JP6957890B2 - Refining method of molten steel - Google Patents

Refining method of molten steel Download PDF

Info

Publication number
JP6957890B2
JP6957890B2 JP2017021330A JP2017021330A JP6957890B2 JP 6957890 B2 JP6957890 B2 JP 6957890B2 JP 2017021330 A JP2017021330 A JP 2017021330A JP 2017021330 A JP2017021330 A JP 2017021330A JP 6957890 B2 JP6957890 B2 JP 6957890B2
Authority
JP
Japan
Prior art keywords
less
molten steel
refining
inclusions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017021330A
Other languages
Japanese (ja)
Other versions
JP2018127670A (en
Inventor
暁 峰田
進 工藤
祐哉 木村
怜爾 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017021330A priority Critical patent/JP6957890B2/en
Publication of JP2018127670A publication Critical patent/JP2018127670A/en
Application granted granted Critical
Publication of JP6957890B2 publication Critical patent/JP6957890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、溶鋼の精錬方法、特に、真空精錬を終了する時の精錬方法に関するものである。 The present invention relates to a method for refining molten steel, particularly a method for refining when vacuum refining is completed.

近年、機械装置の高性能化や周辺部品の小型化を図るため、機械特性に優れる鋼が求められている。鋼は、一般に、転炉で、溶鋼の脱珪処理、脱燐処理、さらに、脱炭処理を行った後、二次精錬工程にて、溶鋼の成分組成を調整し、溶鋼中の介在物を低減し、次いで、連続鋳造して製造されるが、機械特性を高めるためには、溶鋼中の介在物をできるだけ低減する必要がある。 In recent years, steel having excellent mechanical properties has been required in order to improve the performance of mechanical devices and reduce the size of peripheral parts. In general, steel is subjected to desiliconization treatment, dephosphorization treatment, and decarburization treatment of molten steel in a converter, and then in a secondary refining step, the composition of the molten steel is adjusted to remove inclusions in the molten steel. It is produced by continuous casting after reduction, but in order to improve mechanical properties, it is necessary to reduce inclusions in molten steel as much as possible.

例えば、軸受鋼においては、鋼中の介在物の量や大きさが、転動疲労寿命を決定するので、二次精錬工程にて、溶鋼に、取鍋スラグ精錬処理(以下「LF処理」ということがある。)や、真空脱ガス処理(以下「RH処理」ということがある)を施し、溶鋼中の介在物の低減を図っている。 For example, in bearing steel, the amount and size of inclusions in the steel determine the rolling fatigue life, so in the secondary refining process, the molten steel is subjected to ladle slag refining treatment (hereinafter referred to as "LF treatment"). In some cases) and vacuum degassing treatment (hereinafter sometimes referred to as "RH treatment") are performed to reduce inclusions in molten steel.

RH処理は、取鍋中の溶鋼に、二本の浸漬管を浸漬し、浸漬管に繋がる真空槽を減圧して、大気圧との差圧で溶鋼を真空槽内に吸い上げ、溶鋼環流ガスを、浸漬管から溶鋼内に供給し、溶鋼を真空槽内と取鍋の間で環流させて、脱ガスや、介在物の低減を図る処理である。 In the RH treatment, two immersion pipes are immersed in the molten steel in the ladle, the vacuum tank connected to the immersion pipe is depressurized, and the molten steel is sucked up into the vacuum tank by the pressure difference from the atmospheric pressure to release the molten steel recirculation gas. This is a process in which the molten steel is supplied from the immersion pipe into the molten steel and the molten steel is circulated between the inside of the vacuum chamber and the ladle to degas and reduce inclusions.

RH処理では、溶鋼を強撹拌することになるので、介在物の除去が促進されるが、一方で、溶鋼中へのスラグの巻込みが発生するので、溶鋼の環流制御が重要で、これまで、環流制御に関する技術が数多く提案されている。 In the RH treatment, the molten steel is strongly agitated, so that the removal of inclusions is promoted. , Many techniques related to recirculation control have been proposed.

例えば、特許文献1には、塩基度3以上のスラグで還元精錬を実施した後、環流式脱ガス装置によって、処理時間の2/3を高環流、1/3を弱環流にして真空脱ガス精錬を行うことを特徴とする軸受鋼の製造方法が提案されている。 For example, in Patent Document 1, after performing reduction refining with slag having a basicity of 3 or more, vacuum degassing is performed by using a recirculation type degassing device to set 2/3 of the processing time to high recirculation and 1/3 to weak recirculation. A method for producing bearing steel, which is characterized by refining, has been proposed.

特許文献2には、アーク溶解炉又は転炉で製造した溶鋼を取鍋に移注して精錬する際、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を全溶鋼の8倍以上として脱ガスを25分以上行うことを特徴とする高清浄鋼の製造方法が提案されている。 In Patent Document 2, when the molten steel produced in an arc melting furnace or a converter is transferred to a ladle for refining, the refining in the ladle is set to 60 minutes or less, and the total ring flow rate of the molten steel by the recirculation type degassing device is set to 60 minutes or less. A method for producing highly clean steel has been proposed, which comprises performing degassing for 25 minutes or more, which is 8 times or more that of molten steel.

特許文献3には、転炉又は電気炉から出鋼した溶鋼を取鍋精錬装置で精錬した後、環流式真空脱ガス装置で精錬して高清浄度鋼を製造する際、環流式真空脱ガス装置で行う精錬処理でのスラグ塩基度を6.5以上13.5以下とし、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半処理では、溶鋼環流量180ton/min以上、210ton/min以下の高環流状態とし、後半処理では、溶鋼環流量110ton/min以上、140ton/min以下の弱環流状態とすることを特徴とする高清浄度鋼の製造方法が提案されている。 Patent Document 3 states that when molten steel discharged from a converter or an electric furnace is smelted by a ladle smelting device and then smelted by a recirculation type vacuum degassing device to produce high-cleanliness steel, the recirculation type vacuum degassing is performed. The slag basicity in the refining process performed by the device is 6.5 or more and 13.5 or less, and in the first half treatment of 1/3 to 1/2 of the total processing time of the recirculation type vacuum degassing device, the molten steel ring flow rate is 180 ton / min. As described above, a method for producing high-cleanliness steel has been proposed, which comprises a high recirculation state of 210 ton / min or less, and a weak recirculation state of a molten steel ring flow rate of 110 ton / min or more and 140 ton / min or less in the latter half treatment. There is.

特許文献4には、溶鋼の真空精錬処理終了時に真空槽内に窒素ガスを導入して、真空から常圧に復圧する真空精錬装置の復圧方法において、溶鋼浴表面にはアルゴンガス等の不活性ガスを導入して、溶鋼の吸窒を防止することが提案されている。 Patent Document 4 describes in a method of repressurizing a vacuum refining apparatus in which nitrogen gas is introduced into a vacuum chamber at the end of a vacuum refining process for molten steel to restore the pressure from vacuum to normal pressure. It has been proposed to introduce an active gas to prevent the adsorption of molten steel.

特許文献5には、真空槽内にスラグを持ち込まない状態で、真空槽内の真空度に応じて攪拌用ガスを供給することを特徴とする高清浄度極低炭素鋼の製造方法が提案されている。 Patent Document 5 proposes a method for producing high-cleanliness ultra-low carbon steel, which comprises supplying a stirring gas according to the degree of vacuum in the vacuum chamber without bringing slag into the vacuum chamber. ing.

特開昭62−063650号公報Japanese Unexamined Patent Publication No. 62-03650 特開2001−342516号公報Japanese Unexamined Patent Publication No. 2001-342516 特開2008−133505号公報Japanese Unexamined Patent Publication No. 2008-133505 特開平05−331526号公報Japanese Unexamined Patent Publication No. 05-331526 特開平08−199225号公報Japanese Unexamined Patent Publication No. 08-199225

前述したように、鋼の機械特性に、鋼中に存在する介在物、主に、酸化物系介在物の量と大きさが大きく影響する。鋼中の酸化物系介在物のうち、特に、大きさが数10μm程度の粗大な介在物は、CaO含有の低融点介在物(以下「CaO含有介在物」ということがある。)である。 As described above, the mechanical properties of steel are greatly affected by the amount and size of inclusions present in the steel, mainly oxide-based inclusions. Among the oxide-based inclusions in steel, particularly coarse inclusions having a size of about several tens of μm are CaO-containing low melting point inclusions (hereinafter, may be referred to as “CaO-containing inclusions”).

