JP6766687B2 - Refining method of molten steel - Google Patents

Refining method of molten steel Download PDF

Info

Publication number
JP6766687B2
JP6766687B2 JP2017035057A JP2017035057A JP6766687B2 JP 6766687 B2 JP6766687 B2 JP 6766687B2 JP 2017035057 A JP2017035057 A JP 2017035057A JP 2017035057 A JP2017035057 A JP 2017035057A JP 6766687 B2 JP6766687 B2 JP 6766687B2
Authority
JP
Japan
Prior art keywords
molten steel
less
slag
pressure
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017035057A
Other languages
Japanese (ja)
Other versions
JP2018141194A (en
Inventor
暁 峰田
暁 峰田
祐哉 木村
祐哉 木村
進 工藤
進 工藤
怜爾 竹島
怜爾 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017035057A priority Critical patent/JP6766687B2/en
Publication of JP2018141194A publication Critical patent/JP2018141194A/en
Application granted granted Critical
Publication of JP6766687B2 publication Critical patent/JP6766687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、清浄性の高い溶鋼を製造する精錬方法、特に、真空脱ガス精錬を終了する時の精錬方法に関するものである。 The present invention relates to a refining method for producing molten steel with high cleanliness, particularly a refining method at the end of vacuum degassing refining.

近年、機械装置の高性能化や機械部品の小型化を図るため、機械特性に優れる鋼が求められている。鋼は、一般に、転炉で、溶鋼を脱珪処理、脱燐処理、さらに、脱炭処理を行った後、二次精錬工程にて、溶鋼の成分組成を調製し、溶鋼中の介在物を低減し、次いで、連続鋳造して製造されるが、機械特性を高めるためには、溶鋼中の介在物をできるだけ低減する必要がある。 In recent years, steel having excellent mechanical properties has been required in order to improve the performance of mechanical devices and miniaturize mechanical parts. In general, steel is desiliconized, dephosphorized, and decarburized in a converter, and then the composition of the molten steel is prepared in a secondary refining step to remove inclusions in the molten steel. It is produced by continuous casting after reduction, but in order to improve mechanical properties, it is necessary to reduce inclusions in molten steel as much as possible.

例えば、軸受鋼においては、鋼中の介在物の量や大きさが、転動疲労寿命を決定するので、二次精錬工程にて、溶鋼に、取鍋スラグ精錬処理(以下「LF処理」ということがある。)や、真空脱ガス処理(以下「RH処理」ということがある。)を施し、溶鋼中の介在物の低減を図っている。 For example, in bearing steel, the amount and size of inclusions in the steel determine the rolling fatigue life, so in the secondary refining process, the molten steel is subjected to ladle slag refining treatment (hereinafter referred to as "LF treatment"). In some cases) and vacuum degassing treatment (hereinafter sometimes referred to as "RH treatment") are performed to reduce inclusions in molten steel.

RH処理は、取鍋中の溶鋼に、二本の浸漬管を浸漬し、浸漬管に繋がる真空槽を減圧して、大気圧との差圧で溶鋼を真空槽内に吸い上げ、溶鋼環流ガスを、一方の浸漬管から溶鋼内に供給し、溶鋼を真空槽内と取鍋の間で環流させて、脱ガスや、介在物の低減を図る処理である。 In the RH treatment, two dipping pipes are immersed in the molten steel in the ladle, the vacuum tank connected to the dipping pipe is depressurized, and the molten steel is sucked up into the vacuum tank by the pressure difference from the atmospheric pressure to release the molten steel recirculation gas. This is a process in which the molten steel is supplied into the molten steel from one of the immersion pipes, and the molten steel is circulated between the inside of the vacuum chamber and the ladle to degas and reduce inclusions.

RH処理では、溶鋼を強撹拌することになるので、介在物の除去は促進されるが、一方で、溶鋼中へのスラグの巻込みが発生するので、溶鋼の環流制御が重要で、これまで、環流制御に関する技術が数多く提案されている。 In the RH treatment, the molten steel is strongly agitated, so that the removal of inclusions is promoted, but on the other hand, slag is involved in the molten steel, so that the circulation control of the molten steel is important. , Many techniques related to recirculation control have been proposed.

例えば、特許文献1には、塩基度3以上のスラグで還元精錬を実施した後、環流式脱ガス装置によって、処理時間の2/3を高環流、1/3を弱環流にして真空脱ガス精錬を行なうことを特徴とする軸受鋼の製造方法が提案されている。 For example, in Patent Document 1, after performing reduction refining with slag having a basicity of 3 or more, vacuum degassing is performed by using a recirculation type degassing device to set 2/3 of the processing time to high recirculation and 1/3 to weak recirculation. A method for producing bearing steel, which is characterized by refining, has been proposed.

特許文献2には、アーク溶解炉又は転炉で製造した溶鋼を取鍋に移注して精錬する際、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を全溶鋼の8倍以上として脱ガスを25分以上行なうことを特徴とする高清浄鋼の製造方法が提案されている。 Patent Document 2 states that when a molten steel produced in an arc melting furnace or a converter is transferred to a ladle for refining, the refining in the ladle is set to 60 minutes or less, and the total ring flow rate of the molten steel by the recirculation type degassing device is set to 60 minutes or less. A method for producing high-clean steel has been proposed, which comprises performing degassing for 25 minutes or more, which is 8 times or more that of molten steel.

特許文献3には、転炉又は電気炉から出鋼した溶鋼を取鍋精錬装置で精錬した後、環流式真空脱ガス装置で精錬して高清浄度鋼を製造する際、環流式真空脱ガス装置で行なう精錬処理でのスラグ塩基度を6.5以上13.5以下とし、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半処理では、溶鋼環流量180ton/min以上、210ton/min以下の高環流状態とし、後半処理では、溶鋼環流量110ton/min以上、140ton/min以下の弱環流状態とすることを特徴とする高清浄度鋼の製造方法が提案されている。 Patent Document 3 states that when molten steel discharged from a converter or an electric furnace is smelted by a ladle smelting device and then smelted by a recirculation type vacuum degassing device to produce high-cleanliness steel, the recirculation type vacuum degassing is performed. The slag basicity in the refining process performed by the device is 6.5 or more and 13.5 or less, and in the first half treatment of 1/3 to 1/2 of the total processing time of the recirculation type vacuum degassing device, the molten steel ring flow rate is 180 ton / min. As described above, a method for producing high-cleanliness steel has been proposed, which comprises a high recirculation state of 210 ton / min or less and a weak recirculation state of a molten steel ring flow rate of 110 ton / min or more and 140 ton / min or less in the latter half treatment. There is.

特許文献4には、溶鋼の真空精錬処理終了時に真空槽内に窒素ガスを導入して、真空から常圧に復圧する真空精錬装置の復圧方法において、溶鋼浴表面にはアルゴンガス等の不活性ガスを導入して、溶鋼の吸窒を防止する復圧方法が提案されている。 Patent Document 4 describes in a method of repressurizing a vacuum refining apparatus in which nitrogen gas is introduced into a vacuum chamber at the end of a vacuum refining process for molten steel to restore the pressure from vacuum to normal pressure, and argon gas or the like is not present on the surface of the molten steel bath. A vacuum recovery method has been proposed in which an active gas is introduced to prevent nitrogen absorption of molten steel.

特許文献5には、真空槽内にスラグを持ち込まない状態で、真空槽内の真空度に応じて攪拌用ガスを供給することを特徴とする高清浄度極低炭素鋼の製造方法が提案されている。 Patent Document 5 proposes a method for producing high-cleanliness ultra-low carbon steel, which comprises supplying a stirring gas according to the degree of vacuum in the vacuum chamber without bringing slag into the vacuum chamber. ing.

特開昭62−063650号公報Japanese Unexamined Patent Publication No. 62-03650 特開2001−342516号公報Japanese Unexamined Patent Publication No. 2001-342516 特開2008−133505号公報Japanese Unexamined Patent Publication No. 2008-133505 特開平05−331526号公報Japanese Patent Application Laid-Open No. 05-331526 特開平08−199225号公報Japanese Patent Application Laid-Open No. 08-199225

前述したように、鋼の機械特性に、鋼中に存在する介在物、主に、酸化物系介在物の量と大きさが大きく影響する。鋼中の酸化物系介在物のうち、特に、数10μm程の粗大な介在物は、CaO含有の低融点介在物(以下「CaO含有介在物」ということがある。)である。 As described above, the mechanical properties of steel are greatly affected by the amount and size of inclusions present in the steel, mainly oxide-based inclusions. Among the oxide-based inclusions in steel, particularly coarse inclusions of about several tens of μm are CaO-containing low melting point inclusions (hereinafter, may be referred to as “CaO-containing inclusions”).

粗大なCaO含有介在物は、精錬で使用する取鍋スラグが、溶鋼中に巻き込まれて発生するスラグ系介在物、スラグ中のCaOが還元されて溶鋼に混入し、溶鋼中のAl23やMgO−Al23と反応して生成する介在物、さらに、これらの介在物が溶鋼中の介在物を取り込んで粗大化した介在物である。 The coarse CaO-containing inclusions are slag-based inclusions generated by the ladle slag used in refining being caught in the molten steel, and CaO in the slag is reduced and mixed into the molten steel, and Al 2 O 3 in the molten steel. And the inclusions formed by reacting with MgO-Al 2 O 3, and further, these inclusions are coarsened inclusions by incorporating the inclusions in the molten steel.

粗大なCaO含有介在物は、品質管理指標の極値統計値や、製品特性の疲労寿命を悪化させるので、その量と大きさを低減する必要があるが、そのためには、凝集合体の起点となる低融点介在物の量と大きさを低減するとともに、低融点介在物に取り込まれる溶鋼中の介在物の量と大きさ低減することが有効である。 Coarse CaO-containing inclusions worsen the extreme statistical values of quality control indicators and the fatigue life of product characteristics, so it is necessary to reduce the amount and size, but for that purpose, the starting point of agglomeration and coalescence It is effective to reduce the amount and size of the low melting point inclusions, and to reduce the amount and size of the inclusions in the molten steel incorporated into the low melting point inclusions.

これら介在物の量と大きさを低減するためには、製造の各工程(取鍋精錬−RH処理−連続鋳造)において、溶鋼中への介在物の混入を防止する、又は、溶鋼中の介在物を除去する等の介在物低減対策が必要である。 In order to reduce the amount and size of these inclusions, in each manufacturing process (ladle refining-RH treatment-continuous casting), prevention of inclusions in the molten steel or inclusions in the molten steel It is necessary to take measures to reduce inclusions such as removing objects.

