JP6443200B2 - Manufacturing method of high clean steel - Google Patents

Manufacturing method of high clean steel Download PDF

Info

Publication number
JP6443200B2
JP6443200B2 JP2015085957A JP2015085957A JP6443200B2 JP 6443200 B2 JP6443200 B2 JP 6443200B2 JP 2015085957 A JP2015085957 A JP 2015085957A JP 2015085957 A JP2015085957 A JP 2015085957A JP 6443200 B2 JP6443200 B2 JP 6443200B2
Authority
JP
Japan
Prior art keywords
molten steel
hot water
inclusions
water receiving
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015085957A
Other languages
Japanese (ja)
Other versions
JP2016204693A (en
Inventor
健一郎 宮本
健一郎 宮本
秀司 鈴木
秀司 鈴木
田中 康弘
康弘 田中
卓巳 五所
卓巳 五所
武士 大川
武士 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015085957A priority Critical patent/JP6443200B2/en
Publication of JP2016204693A publication Critical patent/JP2016204693A/en
Application granted granted Critical
Publication of JP6443200B2 publication Critical patent/JP6443200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、高清浄鋼の製造方法に係り、更に詳細には、Al脱酸による高清浄鋼の製造方法に関する。   The present invention relates to a method for producing high-clean steel, and more particularly to a method for producing high-clean steel by Al deoxidation.

転炉等で大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、脱酸処理が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、飲料缶の用途を含めて使用実績があるため、汎用性が高い。
The molten steel after the primary refining manufactured by blowing acid decarburization at atmospheric pressure in a converter etc. has a high dissolved oxygen concentration in the steel, so it is cast after deoxidation treatment and has the characteristics as a product. It has gained.
In deoxidation, an element that forms an oxide by combining with oxygen is generally added. In addition to Al (aluminum), Si (silicon), C (carbon), Ti (titanium), and Ca (calcium). ), Zr (zirconium), REM (rare earth metal) and the like are known to be used as deoxidizers.
Among these, Al used as a deoxidizing material is inexpensive and has a strong deoxidizing effect, and a steel material produced using this has a high versatility because it has a track record of use including beverage cans.

しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片)中に介在物として残存し、製品品質を損なう原因となる場合がある。例えば、飲料缶の素材として用いる際の製缶加工時の割れの原因となるため、品質の向上を図る上で、アルミナ介在物の悪影響を排除する必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生やノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
なお、脱酸材としてAl以外の金属を用いた場合でも、生成した金属酸化物(介在物)は製品品質を損なう可能性があり、この点ではAlと同様である。
However, the alumina (Al 2 O 3 ) produced after the deoxidation reaction with Al remains as inclusions in the steel material after solidification (slab obtained by continuous casting), which may cause a deterioration in product quality. is there. For example, it causes cracking during can-making when used as a material for beverage cans, and therefore it is necessary to eliminate the adverse effects of alumina inclusions in order to improve quality.
Furthermore, when a large amount of alumina is present in the molten steel, during casting, adhesion and aggregation of alumina to the inner surface of the immersion nozzle is promoted, resulting in occurrence of drift in the mold (mold) and nozzle clogging. The amount of fluctuation of the molten metal surface becomes large, which causes quality deterioration due to mixing of mold powder (powder inclusions).
Even when a metal other than Al is used as the deoxidizer, the generated metal oxide (inclusions) may impair the product quality, and this is the same as Al.

そこで、以下の方法が提案されている。
例えば、特許文献1には、脱酸材として金属アルミニウムを添加し、生成する介在物の改質剤としてCaOを活用して、溶鋼の撹拌により介在物を浮上させ、溶鋼中の介在物を低減させる技術が開示されている。
また、特許文献2には、上記した特許文献1に記載のアルミナ介在物の生成を抑制するため、溶鋼を加炭して脱酸する技術が開示されている。詳細には、真空脱ガス処理時に添加した炭素を活用することで、脱酸材としての金属アルミニウムの使用量を抑制し、真空脱ガス前に炭素を添加することで、真空脱ガス処理時の突沸を防止することが記載されている。また、一次精錬後の出鋼時に、金属アルミニウムを添加することも記載している。
そして、特許文献3、4には、連続鋳造機のタンディッシュにおけるアルミナ介在物を浮上除去するため、タンディッシュ内を受湯部(受鋼部)と排湯部(溶鋼排出部)とに区切る堰に設けられた中空耐火物内で溶鋼を加熱し、この中空耐火物から排出された溶鋼の上昇流を活用することで、アルミナ介在物を効果的に浮上除去させる技術が開示されている。
Therefore, the following method has been proposed.
For example, in Patent Document 1, metallic aluminum is added as a deoxidizer, CaO is used as a modifier for the inclusions to be generated, the inclusions are levitated by stirring the molten steel, and inclusions in the molten steel are reduced. Techniques for making them disclosed are disclosed.
Moreover, in patent document 2, in order to suppress the production | generation of the alumina inclusion of the above-mentioned patent document 1, the technique which carburizes molten steel and deoxidizes is disclosed. Specifically, by utilizing the carbon added during the vacuum degassing process, the amount of metallic aluminum used as a deoxidizing material is suppressed, and by adding carbon before the vacuum degassing process, It describes the prevention of bumping. It also describes that metallic aluminum is added during steelmaking after primary refining.
In Patent Documents 3 and 4, in order to float and remove alumina inclusions in the tundish of a continuous casting machine, the inside of the tundish is divided into a hot water receiving part (steel receiving part) and a hot water discharging part (molten steel discharging part). There has been disclosed a technique for effectively floating and removing alumina inclusions by heating molten steel in a hollow refractory provided in a weir and utilizing the upward flow of molten steel discharged from the hollow refractory.

特開平7−300612号公報Japanese Patent Laid-Open No. 7-300612 特許第3674422号公報Japanese Patent No. 3674422 特開昭63−93452号公報JP-A 63-93452 特開平8−1289号公報JP-A-8-1289

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献1の技術では、相応のアルミナ介在物の低減効果は望めるが、品質の向上を図る上で、更なる介在物個数の低減が必要である。また、本発明者らの知見では、粒径が大きなアルミナ介在物(例えば、70μm以上)を減少させる効果は望めるものの、粒径が小さなアルミナ介在物(10〜50μm程度)を減少させる効果は少ない。
特許文献2の技術は、介在物の抑制効果を記載した図4に示す通り、相応のアルミナ介在物の低減効果は望めるが、粒径が70μmクラスのアルミナ介在物の低減効果に比べ、50μmや30μm、特に20μm以下クラスのアルミナ介在物の低減効果は小さく、品質の向上を図る上で、粒径が小さなアルミナ介在物の低減効果の向上が望まれる。
特許文献3、4の技術では、例えば、「100μm以上の大きさ」(特許文献3の第2頁右下欄第11〜13行目)と記載している通り、相応のアルミナ介在物の低減効果は望めるが、粒径が小さなアルミナ介在物(10〜50μm程度)を減少させる効果は少ない。
However, the conventional technique still has the following problems to be solved.
Although the technique of Patent Document 1 can be expected to reduce the corresponding alumina inclusions, it is necessary to further reduce the number of inclusions in order to improve the quality. Further, according to the knowledge of the present inventors, an effect of reducing alumina inclusions having a large particle size (for example, 70 μm or more) can be expected, but an effect of reducing alumina inclusions having a small particle size (about 10 to 50 μm) is small. .
As shown in FIG. 4, which describes the effect of suppressing inclusions, the technology of Patent Document 2 can be expected to have a corresponding effect of reducing alumina inclusions, but 50 μm or less compared to the effect of reducing alumina inclusions with a particle size of 70 μm. The effect of reducing alumina inclusions of 30 μm, particularly 20 μm or less, is small, and in order to improve quality, improvement of the effect of reducing alumina inclusions with a small particle size is desired.
In the techniques of Patent Documents 3 and 4, for example, as described in “size of 100 μm or more” (Patent Document 3, page 2, lower right column, lines 11 to 13), the corresponding reduction of alumina inclusions Although the effect can be expected, the effect of reducing the alumina inclusion having a small particle size (about 10 to 50 μm) is small.

本発明はかかる事情に鑑みてなされたもので、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減可能な高清浄鋼の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for producing highly clean steel that can reduce the number of alumina inclusions compared to the prior art, and in particular, can reduce the number of alumina inclusions having a particle size of 20 μm or less. The purpose is to do.

