JP3893770B2 - Melting method of high clean ultra low carbon steel - Google Patents

Melting method of high clean ultra low carbon steel Download PDF

Info

Publication number
JP3893770B2
JP3893770B2 JP28487698A JP28487698A JP3893770B2 JP 3893770 B2 JP3893770 B2 JP 3893770B2 JP 28487698 A JP28487698 A JP 28487698A JP 28487698 A JP28487698 A JP 28487698A JP 3893770 B2 JP3893770 B2 JP 3893770B2
Authority
JP
Japan
Prior art keywords
slag
molten steel
ladle
steel
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28487698A
Other languages
Japanese (ja)
Other versions
JP2000119732A (en
Inventor
喜美 小松
廣久 中島
秀栄 田中
晶 亀水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28487698A priority Critical patent/JP3893770B2/en
Publication of JP2000119732A publication Critical patent/JP2000119732A/en
Application granted granted Critical
Publication of JP3893770B2 publication Critical patent/JP3893770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
この発明は、非金属介在物が極めて少なく清浄性に優れた溶鋼を製造する方法に関するものであって、転炉等の製鋼炉から出鋼された溶鋼を真空脱ガス装置により脱炭処理し、高清浄極低炭素鋼を溶製する方法に関するものである。特にアルミナ系非金属介在物の少ない高清浄な低炭素溶鋼の溶製方法に関するものである。
【0002】
【従来の技術】
近年、自動車用鋼板を中心とした冷延鋼板の品質に対する需要家の要望が一段と高度になり、これに伴い極低炭素鋼の一層の清浄化が求められている。上記冷延鋼板の清浄化に関しては、特に、鋼中アルミナ系非金属介在物に起因する表面欠陥を極度に低減するための技術開発に努力が払われている。このような極低炭素鋼の高清浄化は通常、製鋼工程及び鋳造工程における製造方法如何により決まる。
【0003】
図2に、従来法による極低炭素鋼の溶製工程例の縦断面概念図を示す。1次精錬炉の転炉1における脱炭反応を主体とする酸化精錬終了後に取鍋2に出鋼する。出鋼中に造滓材として生石灰3を取鍋2に投入する。出鋼中には、転炉1からスラグ4が不可避的に流出する。上記生石灰3は流出スラグと共に新たな成分組成のスラグになり、溶鋼5表面にスラグ4a層を形成する。上記出鋼終了後、取鍋内スラグ4aに、還元剤6として例えばAl滓を添加してスラグ4aの酸化度を下げる、スラグ改質を行なう。次いで、RH真空脱ガス装置7等の取鍋精錬炉等により、減圧下での溶鋼の脱炭処理(C+O→CO)により炭素濃度を所定値まで下げ、次いでAl等脱酸剤添加による溶鋼の脱酸処理により溶鋼中溶解酸素濃度を実質的に0まで下げる。また、真空脱ガス槽8内溶鋼5aへの合金剤添加により溶鋼の成分組成を所定値に調整する。
【0004】
こうして得られた溶鋼を、上表面が溶融スラグで覆われた状態で取鍋内に収容し、取鍋底部の溶鋼流出口から流出させ、タンディッシュを介して連続鋳造機で鋳造し、鋳片を製造する。連続鋳造に要する時間は通常、60分乃至それ以上の長時間である。
【0005】
次に、上述した極低炭素鋼の溶製工程を、上記アルミナ系非金属介在物が溶鋼中に生成・成長し、残留し、そして凝固後の鋳片内部に残留する要因と関連づけて考える。転炉等製鋼炉(いわゆる1次精錬炉)においては、通常、溶鋼の炭素濃度を200ppm以下まで脱炭することは技術的に困難である。従って、極低炭素鋼を溶製するためにC濃度を200ppm以下まで下げようとする場合には、転炉等で一旦精錬された溶鋼を2次精錬炉で処理する必要がある。2次精錬炉としては真空脱ガス装置が用いられる。ここでは、1次精錬炉から出鋼された溶鋼を減圧下に曝すことにより、溶鋼中炭素と溶鋼中溶解酸素との反応:=CO(g)により溶鋼が脱炭処理される。上記真空脱炭反応により溶鋼中C濃度は更に低くなる。次いで、溶鋼中溶解酸素濃度を更に下げるために、Al等の脱酸剤で溶鋼が脱酸処理される。
【0006】
ところで、上記1次精錬炉における脱炭精錬においては通常、溶湯中への酸素ガス吹込み等による酸化精錬が行なわれ、C濃度が所定値まで吹き下げられる。このような酸化精錬後の溶鋼には過剰の酸素が溶解する。また、スラグの酸化度も高くなる。但し、過剰に残存する溶鋼中溶解酸素は上記脱酸処理により十分低くすることができる。例えば、Alによる脱酸処理は、下記(1)式で表わされる脱酸反応式:
Al+3=Al2 3 (s) ------------------(1)
但し、Al:溶鋼中の溶解アルミニウム
:溶鋼中の溶解酸素
により行なわれることが明らかになっている。しかしながら、このAl脱酸により、溶鋼中には多量のAl2 3 介在物が生成する(「脱酸による発生Al2 3 」)。清浄鋼の溶製に当っては、こうして溶鋼中に生成したAl2 3 介在物を、溶鋼系外に分離除去しなければならない。
【0007】
これに対して、1次精錬中に高められたスラグの酸化度は、スラグに極端な酸化度低下のための処理をしない限り十分低くはならない。しかし、溶製工程の操業上支障のない性状を有するスラグを形成させる必要があるので、通常、スラグの酸化度を極端に下げることをしない。その結果、スラグは溶鋼を徐々に酸化する(溶鋼の再酸化)。従って、Al脱酸時に添加された溶鋼中溶解Alがスラグ中の高酸化ポテンシャル酸化物、特に鉄酸化物により酸化されて少量の微細なAl2 3 系介在物の生成が継続する。この溶鋼の再酸化反応によるAl2 3 の生成は例えば、下記(2)式:
Al+3(FeO)=Al2 3 (s)--------------(2)
但し、Al:溶鋼中の溶解アルミニウム
(FeO):スラグ中FeO
で表わされる(「再酸化による発生Al2 3 」)。
【0008】
こうして生成した脱酸による多量の発生Al2 3 だけでなく、再酸化による少量で微細な発生Al2 3 も、高度な清浄性が求められる上記冷延鋼板においては、鋼板の表面欠陥発生の原因として重大な問題となる。従来、このAl2 3 系介在物を無害化し、生成を防止し、そして溶鋼から分離除去する方法として下記技術が開示されている。
【0009】
例えば、特開平3−47910号公報は、1次精錬炉から出鋼された未脱酸溶鋼中へ金属AlとCaO及びCaF2 との結合体を添加し、生成する化合物をCaO−Al2 3 系組成のものにして無害化を図ることを提案している。しかしながら、上記化合物の組成の制御方法等が不明確であり、実操業においてはその成分組成のバラツキを十分抑制することができない。特開平4−346613号公報は、プラズマ加熱技術を導入し、Al2 3 吸収能に優れたスラグ組成に制御することによりスラグの無害化に対して顕著な効果を発揮する方法を開示している。しかしながら、この方法ではトータルコストがかかると共に、設備投資がかかりすぎて問題である。一方、特開平4−88111号公報は、1次精錬炉から未脱酸溶鋼を取鍋に出鋼し、Al滓を還元剤として取鍋内に流入したスラグを改質し、次いで真空脱ガス槽内に流入させたスラグにCaOを添加してスラグのCaO/Al2 3 の重量%比率を、所定値1.6〜2.0の範囲内に制御する方法を開示している。しかしながら、スラグ量の大半は脱ガス槽外の取鍋内に収容されているから、脱ガス槽内にCaOを添加するこの方法では、スラグ全量を十分改質することは困難である。また、真空脱ガス処理中でのCaOの大量使用により溶鋼温度降下や環流管の耐火物損耗等、操業上の支障も発生する。
【0010】
【発明が解決しようとする課題】
上述した各先行技術は、それぞれの所期目的を達成し得る利点を有するが、一方、上述した通りの各問題点を有する。従って、極めて高度な清浄性が要求される上記冷延鋼板を製造するためには、なおも下記の解決すべき課題がある。
【0011】
高度な清浄性を満たす冷延鋼板を製造するための極低炭素鋼を溶製するためには、上述したところから明らかなように、従来の公知技術に加えて更に、下記技術的事項が全て満たされる必要がある。
▲1▼真空脱ガス装置でアルミニウムにより脱酸処理された結果、溶鋼中に多量に生成したAl2 3 を十分に吸収し、溶鋼から分離除去し得るスラグを形成させること。
▲2▼真空脱ガス装置でアルミニウムにより脱酸処理された後は、スラグによる溶鋼の再酸化により生成する微細なAl2 3 が極力生成しないようにする。そのために、スラグの酸化ポテンシャルを極力下げること。
▲3▼真空脱ガス装置でのアルミニウムによる脱酸処理後から連続鋳造開始までの期間、並びに、連続鋳造開始から終了までの長時間の間には、取鍋内スラグによる溶鋼の再酸化を完全に防止することは極めて困難である。従って、この期間にスラグにより再酸化されて生成する、少量の微細なAl2 3 を安定して吸収し得るスラグを形成させること。
