JP7215361B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP7215361B2
JP7215361B2 JP2019129205A JP2019129205A JP7215361B2 JP 7215361 B2 JP7215361 B2 JP 7215361B2 JP 2019129205 A JP2019129205 A JP 2019129205A JP 2019129205 A JP2019129205 A JP 2019129205A JP 7215361 B2 JP7215361 B2 JP 7215361B2
Authority
JP
Japan
Prior art keywords
runner
molten metal
hot water
chamber
receiving chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019129205A
Other languages
Japanese (ja)
Other versions
JP2021013942A (en
Inventor
勝弘 淵上
健一郎 宮本
英二 渡邉
直也 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019129205A priority Critical patent/JP7215361B2/en
Publication of JP2021013942A publication Critical patent/JP2021013942A/en
Application granted granted Critical
Publication of JP7215361B2 publication Critical patent/JP7215361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、高清浄鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting method for high cleanliness steel.

加工用途の鋼材、例えば、ブリキ、IF鋼、棒鋼、線材等に用いられる鋼材には、加工時の割れ発生を抑制するため、鋼材に含まれるアルミナ等の介在物量を低減することが求められている。
このため、鋼材を溶製する際の製造工程においては、介在物の生成抑制や浮上除去が行われている。この製造工程の一つである連続鋳造工程では、溶湯(溶鋼)を取鍋(溶鋼鍋)からタンディッシュへ注入し、更にタンディッシュ内の溶湯を鋳型に注入することによって、鋳片を製造しているが、このタンディッシュにおいても介在物の生成抑制や浮上除去を行う技術が検討されている。
Steel materials for processing applications, such as tinplates, IF steels, steel bars, wire rods, etc., are required to reduce the amount of inclusions such as alumina contained in the steel materials in order to suppress the occurrence of cracks during processing. there is
For this reason, in the manufacturing process of melting steel materials, the formation of inclusions is suppressed and the inclusions are removed. In the continuous casting process, which is one of these manufacturing processes, molten metal (molten steel) is poured from a ladle (molten steel ladle) into a tundish, and then the molten metal in the tundish is poured into a mold to produce a slab. However, techniques for suppressing the formation of inclusions and removing floating inclusions in this tundish are also being studied.

例えば、特許文献1には、誘導加熱用タンディッシュにおいて、誘導加熱部に受湯室と出湯室とを接続するスリーブ状の溶湯通路を設け、この溶湯通路と出湯室の底面との間に200mm以上の段差を設けることにより、出湯室内に流入した溶鋼が撹拌され、更に、溶湯内の介在物の浮上効果を高めることができると記載されている。
また、特許文献2には、出鋼工程と真空脱ガス工程の間で炭素成分を溶鋼に添加し真空脱ガス処理を行った後、最終のAl脱酸を行い、その後、タンディッシュに注湯する高清浄鋼の製造方法が記載されている。このタンディッシュは、受湯部と排湯部に区切られ、かつ、溶鋼流路の受湯部側の開口部の受湯部の底面からの高さ位置を、受湯部側の溶鋼深さの0.2倍以下としている。
そして、特許文献3には、タンディッシュ内に、溶鋼を通すための貫通孔(湯道)を有する堰を設け、この貫通孔に、貫通孔を通過する溶鋼を加熱するための加熱手段(例えば、誘導加熱手段)を設けることが記載されている。この加熱手段で貫通孔を通過する溶鋼を加熱することにより、貫通孔を通過した後の溶鋼は、その周囲の溶鋼よりも高温状態となるため強い浮力が働く。これにより、タンディッシュ内の溶鋼湯面に向かう溶鋼の流れが形成されるため、介在物の浮上分離が可能となる(例えば、段落[0018])。
For example, in Patent Document 1, in a tundish for induction heating, a sleeve-shaped molten metal passage is provided in the induction heating part to connect the molten metal receiving chamber and the molten metal dispensing chamber. It is described that by providing the above steps, the molten steel that has flowed into the tapping chamber is agitated, and the effect of floating inclusions in the molten metal can be enhanced.
Further, in Patent Document 2, a carbon component is added to molten steel between the tapping process and the vacuum degassing process, vacuum degassing is performed, final Al deoxidation is performed, and then the molten steel is poured into a tundish. A method for producing high cleanliness steel is described. This tundish is divided into a receiving part and a discharging part, and the height position of the opening of the molten steel flow path on the receiving part side from the bottom of the receiving part is set to the depth of the molten steel on the receiving part side. 0.2 times or less.
In addition, in Patent Document 3, a weir having a through hole (runner) for passing molten steel is provided in the tundish, and a heating means (for example, , induction heating means) are described. By heating the molten steel passing through the through-holes with this heating means, the molten steel after passing through the through-holes becomes hotter than the molten steel around it, so strong buoyancy acts. As a result, a flow of molten steel is formed toward the molten steel surface in the tundish, so inclusions can be floated and separated (eg, paragraph [0018]).

実開平6-86849号公報Japanese Utility Model Laid-Open No. 6-86849 特開2016-204693号公報JP 2016-204693 A 特開2008-264834号公報JP 2008-264834 A

しかしながら、特許文献1~3に記載の方法では、相応の溶鋼の高清浄化は図れるものの、極めて高度な清浄性が要求される場合には、その効果が十分ではなかった。 However, although the methods described in Patent Literatures 1 to 3 are capable of achieving correspondingly high cleanliness of molten steel, the effect is not sufficient when an extremely high degree of cleanliness is required.

本発明はかかる事情に鑑みてなされたもので、溶湯の更なる高清浄化が可能な連続鋳造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a continuous casting method capable of further cleaning the molten metal.

前記目的に沿う本発明に係る連続鋳造方法は、溶湯を取鍋からタンディッシュを介して鋳型へ注入し鋳片を製造する連続鋳造方法において、
前記タンディッシュは、該タンディッシュ内を受湯室と出湯室とに区分し、かつ、前記受湯室から前記出湯室へ向けて溶湯が流れる1本以上4本以下の湯道を下部に備えた堰を有し、前記湯道はその断面形状を円形に換算して直径を100mm以上300mm以下の範囲に設定し、
前記湯道を前記受湯室側から前記出湯室側へかけて下方に向けて傾斜させ、かつ、{前記湯道の前記受湯室側端面と前記出湯室側端面の各中心位置の高低差(mm)}/{前記湯道の水平方向の長さ(mm)}で定義される前記湯道の傾きを0.5×10-2以上9.5×10-2以下の範囲とし、
前記湯道の前記受湯室側端面と前記出湯室側端面の各中心位置を通る湯道中心軸仮想線が、前記堰に対向する前記出湯室の耐火物壁面と交差する位置である衝突点の前記出湯室の底面からの高さZと、前記衝突点における前記耐火物壁面の垂線と前記湯道中心軸仮想線がなす角φが、0.10≦0.5-φ/180-Z/1200≦0.30、を満たす。
A continuous casting method according to the present invention that meets the above object is a continuous casting method in which molten metal is poured from a ladle through a tundish into a mold to produce a slab,
The tundish divides the inside of the tundish into a hot water receiving chamber and a hot water dispensing chamber, and has at the bottom one or more and four or less runners through which the molten metal flows from the hot water receiving chamber toward the hot water dispensing chamber. and the runner has a cross-sectional shape converted to a circular shape and has a diameter in the range of 100 mm or more and 300 mm or less,
The runner is inclined downward from the hot water receiving chamber side to the hot water dispensing chamber side, and {height difference between each center position of the end surface of the runner on the side of the hot water receiving chamber and the end surface on the side of the hot water dispensing chamber (mm)}/{horizontal length of the runner (mm)} and the inclination of the runner is in the range of 0.5×10 −2 or more and 9.5×10 −2 or less,
A collision point at a position where an imaginary line of a runner center axis passing through the respective center positions of the end surface of the runner on the side of the hot water receiving chamber and the end surface on the side of the hot water discharge chamber intersects the refractory wall surface of the water discharge chamber facing the weir. and the angle φ formed by the vertical line of the refractory wall surface at the collision point and the imaginary line of the runner center axis is 0.10≦0.5−φ/180−Z /1200≤0.30.

本発明に係る連続鋳造方法において、塩基度=(質量%CaO)/{(質量%SiO)+(質量%Al)}が1.0以上4.0以下、かつ、CaO量、SiO量、及び、Al量の合計量に対するAl量が10質量%以上であるフラックスを、前記受湯室の溶湯表面に配置し、該フラックスの厚みを5mm以上50mm以下にすることが好ましい。 In the continuous casting method according to the present invention, basicity = (% by mass CaO) / {(% by mass SiO 2 ) + (% by mass Al 2 O 3 )} is 1.0 or more and 4.0 or less, and the amount of CaO, A flux having an Al 2 O 3 amount of 10% by mass or more with respect to the total amount of SiO 2 amount and Al 2 O 3 amount is placed on the surface of the molten metal in the receiving chamber, and the thickness of the flux is 5 mm or more and 50 mm or less. It is preferable to

本発明に係る連続鋳造方法において、前記タンディッシュを平面視して、前記取鍋から前記受湯室に溶湯を注入するためのロングノズルの中心位置と、前記湯道中心軸仮想線との最短距離を、前記ロングノズルの外径の2倍以上にすることが好ましい。 In the continuous casting method according to the present invention, in a plan view of the tundish, the shortest distance between the center position of a long nozzle for pouring molten metal from the ladle into the receiving chamber and the imaginary line of the center axis of the runner It is preferable that the distance is at least twice the outer diameter of the long nozzle.

本発明に係る連続鋳造方法は、下部に湯道を備えた堰を有するタンディッシュを用い、湯道を受湯室側から出湯室側へかけて下方に向けて傾斜させ、かつ、{湯道の受湯室側端面と出湯室側端面の各中心位置の高低差(mm)}/{湯道の水平方向の長さ(mm)}で定義される湯道の傾きを0.5×10-2以上9.5×10-2以下の範囲にするので、受湯室の溶湯表面上のフラックスの巻き込みを抑制できると共に、出湯室での溶湯流の上向きの流れを抑制できる。
更に、湯道中心軸仮想線が出湯室の耐火物壁面と交差する位置である衝突点の出湯室の底面からの高さZと、衝突点における耐火物壁面の垂線と湯道中心軸仮想線がなす角φ(湯道中心軸仮想線よりも垂線が上方にある場合のφを正とする)が、0.10≦0.5-φ/180-Z/1200≦0.30、を満たすので、湯道から出湯室に吐出される溶湯流が乱れて出湯室の排出孔へ向かう溶湯の下向きの流れが発生することを抑制できる。
これにより、従来と比較して溶湯の更なる高清浄化が図れる。
In the continuous casting method according to the present invention, a tundish having a weir provided with a runner at the bottom is used, the runner is inclined downward from the hot water receiving chamber side to the hot water discharging chamber side, and {runner channel 0.5×10 Since the range is from −2 to 9.5×10 −2 , it is possible to suppress the entrainment of flux on the surface of the molten metal in the receiving chamber and to suppress the upward flow of the molten metal in the tapping chamber.
Furthermore, the height Z from the bottom of the tapping chamber at the collision point where the runner center axis imaginary line intersects the refractory wall surface of the tapping chamber, and the vertical line of the refractory wall surface at the collision point and the runner center axis imaginary line. angle φ (positive when the vertical line is above the runner center axis virtual line) satisfies 0.10≦0.5−φ/180−Z/1200≦0.30 Therefore, it is possible to prevent the flow of molten metal discharged from the runner into the tapping chamber from being disturbed and the molten metal flowing downward toward the discharge hole of the tapping chamber.
As a result, the molten metal can be cleaned to a higher degree than the conventional method.

本発明の一実施の形態に係る連続鋳造方法の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the continuous casting method which concerns on one embodiment of this invention. 同連続鋳造方法を適用したタンディッシュの平面図である。It is a top view of the tundish to which the same continuous casting method is applied.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の連続鋳造方法に想到した経緯について説明する。
Next, specific embodiments of the present invention will be described with reference to the attached drawings for better understanding of the present invention.
First, the circumstances leading to the idea of the continuous casting method of the present invention will be described.

タンディッシュ内に湯道を備えた堰を配置して、タンディッシュ内を受湯室と出湯室に区分し、この湯道に溶湯(溶鋼)を流通させて鋳造を行う場合、介在物は溶湯内を浮上する特性を有するため、湯道を堰の下部に設けることで、清浄性のある溶湯を湯道に流通させることができる。なお、堰の内部に誘導加熱装置(加熱装置)を設けることで、湯道を流通する溶湯を加熱(誘導加熱)することも併せて行われる場合が多い。
湯道を流通する溶湯について、前記した特許文献3には、湯道で加熱された溶湯は、湯道出口からの噴出後、タンディッシュの出湯室内の上部(溶湯表面)に向かう流れとなるため、介在物の浮上除去が促されることが記載されている。
When a weir with a runner is arranged in the tundish, the inside of the tundish is divided into a receiving chamber and a tapping chamber, and molten metal (molten steel) is circulated through this runner for casting, inclusions are formed in the molten metal. Since it has the characteristic of floating inside, by providing the runner at the lower part of the weir, clean molten metal can be circulated in the runner. In many cases, an induction heating device (heating device) is provided inside the weir to heat (induction heating) the molten metal flowing through the runner.
Regarding the molten metal flowing through the runner, the aforementioned Patent Document 3 describes that the molten metal heated in the runner flows toward the upper part (surface of the molten metal) of the tapping chamber of the tundish after being ejected from the outlet of the runner. , that the removal of inclusions by floating is promoted.

しかし、本発明者らが、湯道を流通する溶湯の挙動を検討した結果、以下の通りであった。
(1)誘導加熱を適用する前提では、その配置の都合上、湯道は4本以下となる場合が多い。また、湯道は、加熱装置の都合により、その流路(開口部)の断面形状を円形に換算して直径が300mm以下となる場合が多い。
(2)この程度の直径を有する4本以下の湯道に、鋳造する溶湯を流通させる場合、湯道の出口からタンディッシュの出湯室に噴出された溶湯流(溶湯の流れ)は、直進性が高いことが判明した。更に、湯道の長さが長い場合(例えば、800mm以上、更には1000mm以上(近年は加熱装置の鉄心のコンパクト化が図られているため、鉄心の大きさを考慮すれば2000mm以下程度)の場合)は、この傾向が強いものと考えられた。
However, the inventors of the present invention investigated the behavior of the molten metal flowing through the runner, and the results were as follows.
(1) Assuming that induction heating is applied, there are many cases where the number of runners is 4 or less due to the arrangement thereof. Further, the runner often has a diameter of 300 mm or less when the cross-sectional shape of the channel (opening) is converted into a circular shape due to the convenience of the heating device.
(2) When the molten metal to be cast is passed through four runners or less having a diameter of this order, the molten metal flow (flow of molten metal) ejected from the outlet of the runner into the tapping chamber of the tundish is straight. was found to be high. Furthermore, when the length of the runner is long (for example, 800 mm or more, or even 1000 mm or more (in recent years, the iron core of the heating device has been made compact, so considering the size of the iron core, it is about 2000 mm or less). case), this tendency was considered to be strong.

(3)出湯室に噴出された溶湯流は、主として湯道を延長した先に存在するタンディッシュの内壁に衝突し(通常のタンディッシュの構成、即ち、溶湯を凝固させることなく鋳型へ注入可能な構成であれば、溶湯流が内壁に衝突する現象が発生)、その後、上向きや下向き等の流れに分岐する。また、衝突するまでには流れの分散も見られ、衝突前の溶湯の流れから上向きや下向きに分岐する流れも存在する。
(4)更に、湯道内で溶湯を加熱する場合は、加熱の程度に応じて上向きに分岐する流れも発生する。
そして、本発明者らは、湯道の出口から噴出された溶湯流(タンディッシュ内壁に衝突した後の溶湯流を含む)について、介在物の浮上効果はあるものの、上向きの流れが出湯室湯面の撹拌の原因にもなり得ることを知見した。
更に、受湯室の溶湯には、湯道の入口に向かう溶湯流が発生するが、湯道の入口近傍では溶湯に渦様の流れ等による撹拌が発生する場合があり、受湯室湯面上のフラックスを巻き込む場合があることも判明した。
(3) The flow of molten metal ejected into the pouring chamber collides mainly with the inner wall of the tundish that exists beyond the extension of the runner (normal tundish structure, that is, the molten metal can be poured into the mold without solidifying). If the configuration is such that the molten metal flow collides with the inner wall), the flow then branches upward, downward, or the like. In addition, the flow diverges before the collision, and there are flows that diverge upward and downward from the flow of the molten metal before the collision.
(4) Furthermore, when the molten metal is heated in the runner, an upward branching flow is generated according to the degree of heating.
The inventors of the present invention have found that the molten metal flow ejected from the outlet of the runner (including the molten metal flow after colliding with the inner wall of the tundish) has the floating effect of inclusions, but the upward flow is It was found that it can also cause agitation of the surface.
Furthermore, in the molten metal in the receiving chamber, a molten metal flow toward the entrance of the runner is generated. It was also found that the upper flux may be involved.

以上より、本発明者らは、湯道を持つ堰を配置したタンディッシュを用いて溶湯を鋳造する場合、湯道の入口近傍における溶湯の撹拌とこれに伴うフラックスの溶湯への巻き込み、そしてこの清浄性の低い溶湯が出湯室に供給され、更に湯道の出口以降の上向きの流れによる出湯室の溶湯の撹拌が、溶湯の高清浄化を抑制する因子になり得ることを知見した。 From the above, the present inventors found that, when casting molten metal using a tundish having a weir with a runner, the molten metal is agitated in the vicinity of the entrance of the runner, and the accompanying flux is entrained in the molten metal. It has been found that low-cleanliness molten metal is supplied to the tapping chamber, and the stirring of the molten metal in the tapping chamber due to the upward flow after the outlet of the runner can be a factor that inhibits the high-cleanliness of the molten metal.

以上の知見に基づき、本発明者らは、本発明の連続鋳造方法に想到した。
まず、本発明の一実施の形態に係る連続鋳造方法を適用する連続鋳造設備10について説明する。
図1に示すように、連続鋳造設備10は、取鍋11と、取鍋11からロングノズル12を介して溶湯が注入されるタンディッシュ13と、タンディッシュ13から浸漬ノズル14を介して溶湯が注入される鋳型(図示しない)とを有する設備である。
タンディッシュ13には、タンディッシュ13内を受湯室15と出湯室16とに区分し、かつ、受湯室15から出湯室16へ向けて溶湯が流れる1本以上4本以下(本実施の形態では2本)の湯道17を下部に備えた堰18が設けられ、湯道17はその断面形状を円形に換算して直径が100mm以上300mm以下の範囲に設定されている。
湯道17は受湯室15側から出湯室16側へかけて下方に向けて傾斜し、かつ、{湯道17の受湯室15側端面と出湯室16側端面の各中心位置C1、C2の高低差(mm)}/{湯道17の水平方向の長さ(mm)}で定義される湯道17の傾きが0.5×10-2以上9.5×10-2以下の範囲に設定されている。
本実施の形態に係る連続鋳造方法は、上記した連続鋳造設備10を用いて、溶湯を取鍋11からタンディッシュ13を介して鋳型へ注入し鋳片を製造(鋳造)する方法である。
以下、詳しく説明する。
Based on the above knowledge, the present inventors came up with the continuous casting method of the present invention.
First, a continuous casting facility 10 to which a continuous casting method according to one embodiment of the present invention is applied will be described.
As shown in FIG. 1, a continuous casting facility 10 includes a ladle 11, a tundish 13 into which molten metal is poured from the ladle 11 through a long nozzle 12, and a molten metal from the tundish 13 through a submerged nozzle 14. and a mold (not shown) to be poured.
In the tundish 13, the inside of the tundish 13 is divided into a hot water receiving chamber 15 and a hot water dispensing chamber 16, and the molten metal flows from the hot water receiving chamber 15 toward the hot water dispensing chamber 16. A weir 18 having two (2) runners 17 at its lower portion is provided, and the diameter of the runners 17 is set in the range of 100 mm or more and 300 mm or less when the cross-sectional shape is converted into a circle.
The runner 17 is inclined downward from the hot water receiving chamber 15 side to the hot water discharging chamber 16 side, and the center positions C1 and C2 of the end surface of the hot water receiving chamber 15 side and the hot water discharging chamber 16 side of the runner 17 are aligned. The inclination of the runner 17 defined by the height difference (mm)}/{the horizontal length (mm) of the runner 17} is in the range of 0.5×10 −2 or more and 9.5×10 −2 or less. is set to
The continuous casting method according to the present embodiment is a method of producing (casting) a slab by injecting molten metal from a ladle 11 into a mold through a tundish 13 using the continuous casting equipment 10 described above.
A detailed description will be given below.

前記したように、湯道の出口から噴出された溶湯流において、上向きの流れは出湯室湯面の撹拌の原因にもなり得る。このため、上向きの流れによる出湯室湯面の撹拌を軽減するには、図1に示すように、直線状の湯道17を受湯室15側から出湯室16側へかけて下方に向けて傾斜させる(受湯室15側端面の中心位置C1を出湯室16側端面の中心位置C2よりも高くする)ことが好ましい。
しかし、傾斜の程度によっては、前記したように、湯道17の入口近傍で溶湯に渦様の流れ等による撹拌が発生する場合があり、受湯室15湯面上のフラックスの巻き込みが発生し得るため、湯道の傾斜を適切に設定する必要がある。
As described above, in the molten metal flow ejected from the outlet of the runner, the upward flow can cause agitation of the surface of the molten metal in the tapping chamber. For this reason, in order to reduce the agitation of the hot water surface of the hot water discharge chamber due to the upward flow, as shown in FIG. It is preferable to incline (the center position C1 of the end surface on the side of the hot water receiving chamber 15 is higher than the center position C2 of the end surface on the side of the hot water discharge chamber 16).
However, depending on the degree of inclination, as described above, the molten metal may be stirred by a vortex-like flow or the like near the entrance of the runner 17, and the flux on the molten metal surface of the receiving chamber 15 may be involved. In order to obtain this, the inclination of the runner must be set appropriately.

なお、湯道17の長さ方向の中心線(軸心)を出湯室16に向けて延長して、この中心線が交差する出湯室16の耐火物壁(タンディッシュ13内壁)24は、通常は直角よりも耐火物壁24が外側へ開くように、角度θ(出湯室16の底面19(水平方向)に対する傾斜角θ)が例えば65~85度程度(90度未満)で傾斜している。
このため、湯道17出側から出湯室16に噴出される溶湯流(一般的な鋳造速度、鋳造サイズ、湯道内径、及び、湯道本数が1~4の場合、湯道1本あたりの溶湯の通過量を300~1800kg/分と想定)が、出湯室16の耐火物壁24に衝突すると、上向きの流れが強い傾向となる。この流れは、溶湯中の介在物を浮上除去する作用よりも、出湯室16で浮上して溶湯表面に存在している介在物を再度溶湯へ巻き込む作用が強いものと推定される。
従って、湯道17の傾斜により、このように強くなった上向きの流れを緩和し、介在物の溶湯への再巻き込みを抑制することができる。
The refractory wall (the inner wall of the tundish 13) 24 of the hot water discharge chamber 16 where the center line (axis) in the longitudinal direction of the runner 17 is extended toward the hot water discharge chamber 16 and the center line intersects is normally The angle θ (inclination angle θ with respect to the bottom surface 19 (horizontal direction) of the tapping chamber 16) is inclined at, for example, about 65 to 85 degrees (less than 90 degrees) so that the refractory wall 24 opens outward from the right angle. .
For this reason, the molten metal flow ejected from the outlet side of the runner 17 to the tapping chamber 16 (general casting speed, casting size, inner diameter of the runner, and when the number of runners is 1 to 4, 300 to 1800 kg/min) collides with the refractory wall 24 of the tapping chamber 16, the upward flow tends to be strong. It is presumed that this flow has a stronger effect of floating inclusions present on the surface of the molten metal in the tapping chamber 16 and involving them again in the molten metal, rather than the effect of floating and removing the inclusions in the molten metal.
Therefore, the inclination of the runner 17 can moderate the upward flow, which has become strong in this way, and suppress re-entrainment of inclusions in the molten metal.

そこで、タンディッシュ13の構成を以下のように規定した。
湯道17を堰18の下部に設けたのは、前記したように、介在物が溶湯内を浮上する特性を有することによる。
具体的には、湯道17の受湯室15側(入口側)に位置する開口部20の下端の、受湯室15の底面21からの高さ位置が、受湯室15の最大溶湯深さ(浴深)Hの0.2倍(0.2×H)以下だと好ましい(下限は、例えば0倍(0×H)、即ち湯道17入口の開口部20が受湯室15の底面21に接する位置)。
ここで、開口部20の下端位置を溶湯深さHの0.2倍以下にしたのは、0.2倍を超えた場合、開口部20の高さ位置が高くなり過ぎることに伴って湯道17出口が高くなり、出湯室16における溶湯中の介在物の浮上時間を十分に確保できずに浮上不足を招く場合や、湯道17出側から噴出される溶湯流が出湯室16の湯面を撹拌して溶湯の清浄化を悪化させる場合があることによる。また、1チャージ(1つの取鍋)ごとの鋳造末期にタンディッシュ13の湯面が低下した際に、受湯室15湯面上のフラックスを巻き込み易くなる時期が、上記した0.2倍を超えた場合に早期となる。
Therefore, the configuration of the tundish 13 is defined as follows.
The reason why the runner 17 is provided below the weir 18 is that the inclusion has the property of floating in the molten metal, as described above.
Specifically, the height position of the lower end of the opening 20 of the runner 17 located on the receiving hot water receiving chamber 15 side (entrance side) from the bottom surface 21 of the receiving hot water receiving chamber 15 is the maximum molten metal depth of the receiving hot water receiving chamber 15. It is preferable that the height (bath depth) H is 0.2 times (0.2×H) or less (the lower limit is, for example, 0 times (0×H), that is, the opening 20 at the entrance of the runner 17 is the same as that of the receiving chamber 15. position in contact with the bottom surface 21).
Here, the reason why the lower end position of the opening 20 is set to 0.2 times or less of the depth H of the molten metal is that if it exceeds 0.2 times, the height position of the opening 20 becomes too high and the molten metal When the outlet of the path 17 becomes high and the floating time of the inclusions in the molten metal in the tapping chamber 16 cannot be secured sufficiently, the flow of the molten metal jetted from the outlet side of the tapping chamber 16 is not sufficient. This is because the surface may be agitated and the cleaning of the molten metal may be deteriorated. In addition, when the surface of the tundish 13 drops at the end of casting for each charge (one ladle), the time when the flux on the surface of the receiving chamber 15 is likely to be involved is 0.2 times as described above. If it exceeds, it will be early.

この湯道17は、通常考えられる連続鋳造の速度を考慮し、堰18に設ける湯道17の本数が1以上4以下、かつ、各湯道17の断面形状を円形に換算して直径が100mm以上300mm以下の範囲に、それぞれ設定されている。
ここで、湯道17の本数は、通常偶数(2又は4)であるが、奇数(1又は3)でもよく、特に、誘導加熱を行う場合は、通常1つの鉄心に対して2本の湯道17を設けている(鉄心を中心としてその両側に湯道17を設ける)。このため、タンディッシュ13は、誘導加熱装置が設置されたもの、設置されていないもの、のいずれでもよい。
なお、湯道17の断面形状は円形であり、湯道17の受湯室15側に位置する開口部20から出湯室16側(出口側)に位置する開口部22まで、同一形状となっているが、受湯室15側から出湯室16側へかけて徐々に大きくした形状(ラッパ状や逆テーパ状)等とすることもできる(この場合、出湯室側の開口部の最大直径が上記した範囲にある)。また、断面形状は、円形に限定されるものではなく、例えば、楕円形や多角形等とすることもできる。
The number of runners 17 provided in the dam 18 is 1 or more and 4 or less, and each runner 17 has a diameter of 100 mm when the cross-sectional shape of each runner 17 is converted into a circle, in consideration of the speed of continuous casting that is usually considered. Each is set within a range of 300 mm or less.
Here, the number of runners 17 is usually an even number (2 or 4), but may be an odd number (1 or 3). A path 17 is provided (runners 17 are provided on both sides of the iron core). Therefore, the tundish 13 may or may not be equipped with an induction heating device.
The cross-sectional shape of the runner 17 is circular, and the shape is the same from the opening 20 located on the hot water receiving chamber 15 side of the runner 17 to the opening 22 located on the hot water discharge chamber 16 side (exit side). However, it is also possible to adopt a shape (trumpet shape or reverse tapered shape) that gradually increases from the hot water receiving chamber 15 side to the hot water discharging chamber 16 side (in this case, the maximum diameter of the opening on the hot water discharging chamber side is the above range). Moreover, the cross-sectional shape is not limited to a circular shape, and may be, for example, an elliptical shape, a polygonal shape, or the like.

湯道17の傾斜は、以下のように設定する。
誘導加熱の適用も可能とする堰18の厚み(湯道17の長さ)は800mm以上であり、湯道17の受湯室15側端面と出湯室16側端面の各中心(軸心)位置C1、C2の高低差(高さ方向の差:C1-C2)は、0mmを超え、タンディッシュ13の貯蔵量等により200mm以下程度である。
ここで、湯道17の傾斜を、{湯道の受湯室側端面と出湯室側端面の各中心位置の高低差(mm)}/{湯道の水平方向の長さ(mm)}で定義すると、下限値は0.5×10-2である。一方、傾斜の上限値は、9.5×10-2であり、好ましくは9.0×10-2がよい。
The inclination of runner 17 is set as follows.
The thickness of the weir 18 (the length of the runner 17), which enables the application of induction heating, is 800 mm or more. The height difference between C1 and C2 (difference in the height direction: C1-C2) exceeds 0 mm and is about 200 mm or less depending on the storage amount of the tundish 13 and the like.
Here, the inclination of the runner 17 is defined by {height difference (mm) between the center positions of the end face of the runner on the receiving chamber side and the end face on the hot water discharge chamber side} / {horizontal length of the runner (mm)}. By definition, the lower limit is 0.5×10 −2 . On the other hand, the upper limit of the slope is 9.5×10 −2 , preferably 9.0×10 −2 .

前記した特許文献1(図2では約9.7×10-2)と特許文献2(図1では約10.1×10-2)に図示される傾きでは、受湯室のフラックスの滓化の程度や滓化したフラックスの粘性にもよるが、受湯室の湯道入口近傍で溶湯は渦様の流れ等による撹拌が発生する場合がある。例えば、受湯室湯面上のフラックスの塩基度=(質量%CaO)/{(質量%SiO)+(質量%Al)}が1.0~4.0程度、かつ、CaO量、SiO量、及び、Al量の合計量に対するAl量が10質量%以上程度であっても、フラックスを巻き込む場合があることから、湯道17の傾斜を9.5×10-2以下にするのがよい。
なお、湯道17の傾斜は、0.5×10-2以上であれば、湯道17が水平な場合と比較して出湯室16での上向きの流れの抑制効果等による高清浄化効果が明確となる。
With the inclinations illustrated in Patent Document 1 (approximately 9.7×10 −2 in FIG. 2) and Patent Document 2 (approximately 10.1×10 −2 in FIG. 1), the slag of the flux in the receiving chamber Depending on the degree of slag and the viscosity of the slag flux, the molten metal may be agitated by a vortex-like flow or the like in the vicinity of the runner entrance of the receiving chamber. For example, the basicity of the flux on the surface of the hot water receiving chamber = (mass% CaO) / {(mass% SiO 2 ) + (mass% Al 2 O 3 )} is about 1.0 to 4.0, and CaO Even if the amount of Al 2 O 3 with respect to the total amount of the amount, the amount of SiO 2 and the amount of Al 2 O 3 is about 10% by mass or more, flux may be involved. It is preferable to set it to 5×10 −2 or less.
If the inclination of the runner 17 is 0.5×10 −2 or more, the effect of suppressing the upward flow in the hot water discharge chamber 16, etc. is clearly high compared to the case where the runner 17 is horizontal. becomes.

上記した湯道17の傾斜の適正化により、従来の湯道に比べて、受湯室15の溶湯湯面上(溶湯表面上)のフラックスが溶湯へ巻き込まれることを抑制できると共に、出湯室16の溶湯に上向きの流れが発生することを抑制できる。しかし、湯道17の受湯室15側端面と出湯室16側端面の各中心位置C1、C2を通る中心軸仮想線(湯道中心軸仮想線)Lと、堰18に対向する出湯室16の耐火物壁24の壁面(耐火物壁面)との交差位置である、衝突点C3からの溶湯の下向きの流れが相対的に強くなる傾向となる。
そこで、本発明者らは、受湯室15における溶湯へのフラックスの巻き込みを抑制した効果を活用するため、衝突点C3からの溶湯の下向きの流れを無害化することに注目した。
衝突点C3からの溶湯の下向きの流れが、出湯室16の底面19に設けられた排出孔23へ直接供給されると、清浄性の向上が抑制される。このため、底面19から衝突点C3までの高さZを高く設定し、衝突点C3から排出孔23へ向かう溶湯の下向きの流れを分散させることが好適と考えられた。
By optimizing the inclination of the runner 17 as described above, it is possible to suppress the flux on the surface of the molten metal (on the surface of the molten metal) of the receiving chamber 15 from being entangled in the molten metal as compared with the conventional runner. It is possible to suppress the occurrence of an upward flow in the molten metal. However, the center axis virtual line (runner channel center axis virtual line) L passing through the respective center positions C1 and C2 of the end surface of the runner 17 on the side of the hot water receiving chamber 15 and the end surface on the side of the hot water discharge chamber 16 and the water discharge chamber 16 facing the weir 18 The downward flow of the molten metal from the collision point C3, which is the intersection position with the wall surface of the refractory wall 24 (refractory wall surface), tends to be relatively strong.
Therefore, the present inventors focused on making the downward flow of the molten metal harmless from the collision point C3 in order to utilize the effect of suppressing the flux from being entrained in the molten metal in the receiving chamber 15 .
If the downward flow of the molten metal from the collision point C3 is directly supplied to the discharge hole 23 provided in the bottom surface 19 of the tapping chamber 16, improvement in cleanliness is suppressed. Therefore, it was considered preferable to set the height Z from the bottom surface 19 to the collision point C3 high to disperse the downward flow of the molten metal from the collision point C3 to the discharge hole 23 .

しかし、本発明者らの知見では、高さZが一定のレベルを超えると、却って溶湯の高清浄性化効果が抑制されることを知見した。
出湯室16の溶湯湯面の高さにもよるが、溶湯湯面の高さを一定とした条件下で高さZを高く設定すると、衝突点C3と湯面の距離が短くなり、衝突点C3からの溶湯の上向きの流れが溶湯の清浄性向上効果を損なうことが考えられる。しかし、出湯室16の溶湯湯面の高さを十分に高い値に設定しても、溶湯の高清浄性化効果が抑制される場合があった。
これに基づいて本発明者らは、高さZを高く設定した場合に衝突点C3からの溶湯の下向きの流れが清浄性に及ぼす影響を検討した。
その結果、衝突点C3からの溶湯の下向きの流れは、高さZが一定のレベルを超える高さになると、出湯室16の衝突点C3よりも下の領域において、図1に示すように、側面視して渦流(撹拌流)を生成し、当該渦流が複数発生する場合も考えられる。これによって、湯道17出口から出湯室16に噴出された直進性の高い溶湯流が乱されて分散し、結果として湯道17から排出孔23に直接向かう下向きの溶湯流が強まる可能性があることを推定できた。
However, the present inventors have found that when the height Z exceeds a certain level, the effect of improving the cleanliness of the molten metal is rather suppressed.
Although it depends on the height of the surface of the molten metal in the tapping chamber 16, if the height Z is set high under the condition that the height of the surface of the molten metal is constant, the distance between the collision point C3 and the surface of the molten metal becomes shorter. It is believed that the upward flow of molten metal from C3 detracts from the cleanliness enhancing effect of the molten metal. However, even if the height of the surface of the molten metal in the tapping chamber 16 is set to a sufficiently high value, the effect of increasing the cleanness of the molten metal may be suppressed.
Based on this, the present inventors studied the influence of the downward flow of the molten metal from the collision point C3 on cleanliness when the height Z is set high.
As a result, when the height Z exceeds a certain level, the downward flow of molten metal from the impingement point C3 is as shown in FIG. A vortex (stirring flow) may be generated when viewed from the side, and a plurality of such vortices may be generated. As a result, the highly straight molten metal flow ejected from the outlet of the runner 17 into the tapping chamber 16 is disturbed and dispersed, and as a result, there is a possibility that the downward molten metal flow directly from the runner 17 to the discharge hole 23 will be strengthened. I was able to infer that

上記知見に基づいて、式(1)に示すα値を定義し、このα値を0.10以上0.30以下にすることにより、湯道17の傾きを適正に設定した場合における衝突点C3からの溶湯の下向きの流れを適正にした。なお、式(1)は、後述する高さZと角度φを変数とする過去の操業実績を用いて想到した式である。
α=0.5-φ/180-Z/1200 ・・・(1)
ここで、Zは、出湯室16の底面19から衝突点C3までの高さ(mm)であり、1200は係数である。
また、φは角度(deg.)であり、湯道中心軸仮想線Lと、衝突点C3における耐火物壁面の垂線Mがなす角と定義する。なお、湯道中心軸仮想線Lよりも垂線Mが上方にある場合のφを正とする。
Based on the above knowledge, the α value shown in Equation (1) is defined, and by setting this α value to 0.10 or more and 0.30 or less, the collision point C3 when the inclination of the runner 17 is set appropriately. The downward flow of the molten metal from the was adjusted. The formula (1) is a formula conceived using the past operational results with the height Z and the angle φ as variables, which will be described later.
α=0.5−φ/180−Z/1200 (1)
Here, Z is the height (mm) from the bottom surface 19 of the tapping chamber 16 to the collision point C3, and 1200 is a coefficient.
Also, φ is an angle (deg.) defined as the angle formed by the runner center axis virtual line L and the perpendicular line M to the refractory wall surface at the collision point C3. When the vertical line M is above the virtual line L of the runner center axis, φ is assumed to be positive.

衝突点C3の高さZの評価である式(1)に角度φの項を設けた理由は、角度φの減少と共に衝突点C3からの溶湯の下向きの流れが強まる、即ち、角度φの変化と共に溶湯の下向きの流れが変化するためであり、適正な高さZ値の範囲が変化すると考えられるためである。
ここで、式(1)のα値が0.10未満の場合、湯道出口から出湯室に噴出された直進性の高い溶湯流が乱されて分散し、結果として湯道から排出孔に直接向かう下向きの溶湯流が強まるため、高清浄性化効果が抑制される。
一方、式(1)のα値が0.30超の場合、衝突点が底面に近接し、湯道出口からの直進性の高い溶湯流の撹拌の有無に係らず、排出孔に直接向かう下向きの溶湯流が強まるため、高清浄性化効果が抑制される。
The reason why the angle φ term is provided in the equation (1), which is the evaluation of the height Z of the impingement point C3, is that as the angle φ decreases, the downward flow of the molten metal from the impingement point C3 increases, that is, the angle φ changes This is because the downward flow of the molten metal changes along with it, and it is thought that the range of the appropriate height Z value changes.
Here, when the α value in formula (1) is less than 0.10, the highly straight molten metal flow ejected from the runner outlet into the tapping chamber is disturbed and dispersed, and as a result, directly from the runner to the discharge hole. Since the downward flow of the molten metal is strengthened, the high cleanliness effect is suppressed.
On the other hand, when the α value in formula (1) is more than 0.30, the collision point is close to the bottom surface, and regardless of the presence or absence of agitation of the highly straight molten metal flow from the runner exit, the flow is directed downward toward the discharge hole. Since the flow of the molten metal is strengthened, the high cleanliness effect is suppressed.

次に、受湯室15の溶湯表面に配置するフラックスの組成について説明する。
フラックスの組成を規定することにより、タンディッシュ13内溶鋼の再酸化防止とフラックスの溶湯への巻き込み防止をより顕著に行える。
タンディッシュ13では、一般に、CaO-SiO系やCaO-SiO-Al系のフラックスが用いられている。
前記したように、受湯室15では湯道17入口へ向かう溶湯流が発生するが、この溶湯流によって湯道17入口近傍の溶湯が撹拌され、受湯室15湯面上のフラックスが巻き込まれる場合がある。特に、鋳造しているチャージの末期は、受湯室15湯面の高さが低下する場合があり、この傾向が強くなる。
Next, the composition of the flux placed on the surface of the molten metal in the receiving chamber 15 will be described.
By specifying the composition of the flux, re-oxidation of the molten steel in the tundish 13 and flux entrainment in the molten metal can be prevented more remarkably.
The tundish 13 generally uses a CaO-- SiO.sub.2 - based or CaO-- SiO.sub.2 --Al.sub.2O.sub.3 - based flux.
As described above, in the receiving chamber 15, the molten metal flow toward the entrance of the runner 17 is generated, and the molten metal in the vicinity of the entrance of the runner 17 is agitated by this molten metal flow, and the flux on the molten metal surface of the receiving chamber 15 is involved. Sometimes. In particular, at the end of the casting charge, the level of the molten metal in the receiving chamber 15 may drop, and this tendency becomes stronger.

そこで、本発明者らは種々の実験を行った結果、受湯室15側のフラックス組成を適正化し適度な配合を保つことにより、湯道17近傍で発生する撹拌渦への巻き込みを抑制することができ、溶湯の清浄化が図られることを知見した。
即ち、本発明者らは、溶湯へのフラックスの巻き込みを抑制するため、CaOの滓化(CaOを多く含むフラックスの溶融時の流動性)を適切に制御することに想到した。
具体的には、塩基度を1.0以上4.0以下(更には3.7以下)とするとよい。
塩基度の算出には、CaO、SiO、及び、Al(アルミナ)による(質量%CaO)/{(質量%SiO)+(質量%Al)}を用いる。ここで、CaOとSiOのみによる塩基度指標=(質量%CaO)/(質量%SiO)を用いた場合、Alが含まれないことから、アルミナ介在物とフラックス中のCaOによって生成するCaO-Al系の低融点酸化物の生成が考慮されず、Alの高清浄化への影響が考慮されないことになる。
Therefore, the present inventors conducted various experiments, and found that by optimizing the flux composition on the side of the molten metal receiving chamber 15 and maintaining an appropriate composition, it is possible to suppress entrainment in the stirring vortex generated in the vicinity of the runner 17. It was found that the cleaning of the molten metal can be achieved.
That is, the present inventors came up with the idea of appropriately controlling CaO slag formation (fluidity of flux containing a large amount of CaO during melting) in order to suppress entrainment of flux in molten metal.
Specifically, the basicity is preferably 1.0 or more and 4.0 or less (more preferably 3.7 or less).
(mass % CaO)/{(mass % SiO 2 )+(mass % Al 2 O 3 )} by CaO, SiO 2 and Al 2 O 3 (alumina) is used to calculate the basicity. Here, when using only CaO and SiO 2 basicity index = (% by mass CaO) / (% by mass SiO 2 ), since Al 2 O 3 is not included, the alumina inclusions and CaO in the flux The generation of CaO—Al 2 O 3 -based low-melting-point oxides is not taken into consideration, and the influence of Al 2 O 3 on high cleanliness is not taken into consideration.

上記した塩基度が1.0未満の場合、フラックスの滓化が過度に進行し、タンディッシュ13を構成する耐火物の溶損が進行して、耐火物粒子が溶湯表面のフラックス層に存在することにつながる。この耐火物粒子は受湯室15内の溶湯流の影響を受け易く、溶湯中への混入により清浄性が悪化する場合がある。
一方、塩基度が4.0を超える場合、滓化不足により、フラックス粒子が溶湯に巻き込まれる場合がある。
なお、滓化状況を適切に制御しても粘性が高過ぎると、フラックスの擾乱が発生した場合に溶湯表面が露出し再酸化が促進されるため、フラックス中のAl濃度(CaO量、SiO量、及び、Al量の合計量に対するAl量)を10質量%以上とする。これにより、一定の低粘性を確保して、タンディッシュ13内雰囲気に溶湯表面が曝露されることを抑制できる。ここで、Al濃度の上限値については、上記したように、塩基度の上限値と下限値を規定しているため、これに従って決まる(例えば、50質量%程度)。
If the above-described basicity is less than 1.0, the scumming of the flux proceeds excessively, and the refractory constituting the tundish 13 progresses in melting, and refractory particles are present in the flux layer on the surface of the molten metal. It leads to things. These refractory particles are easily affected by the flow of molten metal in the receiving chamber 15, and their cleanliness may deteriorate due to mixing into the molten metal.
On the other hand, if the basicity exceeds 4.0, flux particles may be caught in the molten metal due to insufficient slag formation.
In addition, if the viscosity is too high even if the slag state is appropriately controlled, the surface of the molten metal will be exposed and reoxidation will be promoted when the flux is disturbed. , SiO 2 amount , and Al 2 O 3 amount ) is 10 % by mass or more. As a result, a constant low viscosity can be ensured, and the surface of the molten metal can be prevented from being exposed to the atmosphere inside the tundish 13 . Here, the upper limit of the Al 2 O 3 concentration is determined according to the upper and lower limits of the basicity, as described above (for example, about 50% by mass).

このように、フラックスの滓化や粘性を制御するには、フラックス中のCaO、SiO、及び、Alの合計濃度が、例えば、70質量%以上(100質量%でもよい)であればよい(残部は、フラックスの成分として使用可能な他の成分)。
言い換えると、CaO量、SiO量、及び、Al量の合計量に対するAl量を10質量%以上とすることによる、上記した作用効果を得ようとすれば、フラックス中のCaO、SiO、及び、Alの合計濃度が70質量%以上であることが好ましい。即ち、合計濃度が70質量%未満になると、CaO、SiO、及び、Alの3成分による作用効果の顕著さが低下し易くなる。
In this way, in order to control the slag formation and viscosity of the flux, the total concentration of CaO, SiO 2 and Al 2 O 3 in the flux is, for example, 70% by mass or more (100% by mass may be acceptable). (the balance is other components that can be used as components of the flux).
In other words, if the above effect is to be obtained by setting the amount of Al 2 O 3 to 10% by mass or more with respect to the total amount of CaO, SiO 2 and Al 2 O 3 , The total concentration of CaO, SiO 2 and Al 2 O 3 is preferably 70% by mass or more. That is, when the total concentration is less than 70% by mass, the effects of the three components CaO, SiO 2 and Al 2 O 3 tend to become less pronounced.

なお、塩基度等のフラックス組成は、受湯室15に添加するフラックスを対象に規定したが、取鍋11から混入するスラグ量が著しく増加することがある場合は、上記した作用効果が得にくいため、取鍋11のスラグも同様の組成としておくことが好ましい。このように、取鍋11からタンディッシュ13内にスラグが混入する場合は、このスラグも、湯道17の入口近傍における溶湯の撹拌に伴って、受湯室15の溶湯表面上のフラックスと共に巻き込まれる対象となる。
また、出湯室16側のフラックス組成については、受湯室15側のフラックス組成と同一組成のもの使用できるが、特に限定されるものではなく、異なる組成のフラックス(従来使用しているフラックス)を使用することもできる。
The flux composition such as basicity is specified for the flux added to the hot water receiving chamber 15, but if the amount of slag mixed from the ladle 11 may increase significantly, it is difficult to obtain the above effects. Therefore, it is preferable that the slag in the ladle 11 has the same composition. In this way, when slag is mixed into the tundish 13 from the ladle 11, this slag is also caught together with the flux on the surface of the molten metal in the receiving chamber 15 as the molten metal is stirred near the entrance of the runner 17. subject to
Also, the flux composition on the hot water discharge chamber 16 side can be the same as that on the hot water receiving chamber 15 side, but is not particularly limited. can also be used.

受湯室15の溶湯表面に配置するフラックスについては、その組成に加えて、その厚みもフラックスの巻き込みに影響を及ぼす場合がある。
ここで、フラックスの厚みが5mm未満の場合、フラックスの粘性を適正に制御しても、湯道17の入口近傍における溶湯の撹拌に伴う渦発生時に、渦内部へ少量のフラックスが巻き込まれてしまう場合がある。一方、フラックスの厚みが50mm超の場合、フラックスの滓化性を向上させたとしても、部分的に未溶融の状態が生じて、少量のフラックスが容易に巻き込まれる場合がある。
従って、受湯室15の溶湯表面に配置するフラックスの厚みは5mm以上50mm以下とするのがよい。
なお、フラックスの厚みは、複数箇所(例えば、3箇所)で計測したフラックスの厚みの平均値である。この各箇所のフラックスの厚み(計測値)は、フラックスが溶融している箇所で、鉄製の細棒を溶鋼まで浸漬させ、この細棒の溶鋼浸漬部が溶解した後に細棒を引き上げ、細棒に付着した溶融状態のフラックスの長さをもとに決定して得られる。
As for the flux placed on the surface of the molten metal in the receiving chamber 15, not only the composition but also the thickness of the flux may affect entrainment of the flux.
Here, if the thickness of the flux is less than 5 mm, even if the viscosity of the flux is properly controlled, a small amount of flux will be caught in the vortex when the molten metal is stirred near the entrance of the runner 17 when the vortex is generated. Sometimes. On the other hand, if the thickness of the flux exceeds 50 mm, even if the slag-forming property of the flux is improved, a partially unmelted state may occur and a small amount of flux may be easily involved.
Therefore, the thickness of the flux placed on the surface of the molten metal in the receiving chamber 15 is preferably 5 mm or more and 50 mm or less.
In addition, the thickness of the flux is the average value of the thickness of the flux measured at a plurality of locations (for example, three locations). The thickness (measured value) of the flux at each location is obtained by immersing a thin iron rod into molten steel at the location where the flux is molten, pulling up the thin rod after the part of the thin rod immersed in molten steel melts, and measuring the thickness of the thin rod. determined based on the length of the molten flux attached to the

前記したように、フラックスの組成や厚みを適正化することにより、フラックスの巻き込みを抑制できるが、受湯室15には更にフラックスを溶湯へ巻き込む要因が存在する。
例えば、ロングノズル12からのボイリングである。
一般にロングノズルは取鍋底部に取り付けられ、周囲の雰囲気が取り付け部よりロングノズル内部へ吸い込まれる。このため、取り付け部に緩衝材(パッキン)を配置することが一般的であるが、雰囲気吸い込みの皆無化はできないため、雰囲気が空気の場合は溶湯の酸化が起こり、介在物発生の原因となり、溶湯の高清浄化を阻害する。なお、取り付け部周囲をチャンバー化してアルゴンガス雰囲気とすれば溶湯の酸化を防止できるが、雰囲気吸い込みは発生するため、ロングノズル内部へ吸い込まれたアルゴンガスは、受湯室においてロングノズルから放出され、ボイリングが発生することとなる。特に、取鍋底部に取り付けられるロングノズルが傾いた場合や緩衝材の配置に厚さのばらつきがある場合は、雰囲気吸い込みが顕著となり、ロングノズルからのボイリングが顕著となる。
As described above, by optimizing the composition and thickness of the flux, it is possible to suppress the entrainment of the flux.
For example, boiling from the long nozzle 12 .
The long nozzle is generally attached to the bottom of the ladle, and the surrounding atmosphere is sucked into the long nozzle through the attachment. For this reason, it is common to place a cushioning material (packing) at the mounting part, but it is not possible to completely eliminate the inhalation of the atmosphere. It hinders high cleaning of the molten metal. Although it is possible to prevent oxidation of the molten metal by forming a chamber around the mounting portion to create an argon gas atmosphere, the atmosphere is sucked in, so the argon gas sucked into the long nozzle is released from the long nozzle in the receiving chamber. , boiling will occur. In particular, when the long nozzle attached to the bottom of the ladle is tilted or when the thickness of the cushioning material varies, the suction of the atmosphere becomes significant, and boiling from the long nozzle becomes significant.

このようなボイリングは、受湯室の溶湯表面に存在しているフラックスを溶湯中に巻き込む要因となり、湯道の傾斜の適正化による高清浄化効果を発揮できない。
上記したボイリングによるフラックスの巻き込みと似た要因として、非定常部における取鍋交換作業がある。一般的な操業形態として連々鋳造があるが、鋳造中に取鍋を交換する際、取鍋から取り外されるロングノズルに不可避的な上下動が起こる。
この場合も受湯室の溶湯表面に存在しいているフラックスを溶湯中に巻き込む要因となり、上記したボイリングの場合と同様に高清浄化効果の発揮を阻む要因となる。
なお、上記した連々鋳造は、複数の取鍋内の溶湯を連続的に順次鋳造する方法であり、鋳造する溶湯は、同一鋼種でもよく、また、異なる鋼種でもよい。
Such boiling causes the flux existing on the surface of the molten metal in the receiving chamber to become involved in the molten metal, and the high cleaning effect cannot be exhibited by optimizing the inclination of the runner.
As a factor similar to the above-mentioned flux entrainment due to boiling, there is ladle replacement work in an unsteady section. Continuous casting is a common form of operation, but when the ladle is replaced during casting, the long nozzle that is removed from the ladle inevitably moves up and down.
In this case, too, the flux existing on the surface of the molten metal in the receiving chamber is involved in the molten metal, which is a factor that hinders the high cleaning effect, as in the case of boiling.
The continuous casting described above is a method of successively casting molten metal in a plurality of ladles, and the molten metal to be cast may be of the same steel grade or of different steel grades.

そこで本発明者らは、ボイリングや取鍋交換作業の際に巻き込まれるフラックスについて、再度の溶湯表面への浮上を促進することに着目した。
本発明者らの知見では、ボイリングや取鍋交換作業の際にフラックスが巻き込まれる範囲はロングノズル周辺であり、再度の溶湯表面への浮上もロングノズル周辺領域であった。
ところが前記した通り、湯道の入口近傍では溶湯に渦様の流れ等による撹拌が発生する場合があり、この領域の広さを避けてロングノズル(周辺領域)を配置すれば、ロングノズル周辺で再浮上するフラックスが、浮上前に湯道入口に供給されることを抑制できることを知見した。
Therefore, the inventors of the present invention have focused on promoting the resurfacing of the flux to the surface of the molten metal during boiling and ladle replacement work.
According to the knowledge of the present inventors, the range in which the flux is involved during boiling or ladle replacement work is around the long nozzle, and the area where the flux floats to the surface of the molten metal again is also around the long nozzle.
However, as described above, the molten metal may be agitated by a vortex-like flow or the like near the entrance of the runner. It has been found that re-surfacing flux can be suppressed from being supplied to the runner inlet before surfacing.

即ち、図2に示すように、タンディッシュ13を平面視して、1)取鍋11から受湯室15に溶湯を注入するためのロングノズル12の中心位置Pと、一方の湯道中心軸仮想線L1(前記した湯道中心軸仮想線Lに対応)との最短距離d1(以下、平面視距離d1とも記載)、及び、2)ロングノズル12の中心位置Pと、他方の湯道中心軸仮想線L2(前記した湯道中心軸仮想線Lに対応)との最短距離d2(以下、平面視距離d2とも記載)をそれぞれ、ロングノズル12の外径Dの2倍以上にした。ここで、ロングノズルの外径とは、溶湯への浸漬部分の最大外径である。なお、図2においては、図面の簡略化のため、平面視距離d1、d2が外径Dの2倍以上にはなっていない。
通常、湯道の直径(内径)は300mm以下程度であり、ロングノズルの外径は150mm~400mm程度であるため、上記した平面視距離d1、d2をロングノズルの外径Dの2倍以上とすれば、ロングノズル周辺で再浮上するフラックスが、浮上前に湯道入口に供給されることを抑制でき、湯道の傾斜を適正化した高清浄化効果を維持向上できる。
なお、平面視距離d1、d2の上限値は、溶湯の顕著な温度低下が無ければ特に設定する必要はないが、2.5m(外径Dの約6~17倍)程度であっても実用可能と考えられる。
That is, as shown in FIG. 2, in a plan view of the tundish 13, 1) the center position P of the long nozzle 12 for injecting the molten metal from the ladle 11 into the receiving chamber 15 and the center axis of one of the runners. 2) the shortest distance d1 (hereinafter also referred to as the planar view distance d1) from the virtual line L1 (corresponding to the runner center axis virtual line L); and 2) the center position P of the long nozzle 12 and the center of the other runner. The shortest distance d2 (hereinafter also referred to as the planar view distance d2) from the virtual axis line L2 (corresponding to the runner center axis virtual line L) is set to be at least twice the outer diameter D of the long nozzle 12. Here, the outer diameter of the long nozzle is the maximum outer diameter of the portion immersed in the molten metal. In addition, in FIG. 2, the distances d1 and d2 in plan view are not two times or more of the outer diameter D for simplification of the drawing.
Normally, the diameter (inner diameter) of the runner is about 300 mm or less, and the outer diameter of the long nozzle is about 150 mm to 400 mm. By doing so, it is possible to suppress the flux that resurfaces around the long nozzle from being supplied to the entrance of the runner before it floats, and it is possible to maintain and improve the high cleaning effect by optimizing the inclination of the runner.
The upper limits of the distances d1 and d2 in plan view need not be set unless there is a significant temperature drop in the molten metal. considered possible.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として、実機水準にて各条件を変更し、鋳片の清浄性の評価を行った。なお、評価対象の鋼種は棒線系とした。
Next, an example conducted to confirm the effects of the present invention will be described.
Here, based on the following method, the cleanliness of the cast slab was evaluated by changing each condition at the level of the actual machine. The type of steel to be evaluated was the bar and wire type.

(精錬条件)
350トンの転炉にて一次精錬を行った後、取鍋内に出鋼した溶鋼(炭素濃度:0.05~0.15質量%、溶鋼中の溶存酸素濃度:質量割合で300~600ppm程度)に、金属アルミニウムを溶鋼1トンあたり0.8~2.0kg添加し、脱酸処理を行った。そして、取鍋内の溶鋼に対しLF処理を行った後、REDA方式の真空脱ガス装置(1本の大径浸漬管を用いた装置)による清浄化処理を行った。
(refining conditions)
Molten steel tapped into the ladle after primary refining in a 350-ton converter (carbon concentration: 0.05 to 0.15% by mass, dissolved oxygen concentration in molten steel: about 300 to 600 ppm by mass ) was deoxidized by adding 0.8 to 2.0 kg of metal aluminum per ton of molten steel. After the molten steel in the ladle was subjected to LF treatment, cleaning treatment was performed using a REDA-type vacuum degassing device (a device using a single large-diameter immersion pipe).

(鋳造条件)
上記方法で処理された取鍋内の溶鋼を、湯道を2本備えた堰で受湯室と出湯室に区分けされたタンディッシュの受湯室内に注湯し、受湯室にフラックスを添加した状態で、連続鋳造を実施した。なお、湯道1本あたりの溶鋼通過量(非定常部及び定常部)は、300~1800kg/分とした。
タンディッシュの湯道は、内径を150mm、中心線方向の水平長さを1200mmとした。
堰の高さ方向における湯道の位置(受湯室側の開口部の下端の高さ位置)は、受湯室の溶鋼の通常操業時の最大深さをH(m)として、0.2×H以下である。
湯道の長さ方向の中心線を出湯室に向けて延長して交差する出湯室の耐火物壁の傾きの角度θは、77度である。また、この湯道の長さ方向の中心線を出湯室に向けて延長して交差する出湯室の耐火物壁面の位置C3は、出湯室の底面から150~480mmの位置である。
実施例と比較例のいずれも、出湯室側には塩基度2.0(実施例6の受湯室に投入したフラックスと同一)のフラックスを予め投入して鋳造している。なお、受湯室に投入したフラックス中のCaO、SiO、及び、Alの合計濃度は、70質量%以上である。
(Casting conditions)
The molten steel in the ladle processed by the above method is poured into the hot water receiving chamber of the tundish, which is divided into a hot water receiving chamber and a hot water discharge chamber by a weir equipped with two runners, and flux is added to the hot water receiving chamber. Continuous casting was performed in this state. The amount of molten steel passing through one runner (unsteady portion and steady portion) was 300 to 1800 kg/min.
The runner of the tundish had an inner diameter of 150 mm and a horizontal length of 1200 mm in the center line direction.
The position of the runner in the height direction of the weir (the height position of the lower end of the opening on the receiving chamber side) is 0.2, where H (m) is the maximum depth of molten steel in the receiving chamber during normal operation. xH or less.
The inclination angle θ of the refractory wall of the tapping chamber, which intersects with the longitudinal centerline of the runner extending toward the tapping chamber, is 77 degrees. Further, the position C3 of the refractory wall surface of the tapping chamber where the center line in the length direction of the runner extends toward and intersects with the tapping chamber is a position 150 to 480 mm from the bottom of the tapping chamber.
In both Examples and Comparative Examples, a flux having a basicity of 2.0 (same as the flux charged to the receiving chamber in Example 6) was previously added to the pouring chamber side for casting. The total concentration of CaO, SiO 2 and Al 2 O 3 in the flux put into the receiving chamber is 70% by mass or more.

(実験結果)
試験条件と、その結果及び評価とを、表1に示す。
表1において、「湯道の傾斜」の欄には、湯道の受湯室側端面と出湯室側端面の各中心位置の高低差(mm)を、湯道の水平方向の長さ(mm)で除すことによって算出した傾きを記載した。
「受湯室のフラックス」の「塩基度」の欄には、受湯室内に添加したフラックスの塩基度「(質量%CaO)/{(質量%SiO)+(質量%Al)}」を記載している。
「受湯室のフラックス」の「Al濃度」の欄には、フラックス中に含有されるAl濃度(即ち、CaO量、SiO量、及び、Al量の合計量に対するAl量)を記載している。
「受湯室のフラックス」の「厚み」の欄には、受湯室の溶湯表面に配置したフラックスの厚みを記載している。
「壁面との衝突角」の欄には、衝突点C3での角度φを記載している。
「出湯室側の衝突点」の欄には、底面からの衝突点C3の高さZ(mm)と、式(1)で定義したα(α=0.5-φ/180-Z/1200)の値を記載している。
「LN-スリーブ間距離」の欄には、タンディッシュを平面視した際の、湯道中心軸仮想線と、ロングノズル(LN)の中心位置との間の最短距離(即ち、平面視距離)を、ロングノズルの外径の倍数で記載している。
(Experimental result)
Table 1 shows test conditions and their results and evaluations.
In Table 1, in the column of "Inclination of the runner", the height difference (mm) between the center positions of the end face of the runner on the side of the hot water receiving chamber and the end face on the side of the hot water discharge chamber, and the length of the runner in the horizontal direction (mm) ) is given as the slope calculated by dividing by
In the column of "basicity" of "flux in receiving hot water chamber", the basicity of flux added in the receiving hot water chamber "(mass% CaO) / {(mass% SiO 2 ) + (mass% Al 2 O 3 ) }” is described.
In the "Al 2 O 3 concentration" column of "Flux in the hot water receiving chamber", the Al 2 O 3 concentration contained in the flux (that is, the total amount of CaO, SiO 2 , and Al 2 O 3 Al 2 O 3 amount relative to the amount) is described.
The thickness of the flux placed on the surface of the molten metal in the receiving chamber is described in the column of "thickness" of "flux in receiving chamber".
The column of "collision angle with wall surface" describes the angle φ at the collision point C3.
In the column of "collision point on the hot water discharge chamber side", the height Z (mm) of the collision point C3 from the bottom surface and α defined by the formula (1) (α = 0.5 - φ / 180 - Z / 1200 ) is described.
In the "LN-sleeve distance" column, the shortest distance (that is, the distance in plan view) between the virtual line of the center axis of the runner and the center position of the long nozzle (LN) when the tundish is viewed in plan. is a multiple of the outer diameter of the long nozzle.

「鋳片内の介在物検出個数指数」については、以下の通りとした。
評価には、鋳造における定常部(タンディッシュの湯面高さは最大値で一定)と、非定常部(連々鋳での取鍋交換による継ぎ目近傍)の2箇所の鋳片を用いた。
詳細には、定常部の鋳片は、継ぎ目から50トン遡った部位を含む鋳片(この鋳片の特定の場所から50トン鋳造した後に取鍋交換)とした。また、非定常部の鋳片は、取鍋交換が近づき、タンディッシュの湯面高さを低下させ始めた(低下を開始させた)以降であって、継ぎ目から30トン遡った部位を含む鋳片(当該鋳片の特定の場所から30トン鋳造した後に取鍋交換)とした。
なお、タンディッシュの湯面高さの低下開始時期は、概ね継ぎ目から40トン遡った時点である。従って、40トン遡った時点以降は(40トン以下の範囲では)、湯面高さが低下し続ける。
上記した溶鋼のトン数は、鋳造条件(例えば、鋳造速度やタンディッシュの容積等)により、取鍋の残湯量により検出できる。
The "index of the number of inclusions detected in the slab" was as follows.
For the evaluation, slabs at two locations were used: a steady portion in casting (the molten metal surface height of the tundish is constant at the maximum value) and an unsteady portion (near the joint due to ladle replacement in continuous casting).
Specifically, the slab in the stationary part was a slab containing a portion 50 tons upstream from the joint (the ladle was changed after casting 50 tons from a specific location of this slab). In addition, the unsteady part of the cast slab is a casting that includes a part that goes back 30 tons from the joint after the ladle replacement is approaching and the level of molten steel in the tundish has started to decrease (started to decrease). A slab (a ladle change after casting 30 tons from a specific location of the slab).
Incidentally, the time when the level of hot water in the tundish starts to decrease is approximately 40 tons before the seam. Therefore, after 40 tons have been traced back (in the range of 40 tons or less), the molten metal level continues to decrease.
The tonnage of the molten steel can be detected from the amount of residual hot water in the ladle, depending on the casting conditions (eg, casting speed, tundish volume, etc.).

これらの定常部の鋳片と非定常部の鋳片の各代表位置から切り出したサンプル(一辺が30mmの矩形)を、それぞれ鏡面研磨した後、光学顕微鏡にてアルミナ介在物個数を調査し、単位面積あたりのアルミナ介在物の検出個数に換算した。
更に、実施例2の条件における定常部と非定常部の各検出個数を1.00とし、他の実施例と比較例の定常部と非定常部のそれぞれの検出個数を指数化した。
ここで、指数化した値の評価は、以下の通りである。
・指数化した値が実施例2の0.95倍以上、1.60倍未満:△評価
・指数化した値が実施例2の0.70倍以上、0.95倍未満:○評価
・指数化した値が実施例2の0.70倍未満 :◎評価
・指数化した値が実施例2の1.60倍以上 :×評価
上記した定常部と非定常部の評価の組み合わせで総合評価を行い、総合評価が△評価以上を良好とした。以下に、総合評価の評価基準を示す。
・総合評価が△評価:△評価と△評価の場合
・総合評価が○評価:一方が△評価で他方が○評価の場合
・総合評価が◎評価:一方が△評価で他方が◎評価の場合
・総合評価が×評価:×評価が含まれる場合
Samples (rectangles with one side of 30 mm) cut out from representative positions of the slabs of the steady part and the slabs of the non-stationary part were each mirror-polished, and then examined with an optical microscope for the number of alumina inclusions. It was converted into the number of detected alumina inclusions per area.
Furthermore, the number of detected steady portions and unsteady portions under the conditions of Example 2 was set to 1.00, and the numbers of detected steady portions and unsteady portions in other Examples and Comparative Examples were indexed.
Here, the evaluation of the indexed value is as follows.
・Indexed value is 0.95 times or more and less than 1.60 times that of Example 2: △ Evaluation ・Indexed value is 0.70 times or more and less than 0.95 times that of Example 2: ○ Evaluation / Index The indexed value is less than 0.70 times that of Example 2: ◎ The evaluated/indexed value is 1.60 times or more that of Example 2: × Evaluation A comprehensive evaluation is made by combining the above evaluations of the steady part and the unsteady part. A comprehensive evaluation of △ or higher was regarded as good. The evaluation criteria for comprehensive evaluation are shown below.
・Comprehensive evaluation is △ evaluation: When △ evaluation and △ evaluation ・Comprehensive evaluation is ○ evaluation: When one is △ evaluation and the other is ○ evaluation ・Comprehensive evaluation is ◎ evaluation: When one is △ evaluation and the other is ◎ evaluation・Comprehensive evaluation x evaluation: When x evaluation is included

Figure 0007215361000001
Figure 0007215361000001

表1に示すように、実施例1~15はいずれも、湯道の傾斜を適正範囲(0.5×10-2以上9.5×10-2以下)に設定し、かつ、衝突点C3におけるα値を適正範囲(0.10以上0.30以下)に設定した場合の結果である。これにより、定常部と非定常部のいずれについても、鋳片内の介在物検出指数の評価が△、○、又は、◎となり、受湯室の溶湯表面上のフラックスの巻き込みを抑制でき、かつ、出湯室での溶湯流の上向きの流れを抑制できると共に、出湯室での溶鋼流の下向きの流れも無害化できることが判った。 As shown in Table 1, in any of Examples 1 to 15, the inclination of the runner is set within an appropriate range (0.5×10 −2 or more and 9.5×10 −2 or less), and the collision point C3 This is the result when the α value in is set within an appropriate range (0.10 or more and 0.30 or less). As a result, the evaluation of the inclusion detection index in the slab is △, ○, or ◎ for both the steady portion and the unsteady portion, and the entrainment of flux on the surface of the molten metal in the receiving chamber can be suppressed, and , the upward flow of the molten metal flow in the tapping chamber can be suppressed, and the downward flow of the molten steel flow in the tapping chamber can also be rendered harmless.

また、実施例6、8、9、13は、受湯室の溶湯表面に配置するフラックスの組成を前記した好ましい適正範囲(塩基度:1以上4以下、Al濃度:10質量%以上)とし、かつ、受湯室の溶湯表面に配置するフラックスの厚みを前記した好ましい適正範囲(5mm以上50mm以下)に設定した場合の結果であり、これにより、タンディッシュの湯面高さが低下した非定常部において、優れた清浄化効果が得られた。
そして、実施例7、11、12、15は、平面視距離を前記した好ましい適正範囲(ロングノズルの外径の2倍以上)に設定した場合の結果であり、特に実施例15は、受湯室の溶湯表面に配置するフラックスの組成及び厚みも適正範囲であることから、最も清浄化効果が大きいことが分かった。
In addition, in Examples 6, 8, 9, and 13, the composition of the flux placed on the surface of the molten metal in the receiving chamber is within the above-mentioned preferable appropriate range (basicity: 1 or more and 4 or less, Al 2 O 3 concentration: 10% by mass or more ), and the thickness of the flux placed on the surface of the molten metal in the receiving chamber is set within the above-mentioned preferable appropriate range (5 mm or more and 50 mm or less). An excellent cleaning effect was obtained in the non-stationary part.
Examples 7, 11, 12, and 15 are the results when the planar view distance is set to the above-described preferable appropriate range (twice or more the outer diameter of the long nozzle). It was found that the composition and thickness of the flux placed on the surface of the molten metal in the chamber were within the appropriate range, so that the cleaning effect was the greatest.

一方、比較例1、2は、湯道の傾斜を、前記した適正範囲外に設定した場合の結果である。このため、定常部と非定常部のいずれについても、受湯室側のフラックスの巻き込み、及び/又は、出湯室での溶湯流の上向きの流れを抑制できない等により、鋳片内の介在物検出指数の評価が×となった。
また、比較例3、4は、湯道の傾斜を前記した適正範囲に設定しているものの、衝突点C3におけるα値を、前記した適正範囲外に設定した場合の結果である。このため、出湯室において排出孔への下降流が強まり、×評価となった。
On the other hand, Comparative Examples 1 and 2 are the results when the inclination of the runner is set outside the proper range. For this reason, in both the steady part and the unsteady part, inclusions in the slab cannot be detected due to the inclusion of flux on the receiving chamber side and/or the inability to suppress the upward flow of the molten metal flow in the tapping chamber. The evaluation of the index was x.
Comparative Examples 3 and 4 show the results when the inclination of the runner is set within the proper range, but the α value at the collision point C3 is set outside the proper range. For this reason, the downward flow to the discharge hole was strengthened in the tapping chamber, resulting in an x evaluation.

従って、本発明の連続鋳造方法を用いることで、従来よりも溶湯の更なる高清浄化が図れることを確認できた。 Therefore, by using the continuous casting method of the present invention, it was confirmed that the molten metal can be cleaned to a higher degree than in the conventional method.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the configurations described in the above embodiments, and the matters described in the claims. It also includes other embodiments and variations that are possible within its scope. For example, a case where a continuous casting method of the present invention is constructed by combining some or all of the embodiments and modifications described above is also included in the scope of rights of the present invention.

10:連続鋳造設備、11:取鍋、12:ロングノズル、13:タンディッシュ、14:浸漬ノズル、15:受湯室、16:出湯室、17:湯道、18:堰、19:底面、20:開口部、21:底面、22:開口部、23:排出孔、24:耐火物壁 10: continuous casting equipment, 11: ladle, 12: long nozzle, 13: tundish, 14: immersion nozzle, 15: hot water receiving chamber, 16: hot water outlet chamber, 17: runner, 18: weir, 19: bottom, 20: opening, 21: bottom, 22: opening, 23: discharge hole, 24: refractory wall

Claims (3)

溶湯を取鍋からタンディッシュを介して鋳型へ注入し鋳片を製造する連続鋳造方法において、
前記タンディッシュは、該タンディッシュ内を受湯室と出湯室とに区分し、かつ、前記受湯室から前記出湯室へ向けて溶湯が流れる1本以上4本以下の湯道を下部に備えた堰を有し、前記湯道はその断面形状を円形に換算して直径を100mm以上300mm以下の範囲に設定し、
前記湯道を前記受湯室側から前記出湯室側へかけて下方に向けて傾斜させ、かつ、{前記湯道の前記受湯室側端面と前記出湯室側端面の各中心位置の高低差(mm)}/{前記湯道の水平方向の長さ(mm)}で定義される前記湯道の傾きを0.5×10-2以上9.5×10-2以下の範囲とし、
前記湯道の前記受湯室側端面と前記出湯室側端面の各中心位置を通る湯道中心軸仮想線が、前記堰に対向する前記出湯室の耐火物壁面と交差する位置である衝突点の前記出湯室の底面からの高さZと、前記衝突点における前記耐火物壁面の垂線と前記湯道中心軸仮想線がなす角φが、0.10≦0.5-φ/180-Z/1200≦0.30、を満たすことを特徴とする連続鋳造方法。
In a continuous casting method in which molten metal is poured from a ladle through a tundish into a mold to produce a slab,
The tundish divides the inside of the tundish into a hot water receiving chamber and a hot water dispensing chamber, and has at the bottom one or more and four or less runners through which the molten metal flows from the hot water receiving chamber toward the hot water dispensing chamber. and the runner has a cross-sectional shape converted to a circular shape and has a diameter in the range of 100 mm or more and 300 mm or less,
The runner is inclined downward from the hot water receiving chamber side to the hot water dispensing chamber side, and {height difference between each center position of the end surface of the runner on the side of the hot water receiving chamber and the end surface on the side of the hot water dispensing chamber (mm)}/{horizontal length of the runner (mm)} and the inclination of the runner is in the range of 0.5×10 −2 or more and 9.5×10 −2 or less,
A collision point at a position where an imaginary line of a runner center axis passing through the respective center positions of the end surface of the runner on the side of the hot water receiving chamber and the end surface on the side of the hot water discharge chamber intersects the refractory wall surface of the water discharge chamber facing the weir. and the angle φ formed by the vertical line of the refractory wall surface at the collision point and the imaginary line of the runner center axis is 0.10≦0.5−φ/180−Z /1200≦0.30.
請求項1記載の連続鋳造方法において、塩基度=(質量%CaO)/{(質量%SiO)+(質量%Al)}が1.0以上4.0以下、かつ、CaO量、SiO量、及び、Al量の合計量に対するAl量が10質量%以上であるフラックスを、前記受湯室の溶湯表面に配置し、該フラックスの厚みを5mm以上50mm以下にすることを特徴とする連続鋳造方法。 In the continuous casting method according to claim 1, basicity = (% by mass CaO) / {(% by mass SiO 2 ) + (% by mass Al 2 O 3 )} is 1.0 or more and 4.0 or less, and the amount of CaO , SiO 2 amount, and Al 2 O 3 amount with respect to the total amount of Al 2 O 3 amount is 10% by mass or more is placed on the surface of the molten metal in the receiving chamber, and the thickness of the flux is 5 mm or more and 50 mm A continuous casting method characterized by: 請求項1又は2記載の連続鋳造方法において、前記タンディッシュを平面視して、前記取鍋から前記受湯室に溶湯を注入するためのロングノズルの中心位置と、前記湯道中心軸仮想線との最短距離を、前記ロングノズルの外径の2倍以上にすることを特徴とする連続鋳造方法。 3. The continuous casting method according to claim 1 or 2, wherein the tundish is viewed from above, the center position of a long nozzle for pouring molten metal from the ladle into the receiving chamber, and the virtual line of the center axis of the runner. A continuous casting method characterized in that the shortest distance between and is set to be at least twice the outer diameter of the long nozzle.
JP2019129205A 2019-07-11 2019-07-11 Continuous casting method Active JP7215361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019129205A JP7215361B2 (en) 2019-07-11 2019-07-11 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019129205A JP7215361B2 (en) 2019-07-11 2019-07-11 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2021013942A JP2021013942A (en) 2021-02-12
JP7215361B2 true JP7215361B2 (en) 2023-01-31

Family

ID=74531119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019129205A Active JP7215361B2 (en) 2019-07-11 2019-07-11 Continuous casting method

Country Status (1)

Country Link
JP (1) JP7215361B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077603A (en) 2013-10-15 2015-04-23 新日鐵住金株式会社 Tundish device and continuous casting method using the same
JP2016187833A (en) 2015-03-30 2016-11-04 株式会社神戸製鋼所 Continuous casting tundish and continuous casting method using the same
JP2016204693A (en) 2015-04-20 2016-12-08 新日鐵住金株式会社 Production method of high cleanliness steel
JP2017128751A (en) 2016-01-18 2017-07-27 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2019214057A (en) 2018-06-11 2019-12-19 日本製鉄株式会社 Continuous casting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596853Y2 (en) * 1993-05-19 1999-06-21 新日本製鐵株式会社 Tundish for induction heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077603A (en) 2013-10-15 2015-04-23 新日鐵住金株式会社 Tundish device and continuous casting method using the same
JP2016187833A (en) 2015-03-30 2016-11-04 株式会社神戸製鋼所 Continuous casting tundish and continuous casting method using the same
JP2016204693A (en) 2015-04-20 2016-12-08 新日鐵住金株式会社 Production method of high cleanliness steel
JP2017128751A (en) 2016-01-18 2017-07-27 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
JP2019214057A (en) 2018-06-11 2019-12-19 日本製鉄株式会社 Continuous casting method

Also Published As

Publication number Publication date
JP2021013942A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
US5358551A (en) Turbulence inhibiting tundish and impact pad and method of using
WO2013190799A1 (en) Method for manufacturing high-purity steel casting, and tundish
JP4670762B2 (en) Method for continuous casting of molten metal
JP7238275B2 (en) Continuous casting method
JP4023289B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4772798B2 (en) Method for producing ultra-low carbon slab
JP4585504B2 (en) Method for continuous casting of molten metal
JP2005131661A (en) Method and equipment for continuously casting high cleanness steel by tundish
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
KR0142664B1 (en) Tundish turbulence suppressor
JP7215361B2 (en) Continuous casting method
JP7269480B2 (en) Continuous casting method
JP7234837B2 (en) Continuous casting method
JP4216642B2 (en) Immersion nozzle and continuous casting method using the same
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP2006239746A (en) Tundish for continuous casting of steel
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4203167B2 (en) Continuous casting method for molten steel
JP4319072B2 (en) Tundish with excellent inclusion levitation
KR101909513B1 (en) Method for treatment of molten steel
JP2006088219A (en) Nozzle for pouring molten metal and its setting structure and method for pouring molten metal
JP5044981B2 (en) Steel continuous casting method
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP7364893B2 (en) Method of supplying molten steel
WO2023190017A1 (en) Immersion nozzle, mold, and steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151