JP6816501B2 - Refining method of molten steel - Google Patents
Refining method of molten steel Download PDFInfo
- Publication number
- JP6816501B2 JP6816501B2 JP2016252033A JP2016252033A JP6816501B2 JP 6816501 B2 JP6816501 B2 JP 6816501B2 JP 2016252033 A JP2016252033 A JP 2016252033A JP 2016252033 A JP2016252033 A JP 2016252033A JP 6816501 B2 JP6816501 B2 JP 6816501B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- molten steel
- refining
- gas
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、溶鋼の精錬方法、特に、真空精錬を終了する時の精錬方法に関するものである。 The present invention relates to a refining method for molten steel, particularly a refining method at the end of vacuum refining.
近年、機械装置の高性能化や機械部品の小型化を図るため、機械特性に優れる鋼が求められている。鋼は、一般に、転炉で、溶鋼を脱珪処理、脱燐処理、さらに、脱炭処理を行った後、二次精錬工程にて、溶鋼の成分組成を調整し、溶鋼中の介在物を低減し、次いで、連続鋳造して製造されるが、機械特性を高めるためには、溶鋼中の介在物をできるだけ低減する必要がある。 In recent years, steel having excellent mechanical properties has been required in order to improve the performance of mechanical devices and miniaturize mechanical parts. In general, steel is desiliconized, dephosphorized, and decarburized in a converter, and then the composition of the molten steel is adjusted in a secondary refining step to remove inclusions in the molten steel. It is produced by continuous casting after reduction, but in order to improve mechanical properties, it is necessary to reduce inclusions in molten steel as much as possible.
例えば、軸受鋼においては、鋼中の介在物の量や大きさが、転動疲労寿命を決定するので、二次精錬工程にて、溶鋼に、取鍋スラグ精錬処理(以下「LF処理」ということがある。)や、真空脱ガス処理(以下「RH処理」ということがある。)を施し、溶鋼中の介在物の低減を図っている。 For example, in bearing steel, the amount and size of inclusions in the steel determine the rolling fatigue life, so in the secondary refining process, the molten steel is subjected to ladle slag refining treatment (hereinafter referred to as "LF treatment"). In some cases) and vacuum degassing treatment (hereinafter sometimes referred to as "RH treatment") are performed to reduce inclusions in molten steel.
RH処理は、取鍋中の溶鋼に、二本の浸漬管を浸漬し、浸漬管に繋がる真空槽を減圧して、大気圧との差圧で溶鋼を真空槽内に吸い上げ、溶鋼還流ガスを、浸漬管から溶鋼内に供給し、溶鋼を真空槽内と取鍋の間で環流させて、脱ガスや、介在物の低減を図る処理である。 In the RH treatment, two dipping pipes are immersed in the molten steel in the pan, the vacuum tank connected to the dipping pipe is depressurized, the molten steel is sucked up into the vacuum tank by the pressure difference from the atmospheric pressure, and the molten steel recirculation gas is discharged. This is a process in which the molten steel is supplied from the immersion pipe into the molten steel and the molten steel is circulated between the inside of the vacuum chamber and the pan to degas and reduce inclusions.
RH処理では、溶鋼を強撹拌することになるので、介在物の除去は促進されるが、一方で、溶鋼中へのスラグの巻込みが発生するので、溶鋼の環流制御が重要で、これまで、環流制御に関する技術が数多く提案されている。 In the RH treatment, the molten steel is strongly agitated, so that the removal of inclusions is promoted, but on the other hand, slag is involved in the molten steel, so that the circulation control of the molten steel is important. , Many techniques related to recirculation control have been proposed.
例えば、特許文献1には、塩基度3以上のスラグで還元精錬を実施した後、環流式脱ガス装置によって、処理時間の2/3を高環流、1/3を弱環流にして真空脱ガス精錬を行うことを特徴とする軸受鋼の製造方法が提案されている。 For example, in Patent Document 1, after performing reduction refining with slag having a basicity of 3 or more, vacuum degassing is performed by using a recirculation type degassing device to set 2/3 of the processing time to high recirculation and 1/3 to weak recirculation. A method for producing bearing steel, which is characterized by refining, has been proposed.
特許文献2には、アーク溶解炉又は転炉で製造した溶鋼を取鍋に移注して精錬する際、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を全溶鋼の8倍以上として脱ガスを25分以上行うことを特徴とする高清浄鋼の製造方法が提案されている。 In Patent Document 2, when the molten steel manufactured in an arc melting furnace or a converter is transferred to a ladle and refined, the refining in the ladle is set to 60 minutes or less, and the total ring flow rate of the molten steel by the recirculation type degassing device is set. A method for producing high-clean steel has been proposed, which comprises performing degassing for 25 minutes or more, which is 8 times or more that of molten steel.
特許文献3には、転炉又は電気炉から出鋼した溶鋼を取鍋精錬装置で精錬した後、還流式真空脱ガス装置で精錬して高清浄度鋼を製造する際、還流式真空脱ガス装置で行う精錬処理でのスラグ塩基度を6.5以上13.5以下とし、還流式真空脱ガス装置の全処理時間の1/3〜1/2の前半処理では、溶鋼環流量180ton/min以上、210ton/min以下の高還流状態とし、後半処理では、溶鋼環流量110ton/min以上、140ton/min以下の弱還流状態とすることを特徴とする高清浄度鋼の製造方法が提案されている。 Patent Document 3 states that when molten steel discharged from a converter or an electric furnace is smelted with a ladle smelting device and then refined with a recirculation type vacuum degassing device to produce high-cleanliness steel, the recirculation type vacuum degassing is performed. The slag basicity in the refining process performed by the device is 6.5 or more and 13.5 or less, and in the first half treatment of 1/3 to 1/2 of the total processing time of the reflux type vacuum degassing device, the molten steel ring flow rate is 180 ton / min. As described above, a method for producing high-cleanliness steel has been proposed, which comprises a high reflux state of 210 ton / min or less, and a weak reflux state of a molten steel ring flow rate of 110 ton / min or more and 140 ton / min or less in the latter half treatment. There is.
特許文献4には、溶鋼の真空精錬処理終了時に真空槽内に窒素ガスを導入して、真空から常圧に復圧する真空精錬装置の復圧方法において、溶鋼浴表面にはアルゴンガス等の不活性ガスを導入して、溶鋼の吸窒を防止することが提案されている。 Patent Document 4 describes in a method of repressurizing a vacuum refining apparatus in which nitrogen gas is introduced into a vacuum chamber at the end of a vacuum refining process for molten steel to restore the pressure from vacuum to normal pressure. It has been proposed to introduce an active gas to prevent nitrogen absorption of molten steel.
特許文献5には、真空槽内にスラグを持ち込まない状態で、真空槽内の真空度に応じて攪拌用ガスを供給することを特徴とする高清浄度極低炭素鋼の製造方法が提案されている。 Patent Document 5 proposes a method for producing high-cleanliness ultra-low carbon steel, which comprises supplying a stirring gas according to the degree of vacuum in the vacuum chamber without bringing slag into the vacuum chamber. ing.
前述したように、鋼の機械特性に、鋼中に存在する介在物、主に、酸化物系介在物の量と大きさが大きく影響する。鋼中の酸化物系介在物のうち、特に、数10μm程の粗大な介在物は、CaO含有の低融点介在物(CaO含有介在物)である。 As described above, the mechanical properties of steel are greatly affected by the amount and size of inclusions present in the steel, mainly oxide-based inclusions. Among the oxide-based inclusions in steel, particularly coarse inclusions of about several tens of μm are CaO-containing low melting point inclusions (CaO-containing inclusions).
粗大なCaO含有介在物は、精錬で使用する取鍋スラグが、溶鋼に巻き込まれて発生するスラグ系介在物、スラグ中のCaOが還元されて溶鋼に混入し、溶鋼中のAl2O3やMgO−Al2O3と反応して生成する介在物、さらに、これらの介在物が溶鋼中の介在物を取り込んで粗大化した介在物である。 The coarse CaO-containing inclusions are slag-based inclusions generated when the ladle slag used in refining is caught in the molten steel, and CaO in the slag is reduced and mixed into the molten steel to form Al 2 O 3 in the molten steel. Inclusions formed by reacting with MgO-Al 2 O 3, and further, these inclusions are coarsened inclusions by incorporating inclusions in molten steel.