粗大なCaO含有介在物は、精錬で使用する取鍋スラグが、溶鋼に巻き込まれて発生するスラグ系介在物、スラグ中のCaOが還元されて溶鋼に混入し、溶鋼中のAl23やMgO−Al23と反応して生成する介在物、さらに、これらの介在物が溶鋼中の介在物を取り込んで粗大化した介在物である。 The coarse CaO-containing inclusions are slag-based inclusions generated when the ladle slag used in refining is caught in the molten steel, and CaO in the slag is reduced and mixed into the molten steel to form Al 2 O 3 in the molten steel. The inclusions formed by reacting with MgO-Al 2 O 3 and further, these inclusions are coarsened inclusions by incorporating the inclusions in the molten steel.

粗大なCaO含有介在物は、品質管理指標の極値統計値や、製品特性の疲労寿命を悪化させるので、その量と大きさを低減する必要があるが、そのためには、介在物の凝集合体の起点となる低融点介在物の量と大きさを低減するとともに、低融点介在物に取り込まれる溶鋼中の介在物の量と大きさを低減することが有効である。 Coarse CaO-containing inclusions worsen the extreme statistical values of quality control indicators and the fatigue life of product characteristics, so it is necessary to reduce the amount and size of the inclusions. It is effective to reduce the amount and size of the low melting point inclusions which are the starting points of the above, and also to reduce the amount and size of the inclusions in the molten steel which are incorporated into the low melting point inclusions.

これら介在物の量と大きさを低減するためには、製造の各工程(取鍋精錬−RH処理−連続鋳造)において、溶鋼中への介在物の混入を抑制する、又は、溶鋼中の介在物を除去する等の介在物低減対策が必要である。 In order to reduce the amount and size of these inclusions, in each manufacturing process (ladle refining-RH treatment-continuous casting), the inclusion of inclusions in the molten steel is suppressed, or the inclusions in the molten steel are suppressed. It is necessary to take measures to reduce inclusions such as removing objects.

溶鋼中への取鍋スラグの巻込みは、溶鋼流速が大きい場合や、スラグ/メタル界面の擾乱が激しい場合に、その頻度が大きくなり、混入するスラグ系介在物の量と大きさが、ともに増大する。 Entrainment of ladle slag in molten steel increases in frequency when the molten steel flow velocity is high or when the slag / metal interface is severely disturbed, and the amount and size of slag-based inclusions mixed in both increase. Increase.

RH処理の終了後は、真空槽内の溶鋼を取鍋に戻すため、真空槽内の減圧状態を大気圧へ戻す「復圧」を実施するが、復圧時には、真空槽内に吸い上げられていた溶鋼、及び、浸漬管内に貯留していた溶鋼が、急激に降下して取鍋内に戻るので、急激に降下する溶鋼が誘起する溶鋼の下降流速は非常に大きく、スラグ/メタル界面が激しく搖動し、スラグが溶鋼に巻き込まれる。 After the RH treatment is completed, in order to return the molten steel in the vacuum chamber to the ladle, "re-pressure" is performed to return the depressurized state in the vacuum chamber to atmospheric pressure, but at the time of re-pressure, it is sucked up in the vacuum chamber. Since the molten steel and the molten steel stored in the immersion pipe rapidly descend and return to the ladle, the falling flow velocity of the molten steel induced by the rapidly descending molten steel is very large, and the slag / metal interface is violent. It sways and the slag gets caught in the molten steel.

また、復圧時の溶鋼環流ガス流量が、RH処理中の溶鋼環流ガス流量と同じ強環流条件であれば、溶鋼は、復圧中も、スラグ巻込みの臨界溶鋼流速を超える流速で環流することになるので、真空槽内のスラグは、常に、溶鋼中に巻き込まれ易い状態におかれることとなる。 Further, if the molten steel recirculation gas flow rate at the time of recompression is the same strong recirculation condition as the molten steel recirculation gas flow rate during the RH treatment, the molten steel recirculates at a flow rate exceeding the critical molten steel flow velocity involving slag even during the recompression. Therefore, the slag in the vacuum chamber is always in a state where it is easily caught in the molten steel.

特許文献1の方法では、環流式脱ガス処理の前半2/3を高環流とし、後半1/3を弱環流としているが、特許文献1に、復圧時の環流条件は記載されていない。また、環流式脱ガス処理の後半を弱環流にすると、溶鋼中の全酸素量T.Oを十分に低減できない可能性がある。 In the method of Patent Document 1, the first half 2/3 of the recirculation type degassing treatment is a high recirculation and the second half is a weak recirculation, but Patent Document 1 does not describe the recirculation conditions at the time of recompression. Further, when the latter half of the recirculation type degassing treatment is made weak recirculation, the total amount of oxygen in the molten steel T.I. It may not be possible to reduce O sufficiently.

特許文献2の方法では、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を、全溶鋼の8倍以上として脱ガスを25分以上行うが、特許文献2に、復圧時の環流条件は記載されておらず、また、溶鋼中へのスラグ巻込みに影響する環流速度条件も不明瞭である。 In the method of Patent Document 2, refining in the ladle is 60 minutes or less, the ring flow rate of the molten steel by the recirculation type degassing device is 8 times or more that of the total molten steel, and degassing is performed for 25 minutes or more. The recirculation conditions at the time of recompression are not described, and the recirculation velocity conditions that affect the slag entrainment in the molten steel are also unclear.

特許文献3の方法では、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半を高環流状態とし、後半を弱環流状態としているが、特許文献1の方法と同様に、復圧時の環流条件は記載されておらず、また、後半を弱撹拌とするので、溶鋼中の全酸素量T.Oを十分に下げることができない恐れがある。 In the method of Patent Document 3, the first half of the total processing time of the recirculation type vacuum degassing device is set to the high recirculation state and the latter half is set to the weak recirculation state. , The recirculation conditions at the time of recompression are not described, and since the latter half is weakly stirred, the total amount of oxygen in the molten steel T.I. There is a risk that O cannot be lowered sufficiently.

特許文献4の方法では、復圧時のガス種等が規定されているが、特許文献4に、真空槽内及び取鍋内において、溶鋼のスラグ巻込みを抑制する復圧条件は記載されていない。特許文献5の方法では、真空槽内の圧力に応じた適切な撹拌ガス流速が規定されているが、特許文献5に、真空槽内及び取鍋内において、溶鋼中へのスラグ巻込みを抑制する復圧条件は記載されていない。 In the method of Patent Document 4, the gas type and the like at the time of depressurization are specified, but Patent Document 4 describes the depressurization condition for suppressing slag entrainment of molten steel in the vacuum chamber and the ladle. No. In the method of Patent Document 5, an appropriate stirring gas flow velocity according to the pressure in the vacuum chamber is defined, but in Patent Document 5, slag entrainment in molten steel is suppressed in the vacuum chamber and the ladle. The conditions for repressurization are not described.

本発明は、従来技術の現状に鑑み、溶鋼の真空脱ガス処理の復圧時において、非定常時に生じる溶鋼中へのスラグ巻込みを抑制して、鋼中の粗大なCaO含有介在物の量と大きさを低減することを課題とし、該課題を解決する溶鋼の精錬方法を提供することを目的とする。 In view of the current state of the prior art, the present invention suppresses slag entrainment in molten steel that occurs during unsteady state during depressurization of vacuum degassing treatment of molten steel, and the amount of coarse CaO-containing inclusions in the steel. An object of the present invention is to reduce the size of the molten steel, and an object of the present invention is to provide a refining method for molten steel that solves the problem.