溶鋼中への取鍋スラグの巻込みは、RH処理において、溶鋼流速が大きい場合や、スラグ/溶鋼界面の擾乱が激しい場合に、その頻度が大きくなり、混入するスラグ系介在物の量と大きさが、ともに増大する。 Entrainment of ladle slag in molten steel increases in frequency when the molten steel flow velocity is high or when the slag / molten steel interface is severely disturbed in the RH treatment, and the amount and amount of slag-based inclusions mixed in are large. Both increase.

RH処理の終了後は、真空槽内の溶鋼を取鍋に戻すため、真空槽内の減圧状態を大気圧へ戻す「復圧」を実施するが、復圧時には、真空槽内に吸い上げられていた溶鋼、及び、浸漬管内に貯留していた溶鋼が、急激に降下して取鍋内に戻るので、急激に降下する溶鋼が誘起する溶鋼の下降流速は非常に大きく、スラグ/溶鋼界面が激しく搖動し、スラグが溶鋼に巻き込まれるとともに、巻き込まれたスラグは取鍋内溶鋼の深部まで引き込まれることになる。 After the RH treatment is completed, in order to return the molten steel in the vacuum chamber to the ladle, "reinforcement" is performed to return the decompression state in the vacuum chamber to atmospheric pressure, but at the time of restoration, it is sucked up in the vacuum chamber. Since the molten steel and the molten steel stored in the immersion pipe rapidly descend and return to the ladle, the falling flow velocity of the molten steel induced by the rapidly descending molten steel is very large, and the slag / molten steel interface is violent. It sways and the slag is caught in the molten steel, and the slag that is caught is drawn deep into the molten steel in the ladle.

また、復圧時の溶鋼環流ガス流量が、RH処理中の溶鋼環流ガス流量と同じ強環流条件であれば、溶鋼は、復圧中も、スラグ巻込みの臨界溶鋼流速を超える流速で環流することになるので、真空槽内のスラグは、常に、溶鋼中に巻き込まれ易い状態におかれることとなる。さらに、スラグ/溶鋼界面において、スラグ巻込みの臨界流速を超える溶鋼流速が存在し、スラグと溶鋼の接触時間が長いと、真空槽内のスラグが溶鋼中に巻き込まれ易い状態が続くので、溶鋼中のスラグ系介在物の量は増大することになる。 Further, if the molten steel recirculation gas flow rate at the time of recompression is the same strong recirculation condition as the molten steel recirculation gas flow rate during the RH treatment, the molten steel recirculates at a flow rate exceeding the critical molten steel flow velocity involving slag even during the recompression. Therefore, the slag in the vacuum chamber is always in a state where it is easily caught in the molten steel. Further, at the slag / molten steel interface, there is a molten steel flow velocity that exceeds the critical flow velocity of slag entrainment, and if the contact time between the slag and the molten steel is long, the slag in the vacuum chamber continues to be easily entrained in the molten steel. The amount of slag-based inclusions inside will increase.

特許文献1の方法では、環流式脱ガス処理の前半2/3を高環流とし、後半1/3を弱環流としているが、特許文献1に、復圧時の環流条件は記載されていない。また、環流式脱ガス処理の後半を弱環流にすると、溶鋼中の全酸素量T.Oを十分に低減できない可能性がある。 In the method of Patent Document 1, the first half 2/3 of the recirculation type degassing treatment is a high recirculation and the second half is a weak recirculation, but Patent Document 1 does not describe the recirculation conditions at the time of recompression. Further, when the latter half of the recirculation type degassing treatment is made weak recirculation, the total amount of oxygen in the molten steel T.I. It may not be possible to reduce O sufficiently.

特許文献2の方法では、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を、全溶鋼の8倍以上として脱ガスを25分以上行なうが、特許文献2に、復圧時の環流条件は記載されておらず、また、溶鋼中へのスラグ巻込みに影響する環流条件も不明瞭である。 In the method of Patent Document 2, refining in the ladle is 60 minutes or less, the ring flow rate of the molten steel by the recirculation type degassing device is 8 times or more that of the total molten steel, and degassing is performed for 25 minutes or more. The recirculation conditions at the time of recompression are not described, and the recirculation conditions that affect the slag entrainment in the molten steel are also unclear.

特許文献3の方法では、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半を高環流状態とし、後半を弱環流状態としているが、特許文献1の方法と同様に、復圧時の環流条件は記載されておらず、また、後半を弱撹拌とするので、溶鋼の全酸素量T.Oを十分に下げることができない恐れがある。 In the method of Patent Document 3, the first half of the total processing time of the recirculation type vacuum degassing device is set to the high recirculation state and the latter half is set to the weak recirculation state, but the same as the method of Patent Document 1. , The recirculation conditions at the time of recompression are not described, and since the latter half is weakly agitated, the total oxygen content of the molten steel is T.I. There is a risk that O cannot be lowered sufficiently.

特許文献4の方法では、復圧時のガス種等が規定されているが、特許文献4に、真空槽内及び取鍋内にて溶鋼のスラグ巻き込みを抑制する復圧条件は記載されていない。特許文献5の方法では、真空槽内の圧力に応じた適切な撹拌ガス流速が規定されているが、特許文献5に、真空槽内及び取鍋内において、溶鋼中へのスラグ巻込みを抑制する復圧条件は記載されていない。 In the method of Patent Document 4, the gas type and the like at the time of decompression are specified, but Patent Document 4 does not describe the decompression condition for suppressing slag entrainment of molten steel in the vacuum chamber and the ladle. .. In the method of Patent Document 5, an appropriate stirring gas flow velocity according to the pressure in the vacuum chamber is defined, but in Patent Document 5, slag entrainment in molten steel is suppressed in the vacuum chamber and the ladle. The conditions for repressurization are not described.

そこで、本発明は、従来技術の現状に鑑み、溶鋼の真空脱ガス処理の復圧時、非定常時に生じる溶鋼のスラグ巻込みを抑制して、鋼中のCaO含有介在物の量と大きさを低減し、清浄性の高い鋼を製造することを課題とし、該課題を解決する溶鋼の精錬方法を提供することを目的とする。 Therefore, in view of the current state of the prior art, the present invention suppresses slag entrainment of molten steel that occurs during decompression and unsteady state of vacuum degassing of molten steel, and the amount and size of CaO-containing inclusions in the steel. An object of the present invention is to produce steel having high cleanliness, and an object of the present invention is to provide a refining method for molten steel that solves the problem.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、真空脱ガス処理の復圧時、真空槽内の圧力を制御して、真空槽内及び浸漬管内の溶鋼の下降速度を最適化すれば、非定常時に生じる溶鋼のスラグ巻込み、及び、スラグ系介在物の取鍋内溶鋼の深部への浸入を抑制でき、スラグに起因して鋼中に残存するCaO含有介在物の量と大きさを大幅に低減できることを見いだした。この点については後述する。 The present inventors have diligently studied a method for solving the above problems. As a result, if the pressure in the vacuum chamber is controlled to optimize the descending speed of the molten steel in the vacuum chamber and the immersion pipe during the depressurization of the vacuum degassing treatment, the slag entrainment of the molten steel that occurs during unsteady state and It was found that the infiltration of molten steel in the ladle of slag-based inclusions into the deep part can be suppressed, and the amount and size of CaO-containing inclusions remaining in the steel due to slag can be significantly reduced. This point will be described later.

本発明は、上記の知見に基づいてなされたもので、その要旨は次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)C、Si、Mn、P、及び、Sを含有する取鍋内の溶鋼に、真空槽に浸漬管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽内の圧力を、減圧状態の圧力P1[Pa]から大気圧P0[Pa]へ復圧し、溶鋼の精錬を終了する精錬方法において、
(i)上記圧力P1から、下記式(1)で定義する圧力P2まで、真空槽内の溶鋼の下降速度を0.20m/秒以上に維持して復圧し、次いで、
(ii)圧力P2から大気圧P0まで、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して復圧する
ことを特徴とする溶鋼の精錬方法。
(1) After vacuum degassing the molten steel in the ladle containing C, Si, Mn, P, and S with a degassing device equipped with a dipping tube in the vacuum tank, the pressure in the vacuum tank is applied. In the refining method, the pressure P1 [Pa] in the depressurized state is restored to the atmospheric pressure P0 [Pa], and the refining of the molten steel is completed.
(I) From the pressure P1 to the pressure P2 defined by the following formula (1), the lowering speed of the molten steel in the vacuum chamber is maintained at 0.20 m / sec or more to repressurize, and then the pressure is restored.
(Ii) A method for refining molten steel, characterized in that the descending speed of the molten steel in the immersion pipe is maintained at 0.15 m / sec or less and the pressure is restored from pressure P2 to atmospheric pressure P0.

P2=P0−ρ・g・(h−d) ・・・(1)
ρ:溶鋼密度[kg/m3
g:重力加速度[m/秒2
h:取鍋内の溶鋼浴面から真空槽内の溶鋼浴面までの高さ[m]
d:真空槽内の溶鋼浴浸[m]
P2 = P0-ρ ・ g ・ (hd) ・ ・ ・ (1)
ρ: Molten steel density [kg / m 3 ]
g: Gravity acceleration [m / sec 2 ]
h: Height from the molten steel bath surface in the ladle to the molten steel bath surface in the vacuum tank [m]
d: Soaking in molten steel bath in a vacuum chamber [m]

(2)前記真空脱ガス処理をRH式真空脱ガス装置で行なうことを特徴とする前記(1)に記載の溶鋼の精錬方法。 (2) The method for refining molten steel according to (1) above, wherein the vacuum degassing treatment is performed by an RH type vacuum degassing device.

(3)前記RH式真空脱ガス装置で復圧を行なう際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする前記(2)に記載の溶鋼の精錬方法。 (3) When repressurizing with the RH type vacuum degassing device, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion directly supplied into the vacuum chamber. The method for refining molten steel according to (2) above.

(4)前記復圧用ガスが不活性ガスであることを特徴とする前記(3)に記載の溶鋼の精錬方法。 (4) The method for refining molten steel according to (3) above, wherein the decompression gas is an inert gas.

(5)前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする前記(1)〜(4)のいずれかに記載の溶鋼の精錬方法。 (5) The molten steel is C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten iron according to any one of (1) to (4) above, which comprises the above, and the balance is composed of Fe and unavoidable impurities.

(6)前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする前記(5)に記載の溶鋼の精錬方法。 (6) The molten steel further contains, in mass%, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20. % Or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less , Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM The method for refining molten steel according to (5) above, wherein one or more of 0.010% or less and O: 0.003% or less are contained.

本発明によれば、非定常時に生じる溶鋼のスラグ巻込み、及び、スラグ系介在物の取鍋内溶鋼の深部への浸入を抑制でき、スラグに起因して鋼中に残存するCaO含有介在物の量と大きさを大幅に低減できるので、清浄性が高く、機械特性に優れた鋼を提供することができる。 According to the present invention, it is possible to suppress slag entrainment of molten steel and penetration of slag-based inclusions into the deep part of the ladle in the pan, which occurs at unsteady state, and CaO-containing inclusions remaining in the steel due to slag. Since the amount and size of the steel can be significantly reduced, it is possible to provide steel having high cleanliness and excellent mechanical properties.

真空槽の浸漬上昇管と浸漬下降管を溶鋼とスラグに浸漬し、真空槽内を減圧し、真空槽内に溶鋼とスラグを吸い上げた態様を示す図である。It is a figure which shows the mode in which the immersion ascending pipe and the immersion descending pipe of a vacuum chamber are immersed in molten steel and slag, the inside of the vacuum chamber is depressurized, and the molten steel and slag are sucked up in the vacuum chamber. 真空脱ガス処理中の溶鋼とスラグの態様を示す図である。It is a figure which shows the mode of molten steel and slag during a vacuum degassing treatment. 通常の復圧時における浸漬上昇管と浸漬下降管内の溶鋼とスラグの態様を示す図である。It is a figure which shows the mode of molten steel and slag in a dipping riser pipe and a dipping down pipe at the time of normal pressure recovery. 本発明の復圧時における浸漬上昇管と浸漬下降管内の溶鋼とスラグの態様を示す図である。It is a figure which shows the mode of the molten steel and slag in the immersion riser pipe and the immersion drop pipe at the time of recompression of this invention.

本発明の溶鋼の精錬方法(以下「本発明精錬方法」ということがある。)は、
C、Si、Mn、P、及び、Sを含有する取鍋内の溶鋼に、真空槽に浸漬管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽内の圧力を、減圧状態の圧力P1[Pa]から大気圧P0[Pa]へ復圧し、溶鋼の精錬を終了する精錬方法において、
(i)上記圧力P1から、下記式(1)で定義する圧力P2まで、真空槽内の溶鋼の下降速度を0.20m/秒以上に維持して復圧し、次いで、
(ii)圧力P2から大気圧P0まで、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して復圧する
ことを特徴とする。
The method for refining molten steel of the present invention (hereinafter, may be referred to as "the refining method of the present invention") is
After vacuum degassing the molten steel in the ladle containing C, Si, Mn, P, and S with a degassing device equipped with a dipping tube in the vacuum chamber, the pressure in the vacuum chamber is reduced. In the refining method in which the pressure P1 [Pa] is restored to the atmospheric pressure P0 [Pa] and the refining of the molten steel is completed.
(I) From the pressure P1 to the pressure P2 defined by the following formula (1), the lowering speed of the molten steel in the vacuum chamber is maintained at 0.20 m / sec or more to repressurize, and then the pressure is restored.
(Ii) From the pressure P2 to the atmospheric pressure P0, the falling speed of the molten steel in the immersion pipe is maintained at 0.15 m / sec or less and the pressure is restored.

P2=P0−ρ・g・(h−d) ・・・(1)
ρ:溶鋼密度[kg/m3
g:重力加速度[m/秒2
h:取鍋内の溶鋼浴面から真空槽内の溶鋼浴面までの高さ[m]
d:真空槽内の溶鋼浴浸[m]
P2 = P0-ρ ・ g ・ (hd) ・ ・ ・ (1)
ρ: Molten steel density [kg / m 3 ]
g: Gravity acceleration [m / sec 2 ]
h: Height from the molten steel bath surface in the ladle to the molten steel bath surface in the vacuum tank [m]
d: Soaking in molten steel bath in a vacuum chamber [m]

以下、本発明精錬方法について、溶鋼にRH式真空脱ガス処理を施す場合を例にとって説明する。 Hereinafter, the refining method of the present invention will be described by taking as an example a case where molten steel is subjected to RH type vacuum degassing treatment.

図1〜図3に、RH式真空脱ガス処理の態様を示す。図1に、真空槽の浸漬上昇管と浸漬下降管を溶鋼とスラグに浸漬し、真空槽内を減圧し、真空槽内に溶鋼とスラグを吸い上げた態様を示し、図2に、真空脱ガス処理中の溶鋼とスラグの態様を示し、図3に、通常の復圧時における浸漬上昇管と浸漬下降管内の溶鋼とスラグの態様を示す。 1 to 3 show an aspect of the RH type vacuum degassing treatment. FIG. 1 shows an embodiment in which the immersion rising pipe and the immersion descending pipe of the vacuum chamber are immersed in molten steel and slag, the inside of the vacuum chamber is depressurized, and the molten steel and slag are sucked up in the vacuum chamber. FIG. 2 shows vacuum degassing. The mode of the molten steel and slag during the treatment is shown, and FIG. 3 shows the mode of the molten steel and slag in the immersion rising pipe and the immersion descending pipe at the time of normal repressurization.

図1に示すように、溶鋼に真空脱ガス処理を施す際には、浸漬上昇管2aと浸漬下降管2bを備え、排気管4を介し排気装置(図示なし)に接続されている真空槽1を降下させ、又は、取鍋2を上昇させ、浸漬上昇管2aと浸漬下降管2bを、スラグ6aを通して溶鋼5aに浸漬し、真空槽1内の大気を排気管4から排気して、真空槽1内を減圧し、真空槽1内に溶鋼5aとスラグ6aを吸い上げる。 As shown in FIG. 1, when the molten steel is subjected to vacuum degassing treatment, a vacuum tank 1 provided with a dipping rising pipe 2a and a dipping descent pipe 2b and connected to an exhaust device (not shown) via an exhaust pipe 4 is provided. Or the pan 2 is raised, the immersion ascending pipe 2a and the immersion descending pipe 2b are immersed in the molten steel 5a through the slag 6a, and the air in the vacuum chamber 1 is exhausted from the exhaust pipe 4 to exhaust the vacuum chamber. The pressure inside the vacuum chamber 1 is reduced, and the molten steel 5a and the slag 6a are sucked up into the vacuum chamber 1.

取鍋2内の溶鋼5aはスラグ6aに覆われているので、真空槽1内には溶鋼5aとスラグ6aが吸い上げられ、吸い上げられた溶鋼5bは、同様に、スラグ6bで覆われる。溶鋼5bがスラグ6bで覆われている状態で、浸漬上昇管2aに設けた溶鋼環流ガス吹込み口3から、浸漬上昇管2a内の溶鋼に、溶鋼環流ガス3a(アルゴン、窒素などの不活性ガス)を吹き込む。 Since the molten steel 5a in the ladle 2 is covered with the slag 6a, the molten steel 5a and the slag 6a are sucked up in the vacuum chamber 1, and the sucked molten steel 5b is similarly covered with the slag 6b. In a state where the molten steel 5b is covered with the slag 6b, the molten steel recirculation gas 3a (inert gas such as argon and nitrogen) is applied to the molten steel in the immersion riser pipe 2a from the molten steel recirculation gas inlet 3 provided in the immersion riser pipe 2a. Gas) is blown in.

図2に示すように、溶鋼環流ガス3aの吹込みで生じるポンプ作用によって、浸漬上昇管2a内の溶鋼5bが上昇し、真空槽1内において、溶鋼5bの盛上り5cが形成され、真空槽1内の溶鋼5bは、所要の溶鋼流速5dで浸漬下降管2bへ向かって流動し、浸漬下降管2bから取鍋2へ環流する(図2中「矢印」参照)。 As shown in FIG. 2, the pumping action generated by the blowing of the molten steel recirculation gas 3a raises the molten steel 5b in the immersion riser pipe 2a, and the swelling 5c of the molten steel 5b is formed in the vacuum chamber 1 to form a vacuum chamber. The molten steel 5b in 1 flows toward the immersion descent pipe 2b at a required molten steel flow velocity 5d, and recirculates from the immersion descent pipe 2b to the ladle 2 (see “arrow” in FIG. 2).

溶鋼5bの盛上り5cが、真空槽1の減圧雰囲気に曝されて、溶鋼5bに対する脱ガス処理が進行し、溶鋼5bが環流する間、溶鋼5aに対する真空脱ガス処理が進行する。 The swelling 5c of the molten steel 5b is exposed to the reduced pressure atmosphere of the vacuum tank 1, and the degassing treatment for the molten steel 5b proceeds, and while the molten steel 5b is recirculated, the vacuum degassing treatment for the molten steel 5a proceeds.

溶鋼5bを覆うスラグ6bは、溶鋼流速5dが速い場合、また、スラグ/溶鋼界面での擾乱が大きい場合に、取鍋2へ環流する溶鋼5b中に巻き込まれるので、真空槽1内の減圧状態を大気圧へ復圧して真空脱ガスを終了する時、取鍋2へ環流する溶鋼5bの挙動と、真空脱ガス処理の間、浸漬下降管2bの上部に偏って滞留するスラグ6bの挙動が、溶鋼5bが取鍋2へ環流した後の溶鋼5aの清浄性に大きく影響する。 The slag 6b covering the molten steel 5b is caught in the molten steel 5b circulating to the ladle 2 when the molten steel flow velocity 5d is high and the disturbance at the slag / molten steel interface is large, so that the slag 6b is in a reduced pressure state in the vacuum chamber 1. The behavior of the molten steel 5b recirculating to the ladle 2 and the behavior of the slag 6b that stays unevenly on the upper part of the immersion descent pipe 2b during the vacuum degassing treatment when the vacuum degassing is completed by returning the pressure to atmospheric pressure. , The cleanliness of the molten steel 5a after the molten steel 5b is recirculated to the ladle 2 is greatly affected.

真空槽1内の減圧状態を大気圧にむけて復圧していくと、真空槽1内の溶鋼5bの盛上り5cの高さは低くなっていき、それに伴い、浸漬上昇管2a近傍に存在するスラグ6bは浸漬上昇管2a側に流動するので、真空槽1内の溶鋼5bとスラグ6bは、図3に示すように、浸漬上昇管2aと浸漬下降管2bから取鍋2へ降下する。 When the depressurized state in the vacuum chamber 1 is depressurized toward atmospheric pressure, the height of the slag 5c of the molten steel 5b in the vacuum chamber 1 decreases, and accordingly, it exists in the vicinity of the immersion riser pipe 2a. Since the slag 6b flows toward the immersion riser pipe 2a, the molten steel 5b and the slag 6b in the vacuum chamber 1 descend from the immersion riser pipe 2a and the immersion lowering pipe 2b to the ladle 2 as shown in FIG.