粗大なCaO含有介在物は、品質管理指標の極値統計値や、製品特性の疲労寿命を悪化させるので、その量と大きさを低減する必要があるが、そのためには、介在物の凝集合の起点となる低融点介在物の量と大きさを低減するとともに、低融点介在物に取り込まれる溶鋼中の介在物の量と大きさを低減することが有効である。 Coarse CaO-containing inclusions worsen the extreme statistical values of quality control indicators and the fatigue life of product characteristics, so it is necessary to reduce the amount and size, but for that purpose, aggregation of inclusions It is effective to reduce the amount and size of low melting point inclusions, which are the starting points of the above, and to reduce the amount and size of inclusions in the molten steel incorporated into the low melting point inclusions.
これら介在物の量と大きさを低減するためには、製造の各工程(取鍋精錬−RH処理−連続鋳造)において、溶鋼中への介在物の混入を抑制する、又は、溶鋼中の介在物を除去する等の介在物低減対策が必要である。 In order to reduce the amount and size of these inclusions, in each manufacturing process (ladle refining-RH treatment-continuous casting), the inclusion of inclusions in the molten steel is suppressed, or the inclusions in the molten steel are suppressed. It is necessary to take measures to reduce inclusions such as removing objects.
溶鋼中への取鍋スラグの巻き込みは、溶鋼流速が大きい場合や、スラグ/メタル界面の擾乱が激しい場合に、その頻度が大きくなり、混入するスラグ系介在物の量と大きさが、ともに増大する。 Entrainment of ladle slag in molten steel increases in frequency when the molten steel flow velocity is high or when the slag / metal interface is disturbed, and the amount and size of slag-based inclusions mixed in both increase. To do.
RH処理の終了後は、真空槽内の溶鋼を取鍋に戻すため、真空槽内の減圧状態を大気圧へ戻す「復圧」を実施するが、復圧時には、真空槽内に吸い上げられていた溶鋼、及び、浸漬管内に貯留していた溶鋼が、急激に降下して取鍋内に戻るので、急激に降下する溶鋼が誘起する溶鋼の下降流速は非常に大きく、スラグが溶鋼に巻き込まれたり、介在物が取鍋の深部まで引き込まれたりする。 After the RH treatment is completed, in order to return the molten steel in the vacuum chamber to the ladle, "reinforcement" is performed to return the decompression state in the vacuum chamber to atmospheric pressure, but at the time of restoration, it is sucked up in the vacuum chamber. Since the molten steel and the molten steel stored in the immersion pipe rapidly descend and return to the ladle, the falling flow velocity of the molten steel induced by the rapidly descending molten steel is very large, and the slag is caught in the molten steel. Or, inclusions may be drawn deep into the ladle.
特許文献1の方法では、環流式脱ガス処理の前半2/3を高環流とし、後半1/3を弱環流としているが、特許文献1に、復圧時の環流条件は記載されていない。また、還流式脱ガス処理の後半を弱環流にすると、溶鋼中の全酸素量T.Oを十分に低減できない可能性がある。 In the method of Patent Document 1, the first half 2/3 of the recirculation type degassing treatment is a high recirculation and the second half is a weak recirculation, but Patent Document 1 does not describe the recirculation conditions at the time of recompression. Further, when the latter half of the reflux type degassing treatment is weakly recirculated, the total amount of oxygen in the molten steel T.I. It may not be possible to reduce O sufficiently.
特許文献2の方法では、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を、全溶鋼の8倍以上として脱ガスを25分以上行うが、特許文献2に、復圧時の環流条件は記載されておらず、また、溶鋼のスラグ巻き込みに影響する環流速度条件も不明瞭である。 In the method of Patent Document 2, refining in the ladle is 60 minutes or less, the ring flow rate of the molten steel by the recirculation type degassing device is 8 times or more that of the total molten steel, and degassing is performed for 25 minutes or more. The recirculation conditions at the time of recompression are not described, and the recirculation velocity conditions that affect the slag entrainment of molten steel are also unclear.
特許文献3の方法では、還流式真空脱ガス装置の全処理時間の1/3〜1/2の前半を高還流状態とし、後半を弱還流状態としているが、特許文献1の方法と同様に、復圧時の還流条件は記載されておらず、また、後半を弱撹拌とするので、溶鋼中の全酸素量T.Oを十分に下げることができない恐れがある。 In the method of Patent Document 3, the first half of the total processing time of the reflux type vacuum degassing device is in a high reflux state and the latter half is in a weak reflux state, but the same as the method of Patent Document 1. , The reflux condition at the time of recompression is not described, and since the latter half is weakly stirred, the total amount of oxygen in the molten steel T.I. There is a risk that O cannot be lowered sufficiently.
特許文献4の方法では、復圧時のガス種等が規定されているが、特許文献4に、真空槽内及び取鍋内において、溶鋼のスラグ巻込みを抑制する復圧条件は記載されていない。特許文献5の方法では、真空槽内の圧力に応じた適切な攪拌ガス流速が規定されているが、特許文献5に、真空槽内及び取鍋内において、溶鋼のスラグ巻込みを抑制する復圧条件は記載されていない。 In the method of Patent Document 4, the gas type and the like at the time of decompression are specified, but Patent Document 4 describes the decompression conditions for suppressing slag entrainment of molten steel in the vacuum chamber and the ladle. Absent. In the method of Patent Document 5, an appropriate stirring gas flow velocity according to the pressure in the vacuum chamber is defined, but in Patent Document 5, slag entrainment of molten steel is suppressed in the vacuum chamber and the ladle. Pressure conditions are not stated.
本発明は、従来技術の現状に鑑み、溶鋼の真空脱ガス処理の復圧時において、非定常時に生じる溶鋼のスラグ巻き込みを抑制して、鋼中の粗大なCaO含有介在物の量と大きさを低減することを課題とし、該課題を解決する溶鋼の精錬方法を提供することを目的とする。 In view of the current state of the prior art, the present invention suppresses slag entrainment of molten steel that occurs during unsteady state during depressurization of vacuum degassing treatment of molten steel, and the amount and size of coarse CaO-containing inclusions in the steel. It is an object of the present invention to provide a refining method for molten steel that solves the problem.
本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、真空脱ガス処理の復圧時、溶鋼の下降流速を最適化すれば、溶鋼中へのスラグ巻込みを抑制することができ、スラグに起因して生成する粗大なCaO含有介在物の量と大きさを低減することができ、鋼の機械特性を高めることができることを見いだした。 The present inventors have diligently studied a method for solving the above problems. As a result, if the downward flow velocity of the molten steel is optimized during the decompression of the vacuum degassing treatment, slag entrainment in the molten steel can be suppressed, and coarse CaO-containing inclusions generated due to the slag can be suppressed. We have found that the quantity and size can be reduced and the mechanical properties of steel can be improved.
本発明は上記の知見に基づいてなされたもので、その要旨は次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1)C、Si、Mn、P、及び、Sを含有する溶鋼に真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施して、溶鋼を精錬する精錬方法において、
真空脱ガス処理の終了後、真空槽内に復圧用ガスを供給して、真空槽内の減圧状態を大気圧へ復圧する際、真空槽及び浸漬管内を通過して取鍋内へ降下する溶鋼の下降流速U[m/秒]を0.15m/秒以下に制御して復圧する
ことを特徴とする溶鋼の精錬方法。
(1) In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After the vacuum degassing treatment is completed, when the decompression gas is supplied into the vacuum chamber to restore the decompression state in the vacuum chamber to atmospheric pressure, the molten steel that passes through the vacuum chamber and the immersion pipe and drops into the pan. A method for refining molten steel, which comprises controlling the descending flow velocity U [m / sec] of the above to 0.15 m / sec or less to repressurize.
(2)前記溶鋼の下降流速U[m/秒]を下記式(1)に従って算出することを特徴とする前記(1)に記載の溶鋼の精錬方法。 (2) The method for refining molten steel according to (1), wherein the falling flow velocity U [m / sec] of the molten steel is calculated according to the following formula (1).