本発明者らは、従来技術の現状を踏まえ、上記課題を解決する手法について鋭意検討した。その結果、真空脱ガス処理の復圧時、溶鋼環流ガス流量(即ち、溶鋼環流量)を低減し、真空槽内の溶鋼流速を低減して弱環流状態を維持すれば、真空槽内のスラグ/溶鋼界面の搖動も低減することができ、真空槽内において、スラグが溶鋼に巻き込まれ難い環境を形成することができることを見いだした。 Based on the current state of the prior art, the present inventors have diligently studied a method for solving the above problems. As a result, if the molten steel recirculation gas flow rate (that is, the molten steel recirculation flow rate) is reduced and the molten steel flow velocity in the vacuum chamber is reduced to maintain the weak recirculation state at the time of decompression of the vacuum degassing treatment, the slag in the vacuum chamber is maintained. / It was found that the vibration at the molten steel interface can be reduced, and an environment in which the slag is less likely to be caught in the molten steel can be formed in the vacuum chamber.

さらに、上記環境のもとで、溶鋼中へのスラグ巻込みを抑制することができ、スラグに起因して生成する粗大なCaO含有介在物の量と大きさを低減することができ、鋼の機械特性を高めることができることを見いだした。 Further, under the above environment, slag entrainment in molten steel can be suppressed, and the amount and size of coarse CaO-containing inclusions generated due to slag can be reduced. We have found that it can improve mechanical properties.

本発明は上記の知見に基づいてなされたもので、その要旨は次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)C、Si、Mn、P、及び、Sを含有する溶鋼に真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施して、溶鋼を精錬する精錬方法において、
真空脱ガス処理の終了後、真空槽内の減圧状態を大気圧へ復圧する時に、浸漬管から溶鋼中に供給する復圧用ガスの溶鋼1t当たりの環流ガス流量V[Nm3/t/分]を、下記式(1)を満たすように制御して復圧する
ことを特徴とする溶鋼の精錬方法。
(1) In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After completion of the vacuum degassing, at pressure recovery vacuum state in the vacuum chamber to atmospheric pressure, recirculated gas flow rate V per molten steel 1t of condensate pressure gas supplied from the dip tube in the molten steel [Nm 3 / t / min] A method for refining molten steel, which comprises controlling and repressurizing so as to satisfy the following formula (1).

Figure 0006957890
Figure 0006957890

A[m2]:浸漬管内にガスを供給する管の断面積
ρFe[kg/m3]:溶鋼密度
ρg[kg/m3]:環流ガス密度
g[m/秒2]:重力加速度
h[m]:溶鋼ヘッド
0[Pa]:真空槽内圧力
N[本]:浸漬管内にガスを供給するガス管の本数
M[t]:取鍋内の溶鋼重量
0[Nm3/t/分]:脱ガス処理中の溶鋼環流ガス流量
A [m 2 ]: Cross-sectional area of the pipe that supplies gas into the immersion pipe ρ Fe [kg / m 3 ]: Molten steel density ρ g [kg / m 3 ]: Circulating gas density g [m / sec 2 ]: Gravity acceleration h [m]: Molten steel head P 0 [Pa]: Pressure in vacuum chamber N [pieces]: Number of gas pipes that supply gas into the immersion pipe M [t]: Weight of molten steel in the pan V 0 [Nm 3 / t / min]: Flow rate of molten steel recirculation gas during degassing treatment

(2)前記真空脱ガス処理をRH式精錬装置で行うことを特徴とする前記(1)に記載の溶鋼の精錬方法。 (2) The method for refining molten steel according to (1) above, wherein the vacuum degassing treatment is performed by an RH type refining apparatus.

(3)前記RH式精錬装置で復圧を行なう際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする前記(2)に記載の溶鋼の精錬方法。 (3) When the repressurization is performed by the RH type refining apparatus, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion which is directly supplied into the vacuum chamber. The method for refining molten steel according to (2).

(4)前記復圧用ガスが不活性ガスであることを特徴とする前記(3)に記載の溶鋼の精錬方法。 (4) The method for refining molten steel according to (3) above, wherein the decompression gas is an inert gas.

(5)前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする前記(1)〜(4)のいずれかに記載の溶鋼の精錬方法。 (5) The molten steel is C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten iron according to any one of (1) to (4) above, wherein the method contains Fe and the balance is composed of Fe and unavoidable impurities.

(6)前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.025%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする前記(5)に記載の溶鋼の精錬方法。 (6) The molten steel further contains, in mass%, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20. % Or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.025% or less, Cu: 0.50% or less , Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM The method for refining molten steel according to (5) above, wherein one or more of 0.010% or less and O: 0.003% or less are contained.

本発明によれば、真空脱ガス処理の復圧時、溶鋼環流の流速を最適化して、CaO含有介在物の溶鋼への混入を抑制できるので、鋼中の介在物の量及び大きさを低減することができ、機械特性に優れた鋼を提供することができる。 According to the present invention, when the vacuum degassing treatment is depressurized, the flow velocity of the molten steel recirculation can be optimized to suppress the mixing of CaO-containing inclusions in the molten steel, so that the amount and size of inclusions in the steel can be reduced. It is possible to provide steel having excellent mechanical properties.

溶鋼環流ガス流量を低減しない従来流量の場合のCaO含有介在物の最大粒径及び平均粒径(比較例)と、溶鋼環流ガス流量を低減した場合のCaO含有介在物の最大粒径及び平均粒径(発明例)の、それぞれの比の一例を示す図である。Maximum particle size and average particle size of CaO-containing inclusions when the flow rate of molten steel recirculation gas is not reduced (comparative example), and maximum particle size and average grain size of CaO-containing inclusions when the flow rate of molten steel recirculation gas is reduced. It is a figure which shows an example of each ratio of the diameter (invention example). 復圧時、溶鋼環流ガス流量を低減しない従来流量の場合のCaO含有介在物の極値統計最大予測粒径(比較例)と、溶鋼環流ガス流量を低減した場合のCaO含有介在物の極値統計最大予測粒径(発明例)の対比の一例を示す図である。Extreme value statistics of CaO-containing inclusions at the conventional flow rate that does not reduce the molten steel recirculation gas flow rate at the time of recompression Maximum predicted particle size (comparative example) and the extreme value of CaO-containing inclusions when the molten steel recirculation gas flow rate is reduced. It is a figure which shows an example of the comparison of the statistical maximum predicted particle diameter (invention example).

本発明の溶鋼の精錬方法(以下「本発明精錬方法」ということがある。)は、
C、Si、Mn、P、及び、Sを含有する溶鋼に真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施して、溶鋼を精錬する精錬方法において、
真空脱ガス処理の終了後、真空槽内の減圧状態を大気圧へ復圧する時に、浸漬管から溶鋼中に供給する復圧用ガスの溶鋼1t当たりの環流ガス流量V[Nm3/t/分]を、下記式(1)を満たすように制御して復圧する
ことを特徴とする。
The method for refining molten steel of the present invention (hereinafter, may be referred to as "the refining method of the present invention") is defined as the method for refining the molten steel of the present invention.
In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After completion of the vacuum degassing, at pressure recovery vacuum state in the vacuum chamber to atmospheric pressure, recirculated gas flow rate V per molten steel 1t of condensate pressure gas supplied from the dip tube in the molten steel [Nm 3 / t / min] Is controlled so as to satisfy the following equation (1), and the pressure is restored.

Figure 0006957890
Figure 0006957890

A[m2]:浸漬管内にガスを供給する管の断面積
ρFe[kg/m3]:溶鋼密度
ρg[kg/m3]:環流ガス密度
g[m/秒2]:重力加速度
h[m]:溶鋼ヘッド
0[Pa]:真空槽内圧力
N[本]:浸漬管内にガスを供給するガス管の本数
M[t]:取鍋内の溶鋼重量
0[Nm3/t/分]:脱ガス処理中の溶鋼環流ガス流量
A [m 2 ]: Cross-sectional area of the pipe that supplies gas into the immersion pipe ρ Fe [kg / m 3 ]: Molten steel density ρ g [kg / m 3 ]: Circulating gas density g [m / sec 2 ]: Gravity acceleration h [m]: Molten steel head P 0 [Pa]: Pressure in vacuum chamber N [pieces]: Number of gas pipes that supply gas into the immersion pipe M [t]: Weight of molten steel in the pan V 0 [Nm 3 / t / min]: Flow rate of molten steel recirculation gas during degassing treatment

前述したように、鋼中の介在物のうち、特に、粗大なCaO含有介在物の個数及び粒径の増大は、機械特性、特に、延性、靱性、衝撃特性、疲労特性等を阻害する要因である。本発明者らは、粗大なCaO含有介在物の個数及び粒径の増大を抑制する、又は、該個数及び粒径を低減する手法について鋭意検討した。 As described above, among the inclusions in steel, an increase in the number and particle size of coarse CaO-containing inclusions is a factor that impairs mechanical properties, particularly ductility, toughness, impact properties, fatigue properties, and the like. be. The present inventors have diligently studied a method for suppressing an increase in the number and particle size of coarse CaO-containing inclusions, or reducing the number and particle size.