【0012】
酸素ポテンシャルが極めて低い成分組成のスラグは、溶融点が高くなり過ぎて、溶鋼のAl脱酸により生成する多量のAl2 3 や溶鋼の再酸化により生成する少量の微細なAl2 3 の吸収能力が著しく低下する。従って、上記スラグを形成させる場合の最大の課題は、低酸素ポテンシャルであって、しかも上記2種の発生Al2 3 を十分に吸収する能力のある低溶融点のスラグを形成させることにある。特に、脱酸による多量の発生Al2 3 を吸収した後も、長時間にわたる再酸化による微細な発生Al2 3 をも容易に吸収することが可能な溶融点のスラグに改質することにある。
【0013】
この発明の目的は、上記▲1▼〜▲3▼を全て満たすような優れたスラグを形成させることにより上述した問題を解決して、高清浄極低炭素鋼を溶製する方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明者は、上述した観点から、高清浄極低炭素鋼の溶製に当たり、転炉等精錬炉から取鍋内に流出したスラグを、低溶融点、低酸素ポテンシャル、且つ高Al2 3 吸収能をバランスよく備えたものに改質すること、特に、改質されたスラグは、脱酸による多量の発生Al2 3 を吸収した後においてもなお、再酸化による発生Al2 3 を十分に吸収する能力を有する溶融点となるようなスラグ組成に改質することにした。
【0015】
この発明は、上記着眼点に基づき、常法による高清浄極低炭素鋼溶製時の操業要因を計測により又は経験的に把握し、その把握結果を考慮しつつ鋭意研究を重ね、下記知見を付加することによりなされたものである。
【0016】
〔スラグの成分組成とAl2 3 介在物の吸収能について〕
本発明者は、Al2 3 −SiO2 −CaO三元系スラグにおいて、塩基度及びAl2 3 含有率と液相線温度との関係を検討し、この結果に基づきスラグによる溶鋼中Al2 3 介在物の吸収能に関する推定実験を行なった。なお、転炉等精錬炉から取鍋に流出するスラグの成分は、上記3成分の他に酸化鉄やMgO等を含有するが、Al2 3 −SiO2 −CaO三元系が主要スラグ成分(但し、Mg≒5wt.%、T.Fe≒2wt.%を含む)であるから、Al2 3 −SiO2 −CaO三元系で検討するのがよい。
【0017】
図1に、Al2 3 −SiO2 −CaO三元系スラグにおける、Al2 3 含有率(wt.%)とスラグの液相線温度(℃)との関係を、スラグの塩基度(CaO(wt.%)/SiO2 (wt.%))をパラメーターとし、これを2、3、4、5及び7と変化させた場合について示す。同図から、スラグの液相線温度に及ぼすAl2 3 含有率の影響に関する共通的な傾向として、Al2 3 含有率が20〜60wt.%の範囲内では、Al2 3 含有率が増加すると共に、始めは液相線温度は低下し、各塩基度に固有のAl2 3 含有率において最低値となり、次いで上昇していく現象が認められる。但し、塩基度が2の場合には再度低下傾向を示して極小値をとる。
【0018】
ここで、スラグの塩基度が高いものほど、液相線温度の最低値は低く、且つその液相線温度が最低値となるときのAl2 3 含有率は高くなっている。そして、液相線温度が最低値となった後における、Al2 3 含有率の増加に対する液相線温度の上昇勾配は、塩基度が大きいものほど急勾配である。
【0019】
更に、同図において、Al2 3 −SiO2 −CaO三元系スラグの液相線温度の絶対値に関し溶鋼温度との関係で検討する。
一般に、転炉等精錬炉から出鋼された冷延鋼板用極低炭素鋼の取鍋内溶鋼温度は、1600〜1650℃程度である。溶鋼の上表面を覆っているスラグが溶鋼中のAl2 3 介在物を容易に吸収することができるためには、スラグがほぼ溶融状態にあること、望ましくは完全な液相状態にあること(液相線温度以上にあること)が必要である。
【0020】
一方、スラグが溶鋼中Al2 3 を吸収してAl2 3 含有率が上昇した後の状態における液相線温度がどのようになるかとの観点より検討する。
同図において、塩基度が3から7の範囲内の場合には、スラグ中Al2 3 含有率が30wt.%以上の近辺では、数wt.%のAl2 3 含有率の増加により、液相線温度は1600℃近辺以下から急勾配で下がることが注目される。そして、Al2 3 含有率が40wt.%を数wt.%超えた状態においてもスラグの液相線温度は1500℃近辺以下であることがわかる。例えば、特に、塩基度が4〜7の場合には、Al2 3 含有率が35wt.%に上昇した場合には液相線温度は1500℃以下、Al2 3 含有率が40wt.%に上昇した場合には液相線温度は1480℃以下という低い水準にあり、そして、Al2 3 含有率が45wt.%に上昇した場合においてもなお液相線温度は1500℃以下という低い水準にあるので、なおも溶鋼Al2 3 介在物を容易に吸収することができるものと考えた。
【0021】
真空脱ガス装置における溶鋼のAl脱酸では多量のAl2 3 が生成するので、上述した通り、スラグのAl2 3 吸収能に関してはAl脱酸前後の状態における液相温度を推定することが不可欠である。更に、Al脱酸以後連続鋳造完了までの長時間の取鍋内収容中における溶鋼の再酸化によるAl2 3 の吸収能を有することも不可欠である。この発明を完成するに当たり、こうした観点により、転炉等精錬炉からの流出スラグの改質条件を研究した。
【0022】
〔スラグによるAl2 3 介在物の吸収実験〕
本発明者は、上述したスラグの成分組成とAl2 3 介在物の吸収能に関する検討の確認実験を行った。
【0023】
マグネシア製の内径100mmのるつぼ内に、1気圧のAr雰囲気下で所定の成分組成を有するAl2 3 −SiO2 −CaO三元系スラグを、所定の温度に保持した。上記るつぼの上方から上記三元系溶融スラグ内に、Al2 3 製の丸棒を所定深さまで鉛直に浸漬し静止状態で保持し、溶融スラグの温度まで加熱したときに直ちにAl2 3 製丸棒を引き上げた。一方、上記とは別に、上記と同じ条件の溶融スラグ内への浸漬Al2 3 製丸棒をセットし、溶融スラグの温度まで昇温すると同時にAl2 3 製丸棒の軸心を中心として所定の回転速度で回転を開始し、所定時間継続させた。所定時間経過後、Al2 3 製丸棒を溶融スラグから引き上げた。こうして得られた溶融スラグ内で所定時間回転させることにより、表面からAl2 3 が溶け出して減量したAl2 3 製丸棒の重量と、回転させずに引き上げたAl2 3 製丸棒の重量との差から、当該実験条件下におけるAl2 3 の溶出速度を求めた。
【0024】
表1に、上記実験条件及びその結果を示す。
同表より、スラグ温度が1600℃一定の条件で、CaO(wt.%)/SiO2 (wt.%)=5.0としたとき、スラグ中Al2 3 が30wt.%のときにAl2 3 吸収能が高く、Al2 3 が40wt.%まではその吸収能が高く実用的である。それを超えるとAl2 3 の吸収能がやや小さくなった。
【0025】
【表1】

Figure 0003893770
【0026】
以上により、上述したスラグの成分組成とAl2 3 介在物の吸収能との関係に関する検討結果の正当性を確認することができた。
この発明は、上述した知見に基づきなされたものであって、この発明の請求項1記載の高清浄極低炭素鋼の溶製方法は、少なくとも下記(a)〜(d)の工程を含む極低炭素鋼の溶製方法において、下記工程(c)において改質された後のスラグが、下記工程(d)における溶鋼のアルミニウム脱酸処理前において、下記条件(イ)及び(ロ)を共に満たし、且つ、上記溶鋼のアルミニウム脱酸処理後において、下記条件(ハ)を満たすことに特徴を有するものである。
【0027】
工程:
(a)溶銑及び/又は屑鉄を転炉又は電気炉で精錬し、次いで前記転炉又は電気炉で溶製された未脱酸溶鋼を取鍋内に出鋼する工程、
(b)前記出鋼中に前記取鍋内に造滓材として生石灰を投入する工程、
(c)前記出鋼の終了後、前記出鋼中に前記転炉又は電気炉から前記取鍋内に不可避的に流入したスラグと前記取鍋内に投入された前記生石灰とから形成された新スラグに、還元剤を添加して前記新スラグを改質する工程、及び、
(d)真空脱ガス装置を用いて、前記改質されたスラグで上表面を覆われた前記取鍋内の溶鋼に、少なくとも真空脱炭処理及び脱酸剤添加による脱酸処理を施す工程。
【0028】
条件:
(イ)CaO(wt.%)/SiO2 (wt.%)で表わされる塩基度が、3.0〜7.0の範囲内にあること、
(ロ){Al2 3 (wt.%)/(Al2 3 (wt.%)+SiO2 (wt.%)+CaO(wt.%))}×100(%)で表わされるAl2 3 含有量が、30〜45%の範囲内にあること、及び、
(ハ)T.Fe含有率が、5.0wt.%以下であること。
【0029】
請求項2記載の高清浄極低炭素鋼の溶製方法は、請求項1記載の発明において、工程(a)で溶製された転炉又は電気炉からの出鋼前の未脱酸溶鋼中の溶解酸素含有率が、800ppm以下であることに特徴を有するものである。
【0030】
請求項3記載の高清浄極低炭素鋼の溶製方法は、請求項1または2記載の発明において、条件(ハ)におけるスラグ中のT.Fe含有率が3.0wt.%以下であることに特徴を有するものである。
【0031】
【発明の実施の形態】
次に、この発明の実施の形態例を図面を参照しながら説明すると共に、上述した通りの製造条件に限定する理由を説明する。
【0032】