P0[Pa]:大気圧
P1[Pa]:復圧開始前の真空槽内圧力
G1[Nm3/時間]:溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量
G2[Nm3/時間]:真空槽内に直接供給する部位から供給する復圧用ガスの流量
V[Nm3]:復圧対象領域の体積
ρ[kg/m3]:溶鋼密度
g[m/秒2]:重力加速度
P 0 [Pa]: Atmospheric pressure P 1 [Pa]: Pressure inside the vacuum chamber before the start of pressure recovery G 1 [Nm 3 / hour]: Flow rate of the pressure recovery gas supplied from the part where the molten steel recirculation gas is blown G 2 [ Nm 3 / hour]: Flow rate of decompression gas supplied from the part directly supplied into the vacuum chamber V [Nm 3 ]: Volume of the area subject to decompression ρ [kg / m 3 ]: Molten steel density g [m / sec 2] ]: Gravity acceleration
(3)前記復圧の際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする前記(1)又は(2)に記載の溶鋼の精錬方法。 (3) At the time of the recompression, the recompression gas is supplied from one or both of the portion where the molten steel recirculation gas is blown and the portion directly supplied into the vacuum chamber (1) or (2). ) Is the refining method for molten steel.
(4)前記復圧の際、溶鋼環流ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼還流ガスの流量より少なくすることを特徴とする前記(1)〜(3)のいずれかに記載の溶鋼の精錬方法。 (4) The above (1) to (4), wherein the flow rate of the decompression gas supplied from the portion where the molten steel recirculation gas is blown at the time of the repressurization is smaller than the flow rate of the molten steel recirculation gas at the time of the vacuum degassing treatment. The method for refining molten steel according to any one of 3).
(5)前記復圧用ガスが不活性ガスであることを特徴とする前記(1)〜(4)のいずれかに記載の溶鋼の精錬方法。 (5) The method for refining molten steel according to any one of (1) to (4) above, wherein the decompression gas is an inert gas.
(6)前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする前記(1)〜(5)のいずれかに記載の溶鋼の精錬方法。 (6) The molten steel is C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten iron according to any one of (1) to (5) above, wherein the method contains Fe and the balance is composed of Fe and unavoidable impurities.
(7)前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする前記(6)に記載の溶鋼の精錬方法。 (7) The molten steel further contains, in mass%, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20. % Or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less , Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM The method for refining molten steel according to (6) above, wherein one or more of 0.010% or less and O: 0.003% or less are contained.
本発明によれば、真空脱ガス処理の復圧時、真空槽内及び浸漬管内を降下する溶鋼の下降流速を最適化して、CaO含有介在物の溶鋼への混入を抑制できるので、鋼中の介在物の量及び大きさを低減することができ、機械特性に優れた鋼を提供することができる。 According to the present invention, when the pressure is restored in the vacuum degassing treatment, the falling flow velocity of the molten steel descending in the vacuum chamber and the immersion pipe can be optimized to suppress the mixing of CaO-containing inclusions in the molten steel. The amount and size of inclusions can be reduced, and steel having excellent mechanical properties can be provided.
本発明の溶鋼の精錬方法(以下「本発明精錬方法」ということがある。)は、
C、Si、Mn、P、及び、Sを含有する溶鋼に真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施して、溶鋼を精錬する精錬方法において、
真空脱ガス処理の終了後、真空槽内に復圧用ガスを供給して、真空槽内の減圧状態を大気圧へ復圧する際、真空槽及び浸漬管内を通過して取鍋内へ降下する溶鋼の下降流速U[m/秒]を0.15m/秒以下に制御して復圧する
ことを特徴とする。
The method for refining molten steel of the present invention (hereinafter, may be referred to as "the refining method of the present invention") is
In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After the vacuum degassing treatment is completed, when the decompression gas is supplied into the vacuum chamber to restore the decompression state in the vacuum chamber to atmospheric pressure, the molten steel that passes through the vacuum chamber and the immersion pipe and drops into the pan. It is characterized in that the descending flow velocity U [m / sec] of is controlled to 0.15 m / sec or less and the pressure is restored.
また、本発明精錬方法は、溶鋼の下降流速U[m/秒]を下記式(1)に従って算出することを特徴とする。 Further, the refining method of the present invention is characterized in that the falling flow velocity U [m / sec] of the molten steel is calculated according to the following formula (1).
P0[Pa]:大気圧
P1[Pa]:復圧開始前の真空槽内圧力
G1[Nm3/時間]:溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量
G2[Nm3/時間]:真空槽内に直接供給する部位から供給する復圧用ガスの流量
V[Nm3]:復圧対象領域の体積
ρ[kg/m3]:溶鋼密度
g[m/秒2]:重力加速度
P 0 [Pa]: Atmospheric pressure P 1 [Pa]: Pressure in the vacuum chamber before the start of pressure recovery G 1 [Nm 3 / hour]: Flow rate of the pressure recovery gas supplied from the part where the molten steel recirculation gas is blown G 2 [ Nm 3 / hour]: Flow rate of decompression gas supplied from the part directly supplied into the vacuum chamber V [Nm 3 ]: Volume of the area subject to decompression ρ [kg / m 3 ]: Molten steel density g [m / sec 2] ]: Gravity acceleration
前述したように、鋼中の介在物のうち、特に、粗大なCaO含有介在物の個数及び径の増大は、機械特性、特に、延性、靱性、衝撃特性、疲労特性等を阻害する要因である。本発明者らは、粗大なCaO含有介在物の個数及び粒径の増大を抑制する、又は、該個数及び粒径を低減する手法について鋭意検討した。 As described above, among the inclusions in steel, an increase in the number and diameter of coarse CaO-containing inclusions is a factor that impairs mechanical properties, particularly ductility, toughness, impact properties, fatigue properties and the like. .. The present inventors have diligently studied a method for suppressing an increase in the number and particle size of coarse CaO-containing inclusions, or reducing the number and particle size.
その結果、真空脱ガス処理の終了後、真空槽内に復圧用ガスを供給して、真空槽内の減圧状態を大気圧へ復圧する際、真空槽から浸漬管を通過して取鍋内へ降下する溶鋼の下降流速U[m/秒]を0.15m/秒以下に制御すれば、有害なCaO含有介在物の生成を抑制して、鋼中の介在物の少量化及び小径化を実現でき、機械特性の向上を図ることができることを見いだした。 As a result, after the vacuum degassing treatment is completed, when the decompression gas is supplied into the vacuum chamber to restore the decompression state in the vacuum chamber to atmospheric pressure, the vacuum chamber passes through the immersion tube and enters the pan. By controlling the descending flow velocity U [m / sec] of the descending molten steel to 0.15 m / sec or less, the formation of harmful CaO-containing inclusions is suppressed, and the amount of inclusions in the steel can be reduced and the diameter can be reduced. It was found that it was possible to improve the mechanical properties.
ここで、図1に、従来の復圧と本発明の復圧を対比して示す。図1(a)に、従来の復圧における制御因子の時間推移を模式的に示し、図1(b)に、本発明の復圧における制御因子の時間推移を模式的に示す。 Here, FIG. 1 shows a comparison between the conventional decompression pressure and the decompression pressure of the present invention. FIG. 1 (a) schematically shows the time transition of the control factor in the conventional recompression, and FIG. 1 (b) schematically shows the time transition of the control factor in the recompression of the present invention.
従来の復圧においては、復圧開始時点で、浸漬管内に吹き込む溶鋼還流ガス量は変えずに、真空槽内の復圧を開始し、減圧状態を短時間で大気圧まで復圧する際、復圧の開始と同時に、真空槽内の溶鋼は、浸漬管を経て取鍋内に降下し始める。 In the conventional depressurization, when the depressurization state is restored to the atmospheric pressure in a short time by starting the decompression in the vacuum chamber without changing the amount of molten steel recirculation gas blown into the immersion pipe at the start of the decompression. At the same time as the pressure starts, the molten steel in the vacuum chamber begins to fall into the ladle through the immersion pipe.
溶鋼の真空脱ガス処理においては、溶鋼が、スラグ/溶鋼界面でスラグを巻き込む限界溶鋼流速(図1中「巻込み限界溶鋼流速」)が存在する。例えば、浅井の式(浅井:第100・101回西山記念技術講座資料(1984)、p.67、p90)等による計算によれば、上記限界溶鋼流速は0.7m/秒程度であるが、復圧の開始と同時に、浸漬管を経て取鍋内に降下し始める溶鋼の下降流速は、従来の復圧においては、図1(a)に示すように、一挙に、所定の流速まで上昇する。 In the vacuum degassing treatment of molten steel, there is a limit molten steel flow velocity (“rolling limit molten steel flow velocity” in FIG. 1) in which the molten steel entrains slag at the slag / molten steel interface. For example, according to the calculation by Asai's formula (Asai: 100th and 101st Nishiyama Memorial Technical Course Materials (1984), p.67, p90), the above limit molten steel flow velocity is about 0.7 m / sec. At the same time as the start of the pressure recovery, the falling flow velocity of the molten steel that begins to fall into the ladle through the immersion pipe rises to a predetermined flow velocity at once in the conventional recovery pressure, as shown in FIG. 1 (a). ..