その結果、溶鋼の真空脱ガス処理における復圧時に、浸漬管から溶鋼中に供給する復圧用ガスの溶鋼1t当たりの環流ガス流量V[Nm3/t/分]を、上記式(1)を満たすように制御して復圧すれば、有害なCaO含有介在物の生成を抑制して、鋼中の介在物の少量化及び小径化を実現でき、機械特性の向上を図ることができることを見いだした。 As a result, sometimes pressure recovery in the vacuum degassing treatment of molten steel, the recirculated gas flow rate V per molten steel 1t of condensate pressure gas supplied from the dip tube in the molten steel [Nm 3 / t / min], the above equation (1) It was found that if the pressure is reduced by controlling the filling, the formation of harmful CaO-containing inclusions can be suppressed, the amount of inclusions in the steel can be reduced and the diameter can be reduced, and the mechanical properties can be improved. rice field.

以下、本発明精錬方法について説明する。 Hereinafter, the refining method of the present invention will be described.

真空脱ガス処理に供する、C、Si、Mn、P、及び、Sを含有する溶鋼は、通常の精錬工程(一次精錬)で精錬した、通常の成分組成の溶鋼でよい。なお、溶鋼の好ましい成分組成については後述する。 The molten steel containing C, Si, Mn, P, and S to be subjected to the vacuum degassing treatment may be a molten steel having a normal component composition smelted in a normal refining step (primary refining). The preferable composition of the molten steel will be described later.

一次精錬に続いて行う真空脱ガス処理(二次精錬)は、復圧時、復圧を上記式(1)に従って行うことができる精錬装置を用いて行えばよい。溶鋼環流ガス量を上記式(1)に従って容易に制御できる点で、RH式精錬装置が好ましい。 The vacuum degassing treatment (secondary refining) performed after the primary refining may be performed by using a refining apparatus capable of performing the depressurization according to the above formula (1) at the time of repressurization. The RH type refining apparatus is preferable in that the amount of molten steel recirculation gas can be easily controlled according to the above formula (1).

RH式精錬装置を用いる場合、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給して、環流ガス流量V[Nm3/t/分]を、上記式(1)を満たすように制御することができる。復圧用ガスは不活性ガスが好ましい。復圧を上記式(1)に従って行った後、溶鋼を鋳造する。鋳造は、通常の鋳造でよいが、連続鋳造が好ましい。 When the RH type refining device is used, the decompression gas is supplied from one or both of the part where the molten steel recirculation gas is blown and the part which is directly supplied into the vacuum chamber, and the recirculation gas flow rate V [Nm 3 / t / min. ] Can be controlled so as to satisfy the above equation (1). The decompression gas is preferably an inert gas. After the depressurization is performed according to the above formula (1), the molten steel is cast. Casting may be normal casting, but continuous casting is preferable.

次に、復圧時の溶鋼環流ガス流量Vを、上記式(1)式を満たすように制御して復圧を行なう理由について説明する。 Next, the reason why the recompression is performed by controlling the molten steel recirculation gas flow rate V at the time of recompression so as to satisfy the above equation (1) will be described.

上記式(1)の左辺:(2A2(ρFegh+P0)/ρg1/2・(N/M)
上記式(1)の左辺は、RH処理を継続して行なうために設定した条件である。即ち、「溶鋼静圧(ρFe・g・h)+真空槽内圧力(P0)」が、浸漬管に吹き込むガスの動圧「(1/2)・ρg・V2」より大きいと、ガスを吹き込む管の中に溶鋼が侵入して、管が閉塞し、次のRH処理を適正な条件で行うことができなく恐れがあるので、RH処理を適正な条件で継続するために、上記式(1)の左辺を設定した。
Left side of the equation (1): (2A 2 ( ρ Fe gh + P 0) / ρ g) 1/2 · (N / M)
The left side of the above equation (1) is a condition set for continuously performing the RH process. That is, if the "static pressure of molten steel (ρ Fe · g · h) + pressure inside the vacuum chamber (P 0 )" is larger than the dynamic pressure "(1/2) · ρ g · V 2 " of the gas blown into the immersion pipe. In order to continue the RH treatment under the proper conditions, there is a risk that molten steel will invade the pipe into which the gas is blown and the pipe will be blocked, making it impossible to perform the next RH treatment under the proper conditions. The left side of the above equation (1) was set.

上記式(1)の右辺:(2/3)・V0
溶鋼のRH処理において、溶鋼が、スラグ/溶鋼界面でスラグを巻き込む限界溶鋼流速は、例えば、浅井の式(浅井:第100・101回西山記念技術講座資料(1984)、p.67、p90)等による計算によれば、0.7m/秒程度である。
Right side of the above equation (1): (2/3) · V 0
In the RH treatment of molten steel, the critical molten steel flow velocity at which molten steel entrains slag at the slag / molten steel interface is, for example, Asai's formula (Asai: 100th and 101st Nishiyama Memorial Technical Lecture Materials (1984), p.67, p90). According to the calculation by the above, it is about 0.7 m / sec.

本発明者らは、溶鋼流速が限界溶鋼流速を下回れば、スラグ/溶鋼界面でのスラグ巻き込みは発生しない(溶鋼中に粗大な介在物を増加させない)と発想し、この発想を前提にし、溶鋼環流ガス流量V[Nm3/t/分]の上限を設定した。 The present inventors have conceived that if the molten steel flow velocity is lower than the limit molten steel flow velocity, slag entrainment at the slag / molten steel interface does not occur (coarse inclusions are not increased in the molten steel). The upper limit of the recirculation gas flow rate V [Nm 3 / t / min] was set.

溶鋼環流量は溶鋼流速に比例し、溶鋼環流ガス流量は溶鋼環流量の3乗に比例するので、例えば、溶鋼流速0.8m/秒を限界溶鋼流速0.7m/秒未満にするには、溶鋼環流量を(0.7/0.8)倍にし、溶鋼環流ガス流量を{(0.7/0.8)3=0.669≒2/3}倍にする必要がある。 The molten steel ring flow rate is proportional to the molten steel flow velocity, and the molten steel recirculation gas flow rate is proportional to the cube of the molten steel ring flow rate. It is necessary to multiply the molten steel ring flow rate by (0.7 / 0.8) times and the molten steel recirculation gas flow rate by {(0.7 / 0.8) 3 = 0.669 ≈ 2/3} times.

本発明者らは、上記計算結果に則り、定常処理時の溶鋼環流ガス流量V0[Nm3/t/分]の2/3倍未満を、溶鋼環流ガス流量V[Nm3/t/分]の上限とした。 The present inventors have found that the calculation results pursuant to the 2/3 less than the steady process time of the molten steel circulating gas flow rate V 0 [Nm 3 / t / min], molten steel recirculated gas flow rate V [Nm 3 / t / min ] Was set as the upper limit.