この発明の方法を実施するために使用する設備は、前記図2に示した従来法により極低炭素鋼を溶製する場合に使用するものと同じであり、溶製作業の方法も従来法に準じるものである。しかしながら、転炉等一次精錬炉から取鍋に流入したスラグを改質した後の新スラグ(改質後スラグ)の組成に関して、従来法と著しく相違した特徴を有する。従って、従来実現できなかった高清浄極低炭素鋼を安定して溶製することができるようになった。
【0033】
図2(A)の転炉1で溶銑等の主原料を一次精錬し、炭素濃度を0.08wt.%以下まで粗脱炭する。粗脱炭後の溶鋼5の溶解酸素を酸素メーターで測定する。この溶解酸素濃度(転炉終点酸素濃度)は800ppm以下、望ましくは600ppm以下になるよう精錬条件を制御する。転炉終点酸素濃度は低いほど、後工程の真空脱ガス装置での溶鋼脱酸で生成するAl2 3 介在物量が少ないので、鋼の清浄性向上に有利である。従って、所定値以上の高清浄鋼を溶製する場合には、転炉終点酸素濃度を600ppm以下にする。こうして転炉で溶製された未脱酸溶鋼5を取鍋2に出鋼する。出鋼中に取鍋2内に所定量の生石灰3をシュートから投入する(同図(B))。
【0034】
生石灰3の投入量は転炉終点酸素濃度に応じて予め定められた量を、出鋼流により形成される滝つぼを目掛けて入れるとその溶融が促進されてよい。出鋼中には不可避的に転炉内のスラグ(転炉スラグ)4が流出するが、このスラグ4は転炉1における酸化精錬に適したスラグ組成となっている。このままの組成のスラグでは、後工程の溶鋼のアルミニウム脱酸で生成するAl2 3 介在物の吸収能が小さく、またスラグにより溶鋼が著しく再酸化されるので、清浄鋼の溶製は不可能である。そこで、取鍋に流入した転炉スラグを、以後行なわれる2次精錬工程である真空脱ガス工程(同図(D))、及び連続鋳造工程(図示せず)において、高清浄鋼を溶製するのに好適なスラグ組成に改質しなければならない。そしてそれらの期間を通じてスラグ組成をその好適な条件に維持する。そのために、先ず、上記生石灰の添加により転炉スラグのCaO含有率を上げる。更に、出鋼終了後、取鍋内溶鋼の表面を覆う酸化度の高い溶融スラグ4aの酸素ポテンシャルを下げるために、脱酸剤としての金属アルミニウムを添加する(同図(C))。この際、高清浄鋼溶製用のスラグに改質するために、生石灰及びアルミニウムの添加量が重要となり、それは改質すべき流入転炉スラグ量にも依存する。
【0035】
出鋼時における取鍋内への転炉スラグの流入量は、改質後スラグ層が以後の2次精錬及び連続鋳造工程を通じて、大気雰囲気の空気による取鍋内溶鋼を抑制するに必要且つ十分な層厚となるよう考慮して制御する。この際、改質後のスラグ量は、生石灰添加及びアルミニウム添加により変化することを考慮すべきである。ここで、生石灰及びアルミニウム添加量は、この発明の最重要事項である改質後スラグの塩基度(CaO(wt.%)/SiO2 (wt.%))及びAl2 3 含有率(wt.%)並びにT.Fe含有率(wt.%)を決定する要因である。
【0036】
従って、上記生石灰及びアルミニウム添加量の決定は極めて重要である。この決定に対しては、転炉スラグの組成と流入量の正確な把握が不可欠である。転炉スラグ流入量の把握はできるが、その組成の把握に関しては、転炉精錬条件等により複雑に変化し、一律に設定することはできない。また、転炉設備固有の条件によっても変化する。そこで、本発明者は上記添加量の決定にあたり、鋭意試験研究を重ねた結果、改質後スラグが本発明の必須要件である上記(イ)、(ロ)及び(ハ)を満たすためには、理論計算と経験値とに基づき得られる、転炉終点酸素濃度に応じて定まる生石灰及びアルミニウム量を添加すればよいとの結論を得た。従って、この発明において添加する生石灰及びスラグ改質用アルミニウムの量は、例えば、上記のようにして転炉終点酸素濃度に応じて定めた固有の基準値を用いる。例えば、転炉終点酸素濃度が550〜600ppm未満のときには、生石灰を2.3kg/溶鋼t、スラグ改質用アルミニウムを0.70kg/溶鋼t添加する。この場合の改質後スラグ層厚は約50mmである。
【0037】
上記生石灰及び還元剤としてのアルミニウム添加量の決定方法は、上述した方法に限定する必要はない。それぞれの精錬炉の操業条件等に応じて決めることができる。生石灰及び還元剤添加後の改質後のスラグの塩基度(CaO(wt.%)/SiO2 (wt.%))が3.0〜7.0の範囲内であって、スラグ中のAl2 3 含有率が30〜45wt.%の範囲内になるようにすれば上記添加量の決定方法を制限しなくてよい。ここで、スラグの塩基度(CaO(wt.%)/SiO2 (wt.%))=3.0〜7.0の範囲内とし、且つ、スラグ中のAl2 3 含有率=30〜45wt.%の範囲内に限定するのは、次工程のAl脱酸による発生Al2 3 の吸着性、及び、当該脱酸後連続鋳造完了までの長時間に及ぶ過程での溶鋼の再酸化による発生Al2 3 の吸着性に優れた条件であるからである。
【0038】
次いで、改質後スラグ4bをサンプリングし、急速分析にて塩基度、Al2 3 含有率及びT.Fe含有率を求める。条件(イ)及び(ロ)を満たし、且つ、次工程の溶鋼アルミニウム脱酸後において条件(ハ)を満たすと判断されたときは、二次精錬工程に入る。但し、上記条件(イ)〜(ハ)が満たされないとの結果がでたときには、改質用Al又は石灰を再度投入し、条件(イ)〜(ハ)を満たすようにする。次いで、RH脱ガス装置7により、溶鋼5を真空脱炭する。冷延鋼板のC目標値を考慮した所定C濃度まで脱炭処理する。脱炭後に改質後スラグ4bをサンプリングし成分組成の確認分析に供する。次いで、環流中の真空槽8内溶鋼5aにアルミニウムを添加して脱酸処理し、溶鋼5の溶解酸素を実質的に0にする。脱酸用アルミニウムの添加量は、酸素メーターによる溶解酸素測定値に基づき決定する。脱酸処理により多量のAl2 3 介在物が溶鋼中に生成する。改質後スラグ4bが、条件(イ)及び(ロ)を満たしているので、溶鋼5の真空槽8内環流時間の経過と共に溶鋼中Al2 3 を吸収する。その結果、高清浄溶鋼が得られる。溶鋼のAl脱酸処理後、取鍋内改質スラグ4bをサンプリングし、T.Fe含有率を分析し、条件(ハ)を満たすことを確認する。更に所定成分組成となるように合金元素を添加する。こうして、所期の高清浄極低炭素鋼の溶製を終了する。(同図(D))。
【0039】
次いで、上述した溶融改質スラグで表面を覆われた高清浄極低炭素溶鋼が、取鍋からタンディッシュを介して連続鋳造機に鋳造され、所望の鋳片が製造される。改質スラグのT.Fe含有率は5.0wt.%以下、望ましくは3.0wt.%以下、更に望ましくは1.0wt.%以下であるから、連続鋳造期間中におけるスラグによる溶鋼の再酸化により生成するAl2 3 介在物は少量に抑制される。一方、再酸化により生成する微細なAl2 3 は、上記スラグの溶融点が低くかつAl2 3 吸収の収容能力が残されているので、安定して容易に吸収される。
【0040】
【実施例】
次に、この発明の高清浄溶鋼の溶製方法を、実施例によって更に詳細に説明する。上述したこの発明の実施の形態に則し、本発明の範囲内の条件下で冷延鋼板向け清浄鋼を溶製した(実施例)。また、本発明の範囲外の条件下で同様の試験を行った(比較例)。実施例及び比較例いずれにおいても、溶製対象鋼種はC:0.003wt.%以下の冷延鋼板向け深絞り用鋼であり、脱硫及び脱燐予備処理溶銑を用い、300t転炉で脱炭精錬した後、未脱酸にて出鋼した。取鍋内スラグを所定の条件で改質した後、RH脱ガス処理装置を用い、溶鋼の真空脱炭及びアルミニウム脱酸を行なった。
表2に、実施例及び比較例についての溶製条件を示す。
【0041】
【表2】
Figure 0003893770
【0042】
次いで、こうして溶製された各試験チャージの溶鋼をスラブ連続鋳造機により薄板向けスラブに鋳造し、熱間圧延工程、冷間圧延工程及び熱処理工程等を経て、所定の冷延鋼板製品を製造した。冷延鋼板製品の表面を精密に検査し、Al2 3 介在物に起因する表面欠陥をカウントした。こうして、製鋼段階における溶製条件と製品段階におけるAl2 3 介在物個数を顕微鏡で測定した。Al2 3 介在物が3000個/m2 以下であれば、これに起因する表面欠陥は発生せず、表面品質が優れていることを把握している。本発明の範囲内にある実施例1〜10では、冷延鋼板製品のAl2 3 介在物個数が、3000個/m2 以下と良好な結果となり、所期目標を満足すべき表面品質のものが得られた。
【0043】
これに対して、本発明の範囲外にある比較例1〜10では、いずれも冷延鋼板製品のAl2 3 介在物個数が、4000個/m2 を超えており、所期目標を満足すべき表面品質の冷延鋼板製品は得られなかった。これは、比較例ではいずれも本発明の範囲の条件が少なくとも一つが外れているためである。
【0044】
【発明の効果】
以上述べたように、この発明によれば、Al2 3 介在物が極めて少ない極低炭素溶鋼を製造することができる。従って、表面品質が高度に優れた冷延鋼板製品を製造するための、高清浄極低炭素鋼の溶製方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】Al2 3 −SiO2 −CaO三元系スラグにおける、Al2 3 含有率とスラグの液相線温度との関係を、スラグの塩基度をパラメーターとして変化させた場合について示すグラフである。
【図2】本発明法及び従来法による極低炭素鋼の溶製工程の例を示す縦断面概念図である。
【符号の説明】
1 転炉
2 取鍋
3 生石灰
4 転炉スラグ
4a 転炉スラグ(生石灰投入後)
4b 改質後スラグ