前記目的に沿う本発明に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程と真空脱ガス工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造するに際し、前記真空脱ガス工程による脱炭処理前ではなく該脱炭処理後の溶鋼に金属アルミニウムを添加する高清浄鋼の製造方法であって、
前記出鋼工程と前記真空脱ガス工程の間で炭素成分を溶鋼に添加し、該溶鋼を前記真空脱ガス工程で撹拌しながら前記脱炭処理し、該脱炭処理後に前記金属アルミニウムが添加された溶鋼を3分以上12分以下撹拌処理し、
溶鋼を受け入れる受湯部と該溶鋼を連続鋳造する鋳型に注入する排湯部とに区切る堰が内部に設けられ、前記受湯部と前記排湯部を連通する1又は複数の溶鋼流路が前記堰に形成され、しかも、前記溶鋼流路の前記受湯部側に位置する開口部の該受湯部の底面からの高さ位置を、前記受湯部側の溶鋼深さの0.2倍以下とした前記タンディッシュに、前記金属アルミニウムの添加後に前記撹拌処理した溶鋼を注湯する。
The manufacturing method of the high clean steel according to the present invention that meets the above-mentioned object is to melt molten steel that has been subjected to primary refining that is blown acid decarburized under atmospheric pressure at least in the steelmaking process and the vacuum degassing process. Then, when pouring into the tundish in the continuous casting process and continuously casting, it is a method for producing highly clean steel in which metallic aluminum is added to the molten steel after the decarburization treatment instead of before the decarburization treatment by the vacuum degassing step. There,
A carbon component is added to the molten steel between the steeling step and the vacuum degassing step, the decarburization treatment is performed while stirring the molten steel in the vacuum degassing step, and the metal aluminum is added after the decarburization treatment. The molten steel was stirred for 3 minutes to 12 minutes,
A dam that divides the molten steel into a hot water receiving portion that receives molten steel and a hot water discharging portion that is poured into a mold for continuously casting the molten steel is provided inside, and one or a plurality of molten steel flow paths communicating the hot water receiving portion and the hot water discharging portion. The height position from the bottom surface of the hot water receiving portion of the opening formed on the weir and located on the hot water receiving portion side of the molten steel flow path is 0.2 of the molten steel depth on the hot water receiving portion side. The molten steel that has been subjected to the stirring treatment after the addition of the metal aluminum is poured into the tundish that has been doubled or less.

本発明に係る高清浄鋼の製造方法において、前記溶鋼流路を流れる溶鋼を誘導加熱することが好ましい。   In the method for producing highly clean steel according to the present invention, it is preferable that the molten steel flowing in the molten steel flow path is induction-heated.

本発明に係る高清浄鋼の製造方法は、真空脱ガス工程による脱炭処理前ではなく脱炭処理後の溶鋼に、金属アルミニウムを添加することを前提条件としている。
ここで、真空脱ガス工程による脱炭処理後に金属アルミニウムを添加するので、溶鋼中の溶存酸素濃度を減少させた溶鋼に対して金属アルミニウムの添加が行われ、アルミナ介在物の生成を抑制できる。このとき、溶鋼には小さなアルミナ介在物が生成するが、その生成量が抑制されているため、この溶鋼を所定時間撹拌処理することで、生成した小さなアルミナ介在物を凝集させ合体させる(凝集合体)効果を促進できるものと考えられる。
そして、この溶鋼を、受湯部と排湯部とに区切る堰が内部に設けられ、この堰の所定高さ位置に受湯部と排湯部を連通する溶鋼流路が形成されたタンディッシュに注湯して連続鋳造するので、このタンディッシュにおいて、凝集合体させたアルミナ介在物の浮上除去効果が得られる。これは、排湯部の表層(湯面近傍)の溶鋼温度がタンディッシュ内で低下し、受湯部の溶鋼温度に比べて排湯部の表層の溶鋼温度が低くなり、排湯部の深さ方向で温度差が生じるため、この温度差に起因した溶鋼の対流(上昇流)により、溶鋼流路から排湯部へ流れる溶鋼中の介在物が浮上除去されることによる。
従って、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できる。
The manufacturing method of the high clean steel according to the present invention is based on the precondition that metal aluminum is added to the molten steel after decarburization treatment, not before decarburization treatment by the vacuum degassing step.
Here, since metal aluminum is added after the decarburization process by a vacuum degassing process, addition of metal aluminum is performed with respect to the molten steel which reduced the dissolved oxygen concentration in molten steel, and the production | generation of an alumina inclusion can be suppressed. At this time, although small alumina inclusions are generated in the molten steel, the amount of generation is suppressed, and thus the molten steel is agitated for a predetermined time to agglomerate and coalesce the generated small alumina inclusions (aggregation coalescence). ) It is thought that the effect can be promoted.
And, a tundish in which a dam that divides the molten steel into a hot water receiving part and a hot water discharging part is provided inside, and a molten steel channel that communicates the hot water receiving part and the hot water discharging part is formed at a predetermined height position of the weir. In this tundish, the floating removal effect of the aggregated and combined alumina inclusions can be obtained. This is because the molten steel temperature at the surface of the hot metal (near the surface of the molten metal) decreases in the tundish, and the molten steel temperature at the surface of the hot metal becomes lower than the molten steel at the temperature of the hot water. Since a temperature difference is generated in the vertical direction, inclusions in the molten steel flowing from the molten steel flow path to the waste water portion are levitated and removed by convection (upflow) of the molten steel caused by the temperature difference.
Therefore, the number of alumina inclusions can be reduced as compared with the conventional case, and in particular, the number of alumina inclusions having a particle size of 20 μm or less can be reduced.

本発明の一実施の形態に係る高清浄鋼の製造方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the manufacturing method of the highly clean steel which concerns on one embodiment of this invention. 取鍋での撹拌処理終了時における溶鋼中のアルミナ介在物の粒径頻度分布を示すグラフである。It is a graph which shows the particle size frequency distribution of the alumina inclusion in molten steel at the time of completion | finish of the stirring process in a ladle. 連続鋳造した鋳片中のアルミナ介在物の粒径個数分布を示すグラフである。It is a graph which shows the particle size number distribution of the alumina inclusion in the slab cast continuously.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の製造方法に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background of the high clean steel manufacturing method of the present invention will be described.

(1)アルミナ介在物の生成に関する知見
アルミナ介在物(以下、単に介在物ともいう)は、スラグ中のFeO、MnOや、溶鋼の溶存酸素などと、脱酸材であるAlとが反応することで生成する。
生成当初のアルミナ介在物は、その粒径が小さく(20μm以下)、時間の経過によらずそのまま溶鋼内に残留する場合と、生成した介在物が時間経過と共に緩やかに凝集する場合とがある。
(1) Knowledge about the formation of alumina inclusions The alumina inclusions (hereinafter, also simply referred to as inclusions) react with FeO, MnO in slag, dissolved oxygen in molten steel, and Al, which is a deoxidizer. Generate with
The alumina inclusions at the beginning of production have a small particle size (20 μm or less), and may remain in the molten steel as they are regardless of the passage of time, or the produced inclusions may aggregate gradually over time.

前記した特許文献2に記載の加炭ならびに真空脱ガス処理では、脱酸にC元素を活用した結果、粗大介在物の生成を抑制できるものとみられる(特許文献2の図4において、粒径70μmの介在物が大幅に減少)。
しかし、粒径が小さな介在物(粒径20μm以下クラス)の減少効果は小さい。
これは、特許文献2では、一次精錬炉からの出鋼時又は出鋼後に、溶鋼に伴われているスラグ中に金属アルミニウムやアルミ滓などの還元滓を添加し、スラグ中のFeOやMnOなどの酸化性成分を低減させていることに起因している。
In the above-described carburizing and vacuum degassing treatment described in Patent Document 2, it is considered that generation of coarse inclusions can be suppressed as a result of utilizing C element for deoxidation (in FIG. 4 of Patent Document 2, the particle size is 70 μm). Inclusions are greatly reduced).
However, the effect of reducing inclusions with a small particle size (particle size of 20 μm or less class) is small.
This is because, in Patent Document 2, reducing iron such as metal aluminum and aluminum iron is added to slag accompanying molten steel at the time of steel extraction from the primary refining furnace or after steel output, FeO, MnO, etc. in the slag This is due to the reduction of the oxidizing component.

上記したように、スラグ中の酸化性成分を金属アルミニウムやアルミ滓などで還元することは、アルミナを生成させることを意味しており、その生成量が多量であれば、微細な状態(20μm以下)で生成したアルミナ介在物が凝集や浮上しきれず、溶鋼中、更には、鋳造後の鋳片内に残存することとなる。
更に、この5〜20μmクラスの微細なアルミナ介在物が、溶鋼中や鋳片内に多数残存する場合には、鋼材の極薄化などの加工時に、欠陥の起点となる頻度が高くなる。
As described above, reducing the oxidizing component in the slag with metallic aluminum, aluminum soot, etc. means that alumina is produced. If the amount of production is large, a fine state (20 μm or less) The alumina inclusions produced in (1) cannot be agglomerated or levitated and remain in the molten steel and further in the cast slab.
Further, when a large number of fine alumina inclusions in the 5 to 20 μm class remain in the molten steel or in the slab, the frequency of starting defects becomes high during processing such as ultra-thinning of the steel material.

従って、品質向上のためには、アルミナ介在物の生成量を抑制する必要がある。   Therefore, in order to improve quality, it is necessary to suppress the amount of alumina inclusions generated.

(2)溶鋼の撹拌処理に関する知見
取鍋を用いた溶鋼の撹拌処理は、一般に取鍋底部よりArガスを溶鋼中に吹込み、ガス気泡の浮上効果を用いることで行われ、取鍋内の溶鋼の成分や温度の均一化、また、介在物の浮上除去に用いられている。
本発明者らは、溶鋼の撹拌処理を行うに際し、アルミナの生成量(脱酸直後の介在物の存在状況)によって撹拌の寄与形態が異なることを、数々の実験等から知見した。その状況は、以下の通りである。
(2) Knowledge about stirring process of molten steel The stirring process of molten steel using a ladle is generally performed by blowing Ar gas into the molten steel from the bottom of the ladle and using the floating effect of gas bubbles. It is used to equalize the composition and temperature of molten steel, and to remove inclusions.
The present inventors have found from a number of experiments and the like that when the molten steel is agitated, the contribution form of agitation varies depending on the amount of alumina produced (the presence of inclusions immediately after deoxidation). The situation is as follows.

溶鋼中のアルミナ介在物が比較的多い場合、撹拌処理による介在物個数の絶対値改善効果は小さい。なお、溶鋼中のアルミナ介在物の個数は、炭素成分を添加して行う脱炭処理(真空脱ガス処理)前の溶鋼(一次精錬直後の高溶存酸素濃度の溶鋼)に金属アルミニウムを添加する場合に、多量の金属アルミニウムを使用することに起因して多くなる。
この場合、取鍋でのガス撹拌(RH処理での環流撹拌も同様)によるエネルギーは、その大半が既生成の粗大介在物の浮上運動に費やされるため、微小介在物の顕著な個数減少効果が小さい。また、微細な(20μm以下の)アルミナ介在物の個数が多いため、撹拌を行わずとも粒子同士の衝突頻度が高くなり、脱炭処理前に生成したアルミナ介在物は時間の経過と共に凝集合体による浮上が進む。しかし、アルミナ介在物の個数が多過ぎるため、粒径が増加していない介在物は、依然として溶鋼中に残存する。
このように、アルミナ介在物が比較的多い場合、撹拌による介在物除去の効果が不明瞭であると共に、所定の撹拌処理を行っても凝集合体しきれない微細な介在物の除去が困難であるため、撹拌処理の有無による介在物の粒度分布の大幅な変化が認められない。
When there are relatively many alumina inclusions in the molten steel, the effect of improving the absolute value of the number of inclusions by the stirring treatment is small. In addition, the number of alumina inclusions in molten steel is the case where metallic aluminum is added to molten steel (molten steel with high dissolved oxygen concentration immediately after primary refining) before decarburization treatment (vacuum degassing treatment) performed by adding a carbon component. In addition, it increases due to the use of a large amount of metallic aluminum.
In this case, most of the energy generated by gas stirring in the ladle (same as the reflux stirring in the RH treatment) is spent on the floating movement of the existing coarse inclusions. small. In addition, since the number of fine (20 μm or less) alumina inclusions is large, the frequency of collision between the particles increases without stirring, and the alumina inclusions generated before the decarburization treatment are aggregated and coalesced over time. Ascent progresses. However, since the number of alumina inclusions is too large, inclusions whose particle size has not increased still remain in the molten steel.
Thus, when there are relatively many alumina inclusions, the effect of inclusion removal by stirring is unclear, and it is difficult to remove fine inclusions that cannot be aggregated and coalesced even if a predetermined stirring treatment is performed. Therefore, no significant change in the particle size distribution of inclusions due to the presence or absence of the stirring treatment is observed.

一方、溶鋼中のアルミナ介在物が比較的少ない場合、撹拌処理による微細な介在物粒子の衝突頻度が増加するため、介在物の粒径分布はやや増加する(粒径が大きくなる)傾向がみられた。なお、溶鋼中のアルミナ介在物の個数は、炭素成分を添加して行う脱炭処理前の溶鋼に金属アルミニウムを添加することなく、脱炭処理後の溶鋼に金属アルミニウムを添加する場合に少なくできる。
この場合、撹拌処理により、粒径が5〜20μmクラスの微小介在物の個数が減少し、30〜50μmクラスの介在物の個数が増加することを知見した。
これは、脱炭処理後の溶鋼に金属アルミニウムを添加し、この金属アルミニウムの添加直後にガス撹拌を施すことで、生成した、個数が少ない微細なアルミナ介在物のガス気泡による捕捉効果と、撹拌(流動)による介在物粒子の衝突に伴う凝集合体の効果が得られたことに起因するものと考えられる。
On the other hand, when the alumina inclusions in the molten steel are relatively small, the collision frequency of fine inclusion particles due to the stirring treatment increases, so the particle size distribution of the inclusions tends to increase slightly (the particle size increases). It was. The number of alumina inclusions in the molten steel can be reduced when adding metallic aluminum to the molten steel after decarburization without adding metallic aluminum to the molten steel before decarburization performed by adding a carbon component. .
In this case, it was found that the number of fine inclusions having a particle size of 5 to 20 μm decreased and the number of inclusions of 30 to 50 μm class increased by stirring treatment.
This is because metal aluminum is added to the molten steel after the decarburization treatment, and gas agitation is performed immediately after the addition of this metal aluminum. This is considered to be due to the effect of aggregation and coalescence accompanying the collision of inclusion particles due to (flow).

従って、脱炭処理後の溶存酸素濃度を低減させた溶鋼に対し、金属アルミニウムを添加することと、その直後に撹拌処理を行うことが重要である。   Therefore, it is important to add metallic aluminum to the molten steel in which the dissolved oxygen concentration after the decarburization treatment is reduced, and to perform a stirring treatment immediately after that.

(3)タンディッシュに関する知見
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
また、タンディッシュ内で溶鋼温度が低下すると、溶解度積の低下によって新たな微細アルミナの生成(2Al+3→Al)を招き、鋳造した鋳片中のアルミナ介在物の増加が顕著になる場合がある。
一方、タンディッシュ内で溶鋼を加熱することにより、新たなアルミナ介在物の生成を抑制する効果が期待できる。また、タンディッシュの内部に堰(仕切り壁)を立設し、タンディッシュ内の溶鋼に上昇流を発生(加熱後の溶鋼に発生)させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30〜50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
(3) Knowledge about tundish In continuous casting, molten steel is poured into the tundish in an amount corresponding to the continuous casting speed (for example, an amount of about 8 tons / min or less). The flow rate is smaller than the stirring flow rate of the molten steel in the gas stirring of the ladle, and it is difficult to expect the effect of inclusion aggregation.
In addition, when the molten steel temperature decreases in the tundish, the solubility product decreases, which leads to the formation of new fine alumina (2 Al +3 O → Al 2 O 3 ), and the increase in alumina inclusions in the cast slab is remarkable. It may become.
On the other hand, the effect of suppressing the formation of new alumina inclusions can be expected by heating the molten steel in the tundish. In addition, when a weir (partition wall) is erected inside the tundish and an upward flow is generated in the molten steel in the tundish (generated in the molten steel after heating), the slag present on the surface of the hot water in the tundish is stirred. In the state where the effect is suppressed, the effect of causing inclusions in the molten steel having a particle diameter of about 30 to 50 μm to float and trapping this in the slag can be expected.

従って、タンディッシュの内部に、受湯部と排湯部を分割(独立して配置)する堰を立設し、しかも、この堰に、受湯部と排湯部を連通する溶鋼流路を形成する中空耐火物を設け、この中空耐火物の領域で溶鋼を加熱することが好ましい。   Therefore, a dam that divides (independently arranges) the hot water receiving portion and the hot water discharge portion is erected inside the tundish, and a molten steel channel that communicates the hot water receiving portion and the hot water discharge portion with this weir. It is preferable to provide a hollow refractory to be formed and heat the molten steel in the region of the hollow refractory.