通常、溶鋼環流ガス流量が異なれば溶鋼流速も異なるところ、溶鋼が、スラグ/溶鋼界面でスラグを巻き込まない限界条件を、略一定となる限界溶鋼流速でなく、上記のように、精錬条件に応じ適宜調整し得る溶鋼環流ガス流量V0[Nm3/t/分]を用いて規定すれば、スラグ/溶鋼界面でスラグを巻き込まない真空脱ガス処理を、幅広い溶鋼環流ガス流量の範囲で行なうことができる。 Normally, the molten steel flow velocity differs depending on the molten steel recirculation gas flow rate, but the limit condition that the molten steel does not involve slag at the slag / molten steel interface is not the limit molten steel flow velocity that is substantially constant, but depends on the refining conditions as described above. If specified using the molten steel recirculation gas flow rate V 0 [Nm 3 / t / min] that can be adjusted as appropriate, vacuum degassing treatment that does not involve slag at the slag / molten steel interface can be performed over a wide range of molten steel recirculation gas flow rate. Can be done.

そして、本発明者らは、溶鋼環流ガス流量が、上記式(1)の右辺の値(上限)以上であると、真空槽及び取鍋における溶鋼中へのスラグの巻き込みが減少せず、鋼中に、粗大なCaO含有介在物が残留することを確認し、また、環流ガス流量が上記式(1)の左辺の値(下限)未満であると、溶鋼が、浸漬管にガスを供給する管に侵入し、適正な操業を継続することが困難になることを確認した。 Then, when the molten steel recirculation gas flow rate is equal to or higher than the value (upper limit) on the right side of the above formula (1), the present inventors do not reduce the entrainment of slag in the molten steel in the vacuum chamber and the ladle, and the steel. It is confirmed that coarse CaO-containing inclusions remain in the mixture, and when the recirculation gas flow rate is less than the value (lower limit) on the left side of the above formula (1), the molten steel supplies gas to the immersion pipe. It was confirmed that it would be difficult to invade the pipe and continue proper operation.

また、本発明者らは、C、Si、Mn、P、及び、Sを含有する溶鋼をRH処理し、復圧時に復圧用ガスの溶鋼環流ガス流量V[Nm3/t/分]を、上記式(1)を満たすように制御すれば、鋼中のCaO含有介在物の粒径が減少し、また、極値統計最大粒径dmaxも減少することを確認した。 Further, the present inventors, C, Si, Mn, P, and, by RH process the molten steel contains S, pressure recovery at the molten steel reflux gas flow rate V of the condensate pressure gas [Nm 3 / t / min] It was confirmed that the particle size of the CaO-containing inclusions in the steel was reduced and the maximum statistical maximum particle size dmax was also reduced if the control was performed so as to satisfy the above formula (1).

図1に、溶鋼環流ガス流量を低減しない従来流量の場合のCaO含有介在物の最大粒径及び平均粒径(比較例)と、溶鋼環流ガス流量を低減した場合のCaO含有介在物の最大粒径及び平均粒径(発明例)の、それぞれの比の一例を示す。 FIG. 1 shows the maximum particle size and average particle size (comparative example) of CaO-containing inclusions when the flow rate of molten steel recirculation gas is not reduced, and the maximum grain size of CaO-containing inclusions when the flow rate of molten steel recirculation gas is reduced. An example of each ratio of the diameter and the average particle diameter (invention example) is shown.

図2に、復圧時、溶鋼環流ガス流量を低減しない従来流量の場合のCaO含有介在物の極値統計最大予測粒径(比較例)と、溶鋼環流ガス流量を低減した場合のCaO含有介在物の極値統計最大予測粒径(発明例)の対比の一例を示す。 Fig. 2 shows the maximum predicted particle size of CaO-containing inclusions (comparative example) in the case of the conventional flow rate that does not reduce the flow rate of molten steel recirculation gas at the time of recompression, and the inclusion of CaO in the case of reducing the flow rate of molten steel recirculation gas. An example of comparison of the maximum predicted particle size (invention example) of the extreme value statistics of an object is shown.

図1に示すように、復圧時、上記式(1)に従って、溶鋼環流ガス流量を低減すると、鋼中のCaO含有介在物の最大粒径及び平均粒径は大きく減少する。また、図2に示すように、極値統計最大予測粒径も大きく減少する。 As shown in FIG. 1, when the flow rate of the molten steel recirculation gas is reduced according to the above formula (1) at the time of recompression, the maximum particle size and the average particle size of the CaO-containing inclusions in the steel are greatly reduced. Further, as shown in FIG. 2, the maximum predicted particle size of the extreme value statistics is also greatly reduced.

即ち、真空脱ガス処理の復圧時、溶鋼環流ガス流量(即ち、溶鋼環流量)を低減し、溶鋼表面流速を低減すれば、溶鋼中へのスラグ巻込みを大きく抑制することができ、スラグに起因して生成する粗大なCaO含有介在物の量と大きさを低減することができる。このことが、本発明者らが見いだした知見であり、本発明精錬方法の基礎をなす知見である。 That is, if the flow rate of the molten steel recirculation gas (that is, the flow rate of the molten steel ring) is reduced and the surface flow velocity of the molten steel is reduced at the time of decompression of the vacuum degassing treatment, slag entrainment in the molten steel can be greatly suppressed and slag. The amount and size of the coarse CaO-containing inclusions produced due to the above can be reduced. This is the finding found by the present inventors and is the finding that forms the basis of the refining method of the present invention.

上記式(1)を満たす環流ガス流量で真空脱ガス処理を施す溶鋼は、通常の成分組成の溶鋼、即ち、鋼の基本元素のC、Si、Mn、P、及び、Sを含有する溶鋼であれば、環流ガス流量を上記式(1)に従って制御することによる介在物低減効果が発現するので、特定の成分組成の溶鋼に限定されないが、上記介在物低減効果が顕著に発現する溶鋼の成分組成について説明する。以下、%は質量%を意味する。 The molten steel to be vacuum degassed at a recirculation gas flow rate satisfying the above formula (1) is a molten steel having a normal composition, that is, a molten steel containing the basic elements of steel, C, Si, Mn, P, and S. If there is, the inclusion reduction effect is exhibited by controlling the recirculation gas flow rate according to the above formula (1). Therefore, the component of the molten steel is not limited to the molten steel having a specific component composition, but the inclusion reduction effect is remarkably exhibited. The composition will be described. Hereinafter,% means mass%.

C:1.20%以下
Cは、焼入れ後の鋼の強度や硬さを確保するのに有効な元素である。1.20%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下したりするので、Cは1.20%以下が好ましい。より好ましくは1.00%以下である。
C: 1.20% or less C is an element effective for ensuring the strength and hardness of steel after quenching. If it exceeds 1.20%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, C is preferably 1.20% or less. More preferably, it is 1.00% or less.

強度又は硬さをそれほど必要としない鋼種では、Cを必ずしも必要としないので、下限は特に限定しないが、Cは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Cは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, C is not necessarily required, so the lower limit is not particularly limited. However, since C is a basic element of steel and it is difficult to make it 0%, the lower limit is set. Does not include 0%. C is preferably 0.001% or more in order to secure the required strength and hardness.

Si:3.00%以下
Siは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.00%を超えると、硬くなりすぎて、切削工具の寿命が低下するので、Siは3.00%以下が好ましい。より好ましくは2.50%以下である。
Si: 3.00% or less Si is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.00%, it becomes too hard and the life of the cutting tool is shortened. Therefore, Si is preferably 3.00% or less. More preferably, it is 2.50% or less.

強度又は硬さをそれほど必要としない鋼種では、Siを必要としないので、下限は特に定めないが、Siは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Siは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, Si is not required, so the lower limit is not specified. However, Si is a basic element of steel and it is difficult to set it to 0%, so the lower limit is 0. Does not include%. Si is preferably 0.001% or more in order to secure the required strength and hardness.

Mn:1.60%以下
Mnは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。1.60%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下するので、Mnは1.60%以下が好ましい。より好ましくは1.20%以下である。
Mn: 1.60% or less Mn is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 1.60%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, Mn is preferably 1.60% or less. More preferably, it is 1.20% or less.

強度又は硬さをそれほど必要としない鋼種は、Mnを必要としないので、下限は特に定めないが、Mnは、鋼の基本元素であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Mnは0.01%以上が好ましい。 A steel type that does not require much strength or hardness does not require Mn, so a lower limit is not particularly set. However, since Mn is a basic element of steel, the lower limit does not include 0%. Mn is preferably 0.01% or more in order to secure the required strength and hardness.

P:0.05%以下
Pは、不純物元素であり、靱性を阻害する元素である。Pが0.05%を超えると、靭性が著しく低下するので、Pは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Pを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
P: 0.05% or less P is an impurity element and is an element that inhibits toughness. If P exceeds 0.05%, the toughness is significantly reduced, so P is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if P is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

S:0.05%以下
Sは、Pと同様に、不純物元素であり、靱性を阻害する元素である。Sが0.05%を超えると、靭性が著しく低下するので、Sは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Sを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
S: 0.05% or less S is an impurity element and an element that inhibits toughness, like P. If S exceeds 0.05%, the toughness is significantly lowered, so S is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if S is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

好ましい成分組成の溶鋼は、鋼の機械特性及び/又は化学特性を阻害しない範囲で、上記基本元素以外に、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.01%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有してもよい。 In addition to the above basic elements, the molten steel having a preferable composition is 0.20% or less, Cr: 3.50% or less, Mo: 0.85%, as long as it does not impair the mechanical properties and / or chemical properties of the steel. Below, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.01% or less, Sb: 0.20% or less, Mg: It may contain one or more of 0.010% or less, Ca: 0.010% or less, REM: 0.010% or less, O: 0.003% or less.

Al:0.20%以下
Alは、脱酸元素であり、また、結晶粒を微細化する元素である。0.20%を超えると、粗大な酸化物系介在物が生成し、靭性及び延性が低下するので、Alは0.20%以下が好ましい。結晶粒の微細化効果を確保する点で、0.005%以上が好ましく、0.010%がより好ましい。
Al: 0.20% or less Al is a deoxidizing element and is an element that refines crystal grains. If it exceeds 0.20%, coarse oxide-based inclusions are formed and the toughness and ductility are lowered. Therefore, Al is preferably 0.20% or less. From the viewpoint of ensuring the effect of refining the crystal grains, 0.005% or more is preferable, and 0.010% is more preferable.

Cr:3.50%以下
Crは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.50%を超えると、靱性及び延性が低下するので、Crは3.50%以下が好ましい。より好ましくは2.50%以下である。Crの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cr: 3.50% or less Cr is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.50%, toughness and ductility decrease, so Cr is preferably 3.50% or less. More preferably, it is 2.50% or less. From the viewpoint of ensuring the effect of adding Cr, 0.01% or more is preferable, and 0.05% or more is more preferable.

Mo:0.85%以下
Moは、焼入れ性を高めて強度や硬さの確保に有効な元素である。また、Moは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.85%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Moは0.85%以下が好ましい。より好ましくは0.65%以下である。Moの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Mo: 0.85% or less Mo is an element that enhances hardenability and is effective in ensuring strength and hardness. Mo is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.85%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, Mo is preferably 0.85% or less. More preferably, it is 0.65% or less. From the viewpoint of ensuring the effect of adding Mo, 0.005% or more is preferable, and 0.010% or more is more preferable.

Ni:4.50%以下
Niは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。4.50%を超えると、靱性及び延性が低下するので、Niは4.50%以下が好ましい。より好ましくは3.50%以下である。Niの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ni: 4.50% or less Ni is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 4.50%, the toughness and ductility decrease, so Ni is preferably 4.50% or less. More preferably, it is 3.50% or less. From the viewpoint of ensuring the effect of adding Ni, 0.005% or more is preferable, and 0.010% or more is more preferable.

Nb:0.20%以下
Nbは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.20%を超えると、靱性及び延性が低下するので、Nbは0.20%以下が好ましい。より好ましくは0.10%以下である。Nbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Nb: 0.20% or less Nb is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering and softening resistance. If it exceeds 0.20%, toughness and ductility decrease, so Nb is preferably 0.20% or less. More preferably, it is 0.10% or less. From the viewpoint of ensuring the effect of adding Nb, 0.005% or more is preferable, and 0.010% or more is more preferable.

V:0.45%以下
Vは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.45%を超えると、靱性及び延性が低下するので、Vは0.45%以下が好ましい。より好ましくは0.35%以下である。Vの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
V: 0.45% or less V is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering and softening resistance. If it exceeds 0.45%, the toughness and ductility decrease, so V is preferably 0.45% or less. More preferably, it is 0.35% or less. From the viewpoint of ensuring the effect of adding V, 0.005% or more is preferable, and 0.010% or more is more preferable.

W:0.30%以下
Wは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。また、Wは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.30%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Wは0.30%以下が好ましい。より好ましくは0.25%以下である。Wの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
W: 0.30% or less W is an element that enhances hardenability and is effective in ensuring strength and hardness. W is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.30%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, W is preferably 0.30% or less. More preferably, it is 0.25% or less. From the viewpoint of ensuring the effect of adding W, 0.005% or more is preferable, and 0.010% or more is more preferable.

B:0.006%以下
Bは、焼入れ性を高め、強度の向上に寄与する元素である。また、Bは、オーステナイト粒界に偏析して、Pの粒界偏析を抑制し、疲労強度の向上に寄与する元素である。0.006%を超えると、靱性が低下するので、Bは0.006%以下が好ましい。より好ましくは0.004%以下である。Bの添加効果を確保する点で、0.0005%以上が好ましく、0.001%以上がより好ましい。
B: 0.006% or less B is an element that enhances hardenability and contributes to the improvement of strength. Further, B is an element that segregates at the austenite grain boundaries, suppresses the grain boundary segregation of P, and contributes to the improvement of fatigue strength. If it exceeds 0.006%, the toughness decreases, so B is preferably 0.006% or less. More preferably, it is 0.004% or less. From the viewpoint of ensuring the effect of adding B, 0.0005% or more is preferable, and 0.001% or more is more preferable.

N:0.060%以下
Nは、微細な窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.060%を超えると、窒化物が過剰に生成して、靱性が劣化するので、Nは0.060%以下が好ましい。より好ましくは0.040%以下である。Nの添加効果を確保する点で、0.001%以上が好ましく、0.005%以上がより好ましい。
N: 0.060% or less N is an element that forms fine nitrides to refine crystal grains and contribute to improvement of strength and toughness. If it exceeds 0.060%, nitride is excessively generated and the toughness deteriorates. Therefore, N is preferably 0.060% or less. More preferably, it is 0.040% or less. From the viewpoint of ensuring the effect of adding N, 0.001% or more is preferable, and 0.005% or more is more preferable.

Ti:0.25%以下
Tiは、微細なTi窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.25%を超えると、Ti窒化物が過剰に生成し、靱性が低下するので、Tiは0.25%以下が好ましい。より好ましくは0.15%以下である。Tiの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ti: 0.25% or less Ti is an element that forms fine Ti nitrides to refine crystal grains and contribute to the improvement of strength and toughness. If it exceeds 0.25%, Ti nitride is excessively formed and the toughness is lowered. Therefore, Ti is preferably 0.25% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Ti, 0.005% or more is preferable, and 0.010% or more is more preferable.

Cu:0.50%以下
Cuは、耐食性の向上に寄与する元素である。0.50%を超えると、熱間延性が低下し、割れや疵が発生するので、Cuは0.50%以下が好ましい。より好ましくは0.30%以下である。Cuの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cu: 0.50% or less Cu is an element that contributes to the improvement of corrosion resistance. If it exceeds 0.50%, the hot ductility is lowered and cracks and flaws are generated. Therefore, Cu is preferably 0.50% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Cu, 0.01% or more is preferable, and 0.05% or more is more preferable.

Pb:0.45%以下
Pbは、快削性の向上に寄与する元素である。0.45%を超えると、靱性が低下するので、Pbは0.45%以下が好ましい。より好ましくは0.30%以下である。Pbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Pb: 0.45% or less Pb is an element that contributes to the improvement of free-cutting property. If it exceeds 0.45%, the toughness decreases, so the Pb is preferably 0.45% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Pb, 0.005% or more is preferable, and 0.010% or more is more preferable.

Bi:0.20%以下
Biは、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Biは0.20%以下が好ましい。より好ましくは0.16%以下である。Biの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Bi: 0.20% or less Bi is an element that contributes to the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Bi is preferably 0.20% or less. More preferably, it is 0.16% or less. From the viewpoint of ensuring the effect of adding Bi, 0.005% or more is preferable, and 0.010% or more is more preferable.

Te:0.010%以下
Teは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Teは0.010%以下が好ましい。より好ましくは0.006%以下である。Teの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Te: 0.010% or less Te is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Te is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Te, 0.005% or more is preferable, and 0.010% or more is more preferable.

Sb:0.20%以下
Sbは、耐硫酸性及び耐塩酸性を主体とする耐食性の向上、及び、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Sbは0.20%以下が好ましい。より好ましくは0.15%以下である。Sbの添加効果を確保する点で、0.01%以上が好ましく、0.03%以上がより好ましい。
Sb: 0.20% or less Sb is an element that contributes to the improvement of corrosion resistance, mainly sulfuric acid resistance and hydrochloric acid resistance, and the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Sb is preferably 0.20% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Sb, 0.01% or more is preferable, and 0.03% or more is more preferable.

Mg:0.010%以下
Mgは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Mgは0.010%以下が好ましい。より好ましくは0.006%以下である。Mgの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以上がより好ましい。
Mg: 0.010% or less Mg is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Mg is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Mg, 0.0005% or more is preferable, and 0.0010% or more is more preferable.

Ca:0.010%以下
Caは、脱酸元素であり、脱酸反応で、凝集合し易い低融点のCaO−Al23系介在物を形成する元素である。0.010%を超えると、Al23系介在物が、低融点のCaO−Al23系介在物に複合化して粗大化し、粗大化したCaO−Al23系介在物は、圧延温度で液相化せず、粗大なまま鋼中に残存するので、Caは0.010%以下が好ましい。より好ましくは0.006%以下である。
Ca: 0.010% or less Ca is a deoxidizing element and is an element that forms CaO-Al 2 O 3 based inclusions having a low melting point that easily aggregates in the deoxidizing reaction. When it exceeds 0.010%, the Al 2 O 3 system inclusions are compounded with the low melting point CaO-Al 2 O 3 system inclusions and coarsened, and the coarsened CaO-Al 2 O 3 system inclusions are released. Ca is preferably 0.010% or less because it does not become liquid phase at the rolling temperature and remains coarse in the steel. More preferably, it is 0.006% or less.

Caは、少ないほど好ましいので、下限は限定しないが、不可避的に0.0001%程度は残存するので、実用鋼上、0.0001%が実質的な下限である。 Since the smaller the amount of Ca, the more preferable it is, the lower limit is not limited, but since about 0.0001% inevitably remains, 0.0001% is a substantial lower limit in practical steel.

REM:0.010%以下
REM(希土類元素、La、Ce、Pr、及び、Ndの1種又は2種以上)は、Al又はAl−Siで十分に脱酸した溶鋼において、溶鋼中のCaOや、介在物中のCaOを還元して、CaO−Al23系介在物を改質する作用をなす元素である。0.010%を超えると、介在物中に、REM濃度の高い低融点の化合物相が出現し、介在物の凝集合が助長されて、粗大な介在物が生成するので、REMは0.010%以下が好ましい。より好ましくは0.007%以下である。
REM: 0.010% or less REM (one or more of rare earth elements, La, Ce, Pr, and Nd) is CaO or CaO in molten steel in molten steel sufficiently deoxidized with Al or Al-Si. , It is an element that reduces CaO in inclusions and modifies CaO-Al 2 O 3 based inclusions. If it exceeds 0.010%, a low melting point compound phase having a high REM concentration appears in the inclusions, and the aggregation of inclusions is promoted to form coarse inclusions, so that the REM is 0.010. % Or less is preferable. More preferably, it is 0.007% or less.

Al又はAl−Siで十分に脱酸した溶鋼において、REMの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以下がより好ましい。 In molten steel sufficiently deoxidized with Al or Al—Si, 0.0005% or more is preferable, and 0.0010% or less is more preferable, from the viewpoint of ensuring the effect of adding REM.

O:0.003%以下
Oは、酸化物を形成する元素である。0.003%を超えると、粗大な酸化物が生成し、転動疲労寿命が低下するので、Oは0.003%以下が好ましい。より好ましくは0.002%以下である。下限は0%を含むが、Oを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
O: 0.003% or less O is an element that forms an oxide. If it exceeds 0.003%, coarse oxides are generated and the rolling fatigue life is shortened. Therefore, O is preferably 0.003% or less. More preferably, it is 0.002% or less. The lower limit includes 0%, but if O is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

溶鋼の成分組成において、残部はFe及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素であり、溶鋼の特性、さらに、溶鋼を鋳造した鋼の特性を阻害しない範囲で許容される元素である。 In the composition of molten steel, the balance is Fe and unavoidable impurities. Inevitable impurities are elements that are inevitably mixed in from the steel raw material and / or in the steelmaking process, and are permissible elements as long as they do not impair the characteristics of the molten steel and the characteristics of the cast steel.

次に、本発明の実施例について説明する。ただし、本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。そのため、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. However, the conditions in this example are one condition example adopted for confirming the feasibility and effect of the present invention. Therefore, the present invention is not limited to this one-condition example. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

(実施例)
表1に示す成分組成の溶鋼に、転炉による一次精錬、LF処理及びRH処理による二次精錬を施し、連続鋳造して鋼を製造した。
(Example)
The molten steel having the composition shown in Table 1 was subjected to primary refining by a converter, secondary refining by LF treatment and RH treatment, and continuously cast to produce steel.

具体的には、270t転炉で一次精錬を施した溶鋼を出鋼する際、溶鋼を、Si、Mn、Alの1種又は2種以上にて脱酸し、脱酸した溶鋼に、所定のスラグ組成を用いるLF処理で二次精錬を施し、次いで、RH処理で成分組成を調整し、清浄化処理を施した後、連続鋳造して鋳片とした。この鋳片を、加熱炉にて加熱保持した後、分塊圧延に供し鋼片とした。 Specifically, when the molten steel that has undergone primary refining in a 270t converter is ejected, the molten steel is deoxidized with one or more of Si, Mn, and Al, and the deoxidized molten steel is given a predetermined value. Secondary refining was performed by LF treatment using a slag composition, then the component composition was adjusted by RH treatment, purification treatment was performed, and then continuous casting was performed to obtain slabs. This slab was heated and held in a heating furnace and then subjected to bulk rolling to obtain a steel slab.

上記鋼片において、極値統計法により、予測面積30000mm2における非金属介在物の極値統計最大予測径[μm]を推定した。極値統計による介在物の最大予測径(√area(max)の推定は、例えば、「金属疲労 微小欠陥と介在物の影響」(村上敬宜著、養賢堂、1993年発行、p.223−239)に記載の方法により行うことができる。用いた方法は、二次元的検査により、一定面積内で観察される最大介在物径を推定するという二次元的手法である。 In the above steel pieces, the maximum predicted diameter [μm] of the extremum statistics of non-metal inclusions in the predicted area of 30,000 mm 2 was estimated by the extremum statistical method. The maximum predicted diameter of inclusions (√area (max)) estimated by extreme value statistics is, for example, "Metal fatigue micro-defects and the effects of inclusions" (Y. Murakami, Yokendo, 1993, p.223). -239) can be performed. The method used is a two-dimensional method of estimating the maximum inclusion diameter observed within a certain area by a two-dimensional inspection.

上記極値統計法を用いて、鋼片のL断面(ルーズ面の中心線と、この対向面の中心線、及び、鋳片の中心線を含む断面)のルーズ面側の1/4の位置から試料を採取して、光学顕微鏡で撮像した非金属介在物の画像から、検査基準面:100mm2(10×10mm)、検査視野:16、予測を行う面積30000mm2の介在物の最大予測径√area(max)を算出した。 Using the above extreme value statistical method, the position of 1/4 of the L cross section of the steel piece (the center line of the loose surface, the center line of the facing surface, and the cross section including the center line of the slab) on the loose surface side. From the image of the non-metal inclusions taken with an optical microscope, the inspection reference plane: 100 mm 2 (10 × 10 mm), the inspection field: 16, and the predicted area of 30,000 mm 2 maximum predicted diameter of the inclusions. √ area (max) was calculated.

具体的には、観察で得られた介在物の最大径の16個のデータ(16視野のデータ)を上記文献に記載の方法に従い、極値確率用紙にプロットして、最大介在物分布直線(最大介在物と極値統計基準化変数の一次関数)を求め、最大介在物分布直線を外挿することにより、面積:30000mm2における介在物の最大予測径√area(max)を推定した。 Specifically, 16 data (data of 16 fields of view) of the maximum diameter of the inclusions obtained by the observation are plotted on the extremum probability sheet according to the method described in the above document, and the maximum inclusion distribution straight line (data of the maximum inclusions) ( By obtaining the maximum inclusions and the linear function of the extremum statistical standardization variable) and extrapolating the maximum inclusion distribution straight line, the maximum predicted diameter of inclusions √area (max) at an area of 30,000 mm 2 was estimated.

上記推定及び算出の結果を、表1に併せて示す。 The results of the above estimation and calculation are also shown in Table 1.

Figure 0006957890
Figure 0006957890

発明例No.1〜20は、復圧時の溶鋼環流ガス流量が適正範囲内であるので、極値統計による最大予測粒径が16〜29μmで、良好な値を示している。比較例No.23、24、27、30、及び、33は、復圧時の溶鋼環流ガス流量が上限値から外れているので、極値統計最大予測粒径に改善が見られない。 Invention Example No. In Nos. 1 to 20, since the flow rate of the molten steel recirculation gas at the time of recompression is within an appropriate range, the maximum predicted particle size based on the extreme value statistics is 16 to 29 μm, which is a good value. Comparative Example No. In 23, 24, 27, 30, and 33, since the molten steel recirculation gas flow rate at the time of recompression is out of the upper limit value, no improvement is seen in the maximum predicted particle size of the extreme value statistics.

比較例No.21、22、25、26、28、29、31、及び、32は、復圧時の溶鋼環流ガス流量が下限値から外れているので、浸漬管に環流ガスを吹き込む管に溶鋼が差し込んでしまい、次のRH処理以降、適切な溶鋼環流ガス流量が得られず、適正な操業の継続が困難になった。 Comparative Example No. In 21, 22, 25, 26, 28, 29, 31, and 32, the molten steel recirculation gas flow rate at the time of recompression is out of the lower limit, so the molten steel is inserted into the pipe that blows the recirculation gas into the immersion pipe. After the next RH treatment, an appropriate molten steel recirculation gas flow rate could not be obtained, and it became difficult to continue proper operation.

以上のとおり、発明例では、従来操業の比較例に比較し、介在物の粗大化が抑制されているので、機械特性に優れた鋼が得られることは明らかである。 As described above, in the invention example, the coarsening of inclusions is suppressed as compared with the comparative example of the conventional operation, so that it is clear that a steel having excellent mechanical properties can be obtained.

前述したように、本発明によれば、真空脱ガス処理の復圧時、溶鋼環流の流速を最適化して、CaO含有介在物の溶鋼への混入を抑制できるので、鋼中の介在物の量及び大きさを低減することができ、機械特性に優れた鋼を提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, when the vacuum degassing treatment is depressurized, the flow velocity of the molten steel recirculation can be optimized to suppress the mixing of CaO-containing inclusions in the molten steel, so that the amount of inclusions in the steel can be suppressed. And the size can be reduced, and steel having excellent mechanical properties can be provided. Therefore, the present invention has high utility in the steel industry.

Claims (6)

C、Si、Mn、P、及び、Sを含有する溶鋼に真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施して、溶鋼を精錬する精錬方法において、
真空脱ガス処理の終了後、真空槽内の圧力を減圧状態から大気圧へ戻す圧を行う際に、浸漬管から溶鋼中に供給する復圧用ガスの溶鋼1t当たりの環流ガス流量V[Nm3/t/分]を、下記式(1)を満たすように制御して復圧することを特徴とする溶鋼の精錬方法。
Figure 0006957890

0[Nm3/t/分]:真空脱ガス処理中の溶鋼環流ガス流量
In a refining method for refining molten steel by subjecting molten steel containing C, Si, Mn, P, and S to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube.
After completion of the vacuum degassing, the pressure in the vacuum chamber when in the return pressure to return from the vacuum state to the atmospheric pressure, recirculated gas flow rate V [Nm per molten steel 1t of condensate pressure gas supplied from the dip tube into the molten steel 3 / t / min] is controlled so as to satisfy the following formula (1) to repressurize, which is a method for refining molten steel.
Figure 0006957890

V 0 [Nm 3 / t / min]: Flow rate of molten steel recirculation gas during vacuum degassing treatment
前記真空脱ガス処理をRH式精錬装置で行うことを特徴とする請求項1に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 1, wherein the vacuum degassing treatment is performed by an RH type refining apparatus. 前記RH式精錬装置で復圧を行なう際、前記復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする請求項2に記載の溶鋼の精錬方法。 2. The second aspect of the present invention is that when the decompression is performed by the RH type refining apparatus, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion which is directly supplied into the vacuum chamber. The method for refining molten steel described in. 前記復圧用ガスが不活性ガスであることを特徴とする請求項3に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 3, wherein the decompression gas is an inert gas. 前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする請求項1〜4のいずれか1項に記載の溶鋼の精錬方法。 The molten steel contains C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten steel according to any one of claims 1 to 4, wherein the balance is composed of Fe and unavoidable impurities. 前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする請求項5に記載の溶鋼の精錬方法。 The molten steel further contains, in terms of mass%, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM: 0. The method for refining molten steel according to claim 5, wherein one or more of 010% and O: 0.003% or less are contained.
JP2017021330A 2017-02-08 2017-02-08 Refining method of molten steel Active JP6957890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021330A JP6957890B2 (en) 2017-02-08 2017-02-08 Refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021330A JP6957890B2 (en) 2017-02-08 2017-02-08 Refining method of molten steel

Publications (2)

Publication Number Publication Date
JP2018127670A JP2018127670A (en) 2018-08-16
JP6957890B2 true JP6957890B2 (en) 2021-11-02

Family

ID=63172223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021330A Active JP6957890B2 (en) 2017-02-08 2017-02-08 Refining method of molten steel

Country Status (1)

Country Link
JP (1) JP6957890B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913607B (en) * 2019-03-13 2021-01-08 河钢股份有限公司承德分公司 Smelting method of ultra-low carbon steel
CN114540581B (en) * 2022-02-28 2023-05-30 广东韶钢松山股份有限公司 RH vacuum treatment regulation and control method

Also Published As

Publication number Publication date
JP2018127670A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
EP2990496B1 (en) Spring steel having excellent fatigue characteristics and process for manufacturing same
JP5652555B2 (en) Bearing steel and manufacturing method thereof
KR101830023B1 (en) Spring steel and method for producing same
US9809875B2 (en) Case hardening steel with excellent fatigue properties
JP5794396B2 (en) Induction hardening steel with excellent fatigue properties
JP5158272B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
JP5609946B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
JP5760683B2 (en) Manufacturing method of high fatigue strength steel slab
WO2012115181A1 (en) High-strength steel sheet exhibiting superior stretch-flange formability and bendability, and method of preparing ingot steel
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
JP6957890B2 (en) Refining method of molten steel
JP6766687B2 (en) Refining method of molten steel
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP6816501B2 (en) Refining method of molten steel
JP6756264B2 (en) Refining method of molten steel
JP7028376B1 (en) Manufacturing method of high cleanliness steel
JP2003160838A (en) Seamless steel pipe and manufacturing method therefor
JP6819353B2 (en) Manufacturing method of carbon steel slabs and carbon steel shards
JP2007009235A (en) Steel sheet with excellent workability, and its manufacturing method
JP2006188755A (en) Steel sheet with adequate ductility and method for manufacturing steel ingot for obtaining the steel sheet
KR101536405B1 (en) Steel for high carbon chromium bearing having excellent fatigue resistance properties and method for manufacturing the same
JP2005272953A (en) Bearing material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210720

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210727

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R151 Written notification of patent or utility model registration

Ref document number: 6957890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151