5 溶鋼
6 スラグ還元剤
7 RH脱ガス装置
8 真空槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molten steel with very few non-metallic inclusions and excellent cleanliness, wherein the molten steel produced from a steelmaking furnace such as a converter is decarburized by a vacuum degassing device, The present invention relates to a method for melting high-clean ultra-low carbon steel. In particular, the present invention relates to a method for producing high-clean low-carbon molten steel with few alumina-based nonmetallic inclusions.
[0002]
[Prior art]
In recent years, customer demand for the quality of cold-rolled steel sheets centering on steel sheets for automobiles has become more sophisticated, and accordingly, further cleaning of ultra-low carbon steel has been demanded. With regard to the cleaning of the cold-rolled steel sheet, an effort has been made to develop a technique for extremely reducing surface defects caused by alumina-based nonmetallic inclusions in the steel. Such high cleaning of ultra-low carbon steel is usually determined by the manufacturing method in the steel making process and the casting process.
[0003]
In FIG. 2, the longitudinal cross-sectional conceptual diagram of the example of the melting process of the ultra-low carbon steel by a conventional method is shown. After the completion of the oxidation refining mainly consisting of decarburization reaction in the converter 1 of the primary refining furnace, the steel is put out in the ladle 2. Quick lime 3 is taken into ladle 2 as a slagging material during tapping. During the steel output, the slag 4 inevitably flows out from the converter 1. The quicklime 3 becomes a slag having a new component composition together with the outflow slag, and forms a slag 4a layer on the surface of the molten steel 5. After the completion of the steeling, slag reforming is performed by adding, for example, Al soot as a reducing agent 6 to the slag 4a in the ladle to reduce the oxidation degree of the slag 4a. Next, by using a ladle refining furnace such as the RH vacuum degassing apparatus 7 or the like, the carbon concentration is reduced to a predetermined value by decarburizing the molten steel under reduced pressure (C + O → CO), and then the molten steel by adding a deoxidizing agent such as Al is used. The dissolved oxygen concentration in the molten steel is substantially reduced to 0 by deoxidation treatment. Moreover, the component composition of the molten steel is adjusted to a predetermined value by adding an alloying agent to the molten steel 5a in the vacuum degassing tank 8.
[0004]
The molten steel obtained in this way is accommodated in a ladle with the upper surface covered with molten slag, discharged from the molten steel outlet at the bottom of the ladle, and cast by a continuous casting machine through a tundish. Manufacturing. The time required for continuous casting is usually 60 minutes or longer.
[0005]
Next, the above-described melting process of the ultra-low carbon steel will be considered in relation to the factor that the alumina-based nonmetallic inclusions are generated and grown in the molten steel, remain, and remain in the slab after solidification. In a steelmaking furnace (so-called primary refining furnace) such as a converter, it is technically difficult to decarburize the molten steel to a carbon concentration of 200 ppm or less. Therefore, in order to reduce the C concentration to 200 ppm or less in order to melt ultra-low carbon steel, it is necessary to treat the molten steel once refined in a converter or the like in a secondary refining furnace. A vacuum degassing apparatus is used as the secondary smelting furnace. Here, the reaction between carbon in molten steel and dissolved oxygen in molten steel is performed by exposing the molten steel discharged from the primary smelting furnace under reduced pressure: C + O = Molten steel is decarburized by CO (g). Due to the vacuum decarburization reaction, the C concentration in the molten steel is further reduced. Next, in order to further lower the dissolved oxygen concentration in the molten steel, the molten steel is deoxidized with a deoxidizing agent such as Al.