以上のことから、本発明者らは、本発明に係る高清浄鋼の製造方法に想到した。
即ち、図1に示すように、本発明の一実施の形態に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った(転炉で処理した)溶鋼を、少なくとも出鋼工程と真空脱ガス工程で順次処理して溶製した後、連続鋳造工程でタンディッシュ10に注湯して連続鋳造するに際し、真空脱ガス工程による脱炭処理前ではなく脱炭処理後の溶鋼に金属アルミニウムを添加する方法である。
以下、詳しく説明する。
From the above, the present inventors have conceived the method for producing highly clean steel according to the present invention.
That is, as shown in FIG. 1, the method for producing a highly clean steel according to an embodiment of the present invention performs a primary refining (processed in a converter) that has been subjected to primary refining by blowing acid decarburization under atmospheric pressure. At least in the steelmaking process and the vacuum degassing process, the steel is cast and melted at the same time, and then poured into the tundish 10 in the continuous casting process to perform continuous casting, not before the decarburizing process in the vacuum degassing process. This is a method of adding metallic aluminum to the later molten steel.
This will be described in detail below.

一次精錬を行った溶鋼を、出鋼工程で、取鍋へ供給する。
転炉吹錬等の一次精錬直後では、一般に溶鋼の溶存酸素濃度が600〜900ppm程度と高く、この状態で金属アルミニウムの添加による脱酸処理を行うと、極めて多量の微細なアルミナが生成することとなる。この生成した微細なアルミナの一部は、前記したように、時間経過と共に凝集合体して粗大化し、浮上除去されるものもあるが、鋳造までの限られた時間内に、全ての介在物、特に20μm以下クラスの介在物を、完全に浮上除去させることは事実上不可能である。
The molten steel that has undergone primary refining is supplied to the ladle in the steelmaking process.
Immediately after primary refining, such as converter blowing, the dissolved oxygen concentration of molten steel is generally as high as about 600-900 ppm, and if a deoxidation treatment is performed by adding metallic aluminum in this state, a very large amount of fine alumina is produced. It becomes. As described above, some of the fine alumina thus produced is aggregated and coalesced with the passage of time to become coarse and lifted and removed, but within a limited time until casting, all inclusions, In particular, it is practically impossible to completely lift and remove inclusions of a class of 20 μm or less.

アルミナ生成量は、脱酸対象となる溶存酸素濃度と金属アルミニウムの添加量に支配される。即ち、脱酸処理前の溶存酸素濃度を下げた上で、金属アルミニウムの添加量を低減し、溶存酸素以外(スラグ中のFeOやMnO)の酸素によるアルミニウム酸化(スラグなど)を抑制することが、極めて重要である。
そこで、まず、一次精錬終了後の溶存酸素濃度が高い状態の溶鋼に対し、介在物生成の起こり得ない脱酸元素である炭素成分を溶鋼に(出鋼工程と真空脱ガス工程の間で)添加する(加炭処理)。次に、炭素成分が添加された取鍋内の溶鋼を、真空脱ガス(真空下での脱ガス処理)工程で撹拌しながら脱炭処理(脱酸処理)を行う。
これにより、溶鋼の溶存酸素濃度を、例えば、50〜200ppm程度まで減少できる。
The amount of alumina produced is governed by the concentration of dissolved oxygen to be deoxidized and the amount of metal aluminum added. That is, reducing the dissolved oxygen concentration before deoxidation treatment, reducing the amount of metallic aluminum added, and suppressing aluminum oxidation (such as slag) by oxygen other than dissolved oxygen (FeO and MnO in slag). Is extremely important.
Therefore, for the molten steel in a state where the dissolved oxygen concentration is high after the end of primary refining, the carbon component, which is a deoxidizing element that cannot generate inclusions, is introduced into the molten steel (between the steelmaking process and the vacuum degassing process). Add (carburizing treatment). Next, decarburization treatment (deoxidation treatment) is performed while stirring the molten steel in the ladle to which the carbon component has been added in a vacuum degassing (degassing treatment under vacuum) step.
Thereby, the dissolved oxygen concentration of molten steel can be reduced to about 50-200 ppm, for example.

そして、上記した溶存酸素濃度を低下させた脱炭処理後の溶鋼に金属アルミニウムを添加し、この金属アルミニウムが添加された溶鋼を3分以上12分以下(好ましくは、下限を4分、上限を10分)の範囲で撹拌処理する。
溶鋼への金属アルミニウムの添加量は、アルミナ生成量の減少につなげるため少なくすることが好ましく、溶鋼中の溶存酸素量に応じて、例えば、溶鋼1トンあたり0.1〜2.4kg程度添加するのがよい。
また、溶鋼の撹拌処理には、取鍋の底部からAr(アルゴン)などの不活性ガスを吹込むガス撹拌(バブリング)や、RHを用いた環流撹拌を使用できる。なお、RHを用いて環流撹拌する場合は、真空度が133〜400×10Pa(1〜300Torr)、好ましくは133×10〜400×10Pa(100〜300Torr)の低真空度で撹拌するとよい。また、取鍋での操業条件(ガス撹拌の撹拌力)は、上記した脱炭処理を行う場合と同様、あるいは、脱炭処理時より低流量(例えば、脱炭処理時のガス流量の0.3倍以上1.0倍未満)でよい。
Then, metallic aluminum is added to the molten steel after decarburization treatment in which the dissolved oxygen concentration is reduced, and the molten steel to which the metallic aluminum is added is added for 3 minutes to 12 minutes (preferably, the lower limit is 4 minutes, and the upper limit is 10 minutes).
The amount of metallic aluminum added to the molten steel is preferably reduced in order to reduce the amount of alumina produced. Depending on the amount of dissolved oxygen in the molten steel, for example, about 0.1 to 2.4 kg is added per ton of molten steel. It is good.
Moreover, the gas stirring (bubbling) which blows inactive gas, such as Ar (argon), and the reflux stirring using RH can be used for the stirring process of molten steel. In the case of stirred refluxing with RH, the vacuum degree of 133~400 × 10 2 Pa (1~300Torr) , preferably at a low vacuum of 133 × 10 2 ~400 × 10 2 Pa (100~300Torr) It is good to stir. In addition, the operating conditions (stirring power of gas stirring) in the ladle are the same as in the case of performing the above-described decarburizing process, or a lower flow rate (for example, 0. 3 times or more and less than 1.0 times).

ここで、撹拌処理の時間(撹拌時間)が3分未満の場合、前記した撹拌の作用効果が顕著に得られない。一方、撹拌時間の上限である12分は、上記した撹拌処理の方法の1つである取鍋でのガス撹拌に基づいて決定した。
RHでの環流撹拌では、12分を超えて撹拌処理を行ってもよいが、取鍋でのガス撹拌では、撹拌時間を長くすることで溶鋼の温度低下が大きくなり、新たなアルミナ介在物粒子が生成し易くなる。これは、前記の溶鋼の温度低下に伴う「2Al+3→Al」反応の溶解度積が低下することに起因する。
そこで、上記した撹拌処理の方法のうち、温度低下による影響を受ける取鍋でのガス撹拌を考慮して、撹拌時間の上限を決定した。
これにより、溶鋼中に生成した小さなアルミナ介在物の凝集合体の効果を促進できる。
Here, when the time (stirring time) of the stirring treatment is less than 3 minutes, the above-described action and effect of stirring cannot be remarkably obtained. On the other hand, 12 minutes, which is the upper limit of the stirring time, was determined based on gas stirring in a ladle, which is one of the methods of stirring described above.
In the reflux stirring at RH, the stirring treatment may be performed for more than 12 minutes. However, in the gas stirring in the ladle, the temperature drop of the molten steel increases by increasing the stirring time, and new alumina inclusion particles Becomes easier to generate. This is due to a decrease in the solubility product of the “2 Al +3 O → Al 2 O 3 ” reaction accompanying the temperature drop of the molten steel.
Therefore, the upper limit of the stirring time was determined in consideration of the gas stirring in the ladle that is affected by the temperature drop among the stirring treatment methods described above.
Thereby, the effect of the aggregation coalescence of the small alumina inclusion produced | generated in molten steel can be accelerated | stimulated.