溶鋼の下降流速が、一挙に上昇して上記限界溶鋼流速を超え、超えた状態で復圧が完了すると、復圧完了までの間に、脱ガス真空処理で清浄化した溶鋼が、真空槽内及び取鍋内でスラグ巻込みが生じるため、該溶鋼を鋳造した鋼は、粗大な介在物を含むことになる。 When the falling flow velocity of the molten steel rises all at once and exceeds the above limit molten steel flow velocity, and the repressurization is completed in the state where it exceeds the limit, the molten steel cleaned by the degassing vacuum treatment is in the vacuum chamber until the repressurization is completed. And since slag entrainment occurs in the ladle, the steel in which the molten steel is cast contains coarse inclusions.
本発明者らは、溶鋼の下降流速が限界溶鋼流速を下回れば、スラグ/溶鋼界面でのスラグ巻き込みは発生しない(溶鋼中に粗大な介在物が生成しない)と考え、図1(b)に示す復圧制御を発想した。 The present inventors considered that if the falling flow velocity of the molten steel is lower than the critical molten steel flow velocity, slag entrainment at the slag / molten steel interface does not occur (no coarse inclusions are formed in the molten steel), and FIG. 1 (b) shows. I came up with the recompression control shown.
即ち、図1(b)に示すように、浸漬管内に吹き込む溶鋼還流ガス量は変えずに、真空槽内の復圧を開始し、復圧開始時以降、真空槽内の低圧状態を徐々に大気圧に近づけていき、溶鋼の下降流速を低減して、限界溶鋼流速以下に維持し、真空槽内及び取鍋内での溶鋼のスラグ巻込みを抑制する。 That is, as shown in FIG. 1 (b), the pressure recovery in the vacuum chamber is started without changing the amount of molten steel recirculation gas blown into the immersion pipe, and the low pressure state in the vacuum tank is gradually changed after the start of the pressure recovery. By approaching the atmospheric pressure, the falling flow velocity of the molten steel is reduced to maintain the flow velocity below the limit molten steel flow velocity, and the slag entrainment of the molten steel in the vacuum chamber and the ladle is suppressed.
図1(b)に示す復圧制御においては、図1(a)に示す従来の復圧制御に比べ、復圧完了まで長時間を要するが、溶鋼の下降流速を限界溶鋼流速以下に維持して復圧を完了するので、有害なCaO含有介在物の生成を抑制して、高清浄の溶鋼を得ることができる。このことが、本発明製造方法の基本思想である。 In the recovery pressure control shown in FIG. 1 (b), it takes a longer time to complete the recovery pressure than in the conventional recovery pressure control shown in FIG. 1 (a), but the falling flow velocity of the molten steel is maintained below the limit molten steel flow velocity. Since the pressure recovery is completed, the formation of harmful CaO-containing inclusions can be suppressed and a highly clean molten steel can be obtained. This is the basic idea of the manufacturing method of the present invention.
次に、本発明精錬方法について説明する。 Next, the refining method of the present invention will be described.
真空脱ガス処理に供する、C、Si、Mn、P、及び、Sを含有する溶鋼は、通常の精錬工程(一次精錬)で精錬した、通常の成分組成の溶鋼でよい。なお、溶鋼の好ましい成分組成については後述する。 The molten steel containing C, Si, Mn, P, and S to be subjected to the vacuum degassing treatment may be a molten steel having a normal component composition smelted in a normal refining step (primary refining). The preferable composition of the molten steel will be described later.
一次精錬に続いて行う真空脱ガス処理(二次精錬)は、例えば、RH式精錬装置を用いて行い、真空脱ガス処理の終了後の復圧時、上記式(1)に従って復圧し、復圧後、溶鋼を鋳造する。鋳造は、通常の鋳造でよいが、連続鋳造が好ましい。 The vacuum degassing treatment (secondary refining) performed following the primary refining is performed using, for example, an RH type refining apparatus, and when the pressure is restored after the vacuum degassing treatment is completed, the pressure is restored according to the above formula (1). After compression, molten steel is cast. The casting may be ordinary casting, but continuous casting is preferable.
一次精錬に続いて行う真空脱ガス処理(二次精錬)は、復圧時、溶鋼の下降流速Uを0.15m/秒以下に制御できる精錬装置を用いて行えばよい。溶鋼の下降流速Uを容易に制御できる点で、RH式精錬装置が好ましい。 The vacuum degassing treatment (secondary refining) performed after the primary refining may be performed using a refining apparatus capable of controlling the falling flow velocity U of the molten steel to 0.15 m / sec or less at the time of recompression. The RH type refining apparatus is preferable because the falling flow velocity U of the molten steel can be easily controlled.
RH式精錬装置を用いる場合、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給して、溶鋼の下降流速Uを0.15m/秒以下に制御する。復圧用ガスは不活性ガスが好ましい。復圧後は、溶鋼を鋳造する。鋳造は、通常の鋳造でよいが、連続鋳造が好ましい。 When the RH type refining device is used, the decompression gas is supplied from one or both of the part where the molten steel recirculation gas is blown and the part directly supplied into the vacuum chamber, and the falling flow velocity U of the molten steel is 0.15 m / sec. It is controlled as follows. The decompression gas is preferably an inert gas. After recompression, molten steel is cast. The casting may be ordinary casting, but continuous casting is preferable.
真空槽及び浸漬管内を通過して取鍋内へ降下する溶鋼の下降流速U[m/秒]を0.15m/秒以下に制御することについて説明する。 It will be described that the falling flow velocity U [m / sec] of the molten steel that passes through the vacuum chamber and the immersion pipe and descends into the ladle is controlled to 0.15 m / sec or less.
真空脱ガス処理は数torr程度の真空下で行われるので、溶鋼ヘッド(取鍋内の溶鋼表面から真空槽内の溶鋼表面まで)の高さは1.4m程度となる。復圧時、真空槽内が急激に大気圧になると(図1(a)参照)、溶鋼の位置エネルギー(ρ・g・h)が全て運動エネルギー(1/2ρ・v2)に変換されたとすると、溶鋼の下降流速は、例えば、V=√(2・g・h)=5.3m/秒と、非常に大きな流速になる(ただし、復圧時間は1〜2秒程度なので0.7m/秒)。 Since the vacuum degassing treatment is performed under a vacuum of about several torr, the height of the molten steel head (from the surface of the molten steel in the ladle to the surface of the molten steel in the vacuum tank) is about 1.4 m. At the time of recompression, when the pressure inside the vacuum chamber suddenly became atmospheric pressure (see Fig. 1 (a)), all the potential energy (ρ ・ g ・ h) of the molten steel was converted to kinetic energy (1 / 2ρ ・ v 2 ). Then, the descending flow velocity of the molten steel becomes, for example, V = √ (2 · g · h) = 5.3 m / sec, which is a very large flow velocity (however, since the recovery time is about 1 to 2 seconds, it is 0.7 m. / Second).
この大きな流速で溶鋼が降下すると、取鍋内及び真空槽内に存在するスラグが、溶鋼中に巻き込まれ易くなるとともに、溶鋼中に存在する介在物が、取鍋内深部まで浸入して、以降の工程で浮上除去されることなく鋼中に残留して、欠陥の発生起点となる。 When the molten steel descends at this large flow velocity, the slag existing in the ladle and the vacuum chamber is likely to be caught in the molten steel, and the inclusions existing in the molten steel penetrate deep into the ladle, and thereafter. It remains in the steel without being floated and removed in the above process, and becomes the starting point of defect generation.
そこで、本発明者らは、復圧時、脱ガス真空処理で清浄化されて、浸漬管を降下する溶鋼がスラグを巻き込まない条件について鋭意検討した。 Therefore, the present inventors have diligently studied the conditions under which the molten steel that is cleaned by the degassing vacuum treatment at the time of repressurization and descends the immersion pipe does not involve slag.
その結果、図1(b)に示すように、真空槽内の減圧状態を徐々に大気圧に近づけ、溶鋼の下降流速を、巻込み限界溶鋼流速未満の0.15m/秒以下に維持すれば、溶鋼のスラグ巻き込みが顕著に改善されることを見いだした。溶鋼の下降流速を0.15m/秒に設定すると、復圧終了までの時間は9.53秒であり、現実的に実施可能な時間である。 As a result, as shown in FIG. 1 (b), if the decompression state in the vacuum chamber is gradually brought closer to atmospheric pressure and the falling flow velocity of the molten steel is maintained at 0.15 m / sec or less, which is less than the entrainment limit molten steel flow velocity. , Found that the slag entrainment of molten steel is significantly improved. When the descending flow velocity of the molten steel is set to 0.15 m / sec, the time until the end of the repressurization is 9.53 seconds, which is a practically feasible time.
そして、本発明者らは、溶鋼の下降流速を0.15m/秒以下に制御すれば、真空槽及び取鍋における溶鋼のスラグの巻き込みが顕著に抑制され、鋼中に残留するCaO含有介在物の個数と最大粒径が減少し、極値統計最大粒径dmaxも減少することを確認した。 Then, if the descending flow velocity of the molten steel is controlled to 0.15 m / sec or less, the present inventors remarkably suppress the entrainment of the molten steel slag in the vacuum chamber and the ladle, and CaO-containing inclusions remaining in the steel. It was confirmed that the number of slags and the maximum particle size decreased, and the extreme value statistical maximum particle size dmax also decreased.
図2に、溶鋼の下降流速が0.15m/秒を超える場合(従来)のCaO含有介在物の最大粒径及び平均粒径(比較例)と、溶鋼の下降流速が0.15m/秒以下の場合のCaO含有介在物の最大粒径及び平均粒径(発明例)の、それぞれの比の一例を示す。 FIG. 2 shows the maximum particle size and average particle size (comparative example) of CaO-containing inclusions when the falling flow velocity of molten steel exceeds 0.15 m / sec (conventional), and the falling flow velocity of molten steel is 0.15 m / sec or less. An example of each ratio of the maximum particle size and the average particle size (invention example) of the CaO-containing inclusions in the case of is shown.
図3に、溶鋼の下降流速が0.15m/秒を超える場合(従来)のCaO含有介在物の極値統計最大予測粒径(比較例)と、溶鋼の下降流速が0.15m/秒以下の場合のCaO含有介在物の極値統計最大予測粒径(発明例)の対比の一例を示す。 In FIG. 3, when the falling flow velocity of the molten steel exceeds 0.15 m / sec (conventional), the maximum predicted particle size of the extremum statistics of the CaO-containing inclusions (comparative example) and the falling flow velocity of the molten steel are 0.15 m / sec or less. An example of comparison of the maximum predicted particle diameter (invention example) of the extremum statistics of the CaO-containing inclusions in the case of is shown.
図2及び図3に示すように、復圧時、溶鋼の下降流速を0.15m/秒以下に維持すると、CaO含有介在物の最大粒径、平均粒径、及び、極値統計最大予測粒径は、いずれも減少する。 As shown in FIGS. 2 and 3, when the falling flow velocity of the molten steel is maintained at 0.15 m / sec or less during recompression, the maximum particle size, average particle size, and extreme value statistical maximum predicted grain size of CaO-containing inclusions are maintained. The diameter decreases in each case.
即ち、真空脱ガス処理の復圧時、溶鋼の下降流速を0.15m/秒以下に制御すれば、溶鋼のスラグ巻込みを顕著に抑制することができ、スラグに起因して生成するCaO含有介在物の量と大きさを低減することができ、鋼の機械特性を高めることができる。このことが、本発明者らが見いだし、本発明製造方法の基礎をなす知見である。 That is, if the falling flow velocity of the molten steel is controlled to 0.15 m / sec or less at the time of repressurization of the vacuum degassing treatment, the slag entrainment of the molten steel can be remarkably suppressed, and the CaO content generated due to the slag is contained. The amount and size of inclusions can be reduced and the mechanical properties of steel can be enhanced. This is the knowledge found by the present inventors and forming the basis of the manufacturing method of the present invention.
復圧中、溶鋼の下降流速を、巻込み限界溶鋼流速未満に維持する必要があるが、溶鋼の下降流速U[m/秒]は、真空槽内の圧力状態に依るので、溶鋼の下降流速を、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量:G1[Nm3/時間]と真空槽内に直接供給する部位から供給する復圧用ガスの流量G2:[Nm3/時間]を制御因子として用いて、上記式(1)で定義した。 During the recompression, it is necessary to maintain the falling flow velocity of the molten steel below the entrainment limit molten steel flow velocity. However, since the falling flow velocity U [m / sec] of the molten steel depends on the pressure state in the vacuum chamber, the falling flow velocity of the molten steel Flow rate of decompression gas supplied from the part where the molten steel recirculation gas is blown: G 1 [Nm 3 / hour] and flow rate of decompression gas supplied from the part directly supplied into the vacuum chamber G 2 : [Nm 3 / Time] was used as a control factor and was defined by the above equation (1).
上記式(1)は、所定の溶鋼の下降流速を実現するための条件であり、溶鋼ヘッド(復圧開始前の圧力に依存)を、復圧対象領域(体積:V)を復圧要ガスで満たすのに必要な時間で除して求めることができる。 The above formula (1) is a condition for realizing a predetermined falling flow velocity of the molten steel, and the molten steel head (depending on the pressure before the start of decompression) is decompressed and the decompression target region (volume: V) is depressurized. Can be calculated by dividing by the time required to fill with.
復圧時、真空槽内に供給する復圧用ガスは、溶鋼環流用ガスを吹き込む部位及び真空槽内に直接供給する部位の一方又は両方から真空槽内に供給する。復圧用ガスを両方の部位から供給する場合、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることが好ましい。 At the time of recompression, the decompression gas supplied into the vacuum chamber is supplied into the vacuum chamber from one or both of the portion where the molten steel recirculation gas is blown and the portion directly supplied into the vacuum chamber. When the decompression gas is supplied from both portions, it is preferable that the flow rate of the decompression gas supplied from the portion where the molten steel recirculation gas is blown is smaller than the flow rate of the molten steel recirculation gas during the vacuum degassing treatment.
復圧時、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることにより、真空槽内における溶鋼のスラグ巻込みを、より抑制することができる。復圧用ガスは、溶鋼の汚染を防止する観点から、アルゴンや窒素などの、溶鋼と反応し難い不活性ガスが好ましい。 By making the flow rate of the recompression gas supplied from the part where the molten steel recirculation gas is blown at the time of recompression smaller than the flow rate of the molten steel recirculation gas at the time of vacuum degassing treatment, the slag entrainment of the molten steel in the vacuum tank is further improved. It can be suppressed. The decompression gas is preferably an inert gas such as argon or nitrogen that does not easily react with the molten steel from the viewpoint of preventing contamination of the molten steel.
真空脱ガス処理を施す溶鋼は、通常の成分組成の溶鋼、即ち、鋼の基本元素のC、Si、Mn、P、及び、Sを含有する溶鋼であれば、溶鋼の下降流速制御による介在物低減効果が発現するので、特定の成分組成の溶鋼に限定されないが、上記介在物低減効果が顕著に発現する溶鋼の成分組成について説明する。以下、%は質量%を意味する。 If the molten steel to be vacuum degassed is a molten steel having a normal composition, that is, a molten steel containing the basic elements C, Si, Mn, P, and S of the steel, inclusions by controlling the downward flow velocity of the molten steel. Since the reducing effect is exhibited, the composition of the molten steel is not limited to the specific composition of the molten steel, but the composition of the molten steel in which the effect of reducing inclusions is remarkably exhibited will be described. Hereinafter,% means mass%.
C:1.20%以下
Cは、焼入れ後の鋼の強度や硬さを確保するのに有効な元素である。1.20%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下したりするので、Cは1.20%以下が好ましい。より好ましくは1.00%以下である。
C: 1.20% or less C is an element effective for ensuring the strength and hardness of steel after quenching. If it exceeds 1.20%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, C is preferably 1.20% or less. More preferably, it is 1.00% or less.
強度又は硬さをそれほど必要としない鋼種では、Cを必ずしも必要としないので、下限は特に限定しないが、Cは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Cは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, C is not necessarily required, so the lower limit is not particularly limited. However, since C is a basic element of steel and it is difficult to make it 0%, the lower limit is set. Does not include 0%. C is preferably 0.001% or more in order to secure the required strength and hardness.
Si:3.00%以下
Siは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.00%を超えると、硬くなりすぎて、切削工具の寿命が低下するので、Siは3.00%以下が好ましい。より好ましくは2.50%以下である。
Si: 3.00% or less Si is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.00%, it becomes too hard and the life of the cutting tool is shortened. Therefore, Si is preferably 3.00% or less. More preferably, it is 2.50% or less.
強度又は硬さをそれほど必要としない鋼種では、Siを必要としないので、下限は特に定めないが、Siは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Siは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, Si is not required, so the lower limit is not specified. However, Si is a basic element of steel and it is difficult to make it 0%, so the lower limit is 0. Does not include%. Si is preferably 0.001% or more in order to secure the required strength and hardness.
Mn:1.60%以下
Mnは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。1.60%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下するので、Mnは1.60%以下が好ましい。より好ましくは1.20%以下である。
Mn: 1.60% or less Mn is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 1.60%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, Mn is preferably 1.60% or less. More preferably, it is 1.20% or less.
強度又は硬さをそれほど必要としない鋼種は、Mnを必要としないので、下限は特に定めないが、Mnは、鋼の基本元素であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Mnは0.01%以上が好ましい。 A steel type that does not require much strength or hardness does not require Mn, so a lower limit is not particularly set. However, since Mn is a basic element of steel, the lower limit does not include 0%. Mn is preferably 0.01% or more in order to secure the required strength and hardness.
P:0.05%以下
Pは、不純物元素であり、靱性を阻害する元素である。Pが0.05%を超えると、靭性が著しく低下するので、Pは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Pを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
P: 0.05% or less P is an impurity element and is an element that inhibits toughness. If P exceeds 0.05%, the toughness is significantly reduced, so P is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if P is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.
S:0.05%以下
Sは、Pと同様に、不純物元素であり、靱性を阻害する元素である。Sが0.05%を超えると、靭性が著しく低下するので、Sは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Sを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
S: 0.05% or less S is an impurity element and an element that inhibits toughness, like P. If S exceeds 0.05%, the toughness is significantly reduced, so S is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if S is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.
好ましい成分組成の溶鋼は、鋼の機械特性及び/又は化学特性を阻害しない範囲で、上記基本元素以外に、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.01%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有してもよい。 In addition to the basic elements, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% Below, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.01% or less, Sb: 0.20% or less, Mg: It may contain one or more of 0.010% or less, Ca: 0.010% or less, REM: 0.010% or less, O: 0.003% or less.
Al:0.20%以下
Alは、脱酸元素であり、また、結晶粒を微細化する元素である。0.20%を超えると、粗大な酸化物系介在物が生成し、靭性及び延性が低下するので、Alは0.20%以下が好ましい。結晶粒の微細化効果を確保する点で、0.005%以上が好ましく、0.010%がより好ましい。
Al: 0.20% or less Al is a deoxidizing element and is an element that refines crystal grains. If it exceeds 0.20%, coarse oxide-based inclusions are formed and the toughness and ductility are lowered. Therefore, Al is preferably 0.20% or less. From the viewpoint of ensuring the effect of refining the crystal grains, 0.005% or more is preferable, and 0.010% is more preferable.
Cr:3.50%以下
Crは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.50%を超えると、靱性及び延性が低下するので、3.50%以下が好ましい。より好ましくは2.50%以下である。Crの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cr: 3.50% or less Cr is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.50%, the toughness and ductility decrease, so 3.50% or less is preferable. More preferably, it is 2.50% or less. From the viewpoint of ensuring the effect of adding Cr, 0.01% or more is preferable, and 0.05% or more is more preferable.
Mo:0.85%以下
Moは、焼入れ性を高めて強度や硬さの確保に有効な元素である。また、Moは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.85%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Moは0.85%以下が好ましい。より好ましくは0.65%以下である。Moの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Mo: 0.85% or less Mo is an element that enhances hardenability and is effective in ensuring strength and hardness. Mo is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.85%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, Mo is preferably 0.85% or less. More preferably, it is 0.65% or less. From the viewpoint of ensuring the effect of adding Mo, 0.005% or more is preferable, and 0.010% or more is more preferable.
Ni:4.50%以下
Niは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。4.50%を超えると、靱性及び延性が低下するので、Niは4.50%以下が好ましい。より好ましくは3.50%以下である。Niの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ni: 4.50% or less Ni is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 4.50%, the toughness and ductility decrease, so Ni is preferably 4.50% or less. More preferably, it is 3.50% or less. From the viewpoint of ensuring the effect of adding Ni, 0.005% or more is preferable, and 0.010% or more is more preferable.
Nb:0.20%以下
Nbは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.20%を超えると、靱性及び延性が低下するので、Nbは0.20%以下が好ましい。より好ましくは0.10%以下である。Nbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Nb: 0.20% or less Nb is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering softening resistance. If it exceeds 0.20%, toughness and ductility decrease, so Nb is preferably 0.20% or less. More preferably, it is 0.10% or less. From the viewpoint of ensuring the effect of adding Nb, 0.005% or more is preferable, and 0.010% or more is more preferable.
V:0.45%以下
Vは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.45%を超えると、靱性及び延性が低下するので、Vは0.45%以下が好ましい。より好ましくは0.35%以下である。Vの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
V: 0.45% or less V is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering softening resistance. If it exceeds 0.45%, toughness and ductility decrease, so V is preferably 0.45% or less. More preferably, it is 0.35% or less. From the viewpoint of ensuring the effect of adding V, 0.005% or more is preferable, and 0.010% or more is more preferable.
W:0.30%以下
Wは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。また、Wは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.30%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Wは0.30%以下が好ましい。より好ましくは0.25%以下である。Wの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
W: 0.30% or less W is an element that enhances hardenability and is effective in ensuring strength and hardness. Further, W is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.30%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, W is preferably 0.30% or less. More preferably, it is 0.25% or less. From the viewpoint of ensuring the effect of adding W, 0.005% or more is preferable, and 0.010% or more is more preferable.
B:0.006%以下
Bは、焼入れ性を高め、強度の向上に寄与する元素である。また、Bは、オーステナイト粒界に偏析して、Pの粒界偏析を抑制し、疲労強度の向上に寄与する元素である。0.006%を超えると、靱性が低下するので、Bは0.006%以下とする。好ましくは0.004%以下である。Bの添加効果を確保する点で、0.0005%以上が好ましく、0.001%以上がより好ましい。
B: 0.006% or less B is an element that enhances hardenability and contributes to the improvement of strength. Further, B is an element that segregates at the austenite grain boundaries, suppresses the grain boundary segregation of P, and contributes to the improvement of fatigue strength. If it exceeds 0.006%, the toughness decreases, so B is set to 0.006% or less. It is preferably 0.004% or less. From the viewpoint of ensuring the effect of adding B, 0.0005% or more is preferable, and 0.001% or more is more preferable.
N:0.060%以下
Nは、微細な窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.060%を超えると、窒化物が過剰に生成して、靱性が低下するので、Nは0.060%以下が好ましい。より好ましくは0.040%以下である。Nの添加効果を確保する点で、0.001%以上が好ましく、0.005%以上がより好ましい。
N: 0.060% or less N is an element that forms fine nitrides to refine crystal grains and contribute to improvement of strength and toughness. If it exceeds 0.060%, nitride is excessively formed and the toughness is lowered. Therefore, N is preferably 0.060% or less. More preferably, it is 0.040% or less. From the viewpoint of ensuring the effect of adding N, 0.001% or more is preferable, and 0.005% or more is more preferable.
Ti:0.25%以下
Tiは、微細なTi窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.25%を超えると、Ti窒化物が過剰に生成し、靱性が低下するので、Tiは0.25%以下が好ましい。より好ましくは0.15%以下である。Tiの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ti: 0.25% or less Ti is an element that forms fine Ti nitrides to refine crystal grains and contribute to the improvement of strength and toughness. If it exceeds 0.25%, Ti nitride is excessively formed and the toughness is lowered. Therefore, Ti is preferably 0.25% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Ti, 0.005% or more is preferable, and 0.010% or more is more preferable.
Cu:0.50%以下
Cuは、耐食性の向上に寄与する元素である。0.50%を超えると、熱間延性が低下し、割れや疵が発生するので、Cuは0.50%以下が好ましい。より好ましくは0.30%以下である。Cuの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cu: 0.50% or less Cu is an element that contributes to the improvement of corrosion resistance. If it exceeds 0.50%, the hot ductility is lowered and cracks and flaws are generated. Therefore, Cu is preferably 0.50% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Cu, 0.01% or more is preferable, and 0.05% or more is more preferable.
Pb:0.45%以下
Pbは、快削性の向上に寄与する元素である。0.45%を超えると、靱性が低下するので、Pbは0.45%以下が好ましい。より好ましくは0.30%以下である。Pbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Pb: 0.45% or less Pb is an element that contributes to the improvement of free-cutting property. If it exceeds 0.45%, the toughness decreases, so the Pb is preferably 0.45% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Pb, 0.005% or more is preferable, and 0.010% or more is more preferable.
Bi:0.20%以下
Biは、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Biは0.20%以下が好ましい。より好ましくは0.16%以下である。Biの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Bi: 0.20% or less Bi is an element that contributes to the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Bi is preferably 0.20% or less. More preferably, it is 0.16% or less. From the viewpoint of ensuring the effect of adding Bi, 0.005% or more is preferable, and 0.010% or more is more preferable.
Te:0.010%以下
Teは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Teは0.010%以下が好ましい。より好ましくは0.006%以下である。Teの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Te: 0.010% or less Te is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Te is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Te, 0.005% or more is preferable, and 0.010% or more is more preferable.
Sb:0.20%以下
Sbは、耐硫酸性及び耐塩酸性を主体とする耐食性の向上、及び、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Sbは0.20%以下が好ましい。より好ましくは0.15%以下である。Sbの添加効果を確保する点で、0.01%以上が好ましく、0.03%以上がより好ましい。
Sb: 0.20% or less Sb is an element that contributes to the improvement of corrosion resistance, mainly sulfuric acid resistance and hydrochloric acid resistance, and the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Sb is preferably 0.20% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Sb, 0.01% or more is preferable, and 0.03% or more is more preferable.
Mg:0.010%以下
Mgは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Mgは0.010%以下が好ましい。より好ましくは0.006%以下である。Mgの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以上がより好ましい。
Mg: 0.010% or less Mg is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Mg is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Mg, 0.0005% or more is preferable, and 0.0010% or more is more preferable.
Ca:0.010%以下
Caは、脱酸元素であり、脱酸反応で、凝集合し易い低融点のCaO−Al2O3系介在物を形成する元素である。0.010%を超えると、Al2O3系介在物が、低融点のCaO−Al2O3系介在物に複合化して粗大化する。粗大化したCaO−Al2O3系介在物は、圧延温度で液相化せず、粗大なまま鋼中に残存するので、Caは0.010%以下が好ましい。より好ましくは0.006%以下である。
Ca: 0.010% or less Ca is a deoxidizing element and is an element that forms CaO-Al 2 O 3 based inclusions having a low melting point that easily aggregates in a deoxidizing reaction. When it exceeds 0.010%, Al 2 O 3 based inclusions are compounded with low melting point CaO-Al 2 O 3 based inclusions and coarsened. The coarsened CaO-Al 2 O 3 system inclusions do not become liquid phase at the rolling temperature and remain in the steel in a coarse state. Therefore, Ca is preferably 0.010% or less. More preferably, it is 0.006% or less.
Caは、少ないほど好ましいので、下限は限定しないが、不可避的に0.0001%程度は残存するので、実用鋼上、0.0001%が実質的な下限である。 Since the smaller the amount of Ca, the more preferable it is, the lower limit is not limited, but since about 0.0001% inevitably remains, 0.0001% is a substantial lower limit in practical steel.
REM:0.010%以下
REM(希土類元素、La、Ce、Pr、及び、Ndの1種又は2種以上)は、Al又はAl−Siで十分に脱酸した溶鋼において、溶鋼中のCaOや、介在物中のCaOを還元して、CaO−Al2O3系介在物を改質する作用をなす元素である。0.010%を超えると、介在物中に、REM濃度の高い低融点の化合物相が出現し、介在物の凝集合が助長されて、粗大な介在物が生成するので、REMは0.010%以下が好ましい。より好ましくは0.007%以下である。
REM: 0.010% or less REM (one or more of rare earth elements, La, Ce, Pr, and Nd) is CaO in molten steel in molten steel sufficiently deoxidized with Al or Al-Si. , It is an element that reduces CaO in inclusions and modifies CaO-Al 2 O 3 based inclusions. If it exceeds 0.010%, a low melting point compound phase having a high REM concentration appears in the inclusions, and the aggregation of inclusions is promoted to form coarse inclusions, so that the REM is 0.010. % Or less is preferable. More preferably, it is 0.007% or less.
Al又はAl−Siで十分に脱酸した溶鋼において、REMの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以下がより好ましい。 In the molten steel sufficiently deoxidized with Al or Al—Si, 0.0005% or more is preferable, and 0.0010% or less is more preferable, from the viewpoint of ensuring the effect of adding REM.
O:0.003%以下
Oは、酸化物を形成する元素である。0.003%を超えると、粗大な酸化物が生成し、転動疲労寿命が低下するので、Oは0.003%以下が好ましい。より好ましくは0.002%以下である。下限は0%を含むが、Oを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
O: 0.003% or less O is an element that forms an oxide. If it exceeds 0.003%, coarse oxides are generated and the rolling fatigue life is shortened. Therefore, O is preferably 0.003% or less. More preferably, it is 0.002% or less. The lower limit includes 0%, but if O is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.
溶鋼の成分組成において、残部はFe及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素であり、溶鋼の特性、さらに、溶鋼を鋳造した鋼の特性を阻害しない範囲で許容される元素である。 In the composition of molten steel, the balance is Fe and unavoidable impurities. The unavoidable impurity is an element that is unavoidably mixed from the steel raw material and / or in the steelmaking process, and is an element that is allowed as long as it does not impair the characteristics of the molten steel and the characteristics of the cast steel.
次に、本発明の実施例について説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。そのため、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. However, the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention. Therefore, the present invention is not limited to this one-condition example. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
(実施例)
表1に示す成分組成の溶鋼に、転炉による一次精錬、LF処理及びRH処理による二次精錬を施し、連続鋳造して鋼を製造した。
(Example)
The molten steel having the composition shown in Table 1 was subjected to primary refining by a converter, secondary refining by LF treatment and RH treatment, and continuously cast to produce steel.
具体的には、270t転炉で一次精錬を施した溶鋼を出鋼する際、溶鋼を、Si、Mn、Alの1種又は2種以上にて脱酸した。脱酸した溶鋼に、所定のスラグ組成を用いてLF処理の二次精錬を施し、次いで、RH処理で成分組成を調整し、清浄化処理を施した後、連続鋳造して鋳片とした。この鋳片を、加熱炉にて加熱保持した後、分塊圧延に供し鋼片とした。 Specifically, when the molten steel that had undergone primary refining in a 270t converter was ejected, the molten steel was deoxidized with one or more of Si, Mn, and Al. The deoxidized molten steel was subjected to secondary refining by LF treatment using a predetermined slag composition, then the component composition was adjusted by RH treatment, and after being subjected to a cleaning treatment, it was continuously cast into slabs. This slab was heated and held in a heating furnace and then subjected to bulk rolling to obtain a steel slab.
上記鋼片において、極値統計法により、予測面積30000mm2における非金属介在物の極値統計最大予測径[μm]を推定した。極値統計による介在物の最大予測径(√area(max)の推定は、例えば、「金属疲労 微小欠陥と介在物の影響」(村上敬宜著、養賢堂、1993年発行、p.223−239)に記載の方法により行うことができる。用いた方法は、二次元的検査により、一定面積内で観察される最大介在物径を推定するという二次元的手法である。 In the above steel pieces, the maximum predicted diameter [μm] of the extreme value statistics of non-metal inclusions in the predicted area of 30,000 mm 2 was estimated by the extreme value statistical method. The maximum predicted diameter of inclusions (√area (max)) estimated by extreme value statistics is, for example, "Metal fatigue micro-defects and effects of inclusions" (Y. Murakami, Yokendo, 1993, p. 223). -239) can be performed. The method used is a two-dimensional method of estimating the maximum inclusion diameter observed within a certain area by a two-dimensional inspection.