[0006]
By the way, in decarburization refining in the primary refining furnace, oxidation refining is usually performed by blowing oxygen gas into the molten metal, and the C concentration is blown down to a predetermined value. Excess oxygen is dissolved in the molten steel after such oxidative refining. Moreover, the oxidation degree of slag is also increased. However, the excessive dissolved oxygen in the molten steel can be sufficiently lowered by the deoxidation treatment. For example, the deoxidation treatment with Al is a deoxidation reaction formula represented by the following formula (1):
2 Al +3 O = Al 2 O Three (S) ------------------ (1)
However, Al : Molten aluminum in molten steel
O : Dissolved oxygen in molten steel
It is clear that this is done. However, this Al deoxidation causes a large amount of Al in the molten steel. 2 O Three Inclusions are generated ("Al generated by deoxidation 2 O Three "). In the production of clean steel, the Al thus produced in the molten steel 2 O Three Inclusions must be separated and removed outside the molten steel system.
[0007]
On the other hand, the oxidation degree of slag increased during the primary refining is not sufficiently low unless the slag is treated for extreme reduction in oxidation degree. However, since it is necessary to form a slag having properties that do not hinder the operation of the melting process, the oxidation degree of the slag is usually not extremely lowered. As a result, the slag gradually oxidizes the molten steel (molten steel reoxidation). Therefore, dissolved Al in molten steel added during Al deoxidation is oxidized by a high oxidation potential oxide in slag, particularly iron oxide, and a small amount of fine Al. 2 O Three Production of system inclusions continues. Al by re-oxidation reaction of this molten steel 2 O Three For example, the following formula (2):
2 Al +3 (FeO) = Al 2 O Three (S) ------------- (2)
However, Al : Molten aluminum in molten steel
(FeO): FeO in slag
("Al generated by reoxidation 2 O Three ").
[0008]
A large amount of Al generated by deoxidation generated in this way 2 O Three As well as a small amount of fine Al generated by re-oxidation 2 O Three However, in the cold-rolled steel sheet, which requires high cleanliness, it becomes a serious problem as a cause of surface defects on the steel sheet. Conventionally, this Al 2 O Three The following techniques are disclosed as methods for detoxifying system inclusions, preventing formation, and separating and removing from molten steel.
[0009]
For example, Japanese Patent Laid-Open No. 3-47910 discloses metal Al, CaO, and CaF into non-deoxidized molten steel that has been produced from a primary refining furnace. 2 And the resulting compound is CaO-Al 2 O Three It has been proposed to make it harmless with a system composition. However, the method of controlling the composition of the above compound is unclear, and variations in the component composition cannot be sufficiently suppressed in actual operation. Japanese Patent Laid-Open No. 4-346613 introduces a plasma heating technique, and Al 2 O Three Disclosed is a method that exerts a remarkable effect on detoxification of slag by controlling the slag composition with excellent absorbability. However, this method requires a total cost and excessive capital investment. On the other hand, JP-A-4-88111 discloses undeoxidized molten steel taken from a primary smelting furnace to a ladle, reforms the slag flowing into the ladle using Al 鍋 as a reducing agent, and then vacuum degassed. Add CaO to the slag flowed into the tank and add CaO / Al 2 O Three Discloses a method for controlling the weight percent ratio of the water to a predetermined value of 1.6 to 2.0. However, since most of the slag amount is accommodated in a ladle outside the degassing tank, it is difficult to sufficiently reform the entire slag amount by this method of adding CaO to the degassing tank. In addition, due to the large amount of CaO used during the vacuum degassing treatment, operational troubles such as a drop in the temperature of molten steel and wear of refractory materials in the reflux pipe also occur.
[0010]
[Problems to be solved by the invention]
Each of the above-described prior arts has an advantage that the intended purpose can be achieved, while having the respective problems as described above. Therefore, in order to manufacture the cold-rolled steel sheet that requires extremely high cleanliness, there are still the following problems to be solved.
[0011]
In order to produce ultra-low carbon steel for producing cold-rolled steel sheets that satisfy a high degree of cleanliness, as is apparent from the above, in addition to the conventional known techniques, the following technical matters are all included: Need to be met.
(1) Al produced in a large amount in molten steel as a result of deoxidation treatment with aluminum in a vacuum degasser 2 O Three To form a slag that can be absorbed and removed from the molten steel.
(2) Fine Al produced by reoxidation of molten steel with slag after deoxidation treatment with aluminum in vacuum degassing equipment 2 O Three Is not generated as much as possible. Therefore, reduce the oxidation potential of slag as much as possible.
(3) Completely reoxidize molten steel with slag in the ladle during the period from the deoxidation treatment with aluminum in the vacuum degassing device to the start of continuous casting and the long time from the start to the end of continuous casting. It is extremely difficult to prevent. Therefore, a small amount of fine Al produced by reoxidation by slag during this period 2 O Three To form a slag that can absorb water stably.
[0012]
Slag with a component composition with a very low oxygen potential has a melting point that is too high and a large amount of Al produced by Al deoxidation of molten steel. 2 O Three A small amount of fine Al produced by reoxidation of molten steel 2 O Three The absorption capacity of is significantly reduced. Therefore, the biggest problem in forming the slag is the low oxygen potential, and the two kinds of generated Al 2 O Three Is to form a slag having a low melting point capable of sufficiently absorbing water. In particular, a large amount of Al generated by deoxidation 2 O Three Even after absorbing the fine Al generated by re-oxidation over a long period of time 2 O Three It is to modify to a melting point slag capable of easily absorbing the slag.
[0013]
An object of the present invention is to provide a method for melting a high-clean ultra-low carbon steel by solving the above-mentioned problems by forming an excellent slag satisfying all of the above (1) to (3). It is in.
[0014]
[Means for Solving the Problems]
From the above-mentioned viewpoint, the present inventor, in the melting of high clean ultra-low carbon steel, the slag that has flowed into the ladle from a refining furnace such as a converter, low melting point, low oxygen potential, and high Al 2 O Three Reforming to a well-balanced absorption capacity, especially modified slag is a large amount of Al generated by deoxidation 2 O Three Even after absorption, Al generated by reoxidation 2 O Three It was decided to modify the slag composition so as to be a melting point having a sufficient ability to absorb water.
[0015]
This invention is based on the above point of view, grasps the operating factors at the time of melting high-clean ultra-low carbon steel by measurement or empirically, repeats earnest research while considering the grasp results, the following knowledge It was made by adding.
[0016]
[Slag composition and Al 2 O Three About the absorption capacity of inclusions)
The inventor 2 O Three -SiO 2 -Basicity and Al in CaO ternary slag 2 O Three We investigated the relationship between the content rate and the liquidus temperature, and based on this result, Al in molten steel by slag 2 O Three An estimation experiment on the absorption ability of inclusions was conducted. The slag component that flows out of the refining furnace such as a converter into the ladle contains iron oxide, MgO, etc. in addition to the above three components. 2 O Three -SiO 2 Since the CaO ternary system is a major slag component (including Mg≈5 wt.%, T.Fe≈2 wt.%), Al 2 O Three -SiO 2 It is better to study with -CaO ternary system.
[0017]
Figure 1 shows Al 2 O Three -SiO 2 -Al in CaO ternary slag 2 O Three The relationship between the content rate (wt.%) And the liquidus temperature (° C) of the slag is expressed as the basicity of the slag (CaO (wt.%) / SiO 2 (Wt.%)) Is used as a parameter, and this is shown as being changed to 2, 3, 4, 5 and 7. From the figure, the effect of Al on the liquidus temperature of slag 2 O Three A common trend regarding the effect of content is Al 2 O Three When the content is in the range of 20 to 60 wt. 2 O Three As the content increases, initially the liquidus temperature decreases and Al 2 O Three There is a phenomenon in which the content rate reaches its lowest value and then increases. However, when the basicity is 2, it shows a decreasing tendency again and takes the minimum value.
