JP4062213B2 - Method for adjusting the composition of molten steel in an RH degasser - Google Patents

Method for adjusting the composition of molten steel in an RH degasser Download PDF

Info

Publication number
JP4062213B2
JP4062213B2 JP2003299615A JP2003299615A JP4062213B2 JP 4062213 B2 JP4062213 B2 JP 4062213B2 JP 2003299615 A JP2003299615 A JP 2003299615A JP 2003299615 A JP2003299615 A JP 2003299615A JP 4062213 B2 JP4062213 B2 JP 4062213B2
Authority
JP
Japan
Prior art keywords
molten steel
vacuum chamber
depth
ladle
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003299615A
Other languages
Japanese (ja)
Other versions
JP2005068488A (en
Inventor
英樹 横山
和広 仮屋
正規 錦織
嘉久 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003299615A priority Critical patent/JP4062213B2/en
Publication of JP2005068488A publication Critical patent/JP2005068488A/en
Application granted granted Critical
Publication of JP4062213B2 publication Critical patent/JP4062213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、RH脱ガス装置における溶鋼の成分調整方法に係わり、詳しくは、転炉から出鋼した溶鋼を、さらに該RH脱ガス装置で処理(二次精錬という)し、溶鋼の成分を目標値に正確に調整する技術に関する。   The present invention relates to a method for adjusting the composition of molten steel in an RH degassing apparatus. More specifically, the molten steel discharged from a converter is further processed by the RH degassing apparatus (referred to as secondary refining) to target the molten steel components. It relates to a technique for accurately adjusting the value.

近年、鋼材品質の高級化要求に応えるため、転炉から出鋼した溶鋼を取鍋に保持し、さらに精錬処理する二次精錬として各種の取鍋精錬法が開発、実用されている。その代表的なものの一つに、RH脱ガス精錬方法と称され、溶鋼の精錬効率が高く、また各種の精錬処理(例えば、脱炭処理、脱酸処理、脱水素・窒素等の脱ガス処理、脱硫処理、成分調整等)に柔軟に対応できる精錬方法が広く普及している。   In recent years, various ladle refining methods have been developed and put to practical use as secondary refining in which molten steel produced from a converter is held in a ladle and further refined in order to meet the demand for upgrading the quality of steel materials. One of the typical examples is the RH degassing refining method, which has high refining efficiency of molten steel, and various refining treatments (for example, decarburization treatment, deoxidation treatment, dehydrogenation treatment such as dehydrogenation and nitrogen). , Desulfurization treatment, component adjustment, etc.) are widely used.

この精錬方法は、図1に示すように、下部に2本の浸漬管2、3を有する円筒状の槽(内部は減圧されるので、以下、真空槽1という)を用い、取鍋4内に保持した溶鋼5にその浸漬管を浸漬させて行われる。つまり、該真空槽1内を減圧して溶鋼5の一部を浸漬管2、3を介して真空槽1内に吸い上げると共に、一方の浸漬管2(これを上昇管2ともいう)内にアルゴンや窒素等のガス6を吹込んで、ガスリフトポンプの原理(ガスの気泡で溶鋼を持ち上げる)で前記上昇管2内の溶鋼5に浮力を与えて溶鋼の上昇流を、他方の浸漬管3(これを下降管3ともいう)を介して逆に真空槽1内から取鍋4内に向かう溶鋼5の下降流を発生させて、取鍋4内と真空槽1内との間で溶鋼を環流させることにより前記した各種の精錬処理を効率良く行うものである。この精錬方法は、特に、減圧下で脱酸剤を溶鋼5に添加して行う脱酸処理では、環流によって溶鋼内の介在物同士が衝突・合体するので、介在物に作用する浮力が大きくなり、溶鋼5の浴面上に浮上し、スラグ9にトラップされて溶鋼から分離し易くなり、非金属介在物の少ない溶鋼を得るのに有効である(例えば、特許文献1参照。)。   As shown in FIG. 1, this refining method uses a cylindrical tank having two dip tubes 2 and 3 in the lower part (the inside is depressurized, and hereinafter referred to as a vacuum tank 1). This is performed by immersing the dip tube in the molten steel 5 held in the tank. That is, the inside of the vacuum chamber 1 is depressurized, and a part of the molten steel 5 is sucked into the vacuum chamber 1 through the dip tubes 2 and 3, and argon is introduced into one dip tube 2 (also referred to as the riser tube 2). And a gas 6 such as nitrogen is blown in, and the levitation force is given to the molten steel 5 in the riser pipe 2 by the principle of a gas lift pump (lifting the molten steel with gas bubbles), and the upflow of the molten steel is supplied to the other immersion pipe 3 (this The downflow of the molten steel 5 from the inside of the vacuum vessel 1 to the inside of the ladle 4 is generated via the downcomer pipe 3), and the molten steel is circulated between the inside of the ladle 4 and the inside of the vacuum vessel 1. Thus, the various refining processes described above are performed efficiently. In this refining method, in particular, in the deoxidation treatment performed by adding a deoxidizer to the molten steel 5 under reduced pressure, inclusions in the molten steel collide and coalesce due to recirculation, so that the buoyancy acting on the inclusions increases. It floats on the bath surface of the molten steel 5 and is easily trapped by the slag 9 and easily separated from the molten steel, which is effective in obtaining molten steel with less non-metallic inclusions (see, for example, Patent Document 1).

ところが、前記真空槽で溶鋼を精錬し、最終的に金属及び/又は合金を添加して該溶鋼の成分を目標値に調整する場合には、該真空槽内に前記金属及び/又は合金を所定量投入してから一定時間にわたり溶鋼の環流を継続することで、溶鋼へ前記金属及び/又は合金を迅速に溶解するようにしていた。   However, when the molten steel is refined in the vacuum chamber and finally the metal and / or alloy is added to adjust the components of the molten steel to the target value, the metal and / or alloy is placed in the vacuum chamber. The metal and / or alloy was rapidly melted into the molten steel by continuing the reflux of the molten steel for a certain time after the fixed amount was added.

ところが、鋼種によっては、例えば、Ti(比重:4.5),Zr(比重:6.5),V(比重:5.98)等のように、溶鋼よりも比重の小さな金属あるいはそれらを含む合金を投入することがある。このような金属及び/又は合金は、投入しても真空槽の内壁に付着する等、該真空槽内に残留し易く、溶鋼の環流を継続しても投入した全量が溶鋼中に完全に混合しないことがある。従って、そのような操業で得た溶鋼を連続鋳造した場合、成分規格を満足しない鋼鋳片になってしまう。
特開平2−25251号公報
However, depending on the steel type, for example, Ti (specific gravity: 4.5), Zr (specific gravity: 6.5), V (specific gravity: 5.98), etc., or a metal having a specific gravity smaller than that of the molten steel or the like is included. Alloys may be added. Such metals and / or alloys are likely to remain in the vacuum chamber even if they are added, such as sticking to the inner wall of the vacuum chamber. There are things that do not. Therefore, when the molten steel obtained by such an operation is continuously cast, it becomes a steel slab that does not satisfy the component standards.
JP-A-2-25251

本発明は、かかる事情に鑑み、真空槽内に投入した金属及び/又は合金が確実に溶鋼へ溶解し、成分規格の的中に優れたRH真空脱ガス装置における溶鋼の成分調整方法を提供することを目的としている。   In view of such circumstances, the present invention provides a component adjustment method for molten steel in an RH vacuum degassing apparatus in which the metal and / or alloy charged into the vacuum chamber is surely dissolved in the molten steel and is excellent in the component specifications. The purpose is that.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、取鍋に保持した溶鋼に対し、2本の浸漬管を下部に備えた筒状の真空槽を該浸漬管が該溶鋼中に浸るように配置し、該真空槽内を減圧して該溶鋼を取鍋と真空槽間で環流させると共に、該真空槽に種々の金属及び/又は合金を投入して溶鋼の成分調整を行うRH脱ガス装置による溶鋼の成分調整方法において、前記真空槽内に前記金属及び/又は合金を投入してから最長で5分間経過するまでは、前記真空槽内の溶鋼深さを100mm以上でかつ200mm未満となるように、通常の精錬時より浅くし、その後に該溶鋼への浸漬管の浸漬深さを前記真空槽内の溶鋼深さが400〜500mmとなる通常精錬時の溶鋼深さとして精錬することを特徴とするRH脱ガス装置における溶鋼の成分調整方法である。この場合、前記金属及び/又は合金が溶鋼より低比重のものであったり、あるいは前記金属及び/又は合金が、Ti、Zr、V、B、Ca及びREM、並びにそれらの合金から選ばれた1種又は2種以上であることが好ましい。また、本発明の実施では、前記真空槽内の溶鋼深さを通常の精錬時より浅くするのに、該真空槽に対して配置した取鍋の位置を通常より該真空槽に対して相対的に下降させる操作を行ったり、あるいは該真空槽内の真空度を低下させる操作を行うのが良い。 That is, in the present invention, a cylindrical vacuum chamber provided with two dip tubes at the lower part is arranged with respect to the molten steel held in the ladle so that the dip tube is immersed in the molten steel. In the method for adjusting the molten steel components by the RH degassing apparatus, the molten steel is circulated between the ladle and the vacuum chamber by reducing the pressure, and various metals and / or alloys are introduced into the vacuum chamber to adjust the components of the molten steel. wherein the metal and / or alloy in the vacuum chamber from the introduced until after 5 minutes at longest, the molten steel depth of the vacuum chamber such that and less than 200mm at least 100mm, normal refining RH degassing apparatus characterized by further refining the immersion depth of the dip tube into the molten steel as a molten steel depth during normal refining in which the molten steel depth in the vacuum tank is 400 to 500 mm. It is the component adjustment method of the molten steel in. In this case, the metal and / or alloy has a specific gravity lower than that of the molten steel, or the metal and / or alloy is selected from Ti, Zr, V, B, Ca and REM, and alloys thereof. It is preferable that it is a seed | species or 2 or more types. Further, in the practice of the present invention, in order to make the molten steel depth in the vacuum chamber shallower than that during normal refining, the position of the ladle disposed with respect to the vacuum chamber is relatively relative to the vacuum chamber than usual. It is preferable to perform an operation of lowering the pressure or to lower the degree of vacuum in the vacuum chamber.

本発明によれば、真空槽内に投入した金属及び/合金がほぼ全量速やかに取鍋に移行し、取鍋内の溶鋼と混合するので、従来と同じあるいはそれよりも短い時間の環流処理で、溶鋼中の成分を均一にするばかりでなく、成分の目標値への的中も高まる。その結果、成分規格を満足する鋼材の量が従来より増加した。   According to the present invention, almost all of the metal and / or alloy charged in the vacuum chamber is quickly transferred to the ladle and mixed with the molten steel in the ladle. This not only makes the components in the molten steel uniform, but also increases the target of the components to the target values. As a result, the amount of steel materials that satisfy the component specifications has increased compared to the conventional steel materials.

以下に、発明をなすに至った経緯もまじえ、本発明の実施の形態を説明する。   In the following, an embodiment of the present invention will be described, including the background to the invention.

本発明を適用するRH脱ガス装置は、溶鋼の二次精錬に一般的に使用されるもので良い。すなわち、図1に示したように、円筒状の真空槽1とその下部に設けられた浸漬管(一方を上昇管2、他方を下降管3と称する)からなり、真空槽1には図示しない真空排気系へと連なる排気ダクト7が設けられている。この一般的なRH脱ガス装置では、取鍋4内に保持した溶鋼5に前記浸漬管2、3を浸漬するために、該取鍋4を上昇させる昇降手段(例えば、油圧シリンダー8等)が設けられている。なお、取鍋4を固定しておき、真空槽1を上下するようにしたRH脱ガス装置も存在するが、勿論そのような装置であっても、本発明を適用するにあたって何ら問題ない。また、昇降手段が図示のように直接取鍋を押し上げるのではなく、取鍋を保持した台車の全体又は一部分を押し上げるものであっても良い。さらに、かかるRH脱ガス装置に種々の精錬機能を付加するために、真空槽の下部側壁に酸素や不活性ガス等のガス吹込み羽口(図示せず)を設けたもの、真空槽の上部からガス、燃料あるいは精錬用フラックス等を吹込むランス(図示せず)を設けたものもあるが、これらいずれの機能が併設してあっても構わない。   The RH degassing apparatus to which the present invention is applied may be one generally used for secondary refining of molten steel. That is, as shown in FIG. 1, it consists of a cylindrical vacuum chamber 1 and a dip tube (one is referred to as a rising tube 2 and the other is referred to as a descending tube 3) provided in the lower portion thereof. An exhaust duct 7 connected to the vacuum exhaust system is provided. In this general RH degassing apparatus, in order to immerse the dip tubes 2, 3 in the molten steel 5 held in the ladle 4, lifting means for raising the ladle 4 (for example, a hydraulic cylinder 8) is provided. Is provided. Note that there is an RH degassing apparatus in which the ladle 4 is fixed and the vacuum chamber 1 is moved up and down. Of course, even such an apparatus has no problem in applying the present invention. Further, the lifting means may not push up the ladle directly as shown, but may push up the whole or a part of the cart holding the ladle. Further, in order to add various refining functions to the RH degassing apparatus, a gas inlet tuyere (not shown) such as oxygen or inert gas is provided on the lower side wall of the vacuum chamber, and the upper portion of the vacuum chamber. Some of them are provided with a lance (not shown) for blowing gas, fuel, refining flux or the like, but any of these functions may be provided.

まず、発明者は、従来から行っている金属及び/又は合金11の投入で、溶鋼成分が目標(規格)から外れるのかについて綿密に検討した。その結果、従来の方法では、投入した金属及び/又は合金11が有効に利用されていないと考えた。つまり、真空槽1内に投入した金属及び/又は合金11が速やかに溶鋼5にトラップされ、下降管3を介して取鍋4に移行していないと考えた。溶鋼成分が目標値に一致するには、投入した量がほぼ全量、溶鋼に溶解するのが望ましいからである。そこで、発明者は、投入した金属及び/又は合金11が真空槽1の内壁に付着して残存し、取鍋内溶鋼に移行しないという現象が起きるのを避ければ、従来より良好な溶鋼成分の規格的中が達成できると考え、その具体的な手段を本発明として完成させたのである。   First, the inventor studied carefully whether the molten steel component deviated from the target (standard) by the conventional metal and / or alloy 11 injection. As a result, in the conventional method, it was considered that the introduced metal and / or alloy 11 was not effectively used. That is, it was considered that the metal and / or alloy 11 charged in the vacuum chamber 1 was quickly trapped in the molten steel 5 and not transferred to the ladle 4 via the downcomer 3. This is because in order for the molten steel components to coincide with the target value, it is desirable that almost all of the added amount is dissolved in the molten steel. Therefore, the inventor should avoid the phenomenon that the introduced metal and / or alloy 11 remains attached to the inner wall of the vacuum chamber 1 and does not shift to the molten steel in the ladle. We thought that the standard could be achieved, and completed the concrete means as the present invention.

すなわち、本発明は、取鍋4に保持した溶鋼5に対し、2本の浸漬管2,3を下部に備えた筒状の真空槽1を該浸漬管が該溶鋼に浸るように配置し、該真空槽内を減圧して該溶鋼5を取鍋4と真空槽1間で環流させると共に、該真空槽に種々の金属及び/又は合金11を投入して溶鋼5の成分調整を行うRH脱ガス装置による溶鋼の成分調整方法において、前記真空槽1内に前記金属及び/又は合金11を投入してから一定時間経過するまでは、前記真空槽内1の溶鋼深さを通常の精錬時より浅くし、その後に通常精錬時の溶鋼深さとして精錬するものである。このようにすると、投入された金属及び/又は合金が真空槽1の内壁に付着する前に、溶鋼5に伴われて下降管3を介して取鍋4内の溶鋼5に速やかに移行して溶解すると共に、取鍋の溶鋼から上昇管2を介して真空槽1内に環流される間に該溶鋼中に均一に溶解されるようになる。その結果、投入した金属及び/又は合金のほぼ全量が溶鋼に溶解することになり、溶鋼の成分はほぼ目標値になるのである。なお、精錬時の真空槽内の通常の溶鋼深さ(図1に記号Lで示す)は400〜500mmである。   That is, the present invention arranges the cylindrical vacuum chamber 1 provided with two dip tubes 2 and 3 in the lower part of the molten steel 5 held in the ladle 4 so that the dip tube is immersed in the molten steel, The inside of the vacuum chamber is depressurized and the molten steel 5 is circulated between the ladle 4 and the vacuum chamber 1, and various metals and / or alloys 11 are introduced into the vacuum chamber to adjust the components of the molten steel 5. In the method for adjusting the composition of molten steel using a gas apparatus, the molten steel depth in the vacuum chamber 1 is set to a value from the time of normal refining until a predetermined time has elapsed after the metal and / or alloy 11 has been introduced into the vacuum chamber 1. It is shallowed and then refined as the molten steel depth during normal refining. If it does in this way, before the thrown-in metal and / or alloy adheres to the inner wall of the vacuum chamber 1, it will transfer to the molten steel 5 in the ladle 4 via the downcomer 3 accompanying the molten steel 5 rapidly. While being melted, the molten steel is uniformly melted in the molten steel while being refluxed from the molten steel in the ladle through the riser 2 into the vacuum chamber 1. As a result, almost the entire amount of the metal and / or alloy charged is dissolved in the molten steel, and the components of the molten steel become substantially the target values. In addition, the normal molten steel depth (it shows with the symbol L in FIG. 1) in the vacuum chamber at the time of refining is 400-500 mm.

本発明で、一旦浅くした溶鋼の深さを再度通常の深さに戻すのは、このような浅い溶鋼深さでの操業を長時間続けると、以下のような問題が発生するからである。第1には、真空槽1内の溶鋼浴の深さが浅いと、上昇管2に吹込んだ環流促進ガスの気泡が溶鋼中に分散する前に浴面に吹き抜けて前記ガスリフトポンプの効果が減殺されてしまうことである。このことは、環流速度の減少を来すので、精錬効率の悪化を招く。第2には、取鍋4内の溶鋼浴面近くに溶鋼5の流動が生じ易く、これによって取鍋4内の溶鋼浴面上のスラグ9が次第に溶融して上昇管2から真空槽1内に吸い上げられ易くなることである。また、第3には、溶鋼浴面上から酸素を吹き付けて脱炭精錬を行う場合には、酸素ガスジェットによって真空槽1の敷(底)耐火物10が溶損し易くなることである。そこで、これらの問題を解消する対策として、本発明では、上記のような浸漬深さを浅くする操業を、精錬の全期間にわたって継続して行うのではなく、金属及び/又は合金を投入してから一定時間に限定し、それ以降は、通常の溶鋼深さでの操業に戻すことにした。具体的には、真空槽1内の圧力を13.3kPa(100torr)以下に減圧してから金属及び/又は合金を投入し、最長で5分までの間を真空槽1内の溶鋼深さを200mm未満(好ましくは、100mm以上)に、それ以降は真空槽内の溶鋼深さが400mm以上、好ましくは500mm以上の通常の操業条件となるようにする。   In the present invention, the depth of the molten steel once shallowed is returned to the normal depth again because the following problems occur when operation at such shallow molten steel depth is continued for a long time. First, if the depth of the molten steel bath in the vacuum chamber 1 is shallow, the bubbles of the circulation promoting gas blown into the riser 2 are blown through the bath surface before being dispersed in the molten steel, and the effect of the gas lift pump is achieved. It will be diminished. This leads to a reduction in the recirculation velocity, which leads to a deterioration in the refining efficiency. Secondly, the flow of the molten steel 5 tends to occur near the molten steel bath surface in the ladle 4, whereby the slag 9 on the molten steel bath surface in the ladle 4 is gradually melted so that the riser 2 and the vacuum chamber 1 It becomes easy to be sucked up. Third, when decarburization and refining is performed by blowing oxygen from above the molten steel bath surface, the refractory 10 of the bottom (bottom) of the vacuum chamber 1 is easily melted by the oxygen gas jet. Therefore, as a countermeasure for solving these problems, in the present invention, the operation for decreasing the immersion depth as described above is not performed continuously over the entire refining period, but a metal and / or alloy is added. After that, it was limited to a certain time, and after that, it was decided to return to the operation at the normal molten steel depth. Specifically, after reducing the pressure in the vacuum chamber 1 to 13.3 kPa (100 torr) or less, the metal and / or alloy is added, and the depth of the molten steel in the vacuum chamber 1 is set to a maximum of 5 minutes. Below 200 mm (preferably 100 mm or more), after that, the molten steel depth in the vacuum chamber is set to normal operating conditions of 400 mm or more, preferably 500 mm or more.

上記本発明を具体的に実施するには、真空槽1内の溶鋼深さを調整する必要があるが、真空槽1に配設した取鍋4の昇降あるいは逆に真空槽1の上昇が利用できる。具体的には、前記真空槽内の溶鋼深さ(L)を通常の精錬時より浅くするには、該真空槽1に対して配置した取鍋4の位置を通常より該真空槽1に対して相対的に下降させる操作を行えば良い。ここに、「相対的に下降する」とは、文字通り取鍋を下降させる場合と、逆に取鍋を固定しておいて真空槽を上昇させる場合を含んでいる。また、真空槽1内の溶鋼深さ(L)は、槽内の圧力と浸漬管の取鍋内溶鋼への浸漬深さとに依存し、槽内の圧力が高いほど浅く、浸漬深さが浅い程浅くなる。したがって、真空槽1内の溶鋼深さを浅くするには、槽内の圧力を通常(13.3kPa)より高め(例えば、26kPa程度)に設定するという選択肢も考えられる。しかしながら、真空槽1内の圧力を高めにすることは、真空脱ガス精錬そのものの効率を低下させることになるので、該真空槽に配設した取鍋の位置を通常より下降させる操作の方が好ましい。   In order to carry out the present invention specifically, it is necessary to adjust the depth of molten steel in the vacuum chamber 1, but the raising and lowering of the ladle 4 disposed in the vacuum chamber 1 or the raising of the vacuum chamber 1 is used. it can. Specifically, in order to make the molten steel depth (L) in the vacuum chamber shallower than that during normal refining, the position of the ladle 4 disposed with respect to the vacuum chamber 1 is more than normal with respect to the vacuum chamber 1. The relative lowering operation may be performed. Here, “relatively lowering” includes literally lowering the ladle and conversely fixing the ladle and raising the vacuum chamber. Moreover, the molten steel depth (L) in the vacuum vessel 1 depends on the pressure in the vessel and the immersion depth of the dip tube in the molten steel in the ladle. The higher the pressure in the vessel, the shallower the immersion depth. It becomes shallower. Therefore, in order to make the molten steel depth in the vacuum chamber 1 shallow, an option of setting the pressure in the chamber higher than normal (13.3 kPa) (for example, about 26 kPa) can be considered. However, increasing the pressure in the vacuum chamber 1 lowers the efficiency of the vacuum degassing refining itself, so that the operation of lowering the position of the ladle disposed in the vacuum chamber than usual is better. preferable.

なお、本発明の実施に際しては、予め溶鋼中の各成分濃度を知り、その値に基づき投入するの金属及び/又は合金種類と投入量を定めておくことは言うまでもない。また、金属及び/又は合金の投入は、真空槽1の上方に設けたホッパ12からロータリ・フィーダ等の公知の切出し手段を介して行えば良い。   In carrying out the present invention, it goes without saying that the concentration of each component in the molten steel is known in advance, and the type and amount of metal and / or alloy to be charged are determined based on the value. Further, the metal and / or alloy may be charged from a hopper 12 provided above the vacuum chamber 1 through a known cutting means such as a rotary feeder.

260トンの溶鋼を処理するRH真空脱ガス装置において、従来の操業と本発明に係る方法を用いた操業を複数チャージ行い、その効果を比較した。   In the RH vacuum degassing apparatus for processing 260 tons of molten steel, a plurality of operations using the conventional operation and the method according to the present invention were charged, and the effects were compared.

まず、炭素(C)濃度が4.3質量%の溶銑を底吹き転炉に装入して脱炭精錬を行い、C濃度が0.03〜0.04質量%の溶鋼として取鍋に出鋼した。そして、該溶鋼面に浮ぶスラグの上にアルミ滓を投入して前記のスラグ改質(還元)を行った。この溶鋼を保持した取鍋をRH真空脱ガス装置にセットし、真空槽に送酸(酸素ガス吹き込み)脱炭及び送酸を停止しての真空脱炭を行い、溶鋼中炭素濃度を20ppmに低減した。その後、アルミニウムを投入して脱酸するキルド処理を5分間行ってから、前記金属及び/又は合金として「スポンジTi」を投入し、4分間の環流を継続した後に操業を終了し、得られた溶鋼を連続鋳造して鋼鋳片(スラブ)とした。主な操業条件は、表1に示す通りである。なお、「スポンジTi」の投入量は、操業終了時点での溶鋼中のTi含有量が0.01質量%になるように予め定めてある。また、真空槽内の溶鋼深さは、「スポンジTi」の投入前が430mmで、投入後は180mmとした。さらに、比較のため、「スポンキTi」の投入後も通常の溶鋼深さ480mmを維持する操業も行った(比較例)。   First, hot metal having a carbon (C) concentration of 4.3% by mass is charged into a bottom-blowing converter and decarburized and refined, and discharged to a ladle as molten steel having a C concentration of 0.03 to 0.04% by mass. Made of steel. And the aluminum slag was thrown on the slag which floated on this molten steel surface, and the said slag reforming (reduction) was performed. The ladle holding the molten steel is set in an RH vacuum degassing device, and acid feeding (oxygen gas blowing) decarburization and vacuum decarburization with stopping the acid feeding are performed in the vacuum tank, so that the carbon concentration in the molten steel is 20 ppm. Reduced. Then, after killing for 5 minutes by adding aluminum and deoxidizing, “sponge Ti” was added as the metal and / or alloy, and the operation was terminated after continuing the reflux for 4 minutes. Molten steel was continuously cast into steel slabs (slabs). The main operating conditions are as shown in Table 1. The input amount of “sponge Ti” is determined in advance so that the Ti content in the molten steel at the end of the operation is 0.01 mass%. The depth of the molten steel in the vacuum chamber was 430 mm before the addition of “Sponge Ti” and 180 mm after the addition. Further, for comparison, an operation for maintaining a normal molten steel depth of 480 mm was also performed after the introduction of “Spong Ti” (comparative example).

Figure 0004062213
Figure 0004062213

本発明の操業成績は、溶鋼の連続鋳造中にタンディッシュにおいて,鋳込み前の取鍋内溶鋼質量に対して、連続鋳造設備で鋳造した溶鋼の質量(鋳片の幅及び厚みと鋳造長さに基づいて計算で求めた質量)の比率で10%、30%、50%、70%及び90%のときに溶鋼の分析用試料を採取し、該試料のTi濃度(記号:[Ti])を分析して評価した。   The operational results of the present invention show that the mass of the molten steel cast in the continuous casting equipment (the width and thickness of the slab and the casting length in relation to the molten steel mass in the ladle before casting in the tundish during continuous casting of the molten steel. Based on the calculated mass), the samples for analysis of molten steel are taken at 10%, 30%, 50%, 70% and 90%, and the Ti concentration (symbol: [Ti]) of the sample is taken. Analyzed and evaluated.

その結果、本発明の実施で得た溶鋼は、鋳造時間の全体にわたり[Ti]が0.0009〜0.011質量%であり、目標値にほぼ的中していた。これに対して、従来の操業を行った前記比較例では、[Ti]が鋳込み10%で0.004質量%、鋳込み30%で0.008質量%、鋳込み50%で0.009質量%、鋳込み70%で0.010質量%、鋳込み90%で0.020質量%で、1チャージ分の鋳込期間においては、鋳込み時間の経過につれて増加し、溶鋼中の[Ti]が不安定であった。   As a result, the molten steel obtained by carrying out the present invention had [Ti] of 0.0009 to 0.011% by mass over the entire casting time, and was almost at the target value. On the other hand, in the comparative example in which the conventional operation was performed, [Ti] was 0.004% by mass at 10% casting, 0.008% by mass at 30% casting, 0.009% by mass at 50% casting, In the casting period of one charge at 0.010 mass% at 70% casting and 0.020 mass% at 90% casting, the [Ti] in the molten steel was unstable as the casting time increased. It was.

一般的なRH脱ガス装置を説明する横断面図である。It is a cross-sectional view explaining a general RH degassing apparatus.

符号の説明Explanation of symbols

1 真空槽(筒状槽)
2 上昇管
3 下降管
4 取鍋
5 溶鋼
6 ガス
7 排気ダクト
8 油圧シリンダー等
9 スラグ
10 敷耐火物
11 金属及び/又は合金
12 ホッパ
13 ロータリ・フィーダ
1 Vacuum tank (tubular tank)
2 Rising Pipe 3 Downfalling Pipe 4 Ladle 5 Molten Steel 6 Gas 7 Exhaust Duct 8 Hydraulic Cylinder, etc. 9 Slag 10 Refractory Material 11 Metal and / or Alloy 12 Hopper 13 Rotary Feeder

Claims (5)

取鍋に保持した溶鋼に対し、2本の浸漬管を下部に備えた筒状の真空槽を該浸漬管が該溶鋼中に浸るように配置し、該真空槽内を減圧して該溶鋼を取鍋と真空槽間で環流させると共に、該真空槽に種々の金属及び/又は合金を投入して溶鋼の成分調整を行うRH脱ガス装置における溶鋼の成分調整方法において、
前記真空槽内に前記金属及び/又は合金を投入してから最長で5分間経過するまでは、前記真空槽内の溶鋼深さを100mm以上でかつ200mm未満となるように、通常の精錬時より浅くし、その後に該溶鋼への浸漬管の浸漬深さを前記真空槽内の溶鋼深さが400〜500mmとなる通常精錬時の溶鋼深さとして精錬することを特徴とするRH脱ガス装置における溶鋼の成分調整方法。
With respect to the molten steel held in the ladle, a cylindrical vacuum tank provided with two dip tubes at the bottom is arranged so that the dip tube is immersed in the molten steel, and the inside of the vacuum tank is decompressed to In the method of adjusting the molten steel components in the RH degassing apparatus, in which various metals and / or alloys are introduced into the vacuum chamber and the components of the molten steel are adjusted while circulating between the ladle and the vacuum chamber.
Wherein the metal and / or alloy in the vacuum chamber from the introduced until after 5 minutes at longest, the molten steel depth of the vacuum chamber such that and less than 200mm at least 100mm, normal refining RH degassing apparatus characterized by further refining the immersion depth of the dip tube into the molten steel as the molten steel depth during normal refining in which the molten steel depth in the vacuum tank is 400 to 500 mm. Method for adjusting the composition of molten steel.
前記金属及び/又は合金が溶鋼より低比重のものであることを特徴とする請求項1記載のRH脱ガス装置における溶鋼の成分調整方法。   2. The method for adjusting the composition of molten steel in an RH degassing apparatus according to claim 1, wherein the metal and / or alloy has a specific gravity lower than that of the molten steel. 前記金属及び/又は合金が、Ti、Zr、V、B、Ca及びREM、並びにそれらの合金から選ばれた1種又は2種以上であることを特徴とする請求項1記載のRH脱ガス装置における溶鋼の成分調整方法。   2. The RH degassing apparatus according to claim 1, wherein the metal and / or alloy is one or more selected from Ti, Zr, V, B, Ca and REM, and alloys thereof. Method for adjusting the composition of molten steel. 前記真空槽内の溶鋼深さを通常の精錬時より浅くするのに、該真空槽に対して配置した取鍋の位置を通常より該真空槽に対して相対的に下降させる操作を行うことを特徴とする請求項1〜3のいずれかに記載のRH脱ガス装置における溶鋼の成分調整方法。   In order to make the molten steel depth in the vacuum chamber shallower than that during normal refining, the operation of lowering the position of the ladle disposed relative to the vacuum chamber relative to the vacuum chamber is performed. The component adjustment method of the molten steel in the RH degassing apparatus in any one of Claims 1-3 characterized by the above-mentioned. 前記真空槽内の溶鋼深さを通常の精錬時より浅くするのに、該真空槽内の真空度を低下させる操作を行うことを特徴とする請求項1〜3のいずれかに記載のRH脱ガス装置における溶鋼の成分調整方法。   The RH desorption according to any one of claims 1 to 3, wherein an operation of decreasing the degree of vacuum in the vacuum tank is performed in order to make the molten steel depth in the vacuum tank shallower than that during normal refining. Method for adjusting the composition of molten steel in a gas apparatus.
JP2003299615A 2003-08-25 2003-08-25 Method for adjusting the composition of molten steel in an RH degasser Expired - Lifetime JP4062213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299615A JP4062213B2 (en) 2003-08-25 2003-08-25 Method for adjusting the composition of molten steel in an RH degasser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299615A JP4062213B2 (en) 2003-08-25 2003-08-25 Method for adjusting the composition of molten steel in an RH degasser

Publications (2)

Publication Number Publication Date
JP2005068488A JP2005068488A (en) 2005-03-17
JP4062213B2 true JP4062213B2 (en) 2008-03-19

Family

ID=34404773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299615A Expired - Lifetime JP4062213B2 (en) 2003-08-25 2003-08-25 Method for adjusting the composition of molten steel in an RH degasser

Country Status (1)

Country Link
JP (1) JP4062213B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337681B2 (en) * 2014-08-12 2018-06-06 新日鐵住金株式会社 Vacuum refining method for molten steel
CN115074491B (en) * 2021-03-16 2024-04-05 上海梅山钢铁股份有限公司 Automatic control method for circulation gas of RH furnace

Also Published As

Publication number Publication date
JP2005068488A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP2007224367A (en) Method for producing high-nitrogen steel
JP5904237B2 (en) Melting method of high nitrogen steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP4062213B2 (en) Method for adjusting the composition of molten steel in an RH degasser
JP4207820B2 (en) How to use vacuum degassing equipment
JP5217478B2 (en) Method of melting ultra-low carbon steel
EP3940088B1 (en) Method for producing ti-containing ultralow-carbon steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP5849667B2 (en) Melting method of low calcium steel
JP6911590B2 (en) Steel melting method
JP4062212B2 (en) Method for refining molten steel with RH degassing equipment
JP5096779B2 (en) Method of adding rare earth elements to molten steel
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
KR20160133658A (en) Method of refining molten steel
JP3374618B2 (en) Vacuum refining method for molten steel
JP3252726B2 (en) Vacuum refining method for molten steel
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus
JP2005076060A (en) Method for vacuum-decarburizing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term