 3, the ratio K / K 0 became smaller as the ratio A a / A t became larger than 1. The smaller the ratio K / K 0, the more T.I. Since the O concentration is low, the cleaning ability of the molten steel being processed is improved as the ratio A a / A t is larger than 1. In particular, the ratio A a / A t is the effect became prominent at 1.1 or more. It is considered that this is because the flow velocity of the molten steel passing through the opening of the dipping tube decreased, and the ratio of the oxide-based inclusions suspended around the opening decreased to be sucked into the molten steel flow.

但し、図示しないが、比Aa/Atが2.8超になると比K/K0はほぼ一定値となり、効果は飽和してしまう。また、過度に開口部の断面積を拡大すると、開口部付近の溶鋼の流速が低下して非金属介在物の吸引を抑制する効果と、開口部が影響を及ぼす領域が増えてしまうことで吸引する非金属介在物を増加させる効果とが、つりあってしまうためであると考えられる。 However, although not shown, when the ratio A a / A t exceeds 2.8, the ratio K / K 0 becomes an almost constant value, and the effect is saturated. In addition, if the cross-sectional area of the opening is excessively expanded, the flow velocity of the molten steel near the opening will decrease, which will have the effect of suppressing the suction of non-metal inclusions, and the area affected by the opening will increase, resulting in suction. It is considered that the effect of increasing the amount of non-metal inclusions is balanced.

以上の試験結果から、開口部の断面積が、浸漬管を介した上昇流又は下降流の流路の最小の断面積(試験の場合はストレート部での流路の断面積)の1.1〜2.8倍であることが望ましい。 From the above test results, the cross-sectional area of the opening is 1.1 of the minimum cross-sectional area of the ascending or descending flow path through the immersion pipe (in the case of the test, the cross-sectional area of the flow path in the straight portion). It is desirable that it is ~ 2.8 times.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

本実施例では、図1(a)に示すように、浸漬管にテーパーが設けられたRH式真空脱ガス処理装置を用いて、溶鋼の清浄化処理を行った。なお、比較のため、図1(b)に示すように、浸漬管にテーパーが設けられていないRH式真空脱ガス処理装置を用いた溶鋼の清浄化処理も行った。いずれも浸漬管は円筒状の形状のものを用いた。 In this embodiment, as shown in FIG. 1 (a), the molten steel was cleaned by using an RH type vacuum degassing device having a tapered dipping tube. For comparison, as shown in FIG. 1 (b), a cleaning treatment of molten steel was also performed using an RH type vacuum degassing treatment device having no taper on the immersion pipe. In each case, the immersion tube used was a cylindrical shape.

まず、C濃度が0.04〜0.3質量%、Si濃度が0.05〜0.4質量%、Mn濃度が0.5〜1.8質量%、Al濃度が0.01〜0.08質量%、T.O濃度が0.0040〜0.0045質量%、その他に合金成分や不純物成分が合計で2質量%以下である300トンの溶鋼が取鍋に収容し、溶鋼に対して浸漬管を浸漬した後、真空槽内を133〜1100Paまで減圧するとともに、上昇管に設置した環流ガス羽口からArガスを1800〜2000NL/minで吹き込み、環流を開始した。環流時間は20分間とした。試験では、浸漬管のストレート部の内側直径がそれぞれ550mm、650mm、750mmの試験条件および試験結果をそれぞれ表1、表2、表3に示す。 First, the C concentration is 0.04 to 0.3% by mass, the Si concentration is 0.05 to 0.4% by mass, the Mn concentration is 0.5 to 1.8% by mass, and the Al concentration is 0.01 to 0. 08% by weight, T.I. After 300 tons of molten steel having an O concentration of 0.0040 to 0.0045% by mass and a total alloy component and impurity component of 2% by mass or less is housed in a ladle and the immersion tube is immersed in the molten steel. The inside of the vacuum chamber was depressurized to 133 to 1100 Pa, and Ar gas was blown at 1800 to 2000 NL / min from the recirculation gas tuyere installed in the ascending pipe to start the recirculation. The recirculation time was 20 minutes. In the test, the test conditions and test results in which the inner diameters of the straight portion of the immersion tube are 550 mm, 650 mm, and 750 mm, respectively, are shown in Table 1, Table 2, and Table 3, respectively.

Figure 0006988361
Figure 0006988361

Figure 0006988361
Figure 0006988361

Figure 0006988361
Figure 0006988361

本発明例の試験No.2〜5、7〜10、12〜15は、テーパーを有さない比較例の試験No.1、6、11に比べ比K/K0は小さくなった。つまり、T.O濃度がより小さくなり、非金属介在物が溶鋼からより除去されたことが確認できた。このように、本発明が規定する浸漬管の形状を有するRH式真空脱ガス処理装置を用いることで、処理時の清浄化速度は高くなり、処理後のT.O濃度を低くすることができることが確認できた。 Test No. of the example of the present invention. 2 to 5, 7 to 10, 12 to 15 are the test Nos. Of Comparative Examples having no taper. The ratio K / K 0 was smaller than that of 1, 6 and 11. That is, T.I. It was confirmed that the O concentration became smaller and the non-metal inclusions were more removed from the molten steel. As described above, by using the RH type vacuum degassing treatment apparatus having the shape of the immersion tube specified by the present invention, the cleaning speed during the treatment is increased, and the T.I. It was confirmed that the O concentration could be lowered.

1 RH式真空脱ガス処理装置
2 浸漬管
3 羽口
4 下端部
5 テーパー部
6 ストレート部
7 開口部
8 非金属介在物
9 取鍋
10 溶鋼
11 真空槽
1 RH type vacuum degassing treatment device 2 Immersion pipe 3 Tub 4 Lower end 5 Tapered part 6 Straight part 7 Opening 8 Non-metal inclusions 9 Ladle 10 Ladle 11 Vacuum tank

Claims (2)

上昇流の円筒状の形状の浸漬管と下降流の円筒状の形状の浸漬管との流路を介して溶鋼を環流させて溶鋼の脱ガス処理を行うRH式真空脱ガス処理装置であって、
前記上昇流と下降流の両浸漬管内にストレート部とテーパー部とが設けられており、前記テーパー部の底面の開口部の断面積が前記ストレート部での断面積よりも大きくなるようにし、
前記テーパー部の底面の開口部の断面積が、前記浸漬管を介した上昇流又は下降流の流路の最小の断面積の1.1〜2.8倍であることを特徴とするRH式真空脱ガス処理装置。
An RH type vacuum degassing device that recirculates molten steel through a flow path between an ascending cylindrical dipping tube and a descending cylindrical dipping tube to degas the molten steel. ,
A straight portion and a tapered portion are provided in both the ascending flow and the descending flow immersion pipes, so that the cross-sectional area of the opening on the bottom surface of the tapered portion is larger than the cross-sectional area of the straight portion.
The RH type is characterized in that the cross-sectional area of the opening on the bottom surface of the tapered portion is 1.1 to 2.8 times the minimum cross-sectional area of the flow path of the ascending or descending flow through the dipping pipe. Vacuum degassing equipment.
前記開口部の断面積が、前記上昇流又は下降流の流路において最大の断面積であることを特徴とする請求項1に記載のRH式真空脱ガス処理装置。 The RH type vacuum degassing treatment apparatus according to claim 1, wherein the cross-sectional area of the opening is the maximum cross-sectional area in the flow path of the ascending flow or the descending flow.
JP2017202019A 2017-10-18 2017-10-18 RH type vacuum degassing device Active JP6988361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202019A JP6988361B2 (en) 2017-10-18 2017-10-18 RH type vacuum degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202019A JP6988361B2 (en) 2017-10-18 2017-10-18 RH type vacuum degassing device

Publications (2)

Publication Number Publication Date
JP2019073782A JP2019073782A (en) 2019-05-16
JP6988361B2 true JP6988361B2 (en) 2022-01-05

Family

ID=66543786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202019A Active JP6988361B2 (en) 2017-10-18 2017-10-18 RH type vacuum degassing device

Country Status (1)

Country Link
JP (1) JP6988361B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644414A (en) * 1987-06-26 1989-01-09 Nippon Steel Corp Submerged tube for rh vacuum degassing treating apparatus
JPH02247324A (en) * 1989-03-20 1990-10-03 Nkk Corp Immersed pipe for degasification refining
JPH03126809A (en) * 1989-10-13 1991-05-30 Nkk Corp Continuous vacuum refining method for molten steel
JPH07150225A (en) * 1993-11-30 1995-06-13 Kawasaki Steel Corp Rh degassing refining apparatus
JP5292853B2 (en) * 2008-02-29 2013-09-18 Jfeスチール株式会社 Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP5365241B2 (en) * 2009-02-18 2013-12-11 新日鐵住金株式会社 Molten steel refining equipment

Also Published As

Publication number Publication date
JP2019073782A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
KR100903545B1 (en) Conduit for molten glass, connection conduit for molten glass, and degassing device with reduced pressure
JP2006035272A (en) Method for removing inclusion in tundish for continuous casting, and tundish for continuous casting
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP6988361B2 (en) RH type vacuum degassing device
JP2017166053A (en) Melting production method for high refined steel
JP2014019886A (en) Ladle degassing method
JP5831163B2 (en) Manufacturing method of high cleanliness steel
JP6766687B2 (en) Refining method of molten steel
JP7015637B2 (en) Method for removing non-metal inclusions in molten steel
JP5061624B2 (en) Method for estimating flow rate of molten steel in RH vacuum degassing apparatus and gas blowing method for recirculation
JP6911590B2 (en) Steel melting method
JP6897363B2 (en) Steel melting method
JP6756264B2 (en) Refining method of molten steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP5103942B2 (en) Ascending side dip tube of RH vacuum degasser
JP2009057613A (en) Method for decarburizing stainless steel in rh-degassing tank
JP2009161854A (en) Steel material
JP6268963B2 (en) Method for refining molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP6435983B2 (en) Method for refining molten steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP7035870B2 (en) Melting method of high-clean steel
JP4816138B2 (en) Ladle refining method and ladle refining furnace
JP5223392B2 (en) Exhaust start method in vacuum degassing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151