通常、復圧中も、浸漬上昇管2aの溶鋼環流ガス吹込み口3から溶鋼環流ガス3aを供給するので、浸漬上昇管2a側の溶鋼5bとスラグ6bは強撹拌されるとともに、溶鋼還流が継続する。 Normally, even during recompression, the molten steel recirculation gas 3a is supplied from the molten steel recirculation gas inlet 3 of the immersion riser pipe 2a, so that the molten steel 5b and the slag 6b on the immersion riser pipe 2a side are strongly agitated and the molten steel reflux occurs. continue.

強撹拌によりスラグ6bが懸濁した溶鋼5bが浸漬管上昇管2aから取鍋2へ降下すると、溶鋼5a中にスラグ6bが懸濁した溶鋼域が形成され、該溶鋼域が取鍋2内の溶鋼5aの深部に浸入し、真空脱ガス処理を施した溶鋼の清浄性が低下する。 When the molten steel 5b in which the slag 6b is suspended is lowered from the immersion pipe rising pipe 2a to the ladle 2 by strong stirring, a molten steel region in which the slag 6b is suspended is formed in the molten steel 5a, and the molten steel region is in the ladle 2. It penetrates deep into the molten steel 5a and the cleanliness of the molten steel subjected to the vacuum degassing treatment is lowered.

また、溶鋼環流が継続すると、浸漬下降管2b側に偏って存在するスラグ6bの下面には、浸漬上昇管2a側から浸漬下降管2b側に向かう溶鋼流速5dが存在することになり、真空槽1内のスラグ6bは、スラグ/溶鋼界面にて、上記溶鋼流速に巻き込まれ易い状態におかれることになる。 Further, when the molten steel recirculation continues, the molten steel flow velocity 5d from the immersion rising pipe 2a side to the immersion descending pipe 2b side exists on the lower surface of the slag 6b that is biased toward the immersion descending pipe 2b side, and the vacuum tank. The slag 6b in 1 is easily caught in the molten steel flow velocity at the slag / molten steel interface.

復圧時、溶鋼環流ガス3aの流量が、RH処理中の溶鋼環流ガスの流量と同じ場合、溶鋼の還流量は減少するが、真空槽1内での溶鋼流速5dは大きくなり、溶鋼流速5dが、スラグ巻込みの臨界溶鋼流速を超えると、真空槽1内のスラグは、常に、溶鋼5b中に巻き込まれ易い状態におかれることになる。 When the flow rate of the molten steel recirculation gas 3a at the time of recompression is the same as the flow rate of the molten steel recirculation gas during the RH treatment, the recirculation amount of the molten steel decreases, but the molten steel flow velocity 5d in the vacuum chamber 1 increases, and the molten steel flow velocity 5d. However, when the critical molten steel flow velocity for slag entrainment is exceeded, the slag in the vacuum chamber 1 is always in a state of being easily entrained in the molten steel 5b.

さらに、浸漬下降管2b側に偏って存在するスラグ6bの下面に形成される、浸漬上昇管2a側から浸漬下降管2b側に向かう溶鋼流速5dが、スラグ巻込みの臨界流速を超えかつ、スラグ6bと溶鋼5bの接触時間が長くなると、真空槽1内のスラグ6bが溶鋼5bに巻き込まれ易い状態が続き、溶鋼5a中のスラグ系介在物の量が増大する。 Further, the molten steel flow velocity 5d formed on the lower surface of the slag 6b, which is biased toward the immersion descent pipe 2b side, from the immersion rise pipe 2a side to the immersion descent pipe 2b side exceeds the critical flow velocity of slag entrainment and slag. When the contact time between the 6b and the molten steel 5b becomes long, the slag 6b in the vacuum chamber 1 continues to be easily caught in the molten steel 5b, and the amount of slag-based inclusions in the molten steel 5a increases.

また、復圧時、真空槽1内の溶鋼5bとスラグ6bが急激に降下するので、取鍋2内のスラグ/溶鋼界面が激しく搖動し、溶鋼5aがスラグ6aを巻き込む可能性が増大するし、さらに、この急激な溶鋼5bとスラグ6bの降下により、スラグ/溶鋼界面近傍で、溶鋼流速がスラグ巻込み臨界流速を超えて、その状態が長時間続くと、溶鋼5a中に巻き込まれるスラグ系介在物の量が増大する。 Further, when the pressure is restored, the molten steel 5b and the slag 6b in the vacuum chamber 1 drop sharply, so that the slag / molten steel interface in the ladle 2 violently shakes, and the possibility that the molten steel 5a entrains the slag 6a increases. Furthermore, due to this rapid drop of molten steel 5b and slag 6b, if the molten steel flow velocity exceeds the slag entrainment critical flow velocity near the slag / molten steel interface and the state continues for a long time, the slag system is entrained in the molten steel 5a. The amount of inclusions increases.

前述したように、鋼中の非金属介在物のうち、特に、CaO含有介在物の量及び大きさの増大は、鋼の機械特性、特に、延性、靱性、疲労特性等を阻害する。 As described above, among the non-metallic inclusions in steel, an increase in the amount and size of CaO-containing inclusions inhibits the mechanical properties of steel, particularly ductility, toughness, fatigue properties and the like.

そこで、本発明者らは、上記のことを踏まえ、CaO含有介在物の量及び大きさの増大を抑制する、又は、該量及び大きさを低減するためには、
(x)溶鋼環流が継続(溶鋼流速が存在)するスラグ/溶鋼界面において、スラグと溶鋼の接触時間を短縮すること、及び、
(y)真空槽内及び浸漬管内の溶鋼とスラグの降下に伴うスラグ/溶鋼界面の搖動を抑制し、溶鋼中へのスラグ巻込みを低減すること
が有効であると発想し、該発想を実現する手法について鋭意検討した。
Therefore, based on the above, the present inventors can suppress an increase in the amount and size of CaO-containing inclusions, or reduce the amount and size.
(x) To shorten the contact time between the slag and the molten steel at the slag / molten steel interface where the molten steel recirculation continues (there is a molten steel flow velocity), and
(y) Realized the idea that it is effective to suppress the slag / molten steel interface sway due to the descent of molten steel and slag in the vacuum chamber and immersion pipe and reduce the slag entrainment in the molten steel. We enthusiastically examined the method of doing so.

その結果、復圧初期の減圧状態(図2、参照)の圧力P1から、真空槽内の溶鋼の浴浸(図2中「d」、参照)が0mとなる、上記式(1)で定義する圧力P2[Pa]まで、真空槽内の溶鋼の下降速度を0.20m/秒以上に維持して急速に復圧すると、
(a)真空槽内の溶鋼の盛上りの高さが急速に低くなり、浸漬上昇管近傍に存在するスラグが浸漬上昇管側に流動する前に、溶鋼が浸漬上昇管内へ降下し、スラグの浸漬上昇管内への流入が抑制されるとともに、
(b)浸漬下降管側に偏って存在するスラグの下面に、浸漬上昇管側から浸漬下降管側に向かう溶鋼流速が存在する時間、即ち、溶鋼流速の存在下におけるスラグと溶鋼の接触時間が短縮され、取鍋に環流する溶鋼のスラグ巻き込みが抑制される
ことを見いだした。
As a result, the bath immersion of the molten steel in the vacuum chamber (see “d” in FIG. 2) becomes 0 m from the pressure P1 in the depressurized state (see FIG. 2) at the initial stage of recompression, as defined by the above equation (1). When the downward pressure of the molten steel in the vacuum chamber is maintained at 0.20 m / sec or more and the pressure is rapidly restored up to the pressure P2 [Pa].
(a) The rising height of the molten steel in the vacuum chamber rapidly decreases, and the molten steel descends into the immersion riser pipe before the slag existing near the immersion riser pipe flows to the immersion riser pipe side. Inflow into the immersion riser pipe is suppressed and at the same time
(b) The time at which the molten steel flow velocity from the immersion riser pipe side to the immersion down pipe side exists on the lower surface of the slag that is biased toward the immersion descending pipe side, that is, the contact time between the slag and the molten steel in the presence of the molten steel flow velocity. It was found that it was shortened and the slag entrainment of molten steel circulating in the ladle was suppressed.

さらに、真空槽内の溶鋼の浴浸が0mとなる圧力P2[Pa]まで急速に復圧した後、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して、ゆっくりと復圧すると、
(c)取鍋内におけるスラグ/溶鋼界面の搖動が抑制されて、溶鋼中へのスラグ巻込みが減少するとともに、
(d)スラグ系介在物の取鍋内溶鋼の深部への浸入が抑制される
ことを見いだした。
Further, after rapidly repressurizing the molten steel in the vacuum chamber to a pressure P2 [Pa] where the bath immersion is 0 m, the descending speed of the molten steel in the immersion pipe is maintained at 0.15 m / sec or less, and the depressurization is slowly performed. Then,
(c) The slag / molten steel interface in the ladle is suppressed, reducing slag entrainment in the molten steel and at the same time.
(d) It was found that the infiltration of molten steel in the ladle of slag-based inclusions into the deep part was suppressed.

本発明精錬方法は、上記知見に基づいてなされたもので、スラグに起因して鋼中に残存するCaO含有介在物の量と大きさを大幅に低減し、清浄性が高く、機械特性に優れた鋼を製造できるものである。 The refining method of the present invention was carried out based on the above findings, and significantly reduces the amount and size of CaO-containing inclusions remaining in the steel due to slag, and has high cleanliness and excellent mechanical properties. It is possible to manufacture steel.

以下、本発明精錬方法の復圧(減圧状態の圧力P1から圧力P2[Pa]までの復圧と、この復圧に続いて行う、圧力P2[Pa]から大気圧P0[Pa]までの復圧)について、図面に基づいて詳細に説明する。 Hereinafter, the decompression of the refining method of the present invention (recovery from pressure P1 to pressure P2 [Pa] in the decompressed state, and subsequent decompression from pressure P2 [Pa] to atmospheric pressure P0 [Pa] is performed. Pressure) will be described in detail with reference to the drawings.

図4に、本発明精錬方法の復圧時における、浸漬上昇管と浸漬下降管内の溶鋼とスラグの態様を示す。 FIG. 4 shows aspects of molten steel and slag in the immersion ascending pipe and the immersion descending pipe at the time of recompression of the refining method of the present invention.

図4に示すように、復圧初期の減圧状態(図2、参照)から、真空槽内の溶鋼の浴浸(図2中「d」、参照)が0mとなる圧力P2まで急速に復圧(以下「急速復圧」ということがある。)する。 As shown in FIG. 4, the decompression state at the initial stage of decompression (see FIG. 2) is rapidly recompressed to the pressure P2 at which the bath immersion of molten steel in the vacuum chamber (see “d” in FIG. 2) becomes 0 m. (Hereinafter referred to as "rapid decompression".)

急速復圧により、浸漬上昇管2aの上部の溶鋼5bは浸漬上昇管2a内へ急速に降下するので、上記溶鋼5bの盛上り5c(図2、参照)の高さは急速に低くなるとともに、浸漬下降管2b側では、スラグ6と溶鋼5bが、浸漬下降管2b内に急速に降下する。 Due to the rapid decompression, the molten steel 5b above the immersion riser pipe 2a rapidly descends into the immersion riser pipe 2a, so that the height of the rise 5c (see FIG. 2) of the molten steel 5b rapidly decreases, and at the same time, On the immersion descending pipe 2b side, the slag 6 and the molten steel 5b rapidly descend into the immersion descending pipe 2b.

この浸漬下降管2b側でのスラグ6と溶鋼5bの急速降下に伴い、浸漬上昇管2a近傍に存在するスラグ6bは浸漬上昇管2a側に流動しないので、浸漬上昇管2aの上部の溶鋼5bの盛上り5cは、スラグ6bに覆われずに浸漬上昇管2a内へ急速に降下する。それ故、浸漬上昇管2a内で、溶鋼のスラグ巻込みは生じない。 With the rapid descent of the slag 6 and the molten steel 5b on the immersion rising pipe 2b side, the slag 6b existing in the vicinity of the immersion rising pipe 2a does not flow to the immersion rising pipe 2a side, so that the molten steel 5b above the immersion rising pipe 2a The swelling 5c rapidly descends into the immersion riser pipe 2a without being covered by the slag 6b. Therefore, slag entrainment of molten steel does not occur in the immersion riser pipe 2a.

また、急速復圧により、浸漬下降管側に偏って存在するスラグの下面に、浸漬上昇管側から浸漬下降管側に向かう溶鋼流速が存在する時間、即ち、溶鋼流速の存在下でスラグと溶鋼が接触する時間が短縮されて、取鍋に環流する溶鋼のスラグ巻込みが抑制される。 Further, due to the rapid decompression, the slag and molten steel are present for a period of time during which the molten steel flow velocity from the immersion rising pipe side to the immersion descending pipe side exists on the lower surface of the slag that is biased toward the immersion descending pipe side, that is, in the presence of the molten steel flow velocity. The contact time is shortened, and slag entrainment of molten steel circulating in the ladle is suppressed.

真空槽内における溶鋼の浴浸(図2中「d」、参照)が0mとなる状態を形成する圧力P2[Pa]は、下記式(1)で定義することができる。 The pressure P2 [Pa] forming a state in which the bathing of molten steel (see “d” in FIG. 2) in the vacuum chamber is 0 m can be defined by the following equation (1).

P2=P0−ρ・g・(h−d) ・・・(1)
P0:大気圧[Pa]
ρ:溶鋼密度[kg/m3
g:重力加速度[m/秒2
h:取鍋内の溶鋼浴面から真空槽内の溶鋼浴面までの高さ[m]
d:真空槽内の溶鋼浴浸[m]
P2 = P0-ρ ・ g ・ (hd) ・ ・ ・ (1)
P0: Atmospheric pressure [Pa]
ρ: Molten steel density [kg / m 3 ]
g: Gravity acceleration [m / sec 2 ]
h: Height from the molten steel bath surface in the ladle to the molten steel bath surface in the vacuum tank [m]
d: Soaking in molten steel bath in a vacuum chamber [m]

圧力P2は、真空槽内の溶鋼の浴浸が0mとなるときの圧力、即ち、真空槽内で、スラグ上面が真空槽の底面と同じ高さになるときの圧力であり、大気圧P0と真空槽内の溶鋼の静圧(ρ・g・(h−d))で決まる圧力である(図2中「h」と「d」、参照)。 The pressure P2 is the pressure when the bathing of the molten steel in the vacuum chamber becomes 0 m, that is, the pressure when the upper surface of the slag becomes the same height as the bottom surface of the vacuum chamber in the vacuum chamber, and is the atmospheric pressure P0. The pressure is determined by the static pressure (ρ · g · (hd)) of the molten steel in the vacuum chamber (see “h” and “d” in FIG. 2).

復圧初期の圧力P1から、上記式(1)で定義する圧力P2まで急速復圧する際、真空槽内の溶鋼の下降速度を0.20m/秒以上とする。真空槽内の溶鋼の下降速度が0.20m/秒未満であると、真空槽内の溶鋼の浴浸が0mとなるまでの時間、即ち、スラグと溶鋼が接触する時間が長くなり、溶鋼のスラグ巻込みが発生して、粗大なスラグ系介在物が鋼材まで残留するので、上記下降速度は0.20m/秒以上とする。好ましくは0.40m/秒以上である。溶鋼の下降速度は、真空脱ガス装置の容量や、復圧のために真空槽内へ供給するガスの供給速度に依るので、上限は特に限定しない。 When the pressure P1 at the initial stage of recompression is rapidly recompressed to the pressure P2 defined by the above formula (1), the descending speed of the molten steel in the vacuum chamber is set to 0.20 m / sec or more. If the descending speed of the molten steel in the vacuum chamber is less than 0.20 m / sec, the time until the bath immersion of the molten steel in the vacuum chamber becomes 0 m, that is, the time for the slag and the molten steel to come into contact with each other becomes long, and the molten steel Since slag entrainment occurs and coarse slag-based inclusions remain up to the steel material, the descending speed is set to 0.20 m / sec or more. It is preferably 0.40 m / sec or more. The lowering speed of the molten steel depends on the capacity of the vacuum degassing device and the supply speed of the gas supplied into the vacuum chamber for decompression, so the upper limit is not particularly limited.

実操業によれば、真空槽内の溶鋼の浴浸が0.35m程度の場合、圧力P2まで1〜2秒程度で復圧することができる。この点を考慮し、実現可能な溶鋼の下降速度として、真空槽内の溶鋼の下降速度を0.20m/秒以上に設定した。 According to the actual operation, when the bath immersion of the molten steel in the vacuum chamber is about 0.35 m, the pressure can be restored to the pressure P2 in about 1 to 2 seconds. In consideration of this point, the descending speed of the molten steel in the vacuum chamber was set to 0.20 m / sec or more as a feasible descending speed of the molten steel.

さらに、真空槽内の溶鋼の浴浸が0mとなる圧力P2[Pa]まで急速復圧した後、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して、大気圧まで、ゆっくりと復圧する(以下「緩速復圧」ということがある。)。緩速復圧により、取鍋内におけるスラグ/溶鋼界面の搖動が減少するので、溶鋼中へのスラグ巻き込みが抑制され、また、スラグ系介在物の取鍋内溶鋼の深部への浸入が抑制される。 Further, after the molten steel in the vacuum chamber is rapidly repressurized to a pressure P2 [Pa] where the bath immersion is 0 m, the descending speed of the molten steel in the immersion tube is maintained at 0.15 m / sec or less, and slowly reaches the atmospheric pressure. (Hereinafter referred to as "slow pressure recovery"). The slow decompression reduces the slag / molten steel interface sway in the ladle, which suppresses slag entrainment in the molten steel and suppresses the infiltration of slag-based inclusions into the deep part of the ladle. To.

緩速復圧において、浸漬管内の溶鋼の下降速度が0.15m/秒を超えると、取鍋内におけるスラグ/溶鋼界面の搖動が大きくなり、溶鋼中へのスラグ巻込みが増大し、また、スラグ系介在物が取鍋内溶鋼の深部へ浸入し、粗大なスラグ系介在物が鋼材まで残留するので、浸漬管内の溶鋼の下降速度は0.15m/秒以下とする。好ましくは0.05m/秒以下である。 When the descending speed of the molten steel in the immersion pipe exceeds 0.15 m / sec in the slow recovery pressure, the slag / molten steel interface sway in the ladle increases, the slag entrainment in the molten steel increases, and the slag entrainment increases. Since the slag-based inclusions penetrate deep into the molten steel in the ladle and the coarse slag-based inclusions remain in the steel material, the descending speed of the molten steel in the immersion pipe is set to 0.15 m / sec or less. It is preferably 0.05 m / sec or less.

例えば、実操業において、浸漬管内の溶鋼の下降速度を0.05m/秒にして緩速復圧を実施した場合、緩速復圧が終了するまでの時間は30秒程度であるので、本発明精錬方法は、実操業において、無理なく実施できるものである。 For example, in actual operation, when the descent speed of the molten steel in the immersion pipe is set to 0.05 m / sec and the slow depressurization is performed, the time until the slow depressurization is completed is about 30 seconds. The refining method can be carried out reasonably in actual operation.

溶鋼の下降速度は、生産性を考慮して適宜設定すればよいので、下限は特に限定しない。 The lower limit of the falling speed of the molten steel is not particularly limited because it may be appropriately set in consideration of productivity.

本発明精錬方法において、真空脱ガス処理に供する、C、Si、Mn、P、及び、Sを含有する溶鋼は、通常の精錬工程(一次精錬)で精錬した、通常の成分組成の溶鋼でよい。なお、溶鋼の好ましい成分組成については後述する。 In the refining method of the present invention, the molten steel containing C, Si, Mn, P, and S to be subjected to the vacuum degassing treatment may be a molten steel having a normal component composition refined in a normal refining step (primary refining). .. The preferable composition of the molten steel will be described later.