続いて、金属アルミニウムの添加後に撹拌処理した溶鋼を、溶鋼鍋11を用い、ロングノズル12を介してタンディッシュ10に注湯する。
タンディッシュ10は、その内部が堰13により、溶鋼鍋11からロングノズル12を介して溶鋼を受け入れる受湯部14と、この溶鋼を連続鋳造する鋳型(図示しない)に注入する排湯部15とに分割されている。なお、排湯部15の底部には浸漬ノズル16が設けられ、排湯部15内の溶鋼を浸漬ノズル16を介して鋳型に注入する構成となっている。
受湯部14と排湯部15を分割する堰13には、この受湯部14と排湯部15を連通する溶鋼流路17を形成する中空耐火物18が設けられている。この中空耐火物18は、受湯部14側の開口部19から溶鋼を受け、この溶鋼を排湯部15側の開口部20から排湯部15へ排出するものである。この中空耐火物18内(溶鋼流路17)を流れる溶鋼は、例えば、前記した特許文献3、4に記載の誘導加熱装置(ここでは、誘導加熱コイル21)によって加熱することもできる。
Subsequently, the molten steel stirred after the addition of metallic aluminum is poured into the tundish 10 through the long nozzle 12 using the molten steel pan 11.
As for the tundish 10, the hot water receiving part 14 which receives molten steel from the molten steel pan 11 via the long nozzle 12 by the weir 13 inside, and the hot water discharging part 15 which inject | pours into the casting_mold | template (not shown) which casts this molten steel, It is divided into In addition, the immersion nozzle 16 is provided in the bottom part of the hot-water part 15, and it has the structure which inject | pours the molten steel in the hot-water part 15 into a casting_mold | template via the immersion nozzle 16.
The weir 13 that divides the hot water receiving portion 14 and the hot water discharge portion 15 is provided with a hollow refractory 18 that forms a molten steel channel 17 that communicates the hot water receiving portion 14 and the hot water discharge portion 15. The hollow refractory 18 receives molten steel from the opening 19 on the hot water receiving part 14 side, and discharges the molten steel from the opening 20 on the hot water discharging part 15 side to the hot water discharging part 15. The molten steel flowing in the hollow refractory 18 (molten steel flow path 17) can be heated by, for example, the induction heating device (here, the induction heating coil 21) described in Patent Documents 3 and 4 described above.

なお、連続鋳造終了後に、受湯部14に溶鋼が残留することを防止するため、中空耐火物18(溶鋼流路17)の受湯部14側に位置する開口部19(開口部19の下端)の受湯部14の底面22からの高さ位置を、受湯部14側の溶鋼深さ(浴深)Hの0.2倍(0.2×H)以下にしている(下限は、例えば0倍(0×H)、即ち開口部19が受湯部14の底面22に接する位置)。
ここで、堰13に設ける中空耐火物18(溶鋼流路17)の数は、例えば、鋳造条件に応じて、1個でもよく、また、2個以上の複数個でもよい。なお、中空耐火物の数が複数個の場合は、全ての中空耐火物の受湯部側に位置する開口部の受湯部の底面からの高さ位置が、上記した条件を満足するように調整する。この中空耐火物18(溶鋼流路17)の長さ(堰13の厚み)は、例えば、500〜1500mm程度である。
そして、堰13と中空耐火物18は、いずれも耐火物で構成されているが、使用用途に応じて、同一材質で構成してもよく、また、異なる材質で構成してもよい。
更に、中空耐火物18(溶鋼流路17)は、受湯部14から排湯部15へかけて、下方に向けて傾斜させているが、水平でもよい。また、排湯部15の底面23の深さ位置は、受湯部14の底面22の深さ位置よりも深くしているが、同一の深さでもよい。
なお、溶鋼流路は、中空耐火物によって形成することに限定されるものではなく、例えば、堰に孔を貫通(貫通孔)させることで形成することもできる。
In addition, in order to prevent molten steel remaining in the hot water receiving part 14 after completion | finish of continuous casting, the opening part 19 (lower end of the opening part 19) located in the hot water receiving part 14 side of the hollow refractory 18 (molten steel flow path 17). ) From the bottom surface 22 of the hot water receiving portion 14 is 0.2 times (0.2 × H) or less of the molten steel depth (bath depth) H on the hot water receiving portion 14 side (the lower limit is For example, 0 times (0 × H), that is, the position at which the opening 19 is in contact with the bottom surface 22 of the hot water receiving portion 14).
Here, the number of the hollow refractory 18 (molten steel flow path 17) provided in the weir 13 may be one according to casting conditions, or may be two or more. In addition, when the number of hollow refractories is plural, the height positions from the bottom surface of the hot water receiving portion of the openings located on the hot water receiving portion side of all the hollow refractories are adjusted so as to satisfy the above-described conditions. . The length of the hollow refractory 18 (molten steel channel 17) (the thickness of the weir 13) is, for example, about 500 to 1500 mm.
The weir 13 and the hollow refractory 18 are both made of a refractory, but may be made of the same material or different materials depending on the intended use.
Further, the hollow refractory 18 (molten steel channel 17) is inclined downward from the hot water receiving portion 14 to the hot water discharging portion 15, but may be horizontal. Moreover, although the depth position of the bottom face 23 of the hot water drainage part 15 is made deeper than the depth position of the bottom face 22 of the hot water receiving part 14, it may be the same depth.
In addition, a molten steel flow path is not limited to forming with a hollow refractory, For example, it can also form by penetrating a hole (through-hole) in a weir.

前記したように、タンディッシュ10内で溶鋼の上昇流を有効に作用させるには、タンディッシュ10の内部に中空耐火物18が設けられた堰13を立設し、受湯部14と排湯部15の空間(チャンバー)を明確に分割する必要がある(タンディッシュ10(受湯部14と排湯部15)内の溶鋼の湯面位置が、堰13の上面より低くなっている)。
一般に、排湯部15の表層の溶鋼温度はタンディッシュ10内で低下するため、受湯部14の溶鋼温度に比べて排湯部15の表層の溶鋼温度は低くなり、排湯部15の深さ方向で溶鋼に温度差が生じる。このため、中空耐火物18から排湯部15へ排出される溶鋼は、中空耐火物18内で誘導加熱されない場合であっても、上記した温度差によって溶鋼の対流(上昇流)が生じ、この対流によって、中空耐火物18から排湯部15へ排出される溶鋼中の介在物が浮上除去される。
As described above, in order to effectively cause the upward flow of molten steel to act in the tundish 10, the weir 13 provided with the hollow refractory 18 is provided inside the tundish 10, and the hot water receiving portion 14 and the waste hot water are provided. It is necessary to clearly divide the space (chamber) of the portion 15 (the molten steel surface position in the tundish 10 (the hot water receiving portion 14 and the hot water discharging portion 15) is lower than the upper surface of the weir 13).
In general, since the molten steel temperature of the surface layer of the hot water discharge portion 15 is lowered in the tundish 10, the molten steel temperature of the surface layer of the hot water discharge portion 15 is lower than the molten steel temperature of the hot water receiving portion 14, and the depth of the hot water discharge portion 15 is increased. A temperature difference occurs in the molten steel in the vertical direction. For this reason, even if the molten steel discharged from the hollow refractory 18 to the hot water discharge portion 15 is not induction-heated in the hollow refractory 18, the convection (upflow) of the molten steel occurs due to the temperature difference described above. Due to the convection, inclusions in the molten steel discharged from the hollow refractory 18 to the hot water discharge section 15 are levitated and removed.

しかし、タンディッシュ10内で上昇流を形成させても、浮上除去可能な介在物粒径は30〜50μm程度以上の粗大径のみであり、5〜20μm程度の小径介在物の浮上除去は困難である。
また、鋳造時間が長くなってタンディッシュ10内で溶鋼温度が低下すると、溶鋼粘性の上昇に起因して介在物の浮力が弱まり、介在物の浮上効率の悪化を招くと共に、アルミナ生成反応(2Al+3→Al)の溶解度積が低下し、20μm未満の微細なAlが新たに生成(二次生成)することが懸念される。
However, even if an upward flow is formed in the tundish 10, the inclusion particle size that can be lifted and removed is only a coarse diameter of about 30 to 50 μm or more, and it is difficult to float and remove a small diameter inclusion of about 5 to 20 μm. is there.
Further, when the molten steel temperature is lowered in the tundish 10 due to the longer casting time, the buoyancy of the inclusions is weakened due to the increase in the viscosity of the molten steel, and the floating efficiency of the inclusions is deteriorated. There is a concern that the solubility product of ( Al +3 O → Al 2 O 3 ) is lowered, and fine Al 2 O 3 of less than 20 μm is newly generated (secondary generation).

従って、前記したように、加炭及び減圧処理により添加する脱酸アルミニウム量を低減することにより、生成するAl量を抑制したうえで、その後の溶鋼撹拌によって微細なAlの凝集合体を進めて粗大化させると共に、タンディッシュ内での新たな微細Alの生成を抑制しつつ、連続鋳造を行うことが重要である。
更に、前記した介在物の浮上を促進し、新たな微細Alの生成を抑制するためには、タンディッシュ内に受湯部14と排湯部15に区切る堰13を設け、この受湯部14と排湯部15を、堰13に設けられた中空耐火物18で連通させ、この中空耐火物18内の溶鋼を誘導加熱することが望ましい。
Accordingly, as described above, by reducing the amount of deoxidized aluminum to be added by carburizing and decompression treatment, the amount of Al 2 O 3 to be generated is suppressed, and then the fine Al 2 O 3 is stirred by molten steel. It is important to perform continuous casting while agglomerating and agglomerating to increase the size and suppressing generation of new fine Al 2 O 3 in the tundish.
Further, in order to promote the floating of the inclusions and suppress the formation of new fine Al 2 O 3 , a weir 13 is provided in the tundish to divide the hot water receiving part 14 and the hot water discharging part 15. It is desirable that the hot water part 14 and the hot water discharge part 15 are communicated with each other by a hollow refractory 18 provided in the weir 13 and the molten steel in the hollow refractory 18 is induction-heated.

これにより、タンディッシュ10の排湯部15内の溶鋼に対流を発生させ、凝集合体した30〜50μm程度の粒子径を有するアルミナ介在物を効率よく浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。更に、中空耐火物18内の溶鋼を誘導加熱して溶鋼の温度低下を回避することにより、排湯部15における新たな微細アルミナの生成を抑制することができる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減した鋼材(鋳片)を製造できる。特に、この鋼材は、介在物の含有量規制に対して最も要求の厳しい飲料缶用鋼板などの製造時においても、介在物に起因する製品不合(製品不良)を著しく低減できることが可能となる。
As a result, convection is generated in the molten steel in the hot water discharge section 15 of the tundish 10, and the alumina inclusions having a particle diameter of about 30 to 50 μm that are aggregated and coalesced are efficiently levitated, and this is made into slag on the molten metal surface. The effect of capturing is obtained. Furthermore, the induction of the molten steel in the hollow refractory 18 to avoid a temperature drop of the molten steel can suppress the generation of new fine alumina in the hot water discharge section 15.
Therefore, by continuously casting the obtained molten steel, the number of alumina inclusions can be reduced as compared with the prior art, and in particular, a steel material (slab) with a reduced number of alumina inclusions having a particle size of 20 μm or less can be produced. In particular, this steel material can remarkably reduce product incompatibility (product failure) caused by inclusions even during the production of steel plates for beverage cans, etc., which are the most demanding for inclusion content regulation.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として各条件を変更し、鋳片の清浄性の評価を行った。
350トンの転炉にて一次精錬を行った後、取鍋内に出鋼した溶鋼(炭素濃度:0.037質量%、溶存酸素濃度:700ppm)に、ピッチコークス(炭素成分)添加による加炭処理を施した。その後、一本足の大径管の浸漬と取鍋での底吹きのガス撹拌による脱ガス処理(脱炭処理)を行った。
そして、取鍋内の溶鋼に金属アルミニウムを、溶鋼1トンあたり0.1〜2.4kg添加し、更に3〜14分間のガス撹拌(撹拌処理)を施した後、撹拌処理後の取鍋を保温処置(保温材投入等)して速やかに連続鋳造機へ搬送し、撹拌処理後の溶鋼をタンディッシュに注湯して、連続鋳造を実施した。このタンディッシュは、受湯部と排湯部が堰によって区切られ、この受湯部と排湯部が堰に設けられた中空耐火物によって連通(受湯部内の溶鋼は中空耐火物からのみ排湯部へ供給)され、この中空耐火物内の溶鋼を誘導加熱可能な構造となっている。なお、中空耐火物の受湯部側の開口部の下端の、受湯部の底面からの高さ位置は、受湯部側の浴深Hの0.2倍(0.2×H)の位置とした。
試験条件とその結果及び評価を、表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, each condition was changed based on the following method, and the cleanliness of the slab was evaluated.
Carburizing by adding pitch coke (carbon component) to the molten steel (carbon concentration: 0.037 mass%, dissolved oxygen concentration: 700 ppm) after steelmaking in the ladle after primary refining in a 350-ton converter Treated. Thereafter, degassing treatment (decarburization treatment) was performed by immersion of a single-legged large-diameter tube and gas stirring of bottom blowing in a ladle.
And after adding 0.1-2.4 kg of metal aluminum to the molten steel in the ladle, and further performing gas stirring (stirring treatment) for 3-14 minutes, the ladle after the stirring treatment is added. The heat treatment (heat insulation material etc.) was carried out and it conveyed rapidly to the continuous casting machine, and the molten steel after the stirring treatment was poured into the tundish to carry out continuous casting. In this tundish, the hot water receiving part and the hot water discharging part are separated by a weir, and the hot water receiving part and the hot water discharging part are communicated by a hollow refractory provided in the weir (the molten steel in the hot water receiving part is discharged only from the hollow refractory. The molten steel in the hollow refractory can be heated by induction. In addition, the height position from the bottom face of the hot water receiving portion of the lower end of the opening on the hot water receiving portion side of the hollow refractory is 0.2 times (0.2 × H) the bath depth H on the hot water receiving portion side. The position.
Table 1 shows the test conditions, the results, and the evaluation.

Figure 0006443200
Figure 0006443200

表1において、「加炭後」の欄には、ピッチコークスを添加した後の溶鋼の炭素濃度([C](%))と溶存酸素濃度([O](ppm))を記載し、「減圧C脱酸後」の欄には、脱炭処理を行った後の溶鋼の炭素濃度([C](%))と溶存酸素濃度([O](ppm))を記載している。
また、「取鍋処理後T.[O]」の欄には、「取鍋撹拌時間」の欄の時間でガス撹拌した後の溶鋼のトータル酸素濃度(T.[O](ppm))を記載している。
そして、「誘導加熱の有無」とは、中空耐火物内を流れる溶鋼に対する、上記した誘導加熱の有無を記載しており、「無」は前記した誘導加熱可能なタンディッシュを用いて溶鋼を誘導加熱しなかった場合を指す。なお、「中空耐火物出側の温度増加」とは、中空耐火物内を流れる溶鋼を誘導加熱によって加熱した際の、受湯部内の溶鋼に対する排湯部内(中空耐火物出側)の溶鋼の上昇温度(ΔT)を意味する。
更に、「鋳片」の欄のうち、「T.[O](ppm)」の欄には、連続鋳造を行った後の鋳片のトータル酸素濃度を記載し、「介在物個数」の欄には、代表位置から切り出したサンプル(25mm角)を光学顕微鏡で調査した結果(アルミナ介在物の個数)を記載している。
なお、「評価」は、「介在物個数」の結果が1.00(個/cm)以下の場合を清浄性が良好(○)と判断し、1.00(個/cm)超の場合を清浄性が悪い(×)と判断した。
In Table 1, the “after carburizing” column describes the carbon concentration ([C] (%)) and dissolved oxygen concentration ([O] (ppm)) of the molten steel after adding pitch coke, The column “after deoxidation under reduced pressure C” describes the carbon concentration ([C] (%)) and the dissolved oxygen concentration ([O] (ppm)) of the molten steel after the decarburization treatment.
In the “T. [O] after ladle treatment” column, the total oxygen concentration (T. [O] (ppm)) of the molten steel after gas stirring for the time of the “ladder stirring time” column is shown. It is described.
“Presence / absence of induction heating” describes the presence / absence of induction heating described above with respect to the molten steel flowing in the hollow refractory, and “none” indicates induction of molten steel using the above-described induction-heatable tundish. This refers to the case where heating was not performed. The “temperature increase on the outlet side of the hollow refractory” means that the molten steel flowing in the hollow refractory is heated by induction heating in the molten steel in the hot water receiving part (hollow refractory outlet side) of the molten steel in the hot water receiving part. It means elevated temperature (ΔT).
Further, in the “cast slab” column, the “T. [O] (ppm)” column describes the total oxygen concentration of the slab after continuous casting, and the “inclusion number” column. Shows the results (number of alumina inclusions) of a sample (25 mm square) cut out from the representative position, which was examined with an optical microscope.
Incidentally, "evaluation" is the "inclusion number" result is determined to 1.00 (pieces / cm 2) or less of the case where good cleanability (○), 1.00 (pieces / cm 2) greater than The case was judged to be poor (×).

表1中の実施例1〜8は、上記したように、脱炭処理前ではなく脱炭処理後に金属アルミニウムを添加した溶鋼を用い、この溶鋼を、適正範囲内の時間(3〜12分の範囲)で撹拌処理した後、適正範囲(0.2×H)に位置させた中空耐火物を備えるタンディッシュへ注湯して、連続鋳造した結果である。即ち、脱炭処理前の金属アルミニウムの添加量は0kgである。
この場合、金属アルミニウムの添加時期によるアルミナ介在物の生成抑制効果、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果、及び、タンディッシュの排湯部内の対流による溶鋼中のアルミナ介在物の浮上除去効果が得られた。
その結果、表1に示すように、鋳片のトータル酸素濃度を低減できると共に、鋳片中に存在するアルミナ介在物の個数を低減でき、鋳片の清浄性を良好にできた(評価:○)。
As described above, Examples 1 to 8 in Table 1 use molten steel to which metallic aluminum is added after decarburization treatment, not before decarburization treatment, and this molten steel is used for a time within an appropriate range (3 to 12 minutes). This is a result of continuous casting after pouring into a tundish provided with a hollow refractory placed in an appropriate range (0.2 × H) after stirring in the range. That is, the amount of metallic aluminum added before decarburization is 0 kg.
In this case, the effect of suppressing the formation of alumina inclusions depending on the timing of addition of metallic aluminum, the effect of agglomeration and coalescence of small alumina inclusions by the stirring treatment of the molten steel, and the floating of alumina inclusions in the molten steel by convection in the tundish drain A removal effect was obtained.
As a result, as shown in Table 1, the total oxygen concentration of the slab could be reduced, the number of alumina inclusions present in the slab could be reduced, and the cleanliness of the slab could be improved (evaluation: ○ ).

特に、実施例6〜8は、中空耐火物内を流れる溶鋼に対する、誘導加熱の影響を検討した結果であるが、誘導加熱を行っていない実施例8よりも、誘導加熱を行った実施例6、7の方が、鋳片中に存在するアルミナ介在物の個数を低減できた。また、誘導加熱による中空耐火物出側の溶鋼温度を、実施例7のように、実施例6よりも上昇させることで、鋳片中に存在するアルミナ介在物の個数を、更に低減できた。
これは、溶鋼の誘導加熱により、タンディッシュの排湯部内の対流効果と、排湯部における新たな微細アルミナ生成の抑制効果が、増大したことによる。
In particular, Examples 6 to 8 are the results of studying the influence of induction heating on the molten steel flowing in the hollow refractory, but Example 6 in which induction heating was performed rather than Example 8 in which induction heating was not performed. 7 was able to reduce the number of alumina inclusions present in the slab. Moreover, by raising the molten steel temperature on the outlet side of the hollow refractory material by induction heating as compared with Example 6 as in Example 7, the number of alumina inclusions present in the slab could be further reduced.
This is because the induction effect of the molten steel increased the convection effect in the tundish hot water portion and the effect of suppressing the formation of new fine alumina in the hot water portion.

一方、比較例9は、実施例1〜3の条件において、一次精錬後の溶鋼に、加炭処理を施すことなく脱ガス処理を行った場合の結果である。
この場合、加炭処理を施さなかったため、脱ガス処理後の溶鋼に添加する金属アルミニウム量を多くしなければならず、アルミナ介在物が多く生成し、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果が十分に得られなかった。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
On the other hand, the comparative example 9 is a result at the time of performing a degassing process, without giving a carburizing process to the molten steel after primary refining on the conditions of Examples 1-3.
In this case, since the carburizing treatment was not performed, the amount of metallic aluminum to be added to the molten steel after the degassing treatment has to be increased, so that a large amount of alumina inclusions are formed, and agglomeration of small alumina inclusions by the stirring treatment of the molten steel The coalescence effect was not sufficiently obtained.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

比較例10、11は、実施例1〜5の条件において、金属アルミニウムを添加した溶鋼の撹拌時間を、適正範囲外の時間(比較例10:2分、比較例11:14分)とした場合の結果である。
この場合、比較例10においては、撹拌時間が不足して撹拌処理による小さなアルミナ介在物の凝集合体効果が十分に得られず、また、比較例11においては、撹拌時間の長期化に伴い溶鋼温度が低下して多くのアルミナ介在物が生成した。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
In Comparative Examples 10 and 11, in the conditions of Examples 1 to 5, the stirring time of the molten steel to which metallic aluminum was added was set to a time outside the appropriate range (Comparative Example 10: 2 minutes, Comparative Example 11: 14 minutes). Is the result of
In this case, in Comparative Example 10, the agitation time is insufficient and the effect of agglomeration and coalescence of small alumina inclusions by the agitation treatment cannot be sufficiently obtained. Decreased and many alumina inclusions were produced.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

比較例12は、実施例1〜3の条件において、金属アルミニウムの添加を、脱炭処理後ではなく脱炭処理前の溶鋼に行った場合の結果である(特許文献2と同様の方法)。
この場合、前記したように、スラグ中の酸化性成分が金属アルミニウムで還元され、アルミナが多く生成したため、溶鋼の撹拌処理によるアルミナ介在物の凝集合体効果が十分に得られなかった。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
The comparative example 12 is a result at the time of performing addition of metal aluminum to the molten steel before a decarburization process instead of after a decarburization process on the conditions of Examples 1-3 (the same method as patent document 2).
In this case, as described above, since the oxidizing component in the slag was reduced with metallic aluminum and a large amount of alumina was produced, the effect of agglomeration and coalescence of alumina inclusions by the stirring treatment of the molten steel could not be obtained sufficiently.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

比較例13は、実施例1〜3の条件において、金属アルミニウムを添加した溶鋼を撹拌処理しなかった場合の結果である。
この場合、撹拌処理による小さなアルミナ介在物の凝集合体効果が得られず、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
The comparative example 13 is a result at the time of not stirring the molten steel which added metal aluminum in the conditions of Examples 1-3.
In this case, the effect of agglomeration and coalescence of small alumina inclusions by the stirring treatment was not obtained, and as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated. (Evaluation: x).

従来法は、実施例1〜3の条件において、一次精錬後の溶鋼に、加炭処理を施すことなく、また、脱ガス処理を行うことなく、金属アルミニウムを添加した場合の結果である(即ち、金属アルミニウムによる脱酸のみ)。
この場合、加炭処理と脱ガス処理を施さなかったため、溶鋼に添加する金属アルミニウム量が多くなり、アルミナ介在物が多く生成し、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果が十分に得られなかった。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
The conventional method is a result of adding metallic aluminum to the molten steel after primary refining without performing a carburizing process or a degassing process under the conditions of Examples 1 to 3 (that is, Deoxidation with metallic aluminum only).
In this case, since the carburizing treatment and degassing treatment were not performed, the amount of metallic aluminum added to the molten steel increased, a large amount of alumina inclusions were produced, and the agglomeration and coalescence effect of small alumina inclusions due to the stirring treatment of the molten steel was sufficient. It was not obtained.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

ここで、上記した従来法と実施例2について、取鍋での撹拌処理終了時における溶鋼中のアルミナ介在物の粒径頻度分布を調査した結果を図2に、連続鋳造した鋳片中のアルミナ介在物の粒径個数分布を調査した結果を図3に、それぞれ示す。なお、図2の縦軸は、全てのアルミナ介在物(粒径範囲が5μm以上20μm以下、20μm超30μm以下、30μm超50μm以下、及び、50μm超)の合計個数を100%としたときの各粒径範囲のアルミナ介在物の個数割合を示している。   Here, with respect to the above-described conventional method and Example 2, the results of investigating the particle size frequency distribution of alumina inclusions in the molten steel at the end of the stirring treatment in the ladle are shown in FIG. The results of investigating the particle number distribution of inclusions are shown in FIG. The vertical axis in FIG. 2 represents each of the total number of all alumina inclusions (particle size range 5 μm to 20 μm, 20 μm to 30 μm, 30 μm to 50 μm, and 50 μm) as 100%. The number ratio of alumina inclusions in the particle size range is shown.

図2に示すように、アルミナ介在物の粒径範囲が、5μm以上20μm以下と20μm超30μm以下の個数割合はともに、実施例2が従来法より低くなっているが、30μm超50μm以下の個数割合は、実施例2が従来法より高くなっている。
即ち、5μm以上20μm以下と20μm超30μm以下の個数割合の、実施例2の従来法に対する減少分が、30μm超50μm以下の個数割合の、実施例2の従来法に対する増加分に相当する。これは、実施例2が、金属アルミニウムの添加前に加炭処理と脱ガス処理を行っているため、溶鋼中のアルミナ介在物量を少なくでき、その結果、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果が得られたことに起因するものと考えられる。
As shown in FIG. 2, the particle size range of the alumina inclusions is 5 μm or more and 20 μm or less and the number ratio of 20 μm or more and 30 μm or less is lower in Example 2 than the conventional method, but the number of particles exceeding 30 μm and 50 μm or less. The ratio is higher in Example 2 than in the conventional method.
In other words, the decrease in the number ratio of 5 μm to 20 μm and more than 20 μm to 30 μm corresponds to the increase in the number ratio over 30 μm and 50 μm or less compared to the conventional method in Example 2. This is because Example 2 performs carburizing treatment and degassing treatment before the addition of metallic aluminum, so that the amount of alumina inclusions in the molten steel can be reduced. As a result, small alumina inclusions due to the stirring treatment of the molten steel can be reduced. This is considered due to the fact that the agglomeration effect was obtained.

そして、上記した溶鋼を、中空耐火物が設けられた堰を有するタンディッシュに注湯し、連続鋳造することで、実施例2については、タンディッシュの排湯部内の対流効果が得られ、図3に示すように、アルミナ介在物の粒径範囲が30μm超50μm以下の検出個数を、従来法よりも低くできた。
従って、本発明の高清浄鋼の製造方法を用いることで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できることを確認できた。
And by pouring the above-mentioned molten steel into a tundish having a weir provided with a hollow refractory and continuously casting, for Example 2, the convection effect in the hot water discharge part of the tundish is obtained. As shown in FIG. 3, the number of detected particles with an alumina inclusion particle size range of more than 30 μm and less than 50 μm could be made lower than in the conventional method.
Therefore, it was confirmed that the number of alumina inclusions can be reduced by using the method for producing the high clean steel of the present invention, and in particular, the number of alumina inclusions having a particle size of 20 μm or less can be reduced.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、一次精錬を行った溶鋼を、出鋼工程と真空脱ガス工程で順次処理して溶製した後、連続鋳造工程で連続鋳造した場合について説明したが、連続鋳造工程前に、必要に応じて、出鋼工程と真空脱ガス工程以外の工程を行ってもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the manufacturing method of the high clean steel of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Further, in the above embodiment, the case where the molten steel that has been subjected to primary refining is sequentially processed in the steelmaking process and the vacuum degassing process to be melted and then continuously cast in the continuous casting process has been described. Before the process, a process other than the steel output process and the vacuum degassing process may be performed as necessary.

10:タンディッシュ、11:溶鋼鍋、12:ロングノズル、13:堰、14:受湯部、15:排湯部、16:浸漬ノズル、17:溶鋼流路、18:中空耐火物、19、20:開口部、21:誘導加熱コイル、22、23:底面 10: Tundish, 11: Molten steel pan, 12: Long nozzle, 13: Weir, 14: Hot water receiving part, 15: Hot water discharging part, 16: Immersion nozzle, 17: Molten steel flow path, 18: Hollow refractory, 19, 20: opening, 21: induction heating coil, 22, 23: bottom

Claims (2)

大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程と真空脱ガス工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造するに際し、前記真空脱ガス工程による脱炭処理前ではなく該脱炭処理後の溶鋼に金属アルミニウムを添加する高清浄鋼の製造方法であって、
前記出鋼工程と前記真空脱ガス工程の間で炭素成分を溶鋼に添加し、該溶鋼を前記真空脱ガス工程で撹拌しながら前記脱炭処理し、該脱炭処理後に前記金属アルミニウムが添加された溶鋼を3分以上12分以下撹拌処理し、
溶鋼を受け入れる受湯部と該溶鋼を連続鋳造する鋳型に注入する排湯部とに区切る堰が内部に設けられ、前記受湯部と前記排湯部を連通する1又は複数の溶鋼流路が前記堰に形成され、しかも、前記溶鋼流路の前記受湯部側に位置する開口部の該受湯部の底面からの高さ位置を、前記受湯部側の溶鋼深さの0.2倍以下とした前記タンディッシュに、前記金属アルミニウムの添加後に前記撹拌処理した溶鋼を注湯することを特徴とする高清浄鋼の製造方法。
Molten steel that has been subjected to primary refining that is blown acid decarburized under atmospheric pressure is processed at least sequentially in the steelmaking process and vacuum degassing process, and then poured into a tundish in the continuous casting process for continuous casting. In this case, it is a manufacturing method of high clean steel in which metallic aluminum is added to the molten steel after the decarburization treatment instead of before the decarburization treatment by the vacuum degassing step,
A carbon component is added to the molten steel between the steeling step and the vacuum degassing step, the decarburization treatment is performed while stirring the molten steel in the vacuum degassing step, and the metal aluminum is added after the decarburization treatment. The molten steel was stirred for 3 minutes to 12 minutes,
A dam that divides the molten steel into a hot water receiving portion that receives molten steel and a hot water discharging portion that is poured into a mold for continuously casting the molten steel is provided inside, and one or a plurality of molten steel flow paths communicating the hot water receiving portion and the hot water discharging portion. The height position from the bottom surface of the hot water receiving portion of the opening formed on the weir and located on the hot water receiving portion side of the molten steel flow path is 0.2 of the molten steel depth on the hot water receiving portion side. A method for producing highly clean steel, characterized by pouring the agitated molten steel into the tundish after the addition of the metallic aluminum to the tundish that is less than double.
請求項1記載の高清浄鋼の製造方法において、前記溶鋼流路を流れる溶鋼を誘導加熱することを特徴とする高清浄鋼の製造方法。   2. The method for producing high-clean steel according to claim 1, wherein the molten steel flowing through the molten steel flow path is induction-heated.
JP2015085957A 2015-04-20 2015-04-20 Manufacturing method of high clean steel Active JP6443200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085957A JP6443200B2 (en) 2015-04-20 2015-04-20 Manufacturing method of high clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085957A JP6443200B2 (en) 2015-04-20 2015-04-20 Manufacturing method of high clean steel

Publications (2)

Publication Number Publication Date
JP2016204693A JP2016204693A (en) 2016-12-08
JP6443200B2 true JP6443200B2 (en) 2018-12-26

Family

ID=57486788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085957A Active JP6443200B2 (en) 2015-04-20 2015-04-20 Manufacturing method of high clean steel

Country Status (1)

Country Link
JP (1) JP6443200B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904132B2 (en) * 2017-07-21 2021-07-14 日本製鉄株式会社 Tandish for continuous casting
JP7035870B2 (en) * 2018-07-17 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel
JP7035871B2 (en) * 2018-07-17 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel
JP7215361B2 (en) * 2019-07-11 2023-01-31 日本製鉄株式会社 Continuous casting method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328794A (en) * 1997-06-06 1998-12-15 Nkk Corp Method for removing inclusion in tundish for continuous casting
JP2004195522A (en) * 2002-12-19 2004-07-15 Nippon Steel Corp Low carbon thin-walled cast steel piece and low carbon steel sheet obtained by twin drum type continuous casting process, and method for manufacturing the same
JP3922181B2 (en) * 2002-12-27 2007-05-30 Jfeスチール株式会社 Melting method of high clean steel
JP5958152B2 (en) * 2012-07-27 2016-07-27 Jfeスチール株式会社 Manufacturing method of high cleanliness steel
US9873150B2 (en) * 2012-09-25 2018-01-23 Baoshan Iron & Steel Co., Ltd. Method and device for continuous thin strip casting
JP6428307B2 (en) * 2015-01-27 2018-11-28 新日鐵住金株式会社 Manufacturing method of high clean steel

Also Published As

Publication number Publication date
JP2016204693A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP6428307B2 (en) Manufacturing method of high clean steel
JP6593233B2 (en) Manufacturing method of high clean steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5904237B2 (en) Melting method of high nitrogen steel
JP7035872B2 (en) Melting method of high-clean steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP6547638B2 (en) Method of manufacturing high purity steel
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP7035873B2 (en) Melting method of high-clean steel
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
KR101258785B1 (en) Manufacturing method of duplex stainless steel
KR102454518B1 (en) Method for producing Ti-containing ultralow-carbon steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP6911590B2 (en) Steel melting method
JP7035870B2 (en) Melting method of high-clean steel
JP7035871B2 (en) Melting method of high-clean steel
JP5096779B2 (en) Method of adding rare earth elements to molten steel
JP2006233254A (en) Method for producing high cleanliness steel
JP3640167B2 (en) Manufacturing method of high cleanliness steel
KR100979023B1 (en) Method for Continuous-Continuous-Casting Molten Steel
JP4062213B2 (en) Method for adjusting the composition of molten steel in an RH degasser
JP4062212B2 (en) Method for refining molten steel with RH degassing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350