[0018]
Here, the higher the basicity of the slag, the lower the minimum value of the liquidus temperature, and the Al when the liquidus temperature becomes the lowest value. 2 O Three The content is high. And after the liquidus temperature becomes the lowest value, Al 2 O Three The rising gradient of the liquidus temperature with increasing content is steeper as the basicity increases.
[0019]
Furthermore, in FIG. 2 O Three -SiO 2 -The absolute value of the liquidus temperature of CaO ternary slag will be examined in relation to the molten steel temperature.
Generally, the molten steel temperature in the ladle of the ultra-low carbon steel for cold-rolled steel sheet produced from a refining furnace such as a converter is about 1600 to 1650 ° C. The slag covering the upper surface of the molten steel is Al in the molten steel. 2 O Three In order to be able to easily absorb inclusions, it is necessary that the slag is almost in a molten state, preferably in a complete liquid phase (above the liquidus temperature).
[0020]
On the other hand, slag is Al in molten steel 2 O Three Absorbs Al 2 O Three It will be examined from the viewpoint of what the liquidus temperature in the state after the content rate has increased.
In the figure, when the basicity is within the range of 3 to 7, Al in the slag 2 O Three In the vicinity where the content is 30 wt.% Or more, several wt. 2 O Three It is noted that the liquidus temperature falls steeply from below 1600 ° C. due to the increase in content. And Al 2 O Three It can be seen that the liquidus temperature of the slag is about 1500 ° C. or less even when the content exceeds 40 wt.% By several wt.%. For example, in particular, when the basicity is 4-7, Al 2 O Three When the content is increased to 35 wt.%, The liquidus temperature is 1500 ° C or less, Al 2 O Three When the content is increased to 40 wt.%, The liquidus temperature is at a low level of 1480 ° C. or less, and Al 2 O Three Even when the content rate is increased to 45 wt.%, The liquidus temperature is still at a low level of 1500 ° C. or less. 2 O Three It was considered that inclusions could be easily absorbed.
[0021]
A large amount of Al is used for Al deoxidation of molten steel in vacuum degassing equipment. 2 O Three As described above, slag Al 2 O Three Regarding the absorption capacity, it is indispensable to estimate the liquidus temperature in the state before and after Al deoxidation. Furthermore, Al is caused by re-oxidation of the molten steel during storage in the ladle for a long time after Al deoxidation until the completion of continuous casting. 2 O Three It is also essential to have absorptive capacity. In completing this invention, research was conducted on the reforming conditions of the slag from the refining furnace such as a converter from this viewpoint.
[0022]
[Al with slag 2 O Three Inclusion absorption experiment)
The present inventor made the above-mentioned slag component composition and Al 2 O Three Confirmation experiment of examination about absorption ability of inclusion was conducted.
[0023]
Al having a predetermined component composition in an Ar atmosphere of 1 atm in a crucible made of magnesia and having an inner diameter of 100 mm 2 O Three -SiO 2 The -CaO ternary slag was held at a predetermined temperature. From above the crucible into the ternary molten slag, Al 2 O Three Immediately when a steel round bar is immersed vertically to a predetermined depth and held stationary, and heated to the temperature of the molten slag, Al immediately 2 O Three Raised the round bar. On the other hand, separately from the above, the immersion Al in the molten slag under the same conditions as above 2 O Three Set a round bar and raise the temperature to the temperature of the molten slag. 2 O Three The rotation was started at a predetermined rotation speed around the axis of the round bar and continued for a predetermined time. After a predetermined time, Al 2 O Three The round bar was pulled up from the molten slag. By rotating for a predetermined time in the molten slag obtained in this way, Al is removed from the surface. 2 O Three Al melts and loses weight 2 O Three The weight of the round bar and Al lifted without rotating 2 O Three From the difference with the weight of the round bar made of Al 2 O Three The elution rate of was determined.
[0024]
Table 1 shows the experimental conditions and the results.
From the table, under the condition that the slag temperature is constant at 1600 ° C, CaO (wt.%) / SiO 2 (Wt.%) = 5.0, Al in slag 2 O Three Al is 30wt.% 2 O Three High absorption capacity, Al 2 O Three Up to 40 wt.%, The absorption capacity is high and practical. Beyond that, Al 2 O Three The absorption capacity of was slightly reduced.
[0025]
[Table 1]
Figure 0003893770
[0026]
By the above, the component composition of slag and Al 2 O Three The validity of the results of the study on the relationship with inclusion absorption was confirmed.
The present invention has been made based on the above-described knowledge, and the method for melting highly clean ultra-low carbon steel according to claim 1 of the present invention includes at least the following steps (a) to (d): In the low carbon steel melting method, the slag after being modified in the following step (c) is subjected to the following conditions (A) and (B) before the aluminum deoxidation treatment of the molten steel in the following step (d). It is characterized by satisfying the following condition (c) after satisfying and after aluminum deoxidation treatment of the molten steel.
[0027]
Process:
(A) a step of refining hot metal and / or scrap iron in a converter or electric furnace, and then removing undeoxidized molten steel melted in the converter or electric furnace into a ladle,
(B) A step of adding quick lime as a slagging material into the ladle during the steel extraction,
(C) The new formed from the slag which inevitably flowed into the ladle from the converter or electric furnace into the ladle after the completion of the ladle and the quick lime charged into the ladle. A step of modifying the new slag by adding a reducing agent to the slag; and
(D) A step of subjecting the molten steel in the ladle whose upper surface is covered with the modified slag to at least deoxidation treatment by vacuum decarburization treatment and addition of a deoxidizer using a vacuum degassing apparatus.
[0028]
conditions:
(I) CaO (wt.%) / SiO 2 The basicity represented by (wt.%) Is in the range of 3.0 to 7.0,
(B) {Al 2 O Three (Wt.%) / (Al 2 O Three (Wt.%) + SiO 2 (Wt.%) + CaO (wt.%))} × 100 (%) 2 O Three The content is in the range of 30-45%, and
(C) T.W. Fe content is 5.0 wt.% Or less.
[0029]
The method for melting high-clean ultra-low carbon steel according to claim 2 is the invention according to claim 1, wherein in the non-deoxidized molten steel before steel removal from the converter or electric furnace melted in step (a). The dissolved oxygen content is characterized by being 800 ppm or less.
[0030]
The method for melting highly clean ultra-low carbon steel according to claim 3 is the invention according to claim 1 or 2, wherein the T.I. The Fe content is 3.0 wt.% Or less.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings, and reasons for limiting the manufacturing conditions to those described above will be described.
[0032]
The equipment used to carry out the method of the present invention is the same as that used when melting ultra-low carbon steel by the conventional method shown in FIG. 2, and the method of melting work is also the conventional method. It is equivalent. However, the composition of the new slag after reforming the slag flowing into the ladle from the primary refining furnace such as a converter (post-reforming slag) has a feature that is significantly different from the conventional method. Therefore, it has become possible to stably melt highly clean ultra-low carbon steel that could not be realized in the past.
[0033]
In the converter 1 of FIG. 2 (A), main raw materials such as hot metal are primarily refined, and the carbon concentration is roughly decarburized to 0.08 wt.% Or less. The dissolved oxygen of the molten steel 5 after rough decarburization is measured with an oxygen meter. The refining conditions are controlled so that the dissolved oxygen concentration (converter end point oxygen concentration) is 800 ppm or less, preferably 600 ppm or less. The lower the oxygen concentration at the converter end point, the more Al produced by molten steel deoxidation in the vacuum degassing unit in the subsequent process. 2 O Three Since the amount of inclusions is small, it is advantageous for improving the cleanliness of steel. Therefore, in the case of melting highly clean steel having a predetermined value or more, the converter end point oxygen concentration is set to 600 ppm or less. The undeoxidized molten steel 5 melted in the converter in this manner is taken out into the ladle 2. A predetermined amount of quicklime 3 is put into the ladle 2 during the steel extraction from the chute ((B) in the figure).
[0034]
The amount of quick lime 3 charged may be accelerated when a predetermined amount corresponding to the oxygen concentration at the end of the converter is applied to the waterfall crucible formed by the outgoing steel flow. The slag (converter slag) 4 in the converter inevitably flows out during the steel output, and this slag 4 has a slag composition suitable for oxidation refining in the converter 1. In the slag of the composition as it is, Al produced by aluminum deoxidation of the molten steel in the subsequent process 2 O Three Since the absorption capacity of inclusions is small and the molten steel is reoxidized significantly by the slag, it is impossible to melt clean steel. Therefore, the converter slag that has flowed into the ladle is melted into highly clean steel in the vacuum degassing process (FIG. (D)) and the continuous casting process (not shown), which are the secondary refining processes performed thereafter. It must be modified to a suitable slag composition. And the slag composition is maintained at the suitable conditions throughout these periods. For this purpose, first, the CaO content of the converter slag is increased by the addition of the quicklime. Further, after the completion of the steel output, metal aluminum as a deoxidizer is added in order to lower the oxygen potential of the highly oxidized molten slag 4a covering the surface of the molten steel in the ladle ((C) in the figure). At this time, the amount of quicklime and aluminum added is important in order to improve the slag for melting high-clean steel, and it depends on the amount of inflow converter slag to be improved.
[0035]
The amount of converter slag flowing into the ladle at the time of steel removal is necessary and sufficient for the post-reformation slag layer to suppress molten steel in the ladle due to atmospheric air through the subsequent secondary refining and continuous casting processes. The thickness is controlled in consideration of a proper layer thickness. At this time, it should be taken into consideration that the amount of slag after the modification varies depending on the addition of quicklime and aluminum. Here, the amount of quicklime and aluminum added is the basicity of the modified slag (CaO (wt.%) / SiO2) which is the most important matter of the present invention. 2 (Wt.%)) And Al 2 O Three Content (wt.%) And T.I. This is a factor that determines the Fe content (wt.%).
[0036]
Therefore, the determination of the amount of quicklime and aluminum added is extremely important. An accurate grasp of the composition and inflow of converter slag is essential for this decision. The amount of converter slag inflow can be ascertained, but the composition of the slag can be set in a complicated manner depending on the converter refining conditions and cannot be set uniformly. It also varies depending on conditions specific to the converter equipment. Therefore, as a result of repeated earnest test researches in determining the addition amount, the present inventors have found that the slag after reforming satisfies the above-mentioned requirements (a), (b) and (c), which are essential requirements of the present invention. The conclusion was obtained that the amount of quicklime and aluminum determined according to the converter end-point oxygen concentration obtained based on theoretical calculations and empirical values should be added. Therefore, for the amount of quicklime and aluminum for slag reforming added in the present invention, for example, a specific reference value determined according to the converter end point oxygen concentration as described above is used. For example, when the converter end-point oxygen concentration is less than 550 to 600 ppm, 2.3 kg / molten steel t of quick lime and 0.70 kg / molten steel t of slag reforming aluminum are added. In this case, the thickness of the modified slag layer is about 50 mm.
[0037]
The method of determining the amount of aluminum added as the quicklime and the reducing agent need not be limited to the method described above. It can be determined according to the operating conditions of each refining furnace. Basicity of slag after modification after addition of quicklime and reducing agent (CaO (wt.%) / SiO 2 (Wt.%)) Is within the range of 3.0 to 7.0, and Al in the slag 2 O Three If the content is within the range of 30 to 45 wt.%, The method for determining the amount of addition need not be limited. Here, the basicity of slag (CaO (wt.%) / SiO2) 2 (Wt.%)) = 3.0 to 7.0, and Al in the slag 2 O Three The content rate is limited to the range of 30 to 45 wt.% Because the Al generated by Al deoxidation in the next step is limited. 2 O Three Of adsorbed steel and Al generated by re-oxidation of molten steel in the long process from the deoxidation to the completion of continuous casting 2 O Three It is because it is the conditions excellent in the adsorptivity.
[0038]
Next, the modified slag 4b is sampled, and the basicity, Al 2 O Three Content and T.I. The Fe content is determined. When it is determined that the conditions (b) and (b) are satisfied and the condition (c) is satisfied after the deoxidation of the molten steel aluminum in the next process, the secondary refining process is started. However, when it is found that the above conditions (A) to (C) are not satisfied, the reforming Al or lime is added again so as to satisfy the conditions (A) to (C). Next, the molten steel 5 is vacuum decarburized by the RH degasser 7. Decarburization is performed to a predetermined C concentration in consideration of the C target value of the cold rolled steel sheet. After decarburization, the modified slag 4b is sampled and used for confirmation analysis of the component composition. Subsequently, aluminum is added to the molten steel 5a in the vacuum chamber 8 in the reflux and deoxidized to make the dissolved oxygen of the molten steel 5 substantially zero. The amount of aluminum for deoxidation is determined based on the dissolved oxygen measured value with an oxygen meter. Large amount of Al by deoxidation treatment 2 O Three Inclusions form in the molten steel. Since the post-reforming slag 4b satisfies the conditions (A) and (B), the Al in the molten steel increases with the passage of the recirculation time in the vacuum tank 8 of the molten steel 5. 2 O Three To absorb. As a result, highly clean molten steel is obtained. After the Al deoxidation treatment of the molten steel, the modified slag 4b in the ladle is sampled. The Fe content is analyzed to confirm that the condition (c) is satisfied. Further, an alloy element is added so as to obtain a predetermined component composition. In this way, the melting of the desired high clean ultra low carbon steel is completed. (FIG. (D)).
[0039]
Next, the high clean ultra-low carbon molten steel whose surface is covered with the above-described melt-modified slag is cast from a ladle through a tundish to a continuous casting machine to produce a desired slab. T. of modified slag Since the Fe content is 5.0 wt.% Or less, desirably 3.0 wt.% Or less, and more desirably 1.0 wt.% Or less, Al produced by reoxidation of molten steel with slag during the continuous casting period. 2 O Three Inclusions are suppressed to a small amount. On the other hand, fine Al produced by reoxidation 2 O Three The melting point of the slag is low and Al 2 O Three Since the absorption capacity is left, it is stably and easily absorbed.
[0040]
【Example】
Next, the method for producing highly clean molten steel according to the present invention will be described in more detail with reference to examples. In accordance with the above-described embodiment of the present invention, clean steel for cold-rolled steel sheets was melted under the conditions within the scope of the present invention (Example). Moreover, the same test was conducted under conditions outside the scope of the present invention (Comparative Example). In both the examples and comparative examples, the steel type to be melted is a deep drawing steel for cold-rolled steel sheets with C: 0.003 wt. After refining, the steel was undeoxidized. After reforming the slag in the ladle under predetermined conditions, vacuum decarburization and aluminum deoxidation of the molten steel were performed using an RH degassing apparatus.
Table 2 shows the melting conditions for the examples and comparative examples.
[0041]
[Table 2]
Figure 0003893770
[0042]
Next, the molten steel of each test charge thus melted was cast into a slab for a thin plate by a slab continuous casting machine, and a predetermined cold-rolled steel sheet product was manufactured through a hot rolling process, a cold rolling process, a heat treatment process, and the like. . Precise inspection of the surface of cold-rolled steel sheet products, Al 2 O Three Surface defects due to inclusions were counted. Thus, the melting conditions in the steelmaking stage and the Al in the product stage 2 O Three The number of inclusions was measured with a microscope. Al 2 O Three 3,000 inclusions / m 2 If it is below, the surface defect resulting from this does not generate | occur | produce but it grasps | ascertains that the surface quality is excellent. In Examples 1-10 within the scope of the present invention, the cold rolled steel sheet Al 2 O Three The number of inclusions is 3000 / m 2 The following results were obtained, and the surface quality satisfying the desired target was obtained.
[0043]
On the other hand, in Comparative Examples 1 to 10 which are outside the scope of the present invention, all are Al of cold-rolled steel sheet products. 2 O Three The number of inclusions is 4000 / m 2 Therefore, a cold-rolled steel sheet product with surface quality that satisfies the intended target could not be obtained. This is because at least one condition within the scope of the present invention is not used in any of the comparative examples.
[0044]
【The invention's effect】
As described above, according to the present invention, Al 2 O Three An extremely low carbon molten steel with very few inclusions can be produced. Therefore, it is possible to provide a method for producing a highly clean ultra-low carbon steel for producing a cold-rolled steel sheet product having a highly excellent surface quality, and an industrially useful effect is brought about.
[Brief description of the drawings]
FIG. 1 Al 2 O Three -SiO 2 -Al in CaO ternary slag 2 O Three It is a graph which shows the relationship between a content rate and the liquidus temperature of slag about the case where the basicity of slag is changed as a parameter.
FIG. 2 is a longitudinal sectional conceptual view showing an example of a melting process of ultra-low carbon steel by the method of the present invention and the conventional method.
[Explanation of symbols]
1 Converter
2 Ladle
3 Quicklime
4 Converter slag
4a Converter slag (after quicklime input)
4b Slag after reforming
5 Molten steel
6 Slag reducing agent
7 RH degassing equipment
8 Vacuum chamber

Claims (3)

少なくとも下記(a)〜(d)の工程を含む極低炭素鋼の溶製方法において、下記工程(c)において改質された後のスラグは、下記工程(d)における溶鋼のアルミニウム脱酸処理前において、下記条件(イ)及び(ロ)を共に満たし、且つ、前記アルミニウム脱酸処理後において、下記条件(ハ)を満たすことを特徴とする高清浄極低炭素鋼の溶製方法。
(a)溶銑及び/又は屑鉄を転炉又は電気炉で精錬し、次いで前記転炉又は電気炉で溶製された未脱酸溶鋼を取鍋内に出鋼する工程、
(b)前記出鋼中に前記取鍋内に造滓材として生石灰を投入する工程、
(c)前記出鋼の終了後、前記出鋼中に前記転炉又は電気炉から前記取鍋内に不可避的に流入したスラグと前記取鍋内に投入された前記生石灰とから形成された新スラグに、還元剤を添加して前記新スラグを改質する工程、及び、
(d)真空脱ガス装置を用いて、前記改質されたスラグで上表面を覆われた前記取鍋内の溶鋼に、少なくとも真空脱炭処理を施し次いでアルミニウム添加による脱酸処理を施す工程、
(イ)CaO(wt.%)/SiO2 (wt.%)で表わされる塩基度が、3.0〜7.0の範囲内にあること。
(ロ){Al2 3 (wt.%)/(Al2 3 (wt.%)+SiO2 (wt.%)+CaO(wt.%))}×100(%)で表わされるAl2 3 含有量が、30〜45%の範囲内にあること。
(ハ)T.Fe含有率が、5.0wt.%以下であること。
In the melting method of ultra-low carbon steel including at least the following steps (a) to (d), the slag after being modified in the following step (c) is an aluminum deoxidation treatment of the molten steel in the following step (d). A method for melting a highly clean ultra-low carbon steel characterized by satisfying both the following conditions (A) and (B) before and satisfying the following condition (C) after the aluminum deoxidation treatment.
(A) a step of refining hot metal and / or scrap iron in a converter or electric furnace, and then removing undeoxidized molten steel melted in the converter or electric furnace into a ladle,
(B) A step of adding quick lime as a slagging material into the ladle during the steel extraction,
(C) The new formed from the slag which inevitably flowed into the ladle from the converter or electric furnace into the ladle after the completion of the ladle and the quick lime charged into the ladle. A step of modifying the new slag by adding a reducing agent to the slag; and
(D) Using a vacuum degassing device, a step of subjecting the molten steel in the ladle whose upper surface is covered with the modified slag to at least vacuum decarburization treatment and then deoxidation treatment by adding aluminum;
(A) The basicity represented by CaO (wt.%) / SiO 2 (wt.%) Is in the range of 3.0 to 7.0.
(B) {Al 2 O 3 (wt .%) / (Al 2 O 3 (wt.%) + SiO 2 (wt.%) + CaO (wt.%))} × Al 2 O represented by 100 (%) 3 Content is in the range of 30-45%.
(C) T.W. Fe content is 5.0 wt.% Or less.
前記工程(a)において溶製された前記転炉又は電気炉からの出鋼前の未脱酸溶鋼中の溶解酸素含有率は、800ppm以下であることを特徴とする、請求項1記載の高清浄極低炭素鋼の溶製方法。2. The high content of claim 1, wherein the dissolved oxygen content in the non-deoxidized molten steel before being discharged from the converter or electric furnace melted in the step (a) is 800 ppm or less. A method for melting clean ultra-low carbon steel. 前記条件(ハ)において、スラグ中のT.Fe含有率は、3.0wt.%以下であることを特徴とする、請求項1又は2記載の高清浄極低炭素鋼の溶製方法。In the condition (c), the T.V. The method for melting high-clean ultra-low carbon steel according to claim 1 or 2, wherein the Fe content is 3.0 wt.% Or less.
JP28487698A 1998-10-07 1998-10-07 Melting method of high clean ultra low carbon steel Expired - Fee Related JP3893770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28487698A JP3893770B2 (en) 1998-10-07 1998-10-07 Melting method of high clean ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28487698A JP3893770B2 (en) 1998-10-07 1998-10-07 Melting method of high clean ultra low carbon steel

Publications (2)

Publication Number Publication Date
JP2000119732A JP2000119732A (en) 2000-04-25
JP3893770B2 true JP3893770B2 (en) 2007-03-14

Family

ID=17684188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28487698A Expired - Fee Related JP3893770B2 (en) 1998-10-07 1998-10-07 Melting method of high clean ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP3893770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868406A (en) * 2019-01-30 2019-06-11 舞阳钢铁有限责任公司 A kind of smelting process of high-performance 15CrMoR steel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053142A (en) * 2001-12-22 2003-06-28 주식회사 포스코 Method for Manufacturing Ultra Carbon Steel with High Cleanliness
JP2007031807A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Method for manufacturing ultra-low carbon steel
KR101017511B1 (en) 2008-09-29 2011-02-25 현대제철 주식회사 Refining method of the molten steel for manufacturing ultra low carbon steel
CN101962701B (en) * 2010-08-19 2012-02-29 北京科技大学 LT-CAS (Control Automatic System) double-station vacuum refining device and process method thereof
CN111485065A (en) * 2019-01-28 2020-08-04 宝山钢铁股份有限公司 Smelting and casting method of sulfur-containing aluminum-containing gear steel
CN111979377B (en) * 2020-08-11 2022-07-12 大冶特殊钢有限公司 Method for recycling RH vacuum tank cold steel by using high-temperature airflow
CN117604194A (en) * 2024-01-24 2024-02-27 钢铁研究总院有限公司 Vacuum consumable electrode for 300M steel and Al-free deoxidizing refining method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868406A (en) * 2019-01-30 2019-06-11 舞阳钢铁有限责任公司 A kind of smelting process of high-performance 15CrMoR steel

Also Published As

Publication number Publication date
JP2000119732A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3896713B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP5904237B2 (en) Melting method of high nitrogen steel
TWI593803B (en) Melting method of high cleanness steel
JP5063966B2 (en) Manufacturing method of molten steel
JP3915386B2 (en) Manufacturing method of clean steel
JP2008163389A (en) Method for producing bearing steel
JPH04103741A (en) Manufacture of bearing steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP6547638B2 (en) Method of manufacturing high purity steel
JP5217478B2 (en) Method of melting ultra-low carbon steel
JPH11279631A (en) Method for refining molten stainless steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JP3674422B2 (en) Melting method of high cleanliness low carbon steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP2019000903A (en) Smelting method and continuous casting method of steel
JP5387045B2 (en) Manufacturing method of bearing steel
JP4066674B2 (en) Manufacturing method of manganese-containing ultra-low carbon steel
SU926028A1 (en) Method for refining low-carbon steel
EP0023759B1 (en) Method of recycling steel scrap
JP4207324B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2000087131A (en) Method for melting extra-low carbon steel
JP4312068B2 (en) Method of melting ultra-low carbon steel
JPH0356614A (en) Production of low-oxygen dead-soft carbon steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees