JP7035870B2 - Melting method of high-clean steel - Google Patents

Melting method of high-clean steel Download PDF

Info

Publication number
JP7035870B2
JP7035870B2 JP2018134085A JP2018134085A JP7035870B2 JP 7035870 B2 JP7035870 B2 JP 7035870B2 JP 2018134085 A JP2018134085 A JP 2018134085A JP 2018134085 A JP2018134085 A JP 2018134085A JP 7035870 B2 JP7035870 B2 JP 7035870B2
Authority
JP
Japan
Prior art keywords
molten steel
hot water
vacuum
inclusions
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018134085A
Other languages
Japanese (ja)
Other versions
JP2020012142A (en
Inventor
健一郎 宮本
太一 中江
英二 渡邉
直也 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134085A priority Critical patent/JP7035870B2/en
Publication of JP2020012142A publication Critical patent/JP2020012142A/en
Application granted granted Critical
Publication of JP7035870B2 publication Critical patent/JP7035870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、高清浄鋼の溶製方法に係り、更に詳細には、Al脱酸による高清浄鋼の溶製方法に関する。 The present invention relates to a method for melting high-clean steel, and more particularly to a method for melting high-clean steel by Al deoxidation.

転炉等の精錬容器において、大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、脱酸処理及び合金添加等による成分調整が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、飲料缶や自動車用部品材料等の用途を含めて使用実績があるため、汎用性が高い。
In a refining container such as a converter, the molten steel after the completion of primary refining produced by blow acid decarburization under atmospheric pressure has a high dissolved oxygen concentration in the steel, so the components are adjusted by deoxidizing and adding alloys. After being cast, it has the characteristics of a product.
In deoxidation, elements that combine with oxygen to form oxides are generally added. In addition to Al (aluminum), Si (silicon), C (carbon), Ti (titanium), and Ca (calcium) ), Zr (zulyl), REM (rare earth metal) and the like are known to be used as deoxidizing materials.
Of these, Al used as a deoxidizing material is inexpensive and has a strong deoxidizing effect, and steel materials manufactured using this have a track record of use in applications such as beverage cans and automobile parts materials. , Highly versatile.

しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片)中に介在物として残存し、その粒径が粗大であると製品品質を著しく損なう原因となる場合がある。例えば、飲料缶の素材として用いる際の製缶加工時の割れの原因となるため、品質の向上を図る上で、アルミナ介在物の悪影響を排除する必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生や浸漬ノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
However, the alumina (Al 2 O 3 ) produced after the deoxidation reaction with Al remains as inclusions in the solidified steel material (shards obtained by continuous casting), and the product is said to have a coarse particle size. It may cause a significant loss of quality. For example, since it causes cracking during can manufacturing when used as a material for beverage cans, it is necessary to eliminate the adverse effects of alumina inclusions in order to improve the quality.
Further, when a large amount of alumina is present in the molten steel, adhesion and aggregation of alumina on the inner surface of the dipping nozzle is promoted during casting, resulting in uneven flow generation in the mold and blockage of the dipping nozzle. , The amount of fluctuation in the molten metal surface becomes large, which causes quality deterioration due to the mixing of mold powder (powder-based inclusions).

そこで、以下の方法が提案されている。
例えば、特許文献1には、RH真空脱ガス装置(環流型脱ガス装置)での脱炭処理に続いて、真空槽内圧力を一定あるいは更に減圧して、Alを添加すること及び取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くすることが記載されている。なお、一般に、処理中に浸漬管の浸漬深さを浅くする操作は行わないが、特許文献1では、この操作によって真空槽内の溶鋼深さを浅くすることができ、この状態で環流処理を行うことにより、非金属介在物の凝集浮上を促進させることが記載されている。具体的には、浸漬管の浸漬深さを浅くする操作により、環流処理時の真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることが、効率的な介在物除去条件として記載されている。
Therefore, the following method has been proposed.
For example, in Patent Document 1, following the decarburization treatment in the RH vacuum degassing device (circulation type degassing device), the pressure inside the vacuum chamber is constant or further reduced to add Al and the inside of the ladle. It is described that the immersion depth of the immersion tube in the molten steel is made shallow. In general, the operation of shallowing the immersion depth of the immersion tube is not performed during the treatment, but in Patent Document 1, the molten steel depth in the vacuum chamber can be shallowed by this operation, and the recirculation treatment is performed in this state. It has been described that this promotes agglomeration and levitation of non-metal inclusions. Specifically, it is described as an efficient inclusion removal condition that the depth of the molten steel in the vacuum chamber during the recirculation treatment is in the range of 50 mm or more and less than 100 mm by the operation of making the immersion depth of the immersion tube shallow. ing.

特許文献2には、RH真空脱ガス装置の真空槽内の真空度を10Torr以下まで低下させて精錬し、次いで真空槽内の真空度を10Torr超に保持し、かつ、真空槽内に窒素ガスを吹き込んで精錬する高窒素鋼の溶製方法が開示されている。具体的には、減圧下の処理が記載され、処理の前半では10Torr以下(低圧真空)で2分以上処理することで介在物の浮上分離を行い、継続する処理の後半では10Torr超(高圧真空)で真空槽内の溶鋼に窒素ガスを吹き付けて加窒処理を19~20分間行うことが記載されている。なお、後半の処理について、段落[0026]には、「・・・しかも、真空槽内の真空度は低下した状態(雰囲気圧力が高い状態)であるので、溶鋼3の環流量が低下し、非金属介在物の浮上・分離の効果は損なわれる」と記載しており、高圧真空条件では溶鋼の環流量が低下するため、清浄化効果が損なわれることも記載されている。 In Patent Document 2, the degree of vacuum in the vacuum chamber of the RH vacuum degassing device is reduced to 10 Torr or less for refining, and then the degree of vacuum in the vacuum chamber is maintained above 10 Torr, and nitrogen gas is contained in the vacuum chamber. A method for melting high nitrogen steel to be smelted by blowing in is disclosed. Specifically, the treatment under reduced pressure is described. In the first half of the treatment, the inclusions are floated and separated by treating at 10 Torr or less (low pressure vacuum) for 2 minutes or more, and in the latter half of the continuous treatment, more than 10 Torr (high pressure vacuum). ), It is described that nitrogen gas is blown onto the molten steel in the vacuum chamber to perform the nitrogen treatment for 19 to 20 minutes. Regarding the latter half of the processing, the paragraph [0026] states, "... Moreover, since the degree of vacuum in the vacuum chamber is low (atmospheric pressure is high), the ring flow rate of the molten steel 3 is lowered. The effect of floating and separating non-metal inclusions is impaired. "It is also stated that the cleaning effect is impaired because the ring flow rate of the molten steel decreases under high-pressure vacuum conditions.

特開2016-40400号公報Japanese Unexamined Patent Publication No. 2016-40400 特開2015-42777号公報JP-A-2015-427777

しかしながら、上記した特許文献1に記載の方法では、相応の清浄化効果は得られるが、更なる溶鋼の清浄性向上が望まれている。
また、特許文献2に記載の方法は、特許文献1に記載の方法と同様、例えば10Torr以下の低圧真空下で処理を行うことから相応の清浄化効果は得られる。しかし、加窒処理の条件は、加窒に対して最適化された条件であるため、介在物を浮上除去する観点からは、以下の課題があることを本発明者らは知見した。
上記した20分程度の加窒処理は、処理時間として長時間であるため、低圧真空処理中に槽内に付着した地金の再溶解や耐火物の欠損等の発生頻度が大きくなる。この地金中には種々の粒径の介在物も含まれており、また、耐火物の欠損はそれ自体が外来系の介在物となってしまう。
However, although the method described in Patent Document 1 described above can obtain a corresponding cleaning effect, further improvement in the cleanliness of the molten steel is desired.
Further, the method described in Patent Document 2 is the same as the method described in Patent Document 1, and since the treatment is performed under a low pressure vacuum of, for example, 10 Torr or less, a corresponding cleaning effect can be obtained. However, since the conditions of the nitrogen treatment are optimized for nitrogen, the present inventors have found that there are the following problems from the viewpoint of floating and removing inclusions.
Since the above-mentioned nitriding treatment of about 20 minutes has a long treatment time, the frequency of redissolution of the bare metal adhering to the inside of the tank and the loss of refractory during the low-pressure vacuum treatment increases. Inclusions of various particle sizes are also contained in this bullion, and the defect of the refractory itself becomes an inclusion of a foreign system.

本発明はかかる事情に鑑みてなされたもので、従来の技術よりもアルミナ介在物を低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for melting high-clean steel, which can melt and cast high-clean steel having less alumina inclusions than the conventional technique. The purpose.

本発明者らは種々の実験により、RH真空脱ガス装置での環流処理において、真空槽内の溶鋼の湯面と溶鋼を貯蔵する取鍋の底面との距離で決定される溶鋼の環流高さを低くすることで、介在物の凝集の促進効果と介在物の強度の向上効果が得られ、この溶鋼を所定の条件のタンディッシュを用いて連続鋳造することで、溶鋼中の介在物を破壊せずに浮上除去できることを見出した。
本発明は、以上の知見をもとになされたものであり、その要旨は以下の通りである。
The present inventors have conducted various experiments to determine the recirculation height of molten steel determined by the distance between the molten steel surface in the vacuum chamber and the bottom surface of the ladle for storing the molten steel in the recirculation treatment in the RH vacuum degassing device. By lowering the value, the effect of promoting the aggregation of inclusions and the effect of improving the strength of inclusions can be obtained, and by continuously casting this molten steel using a tundish under predetermined conditions, the inclusions in the molten steel are destroyed. It was found that the surface can be removed without levitation.
The present invention has been made based on the above findings, and the gist thereof is as follows.

前記目的に沿う本発明に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、RH真空脱ガス装置の浸漬管を浸漬して、該浸漬管の上昇管から不活性ガスを吹き込み、前記RH真空脱ガス装置の真空槽と前記取鍋との間で溶鋼を環流させる真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15~45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を20~40kPaの高圧真空雰囲気とした上で、5~15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と該溶鋼を連続鋳造する鋳型に注入する排湯部とに区切る堰が内部に設けられ、前記受湯部と前記排湯部を連通する1又は複数の溶鋼流路が前記堰に形成され、しかも、前記溶鋼流路の受湯部側に位置する開口部の前記受湯部の底面からの高さ位置を、前記受湯部の溶鋼深さの0.2倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯し、前記溶鋼流路を流れる溶鋼を誘導加熱する。
The method for melting high-clean steel according to the present invention according to the above object is to add metallic aluminum to molten steel that has undergone primary refining by blowing acid decarburization under atmospheric pressure to reduce the concentration of dissolved oxygen in the molten steel to 40 ppm or less. Immerse the dipping tube of the RH vacuum degassing device in the molten steel in the pan, blow inert gas from the rising tube of the dipping tube, and between the vacuum tank of the RH vacuum degassing device and the pan. When performing vacuum degassing treatment to recirculate molten steel in
In the first half of the vacuum degassing treatment, the inside of the vacuum chamber is made into a low-pressure vacuum atmosphere of 1.3 kPa or less, and then the degassing treatment is performed for 15 to 45 minutes.
In the latter half of the vacuum degassing treatment, the inside of the vacuum chamber is made into a high-pressure vacuum atmosphere of 20 to 40 kPa, and then the degassing treatment is performed for 5 to 15 minutes.
A weir is provided inside to separate the hot water receiving part that receives the molten steel and the hot water discharging part that injects the molten steel into the mold for continuous casting, and one or more molten steel flow paths that communicate the hot water receiving part and the hot water discharging part are provided. The height position of the opening formed in the weir and located on the hot water receiving portion side of the molten steel flow path from the bottom surface of the hot water receiving portion is 0.2 times or less the depth of the molten steel of the hot water receiving portion. The molten steel that has been vacuum degassed is poured into the tundish, and the molten steel flowing through the molten steel flow path is induced and heated.

本発明の第1の特徴は、上記したように、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理(脱炭処理)を行い、これに続く処理として、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理を行うことにある。この真空脱ガス処理の後半では、真空槽を高圧真空雰囲気に変更し(圧力を上昇させ)、溶鋼の環流量を減らして、溶鋼を狭い範囲で環流させている。このとき、取鍋内の溶鋼に対する浸漬管の浸漬深さは変更する必要がない(一定であってよい)。
一方、前記した特許文献1に記載の方法は、真空槽内の圧力を変更することなく(低圧真空雰囲気のまま)、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作を記載しており、本発明のように高圧真空雰囲気とすることは記載されていない。
As described above, the first feature of the present invention is that the degassing treatment (decarburization treatment) is performed in a low pressure vacuum atmosphere in the first half of the vacuum degassing treatment, and as the subsequent treatment, the high pressure is applied in the latter half of the vacuum degassing treatment. It is to perform degassing treatment in a vacuum atmosphere. In the latter half of this vacuum degassing treatment, the vacuum chamber is changed to a high-pressure vacuum atmosphere (pressure is increased), the ring flow rate of the molten steel is reduced, and the molten steel is recirculated in a narrow range. At this time, it is not necessary (may be constant) to change the immersion depth of the immersion tube in the molten steel in the ladle.
On the other hand, the method described in Patent Document 1 described above performs a special operation of shallowing the immersion depth of the immersion tube in the molten steel in the ladle without changing the pressure in the vacuum chamber (while maintaining the low pressure vacuum atmosphere). It is described, and it is not described that a high pressure vacuum atmosphere is used as in the present invention.

また、特許文献2は、低圧真空下での脱炭処理(本発明の低圧真空雰囲気での脱ガス処理に相当)を記載し、その後に高圧真空下で処理することを記載しているが、この処理は加窒についての記載であり、高清浄化には効果が無い旨を示唆している。
更に、特許文献2は、前記したように、加窒処理時間として19~20分を記載して、本発明の高圧真空雰囲気での脱ガス処理とは異なる条件を例示し、不活性ガスの吹込み量を、低圧真空雰囲気での脱ガス処理と比較して減少させる高圧真空雰囲気での脱ガス処理では、清浄化効果が損なわれることを実質的に記載している。
Further, Patent Document 2 describes a decarburization treatment under a low pressure vacuum (corresponding to a degassing treatment in a low pressure vacuum atmosphere of the present invention), and then describes the treatment under a high pressure vacuum. This treatment is a description of nitriding, suggesting that it is not effective for high cleaning.
Further, as described above, Patent Document 2 describes the nitrogenation treatment time as 19 to 20 minutes, exemplifying the conditions different from the degassing treatment in the high-pressure vacuum atmosphere of the present invention, and blows the inert gas. It is substantially described that the degassing treatment in a high pressure vacuum atmosphere, which reduces the filling amount as compared with the degassing treatment in a low pressure vacuum atmosphere, impairs the cleaning effect.

本発明の第2の特徴は、上記した真空脱ガス処理を行った後の介在物(凝集合体させ強度を向上させた介在物)を、破壊させずに浮上除去する条件、即ち、溶鋼流路を有する堰が設けられたタンディッシュを用いることにある。 The second feature of the present invention is a condition for floating and removing inclusions (incidents whose strength has been improved by agglomeration and coalescence) after the vacuum degassing treatment described above, that is, a molten steel flow path. It is to use a tundish provided with a weir having a.

本発明に係る高清浄鋼の溶製方法は、真空脱ガス処理の前半に、真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15~45分間の脱ガス処理を行い、真空脱ガス処理の後半に、真空槽内を20~40kPaの高圧真空雰囲気とした上で(圧力を上昇させた上で)、5~15分間の脱ガス処理を行うことにより、真空脱ガス処理の後半における溶鋼の循環量を前半よりも減らして、溶鋼を狭い範囲で環流させている。これにより、介在物の凝集の促進効果と介在物の強度の向上効果が得られる。
そして、この溶鋼を、受湯部と排湯部とに区切る堰が内部に設けられ、この堰の所定高さ位置に受湯部と排湯部を連通する溶鋼流路が形成されたタンディッシュに注湯し、溶鋼流路で誘導加熱しながら連続鋳造するので、上記した真空脱ガス処理により凝集促進と強度向上が図られた溶鋼中の介在物を、その破壊を抑制して浮上除去できる。
従って、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に従来技術では困難であった、粒径(長径)が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が例えば10ppm以下の極めて高度な清浄性の鋼を安定して鋳造することが可能となる。
In the method for melting highly clean steel according to the present invention, in the first half of the vacuum degassing treatment, the inside of the vacuum chamber is set to a low pressure vacuum atmosphere of 1.3 kPa or less, and then the degassing treatment is performed for 15 to 45 minutes to create a vacuum. In the latter half of the degassing treatment, the vacuum tank is evacuated to a high pressure vacuum atmosphere of 20 to 40 kPa (after increasing the pressure) and then degassed for 5 to 15 minutes to perform the vacuum degassing treatment. The circulation amount of the molten steel in the latter half is reduced as compared with the first half, and the molten steel is recirculated in a narrow range. As a result, the effect of promoting the aggregation of inclusions and the effect of improving the strength of inclusions can be obtained.
A tundish is provided inside with a weir that separates the molten steel into a hot water receiving part and a hot water draining part, and a molten steel flow path that connects the hot water receiving part and the hot water discharging part is formed at a predetermined height position of this weir. Since it is continuously cast while inducing and heating in the molten steel flow path, the inclusions in the molten steel whose aggregation is promoted and the strength is improved by the above-mentioned vacuum degassing treatment can be suppressed and removed by floating. ..
Therefore, it is possible to produce highly clean steel with less alumina inclusions than the conventional technology, and the number of alumina inclusions with a particle size (major axis) of 20 μm class, which was difficult with the conventional technology, is reduced and the total oxygen content is reduced. It is possible to stably cast extremely highly clean steel having (T. [O] value) of, for example, 10 ppm or less.

本発明の一実施の形態に係る高清浄鋼の溶製方法の説明図である。It is explanatory drawing of the melting method of the high-clean steel which concerns on one Embodiment of this invention. 同高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish to which the melting method of the high clean steel is applied. 比較例に係る高清浄鋼の溶製方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish to which the melting method of the high-clean steel which concerns on a comparative example is applied.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の溶製方法に想到した経緯について説明する。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
First, the process of coming up with the method for melting high-clean steel of the present invention will be described.

(本発明者らの新しい知見)
前記した特許文献1、2等の従来技術では、ある程度の清浄化効果は認められるものの、いずれも単一の真空脱ガス工程(RH真空脱ガス装置)のみの処理であるため、例えば、鋼材製品中に残存する粒径20μmクラスの介在物の個数を低減したうえで、極めて厳しい清浄度(例えば、全酸素量(T.[O]値)≦10ppm)が求められる鋼材の製造への対応は困難であった(更なる清浄化に関する記載はなかった)。
(New findings of the present inventors)
Although the conventional techniques such as Patent Documents 1 and 2 described above have a certain degree of cleaning effect, they are all treated by a single vacuum degassing step (RH vacuum degassing device). Therefore, for example, steel products. In response to the production of steel materials that require extremely strict cleanliness (for example, total oxygen content (T. [O] value) ≤ 10 ppm) while reducing the number of inclusions with a particle size of 20 μm class remaining inside. It was difficult (there was no mention of further cleaning).

前記した特許文献1は、脱炭処理に続くAl添加後に、取鍋内の溶鋼に対する浸漬管の浸漬深さを浅くする特殊な操作によって、真空槽内の溶鋼深さを50mm以上100mm未満の範囲とすることを記載している。
この方法では、真空槽内の溶鋼量が少なくなり、真空槽内の溶鋼の単位体積当たりの撹拌力が大きくなるため、及び、溶鋼の浮上に要する時間が短くなるため、溶鋼中の介在物の凝集や浮上が促進されるとしている。
しかしながら、真空槽内の少量容積の溶鋼に対する撹拌が激しすぎると、凝集合体した粒子の一部は合体直後に剪断による崩壊を起こすこととなり、崩壊により再度細粒化した粒子が取鍋内へと排出されることとなる。
In Patent Document 1 described above, after the addition of Al following the decarburization treatment, the depth of the molten steel in the vacuum chamber is in the range of 50 mm or more and less than 100 mm by a special operation of shallowing the immersion depth of the immersion pipe in the molten steel in the ladle. It is stated that.
In this method, the amount of molten steel in the vacuum chamber is small, the stirring force per unit volume of the molten steel in the vacuum chamber is large, and the time required for the molten steel to float is shortened. It is said that aggregation and levitation are promoted.
However, if a small volume of molten steel in the vacuum chamber is stirred too violently, some of the agglutinated particles will collapse due to shearing immediately after the coalescence, and the particles re-fine due to the collapse will enter the ladle. Will be discharged.

更に、当該技術においては、脱炭後に浸漬管の浸漬深さを浅くする特殊な操作により真空槽内の溶鋼深さを調整するため、溶鋼を貯蔵する取鍋の底面から真空槽内の溶鋼の湯面(溶鋼ヘッド)までの距離は脱炭処理時から不変であり、また、真空槽内の圧力は一定(低圧真空のまま)であるため溶鋼の吸い上げ力も一定であり、取鍋内の撹拌(環流速度)も概ね同一となる。
このため、真空槽内と取鍋内を循環する溶鋼について、循環時における高低差は一定であり、循環する単位時間当たりの溶鋼量も一定であるため、本発明者らは、介在物の凝集合体以外に、循環する環流の剪断力による介在物の崩壊が発生して、高清浄化が進みにくいものと考えた。
Further, in this technique, in order to adjust the molten steel depth in the vacuum chamber by a special operation of shallowing the immersion depth of the immersion pipe after decarburization, the molten steel in the vacuum chamber is removed from the bottom of the ladle for storing the molten steel. The distance to the molten metal surface (molten steel head) has not changed since the decarburization process, and since the pressure inside the vacuum chamber is constant (the low-pressure vacuum remains), the suction force of the molten steel is also constant, and stirring in the ladle. (Recirculation velocity) is also almost the same.
For this reason, regarding the molten steel that circulates in the vacuum chamber and the ladle, the height difference during circulation is constant, and the amount of molten steel that circulates per unit time is also constant. In addition to the coalescence, it was thought that high purification would be difficult to proceed due to the collapse of inclusions due to the shearing force of the circulating recirculation.

そこで、本発明では、RH真空脱ガス装置により真空脱ガス処理を行う際に、低圧真空雰囲気での脱炭処理時の介在物の凝集合体や浮上除去の後に、高圧真空雰囲気での処理を設けて溶鋼の撹拌を弱める(高圧真空化)条件を規定した。
即ち、上記した高圧真空雰囲気での処理により、真空槽内の溶鋼の湯面を低下させ、取鍋の底面から真空槽内の溶鋼の湯面までの距離を短縮させて、環流時における溶鋼の循環高さ方向の距離を短くし位置エネルギーを低減することで撹拌エネルギーを弱め、かつ、撹拌を弱める(高圧真空化)ことでも撹拌エネルギーを弱め、これにより、凝集した介在物の崩壊を防止し、介在物の凝集合体を緩やかに促進する。また、一定の時間(5~15分)処理することで、凝集合体した介在物の強度向上を図る。
Therefore, in the present invention, when the vacuum degassing treatment is performed by the RH vacuum degassing device, the treatment in the high pressure vacuum atmosphere is provided after the agglomeration and coalescence of inclusions and the floating removal during the decarburization treatment in the low pressure vacuum atmosphere. The conditions for weakening the stirring of molten steel (high pressure vacuuming) were specified.
That is, the above-mentioned treatment in the high-pressure vacuum atmosphere lowers the molten steel level in the vacuum chamber, shortens the distance from the bottom surface of the pan to the molten steel surface in the vacuum chamber, and shortens the distance of the molten steel during recirculation. By shortening the distance in the circulation height direction and reducing the potential energy, the stirring energy is weakened, and by weakening the stirring (high pressure vacuuming), the stirring energy is also weakened, thereby preventing the disintegration of aggregated inclusions. , Slowly promotes the aggregation and coalescence of inclusions. In addition, the strength of the aggregated inclusions is improved by treating for a certain period of time (5 to 15 minutes).

(RH真空脱ガス処理による介在物除去に関する従来知見)
図1に示すRH法に用いるRH真空脱ガス装置(以下、単に脱ガス装置とも記載)10は従来公知のものであり、真空槽11と、この真空槽11の下部に連通する2本の浸漬管、即ち、溶鋼の上昇側と下降側の浸漬管12、13とを有するものである。使用にあっては、取鍋14内の溶鋼を、2本の浸漬管12、13を通じて真空槽11内に吸い上げ、上昇側の浸漬管(上昇管)12から不活性ガスの吹き込み(通常、5~15NL/分/トン程度。溶鋼1トンに対する1分あたりのガス吹込み量)を行い、ガスリフト効果によって上昇側と下降側の浸漬管12、13を通じて、取鍋14と真空槽11との間で循環させる。
(Conventional knowledge on removal of inclusions by RH vacuum degassing treatment)
The RH vacuum degassing device (hereinafter, also simply referred to as a degassing device) 10 used in the RH method shown in FIG. 1 is conventionally known, and is a vacuum chamber 11 and two immersions communicating with the lower portion of the vacuum chamber 11. It has a pipe, that is, a dipping pipe 12 and 13 on the ascending side and the descending side of the molten steel. In use, the molten steel in the ladle 14 is sucked into the vacuum tank 11 through the two dipping pipes 12 and 13, and the inert gas is blown from the ascending side dipping pipe (rising pipe) 12 (usually 5, 5). ~ 15 NL / min / ton. Gas injection amount per minute for 1 ton of molten steel) is performed, and due to the gas lift effect, between the ladle 14 and the vacuum tank 11 through the immersion pipes 12 and 13 on the ascending side and the descending side. Circulate with.

真空脱ガス処理における清浄化(介在物除去)は、真空槽11内に吸い上げられた介在物の凝集合体と、凝集物の槽外排出(取鍋内浮上)のバランスにより決まることが知られている。
この介在物の凝集合体に関しては、「介在物粒子が耐火物壁へ衝突することにより、壁面での介在物の凝集が促進される」ことや、「溶鋼流動における乱流成分中での介在物粒子同士の衝突による凝集合体促進」などの現象が唱えられている。
一般的に、真空脱ガス処理においては、溶鋼環流量が増加することにより、ある程度のレベルまでの介在物の凝集合体及び浮上除去が促進されることが知られており、その効果は低圧真空処理で顕著である。
本発明は、上記した処理に加え、脱ガス処理の後半で高圧真空処理を行うことにより、緩やかな凝集合体を促進しつつ、介在物の崩壊防止や強度向上を実現することを特徴としている。このとき、一部の介在物の浮上除去は進行するが、当該精錬処理に続く連続鋳造工程において、タンディッシュにより、最終的に介在物を浮上除去させる特徴も有している。
It is known that cleaning (removal of inclusions) in the vacuum degassing treatment is determined by the balance between the agglutination of inclusions sucked up in the vacuum chamber 11 and the discharge of the agglutination out of the tank (floating in the ladle). There is.
Regarding the agglutination and coalescence of the inclusions, "the inclusion particles collide with the refractory wall to promote the aggregation of the inclusions on the wall surface" and "the inclusions in the turbulent component in the molten steel flow". Phenomena such as "promotion of agglutination and coalescence by collision between particles" have been advocated.
In general, it is known that in vacuum degassing treatment, an increase in the flow rate of the molten steel ring promotes agglutination and floating removal of inclusions up to a certain level, and the effect is low pressure vacuum treatment. Is remarkable.
The present invention is characterized in that, by performing a high-pressure vacuum treatment in the latter half of the degassing treatment in addition to the above-mentioned treatment, it is possible to prevent the inclusions from collapsing and improve the strength while promoting gradual aggregation and coalescence. At this time, the floating removal of some of the inclusions proceeds, but in the continuous casting step following the refining treatment, the inclusions are finally lifted and removed by the tundish.

(タンディッシュに関する知見)
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
また、タンディッシュ内で溶鋼温度が低下すると、溶解度積の低下によって新たな微細アルミナの生成(2Al+3→Al)を招き、鋳造した鋳片中のアルミナ介在物の増加が顕著になる場合がある。
一方、タンディッシュ内で溶鋼を加熱することにより、新たなアルミナ介在物の生成を抑制する効果が期待できる。また、タンディッシュの内部に堰(仕切り壁)を立設し、タンディッシュ内の溶鋼に上昇流を発生(加熱後の溶鋼に発生)させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30~50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
(Knowledge about tundish)
In continuous casting, the molten steel is poured into the tundish in an amount corresponding to the continuous casting speed (for example, an amount of about 8 tons / minute or less), so that the flow rate of the molten steel in the tundish is the ladle. It is smaller than the stirring flow rate of molten steel in gas stirring, and the effect of agglomeration and coalescence of inclusions is difficult to expect.
In addition, when the molten steel temperature drops in the tundish, the decrease in solubility product leads to the formation of new fine alumina (2 Al + 3 O → Al 2 O 3 ), and the increase in alumina inclusions in the cast slab is remarkable. May become.
On the other hand, by heating the molten steel in the tundish, the effect of suppressing the formation of new alumina inclusions can be expected. In addition, when a weir (partition wall) is erected inside the tundish to generate an ascending flow in the molten steel in the tundish (generated in the molten steel after heating), the slag existing on the molten metal surface in the tundish is agitated. With the effect suppressed, the effect of floating inclusions in the molten steel having a particle size of about 30 to 50 μm and capturing them by the slag can be expected.

なお、本発明の真空脱ガス処理で得られる30~50μm程度の粒子径を有する介在物(凝集合体した介在物)は、その強度が向上しているものの、溶鋼の剪断力で破壊する可能性は残るため、上記した溶鋼流路を備えた溶鋼を加熱するタンディッシュを用いることで、破壊を抑制した介在物の浮上を促進できる。これは、例えば、タンディッシュ内の溶鋼の上部分を仕切る上堰を用いると、溶鋼流が一旦下降流となった後に上昇流となる際に、介在物に剪断力が作用する原因となるが、溶鋼流路での加熱を用いる場合は、このような剪断力が発生しないことによる。
従って、タンディッシュの内部に、受湯部と排湯部を分割(独立して配置)する堰を立設し、しかも、この堰に、受湯部と排湯部を連通する1又は複数の溶鋼流路を形成する中空耐火物を設け、この中空耐火物の領域で溶鋼を加熱する。
Although the strength of the inclusions (aggregated and coalesced inclusions) having a particle size of about 30 to 50 μm obtained by the vacuum degassing treatment of the present invention is improved, they may be broken by the shearing force of the molten steel. By using a tundish that heats the molten steel provided with the molten steel flow path described above, it is possible to promote the floating of inclusions in which fracture is suppressed. This causes, for example, the use of an upper weir that partitions the upper part of the molten steel in the tundish, which causes a shearing force to act on the inclusions when the molten steel flow once becomes a downward flow and then becomes an upward flow. This is because such shearing force does not occur when heating in the molten steel flow path is used.
Therefore, a weir that divides the hot water receiving part and the hot water discharging part (arranged independently) is erected inside the tundish, and one or more of the weirs that communicate the hot water receiving part and the hot water discharging part are connected to this weir. A hollow refractory material forming a molten steel flow path is provided, and the molten steel is heated in the region of this hollow refractory material.

以上の知見に基づき、本発明者らは、従来の技術よりもアルミナ介在物を低減した高清浄鋼を溶製して鋳造することが可能な高清浄鋼の溶製方法に想到した。
即ち、図1、図2に示すように、本発明の一実施の形態に係る高清浄鋼の溶製方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋14内の溶鋼に、RH真空脱ガス装置10を用いて真空脱ガス処理を行う際に、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理を行い、引き続き、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理を行った後、タンディッシュ15に注湯して連続鋳造する方法である。
以下、詳しく説明する。
Based on the above findings, the present inventors have come up with a method for melting high-clean steel, which can melt and cast high-clean steel with less alumina inclusions than the conventional technique.
That is, as shown in FIGS. 1 and 2, in the method for melting high-clean steel according to an embodiment of the present invention, metallic aluminum is added to molten steel subjected to primary refining by blowing acid decarburization under atmospheric pressure. Then, when the molten steel in the ladle 14 having the dissolved oxygen concentration in the molten steel of 40 ppm or less is subjected to vacuum degassing treatment using the RH vacuum degassing device 10, a low-pressure vacuum atmosphere is obtained in the first half of the vacuum degassing treatment. This is a method in which the degassing treatment is performed in the above step, and then the degassing treatment is performed in a high-pressure vacuum atmosphere in the latter half of the vacuum degassing treatment, and then the hot water is poured into the tundish 15 for continuous casting.
Hereinafter, it will be described in detail.

まず、大気圧下で吹酸脱炭する一次精錬(代表例:転炉での吹錬)を行った溶鋼を、取鍋14へ供給する。
通常、吹酸脱炭が行われた溶鋼中の溶存酸素濃度は100~800ppm程度であるため、脱酸する必要がある。
本発明では、金属アルミニウムを添加する(金属アルミニウムを含むものを添加することも含む)ことで、溶鋼中の溶存酸素濃度を40ppm以下とすることを前提としている。
上記した処理により、溶鋼中にはアルミニウム酸化物(アルミナ:以下、介在物とも記載)が存在することとなる。
First, molten steel that has been subjected to primary refining (typical example: blowing in a converter) for decarburization by blowing acid under atmospheric pressure is supplied to a ladle 14.
Normally, the dissolved oxygen concentration in the molten steel that has been decarburized by blowing acid is about 100 to 800 ppm, so it is necessary to deoxidize it.
In the present invention, it is premised that the dissolved oxygen concentration in the molten steel is 40 ppm or less by adding metallic aluminum (including adding one containing metallic aluminum).
By the above treatment, aluminum oxide (alumina: hereinafter also referred to as inclusions) is present in the molten steel.

上記した金属アルミニウムの添加により生成した介在物の浮上除去、凝集合体、破壊防止の各処理、即ち、高清浄化処理を行う精錬工程として、脱ガス処理を用いる。
この高清浄化の手段としては、前記したRH真空脱ガス装置10を用いる。
具体的には、図1に示すように、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋14内の溶鋼に、RH真空脱ガス装置10の浸漬管12、13を浸漬して、上昇側の浸漬管12から不活性ガスを吹き込み、真空槽11と取鍋14との間で溶鋼を環流させる真空脱ガス処理を行う。
この真空脱ガス処理は、以下のように、前半と後半に分けて行う。
Degassing treatment is used as a refining step for performing each of the above-mentioned treatments for floating removal, aggregation and coalescence, and destruction prevention of inclusions generated by the addition of metallic aluminum, that is, a high cleaning treatment.
As the means for high purification, the above-mentioned RH vacuum degassing device 10 is used.
Specifically, as shown in FIG. 1, the immersion pipes 12 and 13 of the RH vacuum degassing device 10 are immersed in the molten steel in the ladle 14 having the dissolved oxygen concentration in the molten steel of 40 ppm or less, and the ascending side. Inert gas is blown from the dipping pipe 12 of the above, and a vacuum degassing treatment is performed to recirculate the molten steel between the vacuum tank 11 and the ladle 14.
This vacuum degassing treatment is performed separately in the first half and the second half as follows.

まず、真空脱ガス処理の前半(以下、前半処理又は低圧真空処理とも記載)に、真空槽11内を1.3kPa(9.75Torr)以下の低圧真空雰囲気とした上で、15~45分間の脱ガス処理を行う。
この脱ガス処理の第一目的は、溶鋼の炭素濃度の調整(脱炭)であるため、上記した条件を採用する必要がある。ここで、真空槽11内の圧力が1.3kPaを超える場合、脱炭反応が遅くなって処理時間が遅延するため、溶鋼の温度低下を招く。
なお、上記した真空槽11内の圧力であれば、15~45分程度の時間で、脱ガス処理を完了させることができる。
First, in the first half of the vacuum degassing treatment (hereinafter, also referred to as the first half treatment or the low pressure vacuum treatment), the inside of the vacuum chamber 11 is set to a low pressure vacuum atmosphere of 1.3 kPa (9.75 Torr) or less, and then for 15 to 45 minutes. Perform degassing treatment.
Since the primary purpose of this degassing treatment is to adjust the carbon concentration of molten steel (decarburization), it is necessary to adopt the above conditions. Here, when the pressure in the vacuum chamber 11 exceeds 1.3 kPa, the decarburization reaction is delayed and the processing time is delayed, which causes the temperature of the molten steel to drop.
If the pressure is in the vacuum chamber 11 described above, the degassing treatment can be completed in about 15 to 45 minutes.

上記した処理条件により、介在物の挙動が以下に示すようになることを、本発明者らは知見した。なお、介在物の挙動はその大きさに応じて特徴があるため、代表的な粒径を、70μm以上、30~50μm、20μm以下、の3種類として記述した。 The present inventors have found that the behavior of inclusions is shown below depending on the above-mentioned treatment conditions. Since the behavior of inclusions is characteristic depending on their size, typical particle sizes are described as three types: 70 μm or more, 30 to 50 μm, and 20 μm or less.

(70μm以上)
凝集合体により70μm以上となった介在物は、溶鋼中の流動において慣性力が高いものと推定され、真空槽11と取鍋14を循環する溶鋼流(環流)から外れ、取鍋内を浮上する傾向が強い。
従って、環流に残存することにより、剪断力を受けて破壊することが少ないものと推定される。
(70 μm or more)
It is presumed that inclusions having a size of 70 μm or more due to agglomeration and coalescence have a high inertial force in the flow in the molten steel, deviate from the molten steel flow (circulation) circulating in the vacuum chamber 11 and the ladle 14, and float in the ladle. There is a strong tendency.
Therefore, it is presumed that by remaining in the recirculation, it is less likely to be destroyed by the shearing force.

(30~50μm)
凝集合体により30~50μmとなった介在物は、粒径の増加(凝集合体)は果たせたものの、顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと推定される。
このため、介在物は、剪断力を受けて破壊される傾向があるものと考えられた。
剪断力は、溶鋼流の存在に伴って不可避的に発生するものであり、その発生条件としては、脱ガス処理を長時間行う場合、溶鋼の搬送中に取鍋底からガスが吹き込まれる場合、取鍋からタンディッシュへ溶鋼を落下流で供給する場合、等があげられる。
(30-50 μm)
It is presumed that the inclusions having a size of 30 to 50 μm due to the agglomeration and coalescence were able to increase the particle size (aggregation and coalescence), but the remarkable floating removal was unlikely to occur, and the inclusions tended to remain in the circulation.
Therefore, it was considered that the inclusions tended to be destroyed by the shearing force.
Shear force is inevitably generated due to the presence of a molten steel flow, and the conditions for generating it are when degassing treatment is performed for a long time, when gas is blown from the bottom of the ladle during transportation of molten steel, and when gas is blown from the bottom of the ladle. For example, when molten steel is supplied from a ladle to a tundish by a falling flow.

(20μm以下)
20μm以下の介在物は、凝集合体を経ても30~50μmと同様に顕著な浮上除去は起こりにくく、環流中に残存する傾向が強いものと考えられる。また、30~50μmの介在物と同様に、剪断力を受けて破壊される傾向があるものと考えられる。
(20 μm or less)
It is considered that inclusions of 20 μm or less are unlikely to undergo remarkable floating removal as in the case of 30 to 50 μm even after agglomeration and coalescence, and tend to remain in the gyre. Further, it is considered that the inclusions having a size of 30 to 50 μm tend to be destroyed by the shearing force.

上記した前半処理に引き続き真空脱ガス処理の後半(以下、後半処理又は高圧真空処理とも記載)に、真空槽11内を20kPa(150Torr)以上40kPa(300Torr)以下の高圧真空雰囲気とした上で、5~15分間の脱ガス処理を行う。これにより、介在物の凝集合体や強度向上(剪断力によって破壊しない程度の強度向上)の作用効果を狙う。
このような脱ガス処理を行うことで、溶鋼の高清浄化の効果が得られることについて、本発明者らは以下の機構が働いたものと考えた。
In the latter half of the vacuum degassing treatment (hereinafter, also referred to as the latter half treatment or the high pressure vacuum treatment) following the first half treatment described above, the inside of the vacuum chamber 11 is set to a high pressure vacuum atmosphere of 20 kPa (150 Torr) or more and 40 kPa (300 Torr) or less. Degas for 5 to 15 minutes. In this way, we aim for the effects of agglutination and strength improvement of inclusions (strength improvement to the extent that they are not destroyed by shearing force).
The present inventors considered that the following mechanism worked to obtain the effect of high purification of molten steel by performing such a degassing treatment.

脱炭を主目的とする前半処理に比較して後半処理は、高圧真空(20kPa~40kPa)としており、取鍋14の底面から真空槽11内の溶鋼湯面(溶鋼ヘッド)までの距離(湯面高さ、環流高さ)を短縮できる(取鍋14内の溶鋼に対する浸漬管12、13の浸漬深さは同じ)。これによって、真空槽11内と取鍋14内を循環し環流する溶鋼について、環流の循環高さ方向の距離を低減して位置エネルギーを低減することで、撹拌エネルギーを弱めることができる。
また、高圧真空とすることで、溶鋼の吸い上げ量が低減して環流速度を低減でき、撹拌エネルギーを弱めることもできる。
ここで、真空槽内の圧力が20kPa未満の低圧真空である場合、撹拌エネルギーが多く、凝集合体した介在物の顕著な破壊抑制効果が得られない。一方、真空槽内の圧力が40kPa超の場合、真空槽内に溶鋼を吸い上げること、即ち溶鋼の環流自体が困難となり、処理そのものができない場合がある。
Compared to the first half treatment whose main purpose is decarburization, the second half treatment is a high-pressure vacuum (20 kPa to 40 kPa), and the distance (hot water) from the bottom surface of the ladle 14 to the molten steel surface (molten steel head) in the vacuum tank 11. The surface height and recirculation height) can be shortened (the dipping depths of the dipping pipes 12 and 13 in the molten steel in the ladle 14 are the same). As a result, the stirring energy of the molten steel that circulates and recirculates in the vacuum chamber 11 and the ladle 14 can be weakened by reducing the distance in the circulation height direction of the recirculation to reduce the potential energy.
Further, by setting the high pressure vacuum, the suction amount of the molten steel can be reduced, the recirculation speed can be reduced, and the stirring energy can be weakened.
Here, when the pressure in the vacuum chamber is a low pressure vacuum of less than 20 kPa, the stirring energy is large, and the remarkable effect of suppressing the destruction of the aggregated inclusions cannot be obtained. On the other hand, when the pressure in the vacuum chamber exceeds 40 kPa, it may be difficult to suck the molten steel into the vacuum chamber, that is, to recirculate the molten steel itself, and the treatment itself may not be possible.

上記した真空槽11内の圧力により、凝集合体した介在物の崩壊防止と、環流を継続することによる緩やかな介在物の凝集合体の進行と、凝集合体させた介在物の強度の向上とが得られるが、そのためには、高圧真空下での処理時間を5~15分とする必要がある。
具体的には、前記した低圧真空処理によって凝集合体した直後の介在物は強度が低く、溶鋼流の剪断力を受けて破壊する場合がある。このため、処理時間は15分以下とするとよい。一方、5分以上の処理であれば、凝集合体した介在物は強度を向上できる。
これにより、後述するタンディッシュでの処理まで介在物の破壊を抑制できる(タンディッシュでの浮上除去が可能となる)。
Due to the pressure in the vacuum chamber 11 described above, it is possible to prevent the agglutinated inclusions from collapsing, to promote the gradual agglutination of the inclusions by continuing the circulation, and to improve the strength of the agglutinated inclusions. However, for that purpose, it is necessary to set the processing time under high pressure vacuum to 5 to 15 minutes.
Specifically, the inclusions immediately after being aggregated and coalesced by the above-mentioned low-pressure vacuum treatment have low strength and may be destroyed by the shearing force of the molten steel flow. Therefore, the processing time is preferably 15 minutes or less. On the other hand, if the treatment is for 5 minutes or more, the strength of the aggregated inclusions can be improved.
As a result, it is possible to suppress the destruction of inclusions until the treatment with the tundish described later (the floating removal with the tundish becomes possible).

粒径に応じた介在物の挙動は以下の通りである。
(70μm以上)
低圧真空処理時(前半処理時)に概ね取鍋14内での浮上が終了しており、一部溶鋼中に残存したとしても、高圧真空処理時(後半処理時)にも取鍋14内で浮上するものと考えらえる。
(30~50μm)
低圧真空処理時の凝集合体により30~50μmとなった介在物は、環流中に残存する傾向が強いが、高圧真空処理時にも溶鋼の環流中に存在し、破壊を抑制しながら強度は向上するものと考えられた。
これによって、介在物は破壊が進行することなく、真空脱ガス処理以降の工程に搬送される溶鋼中に存在することとなるが、この介在物は、後述するタンディッシュでの浮上除去につなげることができる。
The behavior of inclusions according to the particle size is as follows.
(70 μm or more)
The levitation in the ladle 14 is almost completed during the low-pressure vacuum treatment (first half treatment), and even if part of it remains in the molten steel, it is also in the ladle 14 during the high-pressure vacuum treatment (second half treatment). It can be thought of as emerging.
(30-50 μm)
Agglutinations of 30 to 50 μm due to agglutination during low-pressure vacuum treatment tend to remain in the recirculation, but they are also present in the recirculation of molten steel during high-pressure vacuum treatment, and the strength is improved while suppressing fracture. It was thought to be.
As a result, the inclusions will be present in the molten steel transported to the process after the vacuum degassing treatment without the progress of fracture, but these inclusions will lead to the floating removal in the tundish described later. Can be done.

(20μm以下)
低圧真空処理による凝集合体を経ても20μm以下の介在物は、高圧真空処理において破壊を防止しながら環流処理による凝集合体が緩やかに進み、強度も向上するものと考えられる。
従って、真空脱ガス処理以降に供給される溶鋼は、20μm以下の介在物が減少し、例えば、30~50μm程度に凝集合体してその強度も向上しているものと考えられ、この介在物がタンディッシュで浮上除去される。
(20 μm or less)
It is considered that inclusions of 20 μm or less even after the agglomeration and coalescence by the low-pressure vacuum treatment proceed slowly by the coagulation and coalescence by the recirculation treatment while preventing fracture in the high-pressure vacuum treatment, and the strength is also improved.
Therefore, it is considered that the molten steel supplied after the vacuum degassing treatment has a reduced inclusions of 20 μm or less, for example, agglomerates and coalesces to about 30 to 50 μm, and the strength thereof is also improved. It is surfaced and removed with a tundish.

上記した高圧真空処理を経た溶鋼からは、70μm以上の介在物が浮上除去されている。
また、30~50μm程度の介在物は、上記した脱ガス処理により従来技術に比べて破壊が発生しなくなったため、その存在割合を高位に維持でき、更に強度も向上させているため、存在割合が高位の状態で、溶鋼をタンディッシュまで搬送できる。
更に、20μm以下の介在物は、上記した精錬処理(一次精錬~真空脱ガス処理)を経て、破壊を抑制した凝集合体(例えば、30μm以上に凝集合体)が起こり、従来の技術に比べて存在割合を低減させた(あるいは20μm以下の介在物の増加を抑制した)状態で、溶鋼をタンディッシュまで搬送できる。
Inclusions of 70 μm or more are floated and removed from the molten steel that has undergone the above-mentioned high-pressure vacuum treatment.
Further, since the inclusions having a size of about 30 to 50 μm are not destroyed by the above-mentioned degassing treatment as compared with the prior art, the abundance ratio can be maintained at a high level and the strength is further improved, so that the abundance ratio is high. The molten steel can be transported to the tundish at a high level.
Further, inclusions having a size of 20 μm or less are subjected to the above-mentioned refining treatment (primary refining to vacuum degassing treatment) to cause agglomeration and coalescence in which fracture is suppressed (for example, coagulation and coalescence to 30 μm or more), and are present as compared with the conventional technique. The molten steel can be transported to the tundish in a state where the ratio is reduced (or the increase of inclusions of 20 μm or less is suppressed).

続いて、真空脱ガス処理した溶鋼を、取鍋14(溶鋼鍋)から、ロングノズル16を介してタンディッシュ15に注湯する(図2参照)。
タンディッシュ15は、その内部が堰17により、取鍋14からロングノズル16を介して溶鋼を受け入れる受湯部18と、この溶鋼を連続鋳造する鋳型(図示しない)に注入する排湯部19とに分割されている。なお、排湯部19の底部には浸漬ノズル20が設けられ、排湯部19内の溶鋼を浸漬ノズル20を介して鋳型に注入する構成となっている。
受湯部18と排湯部19を分割する堰17には、この受湯部18と排湯部19を連通する溶鋼流路21を形成する中空耐火物22が設けられている。溶鋼流路21(中空耐火物22)は、受湯部18側の開口部23から溶鋼を受け、この溶鋼を排湯部19側の開口部24から排湯部19へ排出するものである。この溶鋼流路21を流れる溶鋼は、誘導加熱装置(ここでは、誘導加熱コイル25)によって誘導加熱されている。
Subsequently, the vacuum degassed molten steel is poured from the ladle 14 (molten steel pan) into the tundish 15 via the long nozzle 16 (see FIG. 2).
The tundish 15 has a hot water receiving section 18 that receives molten steel from a ladle 14 via a long nozzle 16 and a hot water draining section 19 that injects the molten steel into a mold (not shown) for continuous casting. It is divided into. A dipping nozzle 20 is provided at the bottom of the hot water draining section 19, and the molten steel in the hot water draining section 19 is injected into the mold via the dipping nozzle 20.
The weir 17 that divides the hot water receiving portion 18 and the hot water discharging portion 19 is provided with a hollow refractory material 22 that forms a molten steel flow path 21 that communicates the hot water receiving portion 18 and the hot water discharging portion 19. The molten steel flow path 21 (hollow refractory material 22) receives molten steel from the opening 23 on the hot water receiving portion 18 side, and discharges the molten steel from the opening 24 on the hot water discharging portion 19 side to the hot water discharging portion 19. The molten steel flowing through the molten steel flow path 21 is induced and heated by an induction heating device (here, an induction heating coil 25).

なお、連続鋳造終了後に、受湯部18に溶鋼が残留することを防止するため、溶鋼流路21の受湯部18側に位置する開口部23(開口部23の下端)の受湯部18の底面26からの高さ位置を、受湯部18の溶鋼深さ(浴深)Hの0.2倍(0.2×H)以下にしている(下限は、例えば0倍(0×H)、即ち開口部23が受湯部18の底面26に接する位置)。
ここで、堰17に設ける溶鋼流路21の数は、例えば、鋳造条件に応じて、1個でもよく、また、2個以上の複数個でもよい。なお、溶鋼流路21の数が複数個の場合は、全ての溶鋼流路21の受湯部側に位置する開口部の受湯部の底面からの高さ位置が、上記した条件を満足するように調整する。この溶鋼流路21の長さ(堰17の厚み)は、例えば、500~1500mm程度である。
そして、堰17と中空耐火物22は、いずれも耐火物で構成されているが、使用用途に応じて、同一材質で構成してもよく、また、異なる材質で構成してもよい。
更に、溶鋼流路21は、受湯部18から排湯部19へかけて、下方に向けて傾斜させているが、水平でもよい。また、排湯部19の底面27の深さ位置は、受湯部18の底面26の深さ位置よりも深くしているが、同一の深さでもよい。
なお、溶鋼流路は、中空耐火物によって形成することに限定されるものではなく、例えば、堰に孔を貫通(貫通孔)させることで形成することもできる。
In order to prevent molten steel from remaining in the hot water receiving portion 18 after the end of continuous casting, the hot water receiving portion 18 of the opening 23 (lower end of the opening 23) located on the hot water receiving portion 18 side of the molten steel flow path 21. The height position from the bottom surface 26 of the hot water receiving portion 18 is set to 0.2 times (0.2 × H) or less of the molten steel depth (bath depth) H of the hot water receiving portion 18 (the lower limit is, for example, 0 times (0 × H). ), That is, the position where the opening 23 is in contact with the bottom surface 26 of the hot water receiving portion 18).
Here, the number of molten steel flow paths 21 provided in the weir 17 may be, for example, one or a plurality of two or more depending on the casting conditions. When there are a plurality of molten steel flow paths 21, the height positions of the openings located on the hot water receiving portions side of all the molten steel flow paths 21 from the bottom surface of the hot water receiving portions satisfy the above conditions. Adjust so that. The length of the molten steel flow path 21 (thickness of the weir 17) is, for example, about 500 to 1500 mm.
The weir 17 and the hollow refractory 22 are both made of a refractory, but they may be made of the same material or different materials depending on the intended use.
Further, the molten steel flow path 21 is inclined downward from the hot water receiving portion 18 to the hot water discharging portion 19, but may be horizontal. Further, the depth position of the bottom surface 27 of the hot water draining portion 19 is deeper than the depth position of the bottom surface 26 of the hot water receiving portion 18, but the same depth may be used.
The molten steel flow path is not limited to being formed by a hollow refractory material, and may be formed, for example, by penetrating a hole through a weir (through hole).

前記したように、タンディッシュ15内で溶鋼の上昇流を有効に作用させるには、タンディッシュ15の内部に溶鋼流路21が設けられた堰17を立設し、受湯部18と排湯部19の空間(チャンバー)を明確に分割する必要がある(タンディッシュ15(受湯部18と排湯部19)内の溶鋼の湯面位置が、堰17の上面より低くなっている)。
一般に、排湯部19の表層の溶鋼温度はタンディッシュ15内で低下するため、受湯部18の溶鋼温度に比べて排湯部19の表層の溶鋼温度は低くなり、排湯部19の深さ方向で溶鋼に温度差が生じる。このため、溶鋼流路21から排湯部19へ排出される溶鋼は、溶鋼流路21内で誘導加熱されない場合であっても、上記した温度差によって溶鋼の対流(上昇流)が生じ、この対流によって、溶鋼流路21から排湯部19へ排出される溶鋼中の介在物が浮上除去される。
なお、溶鋼流路21から排出された溶鋼流としては、上記した上昇流以外に、排湯部19を直進する流れがあり、この流れが排湯部19内の溶鋼流の主体となる。このとき、前記した低圧真空処理と高圧真空処理により凝集合体した介在物は、30~50μm程度の介在物割合が高位に維持されているため、直進する溶鋼流であっても介在物には自己浮上力があり、浮上除去することが可能である。
As described above, in order to make the ascending flow of molten steel work effectively in the tundish 15, a weir 17 having a molten steel flow path 21 provided inside the tundish 15 is erected, and the hot water receiving portion 18 and the hot water draining portion 18 are erected. It is necessary to clearly divide the space (chamber) of the portion 19 (the position of the molten steel surface in the tundish 15 (hot water receiving portion 18 and hot water discharging portion 19) is lower than the upper surface of the weir 17).
In general, the molten steel temperature on the surface layer of the hot water draining section 19 drops in the tundish 15, so that the molten steel temperature on the surface layer of the hot water draining section 19 is lower than the molten steel temperature of the hot water receiving section 18, and the depth of the hot water draining section 19 is deep. There is a temperature difference in the molten steel in the vertical direction. Therefore, even if the molten steel discharged from the molten steel flow path 21 to the hot water draining portion 19 is not induced and heated in the molten steel flow path 21, convection (rising flow) of the molten steel occurs due to the above-mentioned temperature difference. By convection, inclusions in the molten steel discharged from the molten steel flow path 21 to the hot water draining portion 19 are floated and removed.
As the molten steel flow discharged from the molten steel flow path 21, there is a flow that goes straight through the hot water draining section 19 in addition to the above-mentioned ascending flow, and this flow becomes the main body of the molten steel flow in the hot water draining section 19. At this time, the inclusions aggregated and coalesced by the above-mentioned low-pressure vacuum treatment and high-pressure vacuum treatment maintain a high proportion of inclusions of about 30 to 50 μm, so that even if the molten steel flow travels straight, the inclusions are self-sustaining. It has a levitation force and can be levitation removed.

しかし、タンディッシュ15内で上昇流を形成させても、浮上除去可能な介在物粒径は30~50μm程度以上の粗大径のみであり、5~20μm程度の小径介在物の浮上除去は困難である。
また、鋳造時間が長くなってタンディッシュ15内で溶鋼温度が低下すると、溶鋼粘性の上昇に起因して介在物の浮力が弱まり、介在物の浮上効率の悪化を招くと共に、アルミナ生成反応(2Al+3→Al)の溶解度積が低下し、20μm未満の微細なAlが新たに生成(二次生成)することが懸念される。
However, even if an ascending flow is formed in the tundish 15, the particle size of inclusions that can be lifted and removed is only a coarse diameter of about 30 to 50 μm or more, and it is difficult to lift and remove small diameter inclusions of about 5 to 20 μm. be.
Further, when the casting time becomes long and the molten steel temperature decreases in the tundish 15, the buoyancy of the inclusions weakens due to the increase in the viscosity of the molten steel, which causes the buoyancy efficiency of the inclusions to deteriorate and the alumina formation reaction (2). There is a concern that the solubility product of Al + 3 O → Al 2 O 3 ) will decrease, and fine Al 2 O 3 of less than 20 μm will be newly generated (secondary formation).

従って、前記したように、真空脱ガス処理として低圧真空処理と高圧真空処理を行うことにより、微細なAlの凝集合体を進めて粗大化させると共にその崩壊を抑制し、タンディッシュ15内での新たな微細Alの生成を抑制しつつ、連続鋳造を行うことが重要である。
更に、前記した介在物の浮上を促進し、新たな微細Alの生成を抑制するため、タンディッシュ15内に受湯部18と排湯部19に区切る堰17を設け、この受湯部18と排湯部19を、堰17に設けられた溶鋼流路21で連通させ、この溶鋼流路21内の溶鋼を誘導加熱する。
Therefore, as described above, by performing the low-pressure vacuum treatment and the high-pressure vacuum treatment as the vacuum degassing treatment, the coagulation and coalescence of fine Al 2 O 3 is promoted to be coarsened and its collapse is suppressed, and the inside of the tundish 15 is suppressed. It is important to carry out continuous casting while suppressing the formation of new fine Al 2 O 3 in.
Further, in order to promote the floating of the above-mentioned inclusions and suppress the formation of new fine Al 2 O3 , a weir 17 for separating the hot water receiving portion 18 and the hot water discharging portion 19 is provided in the tundish 15, and the hot water receiving portion 17 is provided. The portion 18 and the hot water draining portion 19 are communicated with each other by a molten steel flow path 21 provided in the weir 17, and the molten steel in the molten steel flow path 21 is induced and heated.

これにより、タンディッシュ15の排湯部19内の溶鋼に対流を発生させ、凝集合体した30~50μm程度の粒子径を有するアルミナ介在物の崩壊を抑制しつつ効率よく浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。更に、溶鋼流路21内の溶鋼を誘導加熱して溶鋼の温度低下を回避することにより、排湯部19における新たな微細アルミナの生成を抑制することができる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に従来技術では困難であった、粒径が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が例えば10ppm以下の極めて高度な清浄性の鋼を安定して鋳造することが可能となる。
As a result, convection is generated in the molten steel in the hot water draining portion 19 of the tundish 15, and the agglomerated and coalesced alumina inclusions having a particle size of about 30 to 50 μm are efficiently levitated while being suppressed, and the hot water is floated. The effect of capturing the slag on the surface can be obtained. Further, by inducing and heating the molten steel in the molten steel flow path 21 to avoid a temperature drop of the molten steel, it is possible to suppress the formation of new fine alumina in the hot water draining portion 19.
Therefore, by continuously casting the obtained molten steel, it is possible to produce highly clean steel with fewer alumina inclusions than in the past, and the number of alumina inclusions with a particle size of 20 μm class, which was particularly difficult with the conventional technology, can be reduced. It is reduced, and it becomes possible to stably cast extremely highly clean steel having a total oxygen content (T. [O] value) of, for example, 10 ppm or less.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として実機水準にて各条件を変更し、鋳造後の定常部鋳片の清浄性の評価を行った。ここで、定常部鋳片とは、鋳造するチャージの連続鋳造長さの概ね中央部分(品質が安定した部分)を意味する。なお、評価対象の鋼種は、高清浄性が求められる棒線材の鋼種(歯車用鋼)とした。
Next, an example carried out for confirming the action and effect of the present invention will be described.
Here, based on the following method, each condition was changed at the actual machine level, and the cleanliness of the stationary slab after casting was evaluated. Here, the stationary portion slab means a substantially central portion (a portion where the quality is stable) of the continuous casting length of the charge to be cast. The steel grade to be evaluated was the steel grade of bar wire (steel for gears), which is required to have high cleanliness.

90トンの転炉にて一次精錬を行った後、取鍋内に出鋼した溶鋼(炭素濃度:0.20~0.22質量%、溶鋼中溶存酸素濃度:質量割合で100~300ppm、程度で一定)を、取鍋精錬設備(LF)に移動して取鍋精錬処理を行った。その際、取鍋内の溶鋼に金属アルミニウムを、出鋼時と合計で溶鋼1トンあたり3.0~9.0kg添加し、脱酸処理とスラグ精錬を行い溶鋼中のT.[O]濃度を30~40ppmの概ね一定に調整した。
その後、更に取鍋を移動し、RH真空脱ガス装置による真空脱ガス処理を実施した。このとき、RH真空脱ガス装置の浸漬管の溶鋼に対する浸漬深さは、処理の開始から終了まで変更することなく、取鍋に対して一定の高さ位置に保持した。
そして、この取鍋内の溶鋼をタンディッシュに注湯して、連続鋳造を実施した。
試験条件とその結果及び評価を、表1に示す。
After primary refining in a 90-ton converter, the molten steel (carbon concentration: 0.20 to 0.22% by mass, dissolved oxygen concentration in the molten steel: 100 to 300 ppm by mass) was discharged into the ladle. (Constant in) was moved to the ladle refining facility (LF) and the ladle refining process was performed. At that time, metallic aluminum was added to the molten steel in the ladle at a total of 3.0 to 9.0 kg per ton of molten steel, and deoxidation treatment and slag refining were performed to obtain T.I. The concentration of [O] was adjusted to be substantially constant at 30 to 40 ppm.
After that, the ladle was further moved, and a vacuum degassing treatment was carried out by an RH vacuum degassing device. At this time, the immersion depth of the immersion tube of the RH vacuum degassing device in the molten steel was maintained at a constant height position with respect to the ladle without changing from the start to the end of the treatment.
Then, the molten steel in the ladle was poured into a tundish to carry out continuous casting.
The test conditions and their results and evaluations are shown in Table 1.

Figure 0007035870000001
Figure 0007035870000001

表1には、RH真空脱ガス装置による真空脱ガス処理の前半(「脱ガス処理前半」)と後半(「脱ガス処理後半」)の各処理条件(「時間」と「真空槽内圧力」)を記載している。
ここで、実施例1~6と比較例1~6には上記した各処理条件を記載しているが、従来法については、真空脱ガス処理の後半の高圧真空処理を行わず、処理終了まで低圧真空雰囲気下(1.3kPa以下)で脱ガス処理を行っているため、真空脱ガス処理の後半については「(処理なし)」と記載している。なお、従来法の真空脱ガス処理後に行う後述するタンディッシュの鋳造条件は実施例1と同一である。
Table 1 shows the treatment conditions (“time” and “pressure in the vacuum chamber” for the first half (“first half of degassing treatment”) and the second half (“second half of degassing treatment”) of the vacuum degassing treatment by the RH vacuum degassing device. ) Is described.
Here, the above-mentioned treatment conditions are described in Examples 1 to 6 and Comparative Examples 1 to 6, but in the conventional method, the high-pressure vacuum treatment in the latter half of the vacuum degassing treatment is not performed until the treatment is completed. Since the degassing treatment is performed in a low-pressure vacuum atmosphere (1.3 kPa or less), the latter half of the vacuum degassing treatment is described as "(no treatment)". The casting conditions for the tundish, which will be described later, to be performed after the vacuum degassing treatment of the conventional method are the same as those of the first embodiment.

「タンディッシュ」の欄には、「堰の形状」と「誘導加熱の有無」と「溶鋼流路の位置」を記載している。
ここで、「堰の形状」とは、タンディッシュ内に配置される堰の構造であり、「A」はタンディッシュ内を受湯部と排湯部に区切る堰の構造(図2参照)を、「B」は図3に示すタンディッシュ30に設置された上堰31の構造を、それぞれ指している。この上堰31は、受湯部32側の溶鋼深さをh(約1m)として、深さ方向の上部部分(湯面部分)「0.3×h(hの0.3倍)」のみを、受湯部32側と排湯部33側とに区切る堰である。この場合、溶鋼の深さ方向の上部分を流れる溶鋼流は、上堰31に沿って上堰31の下側に回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰31の下側を通過して、強制的な上昇流が生成)する。
In the "Tandish" column, "shape of weir", "presence or absence of induction heating", and "position of molten steel flow path" are described.
Here, the "weir shape" is the structure of the weir arranged in the tundish, and "A" is the structure of the weir that divides the inside of the tundish into a hot water receiving part and a hot water draining part (see FIG. 2). , "B" refer to the structure of the upper weir 31 installed in the tundish 30 shown in FIG. 3, respectively. The upper weir 31 has only the upper portion (hot water surface portion) "0.3 × h (0.3 times h)" in the depth direction, where the molten steel depth on the hot water receiving portion 32 side is h (about 1 m). Is a weir that separates the hot water receiving portion 32 side and the hot water discharging portion 33 side. In this case, the molten steel flow flowing in the upper part in the depth direction of the molten steel causes a forced flow that wraps around the lower side of the upper weir 31 along the upper weir 31 (after a forced downward flow is generated, the upper weir is generated. Passing under 31 to generate a forced ascending current).

「誘導加熱の有無」とは、堰に設けられた2本の溶鋼流路内を流れる溶鋼に対する誘導加熱の有無を記載しており、「有」は前記した誘導加熱可能なタンディッシュを用いて溶鋼を誘導加熱(受湯部で受けた溶鋼の温度を1~10℃上昇させる加熱を実施)した場合を指す。この溶鋼流路は、その断面形状を円形に換算して直径が100~300mmを想定しているが、本試験では100mmとした。
なお、上堰を用いた場合は、溶鋼流路が設けられていないため、誘導加熱は行われない。
「溶鋼流路の位置」とは、溶鋼流路の受湯部側の開口部の下端の、受湯部の底面からの高さ位置であり、受湯部の溶鋼深さをH(約1m)として、0×H(底面)、0.2×H(Hの0.2倍)、0.4×H(Hの0.4倍)の3水準を用いた。なお、上堰を用いた場合は、その浸漬深さを上記したように0.3×hに設定している。
"Presence / absence of induction heating" describes the presence / absence of induction heating for the molten steel flowing in the two molten steel flow paths provided in the weir, and "Yes" indicates the presence / absence of induction heating using the above-mentioned induction heating tundish. It refers to the case where the molten steel is subjected to induction heating (heating that raises the temperature of the molten steel received at the hot water receiving part by 1 to 10 ° C.). The diameter of this molten steel flow path is assumed to be 100 to 300 mm by converting the cross-sectional shape into a circle, but in this test, it was set to 100 mm.
When the upper weir is used, induction heating is not performed because the molten steel flow path is not provided.
The "position of the molten steel flow path" is the height position from the bottom surface of the hot water receiving portion at the lower end of the opening on the hot water receiving portion side of the molten steel flow path, and the molten steel depth of the hot water receiving portion is H (about 1 m). ), Three levels of 0 × H (bottom surface), 0.2 × H (0.2 times H), and 0.4 × H (0.4 times H) were used. When the upper weir is used, the immersion depth is set to 0.3 × h as described above.

「鋳片の清浄度」の欄には、「20μm以上の介在物検出個数の評価」と「T.[O]」を記載している。
「20μm以上の介在物検出個数の評価」には、定常部鋳片の代表位置から切り出したサンプル(一辺が概ね30mmの矩形)を鏡面研磨後に光学顕微鏡にて調査した、長径が20μm以上のアルミナ介在物個数(単位面積当たりのアルミナ介在物の検出個数に換算)を用いて行った。なお、表1では、比較例4の試験条件下で得られた長径20μm以上の介在物検出個数を「1.00」として、他の試験条件で得られた介在物検出個数を指数化し、この指数が1.00以上を「不合格」とし、1.00未満を「合格」として、評価した。
「T.[O]」の欄には、定常部鋳片の代表位置のトータル酸素濃度(全酸素量)を測定し、その値が10ppm以下の場合を○評価(合格)、11ppm以上であった場合を×評価(不合格)とした。なお、×評価の比較例の内、トータル酸素濃度が最も低い値であったのは比較例4であり、この比較例4は14ppmであっため、実施例には比較例の約3割程度かそれ以上の改善効果が見られた。
In the column of "cleanliness of slab", "evaluation of the number of inclusions detected in 20 μm or more" and "T. [O]" are described.
For "evaluation of the number of inclusions detected of 20 μm or more", a sample (rectangle with a side of approximately 30 mm) cut out from the representative position of the stationary slab was examined with an optical microscope after mirror polishing, and alumina with a major axis of 20 μm or more was examined. The number of inclusions (converted to the number of detections of alumina inclusions per unit area) was used. In Table 1, the number of inclusions with a major axis of 20 μm or more obtained under the test conditions of Comparative Example 4 is set to “1.00”, and the number of inclusions detected under other test conditions is indexed. An index of 1.00 or more was evaluated as "fail", and an index of less than 1.00 was evaluated as "pass".
In the "T. [O]" column, the total oxygen concentration (total oxygen content) at the representative position of the stationary piece is measured, and if the value is 10 ppm or less, it is evaluated as ○ (passed), and it is 11 ppm or more. The case was marked as × evaluation (failure). It should be noted that, among the comparative examples of × evaluation, the value with the lowest total oxygen concentration was in Comparative Example 4, and since this Comparative Example 4 was 14 ppm, it was about 30% of the Comparative Example in the Example. Further improvement effect was seen.

「総合評価」は、「20μm以上の介在物検出個数の評価」の欄が合格評価かつ「T.[O]」の欄が○評価の場合を○評価(合格)、これ以外の評価の組み合わせを×評価(不合格)と判断した。 "Comprehensive evaluation" is a combination of ○ evaluation (pass) when the column of "evaluation of the number of inclusions detected of 20 μm or more" is pass evaluation and the column of "T. [O]" is ○ evaluation. Was judged as × evaluation (failure).

表1中の実施例1~6は、RH真空脱ガス装置10を用いて、真空脱ガス処理の前半に低圧真空雰囲気で脱ガス処理(真空槽内圧力:1.3kPa以下、処理時間:15~45分間)を行い、引き続き、真空脱ガス処理の後半に高圧真空雰囲気で脱ガス処理(真空槽内圧力:20~40kPa、処理時間:5~15分間)を行った後、適正範囲(0.2×H以下)に位置させた溶鋼流路を備えるタンディッシュへ注湯して、連続鋳造した結果である。
この場合、真空脱ガス処理(低圧真空雰囲気と高圧真空雰囲気での脱ガス処理)による介在物の凝集の促進効果と凝集合体した介在物の強度の向上効果、及び、タンディッシュによる凝集合体したアルミナ介在物の浮上除去効果が得られた。
その結果、表1に示すように、「20μm以上の介在物検出個数の評価」と「T.[O]」は共に良好であり、鋳片の清浄性を良好にできた(総合評価:○)。
In Examples 1 to 6 in Table 1, the RH vacuum degassing device 10 was used to degas in a low-pressure vacuum atmosphere in the first half of the vacuum degassing treatment (pressure in the vacuum chamber: 1.3 kPa or less, treatment time: 15). After performing the degassing treatment (pressure in the vacuum chamber: 20 to 40 kPa, processing time: 5 to 15 minutes) in a high-pressure vacuum atmosphere in the latter half of the vacuum degassing treatment (0 to 45 minutes), the appropriate range (0). This is the result of continuous casting by pouring hot water into a tundish equipped with a molten steel flow path located at (2 × H or less).
In this case, the vacuum degassing treatment (degassing treatment in a low-pressure vacuum atmosphere and the high-pressure vacuum atmosphere) has the effect of promoting the aggregation of inclusions, the effect of improving the strength of the aggregated inclusions, and the aggregated and coalesced alumina by the tundish. The effect of removing floating inclusions was obtained.
As a result, as shown in Table 1, both "evaluation of the number of inclusions detected in 20 μm or more" and "T. [O]" were good, and the cleanliness of the slab was good (comprehensive evaluation: ◯). ).

一方、比較例1は、実施例1の条件に対し、脱ガス処理後半の時間の条件を適正範囲の上限値超(20分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が長くなり過ぎ、凝集した介在物の破壊を招くため、タンディッシュでの介在物の浮上除去が不足したことによるものと考えられる。
On the other hand, Comparative Example 1 is a result when the condition of the time in the latter half of the degassing treatment is more than the upper limit of the appropriate range (20 minutes) with respect to the condition of Example 1, and as shown in Table 1, casting. The number of alumina inclusions present in the piece increased, and the cleanliness of the slab deteriorated (comprehensive evaluation: ×).
It is considered that this is because the treatment time in the latter half of the degassing treatment becomes too long and the agglomerated inclusions are destroyed, so that the floating removal of the inclusions in the tundish is insufficient.

比較例2は、実施例4の条件に対し、脱ガス処理後半の時間の条件を適正範囲の下限値未満(1分)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、脱ガス処理後半での処理時間が不足し、凝集した介在物の強度向上が不足したため、真空脱ガス処理以降から鋳造までにおいて、凝集した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
Comparative Example 2 is a result when the condition of the time in the latter half of the degassing treatment is set to less than the lower limit of the appropriate range (1 minute) with respect to the condition of Example 4, and as shown in Table 1, in the slab. The number of alumina inclusions present in the slab increased, and the cleanliness of the slab deteriorated (comprehensive evaluation: ×).
This is because the treatment time in the latter half of the degassing treatment was insufficient and the strength of the agglomerated inclusions was insufficiently improved. It is probable that this was due to insufficient removal.

比較例3は、実施例1の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の下限値未満(10kPa)とした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、真空槽内の圧力が低くなり過ぎ、脱ガス処理前半に対する、取鍋の底面から真空槽内の溶鋼湯面までの距離の短縮が不足する結果となり、撹拌エネルギーの低減が不足して凝集合体した介在物の破壊を招き、タンディッシュでの浮上除去が不足したことによるものと考えられる。
この比較例3は、前記した特許文献1の条件(真空槽内の低圧真空状態を変更せずに浸漬管の浸漬深さを浅くする条件)に近い条件である。従って、特許文献1の方法では、凝集合体した介在物の破壊を招き、タンディッシュでの浮上除去が不足するものと推察される。
なお、実施例5の条件に対し、脱ガス処理後半の真空槽内圧力の条件を適正範囲の上限値(40kPa)超とすることは、前記したように、真空槽内に溶鋼を吸い上げることが困難となり、処理そのものができない場合があることから、記載していない。
Comparative Example 3 is a result when the condition of the pressure in the vacuum chamber in the latter half of the degassing treatment was set to less than the lower limit of the appropriate range (10 kPa) with respect to the condition of Example 1, and as shown in Table 1, casting. The number of alumina inclusions present in the piece increased, and the cleanliness of the slab deteriorated (comprehensive evaluation: ×).
This results in the pressure in the vacuum chamber becoming too low, resulting in insufficient shortening of the distance from the bottom of the ladle to the molten steel surface in the vacuum chamber for the first half of the degassing treatment, resulting in insufficient reduction of stirring energy. It is probable that this was due to the lack of floating removal in the tundish, which led to the destruction of the aggregated inclusions.
This Comparative Example 3 is a condition close to the condition of Patent Document 1 described above (a condition in which the immersion depth of the immersion tube is made shallow without changing the low pressure vacuum state in the vacuum chamber). Therefore, it is presumed that the method of Patent Document 1 causes the agglomerated inclusions to be destroyed and the floating removal in the tundish is insufficient.
In contrast to the condition of Example 5, setting the pressure condition in the vacuum chamber in the latter half of the degassing treatment to exceed the upper limit value (40 kPa) in the appropriate range means that the molten steel is sucked up into the vacuum chamber as described above. It is not described because it may be difficult and the processing itself may not be possible.

比較例4は、実施例1の条件に対し、溶鋼流路で誘導加熱を実施しなかった場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、本発明の真空脱ガス処理条件に従う処理を実施しても、タンディッシュでの介在物の浮上除去の際に、溶鋼加熱に伴う溶鋼の上昇流が発生しない場合は、溶鋼流路から排湯部側に吐出された溶鋼流のみで介在物を浮上させることとなるため、凝集した介在物が破壊される割合が増えたことによるものと推察される。
Comparative Example 4 is a result of the case where induction heating was not performed in the molten steel flow path with respect to the conditions of Example 1, and as shown in Table 1, the number of alumina inclusions present in the slab is large. As a result, the cleanliness of the slabs deteriorated (comprehensive evaluation: ×).
This is because even if the treatment according to the vacuum degassing treatment condition of the present invention is carried out, when the ascending flow of the molten steel due to the heating of the molten steel does not occur when the inclusions are lifted and removed in the tundish, the ascending flow of the molten steel is not generated from the molten steel flow path. Since the inclusions are levitated only by the molten steel flow discharged to the hot water discharge part side, it is presumed that the rate of destruction of the agglomerated inclusions has increased.

比較例5は、実施例1の条件に対し、溶鋼流路の高さ方向の位置を適正範囲の上限値超(0.4×H)にした場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、排湯部における介在物の浮上時間が不足したため、清浄性の改善が不足し、また、一旦浮上除去した介在物が再度溶鋼中へ巻き込まれたことによるものと考えられる。
Comparative Example 5 is a result when the position of the molten steel flow path in the height direction exceeds the upper limit value (0.4 × H) of the appropriate range with respect to the conditions of Example 1, and is shown in Table 1. , The number of alumina inclusions present in the slab increased, and the cleanliness of the slab deteriorated (comprehensive evaluation: ×).
It is probable that this is because the inclusions in the hot water draining portion did not have enough time to ascend, so that the improvement in cleanliness was insufficient, and the inclusions once floated and removed were re-engaged in the molten steel.

比較例6は、実施例1の条件に対し、タンディッシュの堰の構造が異なり(図3に示す上堰を採用)、溶鋼の誘導加熱も実施していない場合の結果であり、比較例4の条件に対してはタンディッシュの堰の構造のみが異なる場合の結果である。
比較例6は比較例4に比べて、介在物検出個数は増加し、トータル酸素濃度(T.[O]ppm)も増加する結果が得られている(総合評価:×)。
比較例6では、溶鋼深さ方向の上部分を流れる溶鋼流が、上堰に沿って上堰の下側を回り込む強制的な流れが発生(強制的な下降流が生成した後、上堰の下側を通過して、強制的な上昇流が生成)するため、溶鋼に与える剪断力が実施例1や比較例4に比べて大きいものと推察され、凝集した介在物の破壊を招き、タンディッシュでの介在物の浮上除去が不足したものと推察された。
なお、定常部鋳片における20μm以上の介在物検出個数の評価は、実施例1よりも比較例6の方が多い結果が得られているが、タンディッシュで浮上除去しにくい20μm程度の介在物個数も比較例6の方が多い傾向にあった。このため、比較例6の条件である上堰は、介在物を崩壊させる剪断力が実施例1に比べて大きいものと推定された。
Comparative Example 6 is a result in the case where the structure of the weir of the tundish is different from the condition of Example 1 (the upper weir shown in FIG. 3 is adopted) and the induction heating of the molten steel is not carried out. This is the result when only the structure of the tundish weir is different for the above conditions.
In Comparative Example 6, the number of inclusions detected increased and the total oxygen concentration (T. [O] ppm) also increased as compared with Comparative Example 4 (comprehensive evaluation: ×).
In Comparative Example 6, a molten steel flow flowing in the upper part in the depth direction of the molten steel causes a forced flow around the lower side of the upper weir along the upper weir (after a forced downward flow is generated, the upper weir It is presumed that the shearing force applied to the molten steel is larger than that of Example 1 and Comparative Example 4 because a forced ascending flow is generated by passing through the lower side, which causes the fracture of agglomerated inclusions and the tongue. It was speculated that the floating removal of inclusions in the dish was insufficient.
In addition, the evaluation of the number of inclusions of 20 μm or more in the slab of the stationary part was obtained in Comparative Example 6 more than in Example 1, but the inclusions of about 20 μm which were difficult to float and remove by tundish were obtained. The number also tended to be larger in Comparative Example 6. Therefore, it is presumed that the upper weir, which is the condition of Comparative Example 6, has a larger shearing force for collapsing inclusions than that of Example 1.

従来法は、前記したように、実施例1の条件に対し、真空脱ガス処理の後半処理を実施することなく、連続鋳造前に溶鋼を貯蔵した取鍋を連続鋳造機のそば(近傍)で10分間静置する時間を取った後、連続鋳造を実施した場合の結果であり、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(総合評価:×)。
これは、凝集合体した介在物の強度向上の効果や、凝集した介在物の崩壊を防ぎながら更に凝集合体を促進する効果が不足し、タンディッシュでの浮上除去が不足したことによるものと考えられる。
In the conventional method, as described above, the ladle in which the molten steel is stored before the continuous casting is placed near (near) the continuous casting machine without performing the latter half treatment of the vacuum degassing treatment for the condition of the first embodiment. This is the result of continuous casting after allowing 10 minutes to stand still. As shown in Table 1, the number of alumina inclusions present in the slab increases, and the cleanliness of the slab is improved. It got worse (comprehensive evaluation: ×).
It is considered that this is because the effect of improving the strength of the aggregated inclusions and the effect of further promoting the aggregated coalescence while preventing the collapse of the aggregated inclusions were insufficient, and the floating removal by the tundish was insufficient. ..

従って、本発明の高清浄鋼の溶製方法を用いることで、従来の技術よりもアルミナ介在物を低減した高清浄鋼を製造でき、特に粒径が20μmクラスのアルミナ介在物の個数を低減し、全酸素量(T.[O]値)が例えば10ppm以下の極めて高度な清浄性の鋼を安定して鋳造できることを確認できた。 Therefore, by using the method for melting high-clean steel of the present invention, it is possible to produce high-clean steel with fewer alumina inclusions than in the conventional technique, and in particular, the number of alumina inclusions having a particle size of 20 μm class is reduced. It was confirmed that steel having an extremely high degree of cleanliness having a total oxygen content (T. [O] value) of, for example, 10 ppm or less can be stably cast.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の溶製方法を構成する場合も本発明の権利範囲に含まれる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the configuration described in the above-described embodiments, and the matters described in the claims. It also includes other embodiments and variations that may be considered within the scope. For example, the case where a method for melting the high-clean steel of the present invention is formed by combining some or all of the above-described embodiments and modifications thereof is also included in the scope of rights of the present invention.

10:RH真空脱ガス装置、11:真空槽、12、13:浸漬管、14:取鍋、15:タンディッシュ、16:ロングノズル、17:堰、18:受湯部、19:排湯部、20:浸漬ノズル、21:溶鋼流路、22:中空耐火物、23、24:開口部、25:誘導加熱コイル、26、27:底面、30:タンディッシュ、31:上堰、32:受湯部、33:排湯部 10: RH vacuum degassing device, 11: vacuum tank, 12, 13: immersion pipe, 14: ladle, 15: tundish, 16: long nozzle, 17: dam, 18: hot water receiving part, 19: hot water draining part , 20: Immersion nozzle, 21: Molten steel flow path, 22: Hollow refractory, 23, 24: Opening, 25: Induction heating coil, 26, 27: Bottom, 30: Tundish, 31: Upper dam, 32: Receiving Yube, 33: Hot water drain

Claims (1)

大気圧下で吹酸脱炭する一次精錬を行った溶鋼に金属アルミニウムを添加して、溶鋼中の溶存酸素濃度を40ppm以下とした取鍋内の溶鋼に、RH真空脱ガス装置の浸漬管を浸漬して、該浸漬管の上昇管から不活性ガスを吹き込み、前記RH真空脱ガス装置の真空槽と前記取鍋との間で溶鋼を環流させる真空脱ガス処理を行う際に、
前記真空脱ガス処理の前半に、前記真空槽内を1.3kPa以下の低圧真空雰囲気とした上で、15~45分間の脱ガス処理を行い、
前記真空脱ガス処理の後半に、前記真空槽内を20~40kPaの高圧真空雰囲気とした上で、5~15分間の脱ガス処理を行った後、
溶鋼を受け入れる受湯部と該溶鋼を連続鋳造する鋳型に注入する排湯部とに区切る堰が内部に設けられ、前記受湯部と前記排湯部を連通する1又は複数の溶鋼流路が前記堰に形成され、しかも、前記溶鋼流路の受湯部側に位置する開口部の前記受湯部の底面からの高さ位置を、前記受湯部の溶鋼深さの0.2倍以下としたタンディッシュに、前記真空脱ガス処理した溶鋼を注湯し、前記溶鋼流路を流れる溶鋼を誘導加熱することを特徴とする高清浄鋼の溶製方法。
The immersion tube of the RH vacuum degassing device is placed in the molten steel in the pan where the concentration of dissolved oxygen in the molten steel is 40 ppm or less by adding metallic aluminum to the molten steel that has undergone primary refining by blowing acid decarburization under atmospheric pressure. When the vacuum degassing treatment is performed by immersing the metal and blowing an inert gas from the rising pipe of the dipping tube to recirculate the molten steel between the vacuum tank of the RH vacuum degassing device and the pan.
In the first half of the vacuum degassing treatment, the inside of the vacuum chamber is made into a low-pressure vacuum atmosphere of 1.3 kPa or less, and then the degassing treatment is performed for 15 to 45 minutes.
In the latter half of the vacuum degassing treatment, the inside of the vacuum chamber is made into a high-pressure vacuum atmosphere of 20 to 40 kPa, and then the degassing treatment is performed for 5 to 15 minutes.
A weir is provided inside to separate the hot water receiving part that receives the molten steel and the hot water discharging part that injects the molten steel into the mold for continuous casting, and one or more molten steel flow paths that communicate the hot water receiving part and the hot water discharging part are provided. The height position of the opening formed in the weir and located on the hot water receiving portion side of the molten steel flow path from the bottom surface of the hot water receiving portion is 0.2 times or less the depth of the molten steel of the hot water receiving portion. A method for melting high-clean steel, which comprises pouring the molten steel that has been subjected to the vacuum degassing treatment into the tundish to induce and heat the molten steel flowing through the molten steel flow path.
JP2018134085A 2018-07-17 2018-07-17 Melting method of high-clean steel Active JP7035870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134085A JP7035870B2 (en) 2018-07-17 2018-07-17 Melting method of high-clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134085A JP7035870B2 (en) 2018-07-17 2018-07-17 Melting method of high-clean steel

Publications (2)

Publication Number Publication Date
JP2020012142A JP2020012142A (en) 2020-01-23
JP7035870B2 true JP7035870B2 (en) 2022-03-15

Family

ID=69170492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134085A Active JP7035870B2 (en) 2018-07-17 2018-07-17 Melting method of high-clean steel

Country Status (1)

Country Link
JP (1) JP7035870B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216927A (en) 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material
JP2016204693A (en) 2015-04-20 2016-12-08 新日鐵住金株式会社 Production method of high cleanliness steel
JP2018066030A (en) 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548273B2 (en) * 1995-04-20 2004-07-28 新日本製鐵株式会社 Melting method of ultra low carbon steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216927A (en) 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method for producing high purity steel material
JP2016204693A (en) 2015-04-20 2016-12-08 新日鐵住金株式会社 Production method of high cleanliness steel
JP2018066030A (en) 2016-10-17 2018-04-26 新日鐵住金株式会社 Manufacturing method of high cleanliness steel

Also Published As

Publication number Publication date
JP2020012142A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP7035872B2 (en) Melting method of high-clean steel
JP6686837B2 (en) Highly clean steel manufacturing method
JP6593233B2 (en) Manufacturing method of high clean steel
JP6428307B2 (en) Manufacturing method of high clean steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP7035873B2 (en) Melting method of high-clean steel
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
JP6686838B2 (en) Highly clean steel manufacturing method
JP7035870B2 (en) Melting method of high-clean steel
JP4411945B2 (en) Slab continuous casting method for ultra-low carbon steel
JP7035871B2 (en) Melting method of high-clean steel
JP6547638B2 (en) Method of manufacturing high purity steel
JP7238275B2 (en) Continuous casting method
JP6911590B2 (en) Steel melting method
JP6337681B2 (en) Vacuum refining method for molten steel
JP2017171983A (en) Method for reducing coarse inclusion by lf treatment
JP4259232B2 (en) Slab continuous casting method for ultra-low carbon steel
JP6897363B2 (en) Steel melting method
JP7234837B2 (en) Continuous casting method
JP2018127683A (en) Method for removing nonmetallic inclusions in molten steel
JP7269480B2 (en) Continuous casting method
KR20190061157A (en) Apparatus and method for treating molten steel and method for molten steel treatment
JP7215361B2 (en) Continuous casting method
KR100979023B1 (en) Method for Continuous-Continuous-Casting Molten Steel
JP6192604B2 (en) Ladle operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7035870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151