一次精錬に続いて行なう真空脱ガス処理(二次精錬)を、RH式真空脱ガス装置を用いて行ない、真空脱ガス処理の終了後の復圧時、上記式(1)で定義する圧力P2まで、真空槽内の溶鋼の下降速度を0.20m/秒以上に維持して復圧し、次いで、圧力P2から大気圧まで、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して復圧し、復圧後、溶鋼を鋳造する。鋳造は、通常の鋳造でよいが、連続鋳造が好ましい。 The vacuum degassing treatment (secondary refining) performed following the primary refining is performed using an RH type vacuum degassing device, and when the pressure is restored after the vacuum degassing treatment is completed, the pressure P2 defined by the above formula (1). The lowering speed of the molten steel in the vacuum chamber is maintained at 0.20 m / sec or more and the pressure is restored, and then the lowering speed of the molten steel in the immersion pipe is maintained at 0.15 m / sec or less from the pressure P2 to the atmospheric pressure. After the pressure is restored, the molten steel is cast. The casting may be ordinary casting, but continuous casting is preferable.

例えば、転炉で一次精錬を行ない、次いで、転炉外で二次精錬を行なう精錬工程において、本発明精錬方法を適用すれば、溶鋼中へのスラグ巻込みを極力抑制できるので、本発明精錬方法は、高い清浄性が求められる鋼、例えば、軸受用鋼の製造に好適である。 For example, if the refining method of the present invention is applied in a refining process in which primary refining is performed in a converter and then secondary refining is performed outside the converter, slag entrainment in molten steel can be suppressed as much as possible. The method is suitable for producing steels that require high cleanliness, for example, steels for bearings.

復圧時、真空槽内に供給する復圧用ガスは、溶鋼環流用ガスを吹き込む部位及び真空槽内に直接供給する部位の一方又は両方から供給する。復圧用ガスを両方の部位から供給する場合、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることが好ましい。 At the time of recompression, the decompression gas supplied into the vacuum chamber is supplied from one or both of the portion where the molten steel recirculation gas is blown and the portion directly supplied into the vacuum chamber. When the decompression gas is supplied from both portions, it is preferable that the flow rate of the decompression gas supplied from the portion where the molten steel recirculation gas is blown is smaller than the flow rate of the molten steel recirculation gas during the vacuum degassing treatment.

復圧時、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることにより、真空槽内における溶鋼のスラグ巻込みを、より抑制することができる。復圧用ガスは、溶鋼の汚染を防止する観点から、アルゴンや窒素などの、溶鋼と反応し難い不活性ガスが好ましい。 By making the flow rate of the recompression gas supplied from the part where the molten steel recirculation gas is blown at the time of recompression smaller than the flow rate of the molten steel recirculation gas at the time of vacuum degassing treatment, the slag entrainment of the molten steel in the vacuum tank is further improved. It can be suppressed. The decompression gas is preferably an inert gas such as argon or nitrogen that does not easily react with the molten steel from the viewpoint of preventing contamination of the molten steel.

真空脱ガス処理を施す溶鋼は、通常の成分組成の溶鋼、即ち、鋼の基本元素のC、Si、Mn、P、及び、Sを含有する溶鋼であれば、溶鋼中へのスラグ巻込みが抑制されて、本発明精錬方法の介在物低減効果を得ることができるので、特定の成分組成の溶鋼に限定されないが、上記介在物低減効果が顕著に発現する溶鋼の好ましい成分組成について、以下に説明する。以下、%は質量%を意味する。 If the molten steel to be subjected to the vacuum degassing treatment is a molten steel having a normal composition, that is, a molten steel containing the basic elements C, Si, Mn, P, and S of the steel, slag may be involved in the molten steel. Since the effect of reducing inclusions in the refining method of the present invention can be obtained while being suppressed, the composition is not limited to the molten steel having a specific composition, but the preferable composition of the molten steel in which the effect of reducing inclusions is remarkably exhibited is described below. explain. Hereinafter,% means mass%.

C:1.20%以下
Cは、焼入れ後の鋼の強度や硬さを確保するのに有効な元素である。1.20%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下するので、Cは1.20%以下が好ましい。より好ましくは1.00%以下である。
C: 1.20% or less C is an element effective for ensuring the strength and hardness of steel after quenching. If it exceeds 1.20%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, C is preferably 1.20% or less. More preferably, it is 1.00% or less.

強度又は硬さをそれほど必要としない鋼種では、Cを必ずしも必要としないので、下限は特に限定しないが、Cは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Cは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, C is not necessarily required, so the lower limit is not particularly limited. However, since C is a basic element of steel and it is difficult to make it 0%, the lower limit is set. Does not include 0%. C is preferably 0.001% or more in order to secure the required strength and hardness.

Si:3.00%以下
Siは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.00%を超えると、硬くなりすぎて、切削工具の寿命が低下するので、Siは3.00%以下が好ましい。より好ましくは2.50%以下である。
Si: 3.00% or less Si is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.00%, it becomes too hard and the life of the cutting tool is shortened. Therefore, Si is preferably 3.00% or less. More preferably, it is 2.50% or less.

強度又は硬さをそれほど必要としない鋼種では、Siを必要としないので、下限は特に定めないが、Siは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Siは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, Si is not required, so the lower limit is not specified. However, Si is a basic element of steel and it is difficult to set it to 0%, so the lower limit is 0. Does not include%. Si is preferably 0.001% or more in order to secure the required strength and hardness.

Mn:1.60%以下
Mnは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。1.60%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下するので、Mnは1.60%以下が好ましい。より好ましくは1.20%以下である。
Mn: 1.60% or less Mn is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 1.60%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, Mn is preferably 1.60% or less. More preferably, it is 1.20% or less.

強度又は硬さをそれほど必要としない鋼種は、Mnを必要としないので、下限は特に定めないが、Mnは、鋼の基本元素であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Mnは0.01%以上が好ましい。 A steel type that does not require much strength or hardness does not require Mn, so a lower limit is not particularly set. However, since Mn is a basic element of steel, the lower limit does not include 0%. Mn is preferably 0.01% or more in order to secure the required strength and hardness.

P:0.05%以下
Pは、不純物元素であり、靱性を阻害する元素である。Pが0.05%を超えると、靭性が著しく低下するので、Pは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Pを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
P: 0.05% or less P is an impurity element and is an element that inhibits toughness. If P exceeds 0.05%, the toughness is significantly reduced, so P is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if P is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

S:0.05%以下
Sは、Pと同様に、不純物元素であり、靱性を阻害する元素である。Sが0.05%を超えると、靭性が著しく低下するので、Sは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Sを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
S: 0.05% or less S is an impurity element and an element that inhibits toughness, like P. If S exceeds 0.05%, the toughness is significantly reduced, so S is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if S is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

好ましい成分組成の溶鋼は、鋼の機械特性及び/又は化学特性を阻害しない範囲で、上記基本元素以外に、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.01%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有してもよい。 In addition to the above basic elements, the molten steel having a preferable composition is 0.20% or less, Cr: 3.50% or less, Mo: 0.85%, as long as it does not impair the mechanical properties and / or chemical properties of the steel. Below, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.01% or less, Sb: 0.20% or less, Mg: It may contain one or more of 0.010% or less, Ca: 0.010% or less, REM: 0.010% or less, O: 0.003% or less.

Al:0.20%以下
Alは、脱酸元素であり、また、結晶粒を微細化する元素である。0.20%を超えると、粗大な酸化物系介在物が生成し、靭性及び延性が低下するので、Alは0.20%以下が好ましい。より好ましくは0.15%以下である。結晶粒の微細化効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Al: 0.20% or less Al is a deoxidizing element and is an element that refines crystal grains. If it exceeds 0.20%, coarse oxide-based inclusions are formed and the toughness and ductility are lowered. Therefore, Al is preferably 0.20% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of refining the crystal grains, 0.005% or more is preferable, and 0.010% or more is more preferable.

Cr:3.50%以下
Crは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.50%を超えると、靱性及び延性が低下するので、3.50%以下が好ましい。より好ましくは2.50%以下である。Crの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cr: 3.50% or less Cr is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.50%, the toughness and ductility decrease, so 3.50% or less is preferable. More preferably, it is 2.50% or less. From the viewpoint of ensuring the effect of adding Cr, 0.01% or more is preferable, and 0.05% or more is more preferable.

Mo:0.85%以下
Moは、焼入れ性を高めて強度や硬さの確保に有効な元素である。また、Moは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.85%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Moは0.85%以下が好ましい。より好ましくは0.65%以下である。Moの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Mo: 0.85% or less Mo is an element that enhances hardenability and is effective in ensuring strength and hardness. Mo is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.85%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, Mo is preferably 0.85% or less. More preferably, it is 0.65% or less. From the viewpoint of ensuring the effect of adding Mo, 0.005% or more is preferable, and 0.010% or more is more preferable.

Ni:4.50%以下
Niは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。4.50%を超えると、靱性及び延性が低下するので、Niは4.50%以下が好ましい。より好ましくは3.50%以下である。Niの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ni: 4.50% or less Ni is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 4.50%, the toughness and ductility decrease, so Ni is preferably 4.50% or less. More preferably, it is 3.50% or less. From the viewpoint of ensuring the effect of adding Ni, 0.005% or more is preferable, and 0.010% or more is more preferable.

Nb:0.20%以下
Nbは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.20%を超えると、靱性及び延性が低下するので、Nbは0.20%以下が好ましい。より好ましくは0.10%以下である。Nbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Nb: 0.20% or less Nb is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering and softening resistance. If it exceeds 0.20%, toughness and ductility decrease, so Nb is preferably 0.20% or less. More preferably, it is 0.10% or less. From the viewpoint of ensuring the effect of adding Nb, 0.005% or more is preferable, and 0.010% or more is more preferable.

V:0.45%以下
Vは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.45%を超えると、靱性及び延性が低下するので、Vは0.45%以下が好ましい。より好ましくは0.35%以下である。Vの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
V: 0.45% or less V is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering and softening resistance. If it exceeds 0.45%, toughness and ductility decrease, so V is preferably 0.45% or less. More preferably, it is 0.35% or less. From the viewpoint of ensuring the effect of adding V, 0.005% or more is preferable, and 0.010% or more is more preferable.

W:0.30%以下
Wは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。また、Wは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.30%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Wは0.30%以下が好ましい。より好ましくは0.25%以下である。Wの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
W: 0.30% or less W is an element that enhances hardenability and is effective in ensuring strength and hardness. Further, W is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.30%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, W is preferably 0.30% or less. More preferably, it is 0.25% or less. From the viewpoint of ensuring the effect of adding W, 0.005% or more is preferable, and 0.010% or more is more preferable.

B:0.006%以下
Bは、焼入れ性を高め、強度の向上に寄与する元素である。また、Bは、オーステナイト粒界に偏析して、Pの粒界偏析を抑制し、疲労強度の向上に寄与する元素である。0.006%を超えると、靱性が低下するので、Bは0.006%以下とする。好ましくは0.004%以下である。Bの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以上がより好ましい。
B: 0.006% or less B is an element that enhances hardenability and contributes to the improvement of strength. Further, B is an element that segregates at the austenite grain boundaries, suppresses the grain boundary segregation of P, and contributes to the improvement of fatigue strength. If it exceeds 0.006%, the toughness decreases, so B is set to 0.006% or less. It is preferably 0.004% or less. From the viewpoint of ensuring the effect of adding B, 0.0005% or more is preferable, and 0.0010% or more is more preferable.

N:0.060%以下
Nは、微細な窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.060%を超えると、窒化物が過剰に生成して、靱性が劣化するので、Nは0.060%以下が好ましい。より好ましくは0.040%以下である。Nの添加効果を確保する点で、0.001%以上が好ましく、0.005%以上がより好ましい。
N: 0.060% or less N is an element that forms fine nitrides to refine crystal grains and contribute to improvement of strength and toughness. If it exceeds 0.060%, nitride is excessively generated and the toughness deteriorates. Therefore, N is preferably 0.060% or less. More preferably, it is 0.040% or less. From the viewpoint of ensuring the effect of adding N, 0.001% or more is preferable, and 0.005% or more is more preferable.

Ti:0.25%以下
Tiは、微細なTi窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.25%を超えると、Ti窒化物が過剰に生成し、靱性が低下するので、Tiは0.25%以下が好ましい。より好ましくは0.15%以下である。Tiの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ti: 0.25% or less Ti is an element that forms fine Ti nitrides to refine crystal grains and contribute to the improvement of strength and toughness. If it exceeds 0.25%, Ti nitride is excessively formed and the toughness is lowered. Therefore, Ti is preferably 0.25% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Ti, 0.005% or more is preferable, and 0.010% or more is more preferable.

Cu:0.50%以下
Cuは、耐食性の向上に寄与する元素である。0.50%を超えると、熱間延性が低下し、割れや疵が発生するので、Cuは0.50%以下が好ましい。より好ましくは0.30%以下である。Cuの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cu: 0.50% or less Cu is an element that contributes to the improvement of corrosion resistance. If it exceeds 0.50%, the hot ductility is lowered and cracks and flaws are generated. Therefore, Cu is preferably 0.50% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Cu, 0.01% or more is preferable, and 0.05% or more is more preferable.

Pb:0.45%以下
Pbは、快削性の向上に寄与する元素である。0.45%を超えると、靱性が低下するので、Pbは0.45%以下が好ましい。より好ましくは0.30%以下である。Pbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Pb: 0.45% or less Pb is an element that contributes to the improvement of free-cutting property. If it exceeds 0.45%, the toughness decreases, so the Pb is preferably 0.45% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Pb, 0.005% or more is preferable, and 0.010% or more is more preferable.

Bi:0.20%以下
Biは、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Biは0.20%以下が好ましい。より好ましくは0.16%以下である。Biの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Bi: 0.20% or less Bi is an element that contributes to the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Bi is preferably 0.20% or less. More preferably, it is 0.16% or less. From the viewpoint of ensuring the effect of adding Bi, 0.005% or more is preferable, and 0.010% or more is more preferable.

Te:0.010%以下
Teは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Teは0.010%以下が好ましい。より好ましくは0.006%以下である。Teの添加効果を確保する点で、0.001%以上が好ましく、0.002%以上がより好ましい。
Te: 0.010% or less Te is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Te is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Te, 0.001% or more is preferable, and 0.002% or more is more preferable.

Sb:0.20%以下
Sbは、耐硫酸性及び耐塩酸性を主体とする耐食性の向上、及び、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Sbは0.20%以下が好ましい。より好ましくは0.15%以下である。Sbの添加効果を確保する点で、0.01%以上が好ましく、0.03%以上がより好ましい。
Sb: 0.20% or less Sb is an element that contributes to the improvement of corrosion resistance, mainly sulfuric acid resistance and hydrochloric acid resistance, and the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Sb is preferably 0.20% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Sb, 0.01% or more is preferable, and 0.03% or more is more preferable.

Mg:0.010%以下
Mgは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Mgは0.010%以下が好ましい。より好ましくは0.006%以下である。Mgの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以上がより好ましい。
Mg: 0.010% or less Mg is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so Mg is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Mg, 0.0005% or more is preferable, and 0.0010% or more is more preferable.

Ca:0.010%以下
Caは、脱酸元素であり、脱酸反応で、凝集合し易い低融点のCaO−Al23系介在物を形成する元素である。0.010%を超えると、Al23系介在物が、低融点のCaO−Al23系介在物に複合化して粗大化し、粗大化したCaO−Al23系介在物は、圧延温度で液相化せず、粗大なまま鋼中に残存するので、Caは0.010%以下が好ましい。より好ましくは0.006%以下である。
Ca: 0.010% or less Ca is a deoxidizing element and is an element that forms CaO-Al 2 O 3 based inclusions having a low melting point and easily aggregate in a deoxidizing reaction. When it exceeds 0.010%, the Al 2 O 3 system inclusions are compounded with the low melting point CaO-Al 2 O 3 system inclusions and coarsened, and the coarsened CaO-Al 2 O 3 system inclusions become coarse. Ca is preferably 0.010% or less because it does not become liquid phase at the rolling temperature and remains coarse in the steel. More preferably, it is 0.006% or less.

Caは、少ないほど好ましいので、下限は限定しないが、不可避的に0.0001%程度は残存するので、実用鋼上、0.0001%が実質的な下限である。 Since the smaller the amount of Ca, the more preferable it is, the lower limit is not limited, but since about 0.0001% inevitably remains, 0.0001% is a substantial lower limit in practical steel.

REM:0.010%以下
REM(希土類元素、La、Ce、Pr、及び、Ndの1種又は2種以上)は、Al又はAl−Siで十分に脱酸した溶鋼において、溶鋼中のCaOや、介在物中のCaOを還元して、CaO−Al23系介在物を改質する作用をなす元素である。0.010%を超えると、介在物中に、REM濃度の高い低融点の化合物相が出現し、介在物の凝集合が助長されて、粗大な介在物が生成するので、REMは0.010%以下が好ましい。より好ましくは0.007%以下である。
REM: 0.010% or less REM (one or more of rare earth elements, La, Ce, Pr, and Nd) is CaO in molten steel in molten steel sufficiently deoxidized with Al or Al-Si. , It is an element that reduces CaO in inclusions and modifies CaO-Al 2 O 3 based inclusions. If it exceeds 0.010%, a low melting point compound phase having a high REM concentration appears in the inclusions, and the aggregation of inclusions is promoted to form coarse inclusions, so that the REM is 0.010. % Or less is preferable. More preferably, it is 0.007% or less.

Al又はAl−Siで十分に脱酸した溶鋼において、REMの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以下がより好ましい。 In the molten steel sufficiently deoxidized with Al or Al—Si, 0.0005% or more is preferable, and 0.0010% or less is more preferable, from the viewpoint of ensuring the effect of adding REM.

O:0.003%以下
Oは、酸化物を形成する元素である。0.003%を超えると、粗大な酸化物が生成し、転動疲労寿命が低下するので、Oは0.003%以下が好ましい。より好ましくは0.002%以下である。下限は0%を含むが、Oを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
O: 0.003% or less O is an element that forms an oxide. If it exceeds 0.003%, coarse oxides are generated and the rolling fatigue life is shortened. Therefore, O is preferably 0.003% or less. More preferably, it is 0.002% or less. The lower limit includes 0%, but if O is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

溶鋼の成分組成において、残部はFe及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素であり、溶鋼の特性、さらに、溶鋼を鋳造した鋼の特性を阻害しない範囲で許容される元素である。 In the composition of molten steel, the balance is Fe and unavoidable impurities. The unavoidable impurities are elements that are inevitably mixed from the steel raw material and / or in the steelmaking process, and are acceptable elements as long as they do not impair the characteristics of the molten steel and the characteristics of the cast steel.

次に、本発明の実施例について説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。そのため、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. However, the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention. Therefore, the present invention is not limited to this one-condition example. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

(実施例)
表1に示す成分組成の溶鋼に、転炉による一次精錬、LF処理及び/又はRH処理による二次精錬を施した後、該溶鋼を連続鋳造し、該連鋳片を分塊圧延して鋼片を製造した。
(Example)
The molten steel having the composition shown in Table 1 is subjected to primary refining by a converter, LF treatment and / or secondary refining by RH treatment, then the molten steel is continuously cast, and the continuous slab is block-rolled to steel. Manufactured a piece.

具体的には、270トン転炉で、上記成分組成の溶鋼を溶製し、出鋼時に、Si、Mn、Alのいずれか1種又は2種以上にて脱酸し、次いで、所定のスラグ組成にて取鍋精錬を行い、RH式真空脱ガス装置を用いて、成分調整と清浄化処理を行い、復圧後、連続鋳造して鋳片とし、該鋳片を、加熱炉で加熱保持した後、分塊圧延に供し鋼片とした。 Specifically, a molten steel having the above-mentioned composition is melted in a 270-ton converter, deoxidized with any one or more of Si, Mn, and Al at the time of steel ejection, and then a predetermined slag is produced. Ladle refining is performed according to the composition, component adjustment and cleaning treatment are performed using an RH type vacuum degassing device, and after recompression, continuous casting is performed to make slag, and the slag is heated and held in a heating furnace. After that, it was subjected to bulk rolling to obtain steel pieces.

上記鋼片において、極値統計法により、予測面積30000mm2における非金属介在物の極値統計最大予測径[μm]を推定した。極値統計による介在物の最大予測径(√area(max)の推定は、例えば、「金属疲労 微小欠陥と介在物の影響」(村上敬宜著、養賢堂、1993年発行、p.223−239)に記載の方法による。用いた方法は、二次元的検査により、一定面積内で観察される最大介在物径を推定するという二次元的手法である。 In the above steel pieces, the maximum predicted diameter [μm] of the extreme value statistics of non-metal inclusions in the predicted area of 30,000 mm 2 was estimated by the extreme value statistical method. The maximum predicted diameter of inclusions (√area (max)) estimated by extreme value statistics is, for example, "Metal fatigue micro-defects and effects of inclusions" (Yukitaka Murakami, Yokendo, 1993, p.223). -239). The method used is a two-dimensional method of estimating the maximum inclusion diameter observed within a certain area by a two-dimensional inspection.

上記極値統計法を用いて、鋼片のL断面(ルーズ面の中心線と、この対向面の中心線、及び、鋳片の中心線を含む断面)のルーズ面側の1/4の位置から試料を採取して、光学顕微鏡で撮像した非金属介在物の画像から、検査基準面:100mm2(10×10mm)、検査視野:16、予測を行う面積30000mm2の介在物の最大予測径√area(max)を算出した。 Using the above extreme value statistical method, the position of 1/4 of the L cross section of the steel piece (the center line of the loose surface, the center line of the facing surface, and the cross section including the center line of the slab) on the loose surface side. From the image of non-metal inclusions taken with an optical microscope, the maximum predicted diameter of inclusions with inspection reference plane: 100 mm 2 (10 × 10 mm), inspection field: 16, and prediction area of 30,000 mm 2 √ area (max) was calculated.

具体的には、観察で得られた介在物の最大径の16個のデータ(16視野のデータ)を上記文献に記載の方法に従い、極値確率用紙にプロットして、最大介在物分布直線(最大介在物と極値統計基準化変数の一次関数)を求め、最大介在物分布直線を外挿することにより、面積:30000mm2における介在物の最大予測径√area(max)を推定した。 Specifically, 16 data (data of 16 fields) of the maximum diameter of the inclusions obtained by the observation are plotted on the extremum probability sheet according to the method described in the above document, and the maximum inclusion distribution straight line (data of the maximum inclusions) ( The maximum predicted diameter of inclusions √area (max) was estimated at an area of 30,000 mm 2 by obtaining the maximum inclusions and the linear function of the extremum statistical standardization variable) and extrapolating the maximum inclusion distribution straight line.

Figure 0006766687
Figure 0006766687

表1に、溶鋼の成分組成、復圧条件(P1、P2、P2までの溶鋼下降速度、P2から大気圧までの溶鋼下降速度)、及び、極値統計予測最大径[μm]を併せて示す。 Table 1 also shows the composition of the molten steel, the pressure recovery conditions (the falling speed of the molten steel from P1, P2, and P2, the falling speed of the molten steel from P2 to atmospheric pressure), and the maximum diameter of the extreme value statistical prediction [μm]. ..

発明例13〜32では、真空脱ガス処理時、復圧初期の圧力P1から圧力P2までを0.20m/秒以上の溶鋼下降速度で復圧し、圧力P2から大気圧までを0.15m/秒以下の溶鋼下降速度で復圧したので、極値統計予測最大径が23μm以下である。 In Examples 13 to 32, during the vacuum degassing treatment, the pressure P1 to the pressure P2 at the initial stage of depressurization is restored at a molten steel descending speed of 0.20 m / sec or more, and the pressure P2 to the atmospheric pressure is 0.15 m / sec. Since the pressure was restored at the following molten steel descending speed, the maximum diameter of the extremum statistical prediction was 23 μm or less.

比較例1〜12では、真空脱ガス処理時、復圧初期の圧力P1から圧力P2までの溶鋼下降速度、圧力P2から大気圧までの溶鋼下降速度の一方又は両方が本発明の範囲外であり、極値統計予測最大径が51μmを超えている。 In Comparative Examples 1 to 12, one or both of the molten steel descending speed from the pressure P1 to the pressure P2 and the molten steel descending speed from the pressure P2 to the atmospheric pressure at the initial stage of decompression are outside the scope of the present invention during the vacuum degassing treatment. , The maximum diameter of the extreme value statistical prediction exceeds 51 μm.

以上のとおり、発明例では、比較例に比較し、スラグに起因する粗大な介在物の大きさが低減され、高清浄性で機械特性に優れた鋼が得られることが解る。 As described above, it can be seen that in the invention example, the size of coarse inclusions caused by slag is reduced as compared with the comparative example, and a steel having high cleanliness and excellent mechanical properties can be obtained.

前述したように、本発明によれば、非定常時に生じる溶鋼のスラグ巻込み、及び、スラグ系介在物の取鍋内溶鋼の深部への浸入を抑制でき、スラグに起因して鋼中に残存するCaO含有介在物の量と大きさを大幅に低減できるので、清浄性が高く、機械特性に優れた鋼を提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, it is possible to suppress slag entrainment of molten steel that occurs during unsteady state and penetration of slag-based inclusions into the deep part of the molten steel in the ladle, and it remains in the steel due to slag. Since the amount and size of CaO-containing inclusions can be significantly reduced, it is possible to provide steel having high cleanliness and excellent mechanical properties. Therefore, the present invention has high utility in the steel industry.

1 真空増
2 取鍋
2a 浸漬上昇管
2b 浸漬下降管
3 溶鋼環流ガス吹込み口
3a 溶鋼環流ガス
4 排気管
5a、5b 溶鋼
5c 盛上り
5d 溶鋼流速
6 6a、6b スラグ
1 Vacuum increase 2 Ladle 2a Immersion riser pipe 2b Immersion lowering pipe 3 Molten steel recirculation gas inlet 3a Molten steel recirculation gas 4 Exhaust pipe 5a, 5b Molten steel 5c Rise 5d Molten steel flow velocity 6 6a, 6b Slag

Claims (6)

C、Si、Mn、P、及び、Sを含有する取鍋内の溶鋼に、真空槽に浸漬管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽内の圧力を、減圧状態の圧力P1[Pa]から大気圧P0[Pa]へ復圧し、溶鋼の精錬を終了する精錬方法において、
(i)上記圧力P1から、下記式(1)で定義する圧力P2まで、真空槽内の溶鋼の下降速度を0.20m/秒以上に維持して復圧し、次いで、
(ii)圧力P2から大気圧P0まで、浸漬管内の溶鋼の下降速度を0.15m/秒以下に維持して復圧する
ことを特徴とする溶鋼の精錬方法。
P2=P0−ρ・g・(h−d) ・・・(1)
ρ:溶鋼密度[kg/m3
g:重力加速度[m/秒2
h:取鍋内の溶鋼浴面から真空槽内の溶鋼浴面までの高さ[m]
d:真空槽内の溶鋼浴浸[m]
After vacuum degassing the molten steel in the ladle containing C, Si, Mn, P, and S with a degassing device equipped with a dipping tube in the vacuum tank, the pressure in the vacuum tank is reduced. In the refining method in which the pressure P1 [Pa] is restored to the atmospheric pressure P0 [Pa] and the refining of the molten steel is completed.
(I) From the pressure P1 to the pressure P2 defined by the following formula (1), the lowering speed of the molten steel in the vacuum chamber is maintained at 0.20 m / sec or more to repressurize, and then the pressure is restored.
(Ii) A method for refining molten steel, characterized in that the descending speed of the molten steel in the immersion pipe is maintained at 0.15 m / sec or less and the pressure is restored from pressure P2 to atmospheric pressure P0.
P2 = P0-ρ ・ g ・ (hd) ・ ・ ・ (1)
ρ: Molten steel density [kg / m 3 ]
g: Gravity acceleration [m / sec 2 ]
h: Height from the molten steel bath surface in the ladle to the molten steel bath surface in the vacuum tank [m]
d: Soaking in molten steel bath in a vacuum chamber [m]
前記真空脱ガス処理をRH式真空脱ガス装置で行なうことを特徴とする請求項1に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 1, wherein the vacuum degassing treatment is performed by an RH type vacuum degassing device. 前記RH式真空脱ガス装置で復圧を行なう際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする請求項2に記載の溶鋼の精錬方法。 The claim is characterized in that when the decompression is performed by the RH type vacuum degassing device, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion which is directly supplied into the vacuum chamber. The method for refining molten steel according to 2. 前記復圧用ガスが不活性ガスであることを特徴とする請求項3に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 3, wherein the decompression gas is an inert gas. 前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする請求項1〜4のいずれか1項に記載の溶鋼の精錬方法。 The molten steel contains C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten steel according to any one of claims 1 to 4, wherein the balance is composed of Fe and unavoidable impurities. 前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする請求項5に記載の溶鋼の精錬方法。 In terms of mass%, the molten steel further contains Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM: 0. The method for refining molten steel according to claim 5, wherein one or more of 010% and O: 0.003% or less are contained.
JP2017035057A 2017-02-27 2017-02-27 Refining method of molten steel Active JP6766687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035057A JP6766687B2 (en) 2017-02-27 2017-02-27 Refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035057A JP6766687B2 (en) 2017-02-27 2017-02-27 Refining method of molten steel

Publications (2)

Publication Number Publication Date
JP2018141194A JP2018141194A (en) 2018-09-13
JP6766687B2 true JP6766687B2 (en) 2020-10-14

Family

ID=63527650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035057A Active JP6766687B2 (en) 2017-02-27 2017-02-27 Refining method of molten steel

Country Status (1)

Country Link
JP (1) JP6766687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7265136B2 (en) * 2019-04-25 2023-04-26 日本製鉄株式会社 Melting method of ultra-low nitrogen steel
CN110923406A (en) * 2019-12-13 2020-03-27 武汉钢铁有限公司 Method for preventing RH ascending dip pipe welding seam from cracking

Also Published As

Publication number Publication date
JP2018141194A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
US10350676B2 (en) Spring steel with excellent fatigue resistance and method of manufacturing the same
JP6686837B2 (en) Highly clean steel manufacturing method
JP5803824B2 (en) Method of melting carburized bearing steel
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5760683B2 (en) Manufacturing method of high fatigue strength steel slab
JP6314911B2 (en) Manufacturing method of high cleanliness steel
JP5609946B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
JP6766687B2 (en) Refining method of molten steel
JP5541310B2 (en) Manufacturing method of highly clean steel
JP6957890B2 (en) Refining method of molten steel
JP6756264B2 (en) Refining method of molten steel
JP6816501B2 (en) Refining method of molten steel
KR101361867B1 (en) Method for producing high-cleanness steel
JP5333536B2 (en) High cleanliness bearing steel and its melting method
JP2010144225A (en) Steel for machine structure and manufacturing method of the same
JP7028376B1 (en) Manufacturing method of high cleanliness steel
JP6825399B2 (en) How to melt clean steel
JP5590056B2 (en) Manufacturing method of highly clean steel
JP5713529B2 (en) Steel material with excellent rolling fatigue life
JP5050692B2 (en) Low Al content steel having high cleanliness and method for producing the same
JP5433941B2 (en) Melting method of high cleanliness bearing steel
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP6984803B1 (en) Manufacturing method of slabs used as a material for high fatigue strength steel
JP4225228B2 (en) Bearing material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151