上記極値統計法を用いて、鋼片のL断面(ルーズ面の中心線と、この対向面の中心線、及び、鋳片の中心線を含む断面)のルーズ面側の1/4の位置から試料を採取して、光学顕微鏡で撮像した非金属介在物の画像から、検査基準面:100mm2(10mm×10mm)、検査視野:16、予測を行う面積30000mm2の介在物の最大予測径√area(max)を算出した。 Using the above extreme value statistical method, the position of 1/4 of the L cross section of the steel piece (the center line of the loose surface, the center line of the facing surface, and the cross section including the center line of the slab) on the loose surface side. From the image of non-metal inclusions taken with an optical microscope, the maximum predicted diameter of inclusions with inspection reference plane: 100 mm 2 (10 mm × 10 mm), inspection field: 16, and prediction area of 30,000 mm 2 √ area (max) was calculated.
具体的には、観察で得られた介在物の最大径の16個のデータ(16視野のデータ)を上記文献に記載の方法に従い、極値確率用紙にプロットして、最大介在物分布直線(最大介在物と極値統計基準化変数の一次関数)を求め、最大介在物分布直線を外挿することにより、面積:30000mm2における介在物の最大予測径√area(max)を推定した。 Specifically, 16 data (data of 16 fields of view) of the maximum diameter of inclusions obtained by observation are plotted on an extremum probability sheet according to the method described in the above document, and the maximum inclusion distribution straight line (data of 16 fields) is plotted. The maximum predicted diameter of inclusions √area (max) was estimated at an area of 30,000 mm 2 by obtaining the maximum inclusions and the linear function of the extremum statistical standardization variable) and extrapolating the maximum inclusion distribution straight line.
上記推定及び算出の結果を、表1に併せて示す。 The results of the above estimation and calculation are also shown in Table 1.
発明例No.3〜9、12〜18、21〜27、30〜36は、復圧時の溶鋼の下降流速が0.15m/秒以下であるので、極値統計による最大予測粒径が19〜25μmで、良好な値を示している。比較例No.1、2、10、11、19、20、28、及び、29は、復圧時の溶鋼の下降流速が0.15m/秒を超えているので、極値統計最大予測粒径に改善が見られない。 Invention Example No. For 3 to 9, 12 to 18, 21 to 27, and 30 to 36, the falling flow velocity of the molten steel at the time of recompression is 0.15 m / sec or less, so that the maximum predicted particle size by extreme value statistics is 19 to 25 μm. It shows a good value. Comparative Example No. In 1, 2, 10, 11, 19, 20, 28, and 29, the descending flow velocity of the molten steel at the time of recompression exceeds 0.15 m / sec, so improvement is seen in the maximum predicted grain size of the extreme value statistics. I can't.
以上のとおり、発明例では、適正操業の比較例に比較し、介在物の粗大化が抑制されているので、機械特性、特に、転動疲労寿命の優れた鋼が得られることは明らかである。 As described above, in the invention example, the coarsening of inclusions is suppressed as compared with the comparative example of proper operation, so that it is clear that a steel having excellent mechanical properties, particularly rolling fatigue life, can be obtained. ..
前述したように、本発明によれば、真空脱ガス処理の復圧時、真空槽内及び浸漬管内を降下する溶鋼の下降流速を最適化して、CaO含有介在物の溶鋼への混入を抑制できるので、鋼中の介在物の量及び大きさを低減することができ、機械特性に優れた鋼を提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, it is possible to optimize the falling flow velocity of the molten steel descending in the vacuum chamber and the immersion pipe at the time of decompression of the vacuum degassing treatment, and suppress the mixing of CaO-containing inclusions in the molten steel. Therefore, the amount and size of inclusions in the steel can be reduced, and a steel having excellent mechanical properties can be provided. Therefore, the present invention has high utility in the steel industry.
Claims (6)
真空脱ガス処理の終了後、真空槽内に復圧用ガスを供給して、真空槽内の減圧状態を大気圧へ復圧する際、真空槽及び浸漬管内を通過して取鍋内へ降下する、下記式(1)に従って算出される溶鋼の下降流速U[m/秒]を0.15m/秒以下に制御して復圧する
ことを特徴とする溶鋼の精錬方法。
P 0 [Pa]:大気圧
P 1 [Pa]:復圧開始前の真空槽内圧力
G 1 [Nm 3 /時間]:溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量
G 2 [Nm 3 /時間]:真空槽内に直接供給する部位から供給する復圧用ガスの流量
V[Nm 3 ]:復圧対象領域の体積
ρ[kg/m 3 ]:溶鋼密度
g[m/秒 2 ]:重力加速度 In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After the vacuum degassing treatment is completed, the decompression gas is supplied into the vacuum chamber, and when the decompression state in the vacuum chamber is restored to atmospheric pressure, it passes through the vacuum chamber and the immersion tube and drops into the pan . A method for refining molten steel, characterized in that the descending flow velocity U [m / sec] of the molten steel calculated according to the following formula (1) is controlled to 0.15 m / sec or less and the pressure is restored.
P 0 [Pa]: Atmospheric pressure
P 1 [Pa]: Pressure in the vacuum chamber before the start of pressure recovery
G 1 [Nm 3 / hour]: Flow rate of decompression gas supplied from the part where the molten steel recirculation gas is blown.
G 2 [Nm 3 / hour]: Flow rate of decompression gas supplied from the part directly supplied into the vacuum chamber
V [Nm 3 ]: Volume of the area to be decompressed
ρ [kg / m 3 ]: molten steel density
g [m / sec 2 ]: Gravitational acceleration
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252033A JP6816501B2 (en) | 2016-12-26 | 2016-12-26 | Refining method of molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252033A JP6816501B2 (en) | 2016-12-26 | 2016-12-26 | Refining method of molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104763A JP2018104763A (en) | 2018-07-05 |
JP6816501B2 true JP6816501B2 (en) | 2021-01-20 |
Family
ID=62786946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016252033A Active JP6816501B2 (en) | 2016-12-26 | 2016-12-26 | Refining method of molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6816501B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111304410B (en) * | 2020-03-24 | 2021-11-09 | 山信软件股份有限公司 | Molten steel refining slag absorption preventing method and system |
-
2016
- 2016-12-26 JP JP2016252033A patent/JP6816501B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018104763A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036997B2 (en) | Spring steel with excellent fatigue resistance and method for producing the same | |
KR101830023B1 (en) | Spring steel and method for producing same | |
US9809875B2 (en) | Case hardening steel with excellent fatigue properties | |
JP5803824B2 (en) | Method of melting carburized bearing steel | |
US9896749B2 (en) | Steel for induction hardening with excellent fatigue properties | |
JP5760683B2 (en) | Manufacturing method of high fatigue strength steel slab | |
JP5277556B2 (en) | Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab | |
JP5845784B2 (en) | Bearing material and manufacturing method of bearing material | |
JP5609946B2 (en) | Spring steel with excellent fatigue resistance and method for producing the same | |
JP2016222953A (en) | Method of producing high cleanliness steel | |
JP4900127B2 (en) | Induction hardening steel and manufacturing method thereof | |
JP5541310B2 (en) | Manufacturing method of highly clean steel | |
JP6957890B2 (en) | Refining method of molten steel | |
JP6766687B2 (en) | Refining method of molten steel | |
JP6816501B2 (en) | Refining method of molten steel | |
JP6825399B2 (en) | How to melt clean steel | |
JP6756264B2 (en) | Refining method of molten steel | |
JP7028376B1 (en) | Manufacturing method of high cleanliness steel | |
JP4160103B1 (en) | Steel ingot for forging | |
JP4586648B2 (en) | Steel plate excellent in workability and method for producing the same | |
JP5050692B2 (en) | Low Al content steel having high cleanliness and method for producing the same | |
JP6984803B1 (en) | Manufacturing method of slabs used as a material for high fatigue strength steel | |
JP3640167B2 (en) | Manufacturing method of high cleanliness steel | |
WO2021256159A1 (en) | Method for producing cast slab that serves as material for steel with high fatigue strength | |
JP4225228B2 (en) | Bearing material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201207 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6816501 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |