JP6756264B2 - Refining method of molten steel - Google Patents

Refining method of molten steel Download PDF

Info

Publication number
JP6756264B2
JP6756264B2 JP2016252047A JP2016252047A JP6756264B2 JP 6756264 B2 JP6756264 B2 JP 6756264B2 JP 2016252047 A JP2016252047 A JP 2016252047A JP 2016252047 A JP2016252047 A JP 2016252047A JP 6756264 B2 JP6756264 B2 JP 6756264B2
Authority
JP
Japan
Prior art keywords
molten steel
less
refining
slag
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016252047A
Other languages
Japanese (ja)
Other versions
JP2018104764A (en
Inventor
暁 峰田
暁 峰田
祐哉 木村
祐哉 木村
進 工藤
進 工藤
怜爾 竹島
怜爾 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016252047A priority Critical patent/JP6756264B2/en
Publication of JP2018104764A publication Critical patent/JP2018104764A/en
Application granted granted Critical
Publication of JP6756264B2 publication Critical patent/JP6756264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、清浄性の高い溶鋼を製造する精錬方法、特に、真空脱ガス精錬を終了する時の精錬方法に関するものである。 The present invention relates to a refining method for producing molten steel with high cleanliness, particularly a refining method at the end of vacuum degassing refining.

近年、機械装置の高性能化や機械部品の小型化を図るため、機械特性に優れる鋼が求められている。鋼は、一般に、転炉で、溶鋼を脱珪処理、脱燐処理、さらに、脱炭処理を行った後、二次精錬工程にて、溶鋼の成分組成を調製し、溶鋼中の介在物を低減し、次いで、連続鋳造して製造されるが、機械特性を高めるためには、溶鋼中の介在物をできるだけ低減する必要がある。 In recent years, steel having excellent mechanical properties has been required in order to improve the performance of mechanical devices and reduce the size of mechanical parts. In general, steel is desiliconized, dephosphorized, and decarburized in a converter, and then the composition of the molten steel is prepared in a secondary refining step to remove inclusions in the molten steel. It is produced by continuous casting after reduction, but in order to improve mechanical properties, it is necessary to reduce inclusions in molten steel as much as possible.

例えば、軸受鋼においては、鋼中の介在物の量や大きさが、転動疲労寿命を決定するので、二次精錬工程にて、溶鋼に、取鍋スラグ精錬処理(以下「LF処理」ということがある。)や、真空脱ガス処理(以下「RH処理」ということがある。)を施し、溶鋼中の介在物の低減を図っている。 For example, in bearing steel, the amount and size of inclusions in the steel determine the rolling fatigue life, so in the secondary refining process, the molten steel is subjected to ladle slag refining treatment (hereinafter referred to as "LF treatment"). In some cases) and vacuum degassing treatment (hereinafter sometimes referred to as "RH treatment") are performed to reduce inclusions in molten steel.

RH処理は、取鍋中の溶鋼に、二本の浸漬管を浸漬し、浸漬管に繋がる真空槽を減圧して、大気圧との差圧で溶鋼を真空槽内に吸い上げ、溶鋼環流ガスを、一方の浸漬管から溶鋼内に供給し、溶鋼を真空槽内と取鍋の間で環流させて、脱ガスや、介在物の低減を図る処理である。 In the RH treatment, two dipping pipes are immersed in the molten steel in the ladle, the vacuum tank connected to the dipping pipe is depressurized, and the molten steel is sucked up into the vacuum tank by the pressure difference from the atmospheric pressure to release the molten steel recirculation gas. This is a process in which the molten steel is supplied into the molten steel from one of the immersion pipes, and the molten steel is circulated between the inside of the vacuum chamber and the ladle to degas and reduce inclusions.

RH処理では、溶鋼を強撹拌することになるので、介在物の除去は促進されるが、一方で、溶鋼中へのスラグの巻込みが発生するので、溶鋼の環流制御が重要で、これまで、環流制御に関する技術が数多く提案されている。 In the RH treatment, the molten steel is strongly agitated, so that the removal of inclusions is promoted, but on the other hand, slag is involved in the molten steel, so that the circulation control of the molten steel is important. , Many techniques related to recirculation control have been proposed.

例えば、特許文献1には、塩基度3以上のスラグで還元精錬を実施した後、環流式脱ガス装置によって、処理時間の2/3を高環流、1/3を弱環流にして真空脱ガス精錬を行なうことを特徴とする軸受鋼の製造方法が提案されている。 For example, in Patent Document 1, after performing reduction refining with slag having a basicity of 3 or more, vacuum degassing is performed by using a recirculation type degassing device to set 2/3 of the processing time to high recirculation and 1/3 to weak recirculation. A method for producing bearing steel, which is characterized by refining, has been proposed.

特許文献2には、アーク溶解炉又は転炉で製造した溶鋼を取鍋に移注して精錬する際、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を全溶鋼の8倍以上として脱ガスを25分以上行なうことを特徴とする高清浄鋼の製造方法が提案されている。 In Patent Document 2, when the molten steel produced in an arc melting furnace or a converter is transferred to a ladle and refined, the refining in the ladle is set to 60 minutes or less, and the total ring flow rate of the molten steel by the recirculation type degassing device is set to 60 minutes or less. A method for producing highly clean steel has been proposed, which comprises performing degassing for 25 minutes or more, which is 8 times or more that of molten steel.

特許文献3には、転炉又は電気炉から出鋼した溶鋼を取鍋精錬装置で精錬した後、環流式真空脱ガス装置で精錬して高清浄度鋼を製造する際、環流式真空脱ガス装置で行なう精錬処理でのスラグ塩基度を6.5以上13.5以下とし、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半処理では、溶鋼環流量180ton/min以上、210ton/min以下の高環流状態とし、後半処理では、溶鋼環流量110ton/min以上、140ton/min以下の弱環流状態とすることを特徴とする高清浄度鋼の製造方法が提案されている。 Patent Document 3 states that when molten steel discharged from a converter or an electric furnace is smelted by a ladle smelting device and then smelted by a recirculation type vacuum degassing device to produce high-cleanliness steel, the recirculation type vacuum degassing is performed. The slag basicity in the refining process performed by the device is 6.5 or more and 13.5 or less, and in the first half treatment of 1/3 to 1/2 of the total processing time of the recirculation type vacuum degassing device, the molten steel ring flow rate is 180 ton / min. As described above, a method for producing high-cleanliness steel has been proposed, which comprises a high recirculation state of 210 ton / min or less and a weak recirculation state of a molten steel ring flow rate of 110 ton / min or more and 140 ton / min or less in the latter half treatment. There is.

特許文献4には、溶鋼の真空精錬処理終了時に真空槽内に窒素ガスを導入して、真空から常圧に復圧する真空精錬装置の復圧方法において、溶鋼浴表面にはアルゴンガス等の不活性ガスを導入して、溶鋼の吸窒を防止する復圧方法が提案されている。 Patent Document 4 describes in a method of repressurizing a vacuum refining apparatus in which nitrogen gas is introduced into a vacuum chamber at the end of a vacuum refining process for molten steel to restore the pressure from vacuum to normal pressure, and argon gas or the like is not present on the surface of the molten steel bath. A vacuum recovery method has been proposed in which an active gas is introduced to prevent nitrogen absorption of molten steel.

特許文献5には、真空槽内にスラグを持ち込まない状態で、真空槽内の真空度に応じて攪拌用ガスを供給することを特徴とする高清浄度極低炭素鋼の製造方法が提案されている。 Patent Document 5 proposes a method for producing high-cleanliness ultra-low carbon steel, which comprises supplying a stirring gas according to the degree of vacuum in the vacuum chamber without bringing slag into the vacuum chamber. ing.

特開昭62−063650号公報Japanese Unexamined Patent Publication No. 62-03650 特開2001−342516号公報Japanese Unexamined Patent Publication No. 2001-342516 特開2008−133505号公報Japanese Unexamined Patent Publication No. 2008-133505 特開平05−331526号公報Japanese Unexamined Patent Publication No. 05-331526 特開平08−199225号公報Japanese Unexamined Patent Publication No. 08-199225

前述したように、鋼の機械特性に、鋼中に存在する介在物、主に、酸化物系介在物の量と大きさが大きく影響する。鋼中の酸化物系介在物のうち、特に、数10μm程の粗大な介在物は、CaO含有の低融点介在物(CaO含有介在物)である。 As described above, the mechanical properties of steel are greatly affected by the amount and size of inclusions present in the steel, mainly oxide-based inclusions. Among the oxide-based inclusions in steel, particularly coarse inclusions of about several tens of μm are CaO-containing low melting point inclusions (CaO-containing inclusions).

粗大なCaO含有介在物は、精錬で使用する取鍋スラグが、溶鋼中に巻き込まれて発生するスラグ系介在物、スラグ中のCaOが還元されて溶鋼に混入し、溶鋼中のAl23やMgO−Al23と反応して生成する介在物、さらに、これらの介在物が溶鋼中の介在物を取り込んで粗大化した介在物である。 The coarse CaO-containing inclusions are slag-based inclusions generated by the ladle slag used in refining being caught in the molten steel, and CaO in the slag is reduced and mixed into the molten steel, and Al 2 O 3 in the molten steel. And the inclusions formed by reacting with MgO-Al 2 O 3, and further, these inclusions are coarsened inclusions by incorporating the inclusions in the molten steel.

粗大なCaO含有介在物は、品質管理指標の極値統計値や、製品特性の疲労寿命を悪化させるので、その量と大きさを低減する必要があるが、そのためには、凝集合体の起点となる低融点介在物の量と大きさを低減するとともに、低融点介在物に取り込まれる溶鋼中の介在物の量と大きさ低減することが有効である。 Coarse CaO-containing inclusions worsen the extreme statistical values of quality control indicators and the fatigue life of product characteristics, so it is necessary to reduce the amount and size, but for that purpose, the starting point of agglomeration and coalescence It is effective to reduce the amount and size of the low melting point inclusions, and to reduce the amount and size of the inclusions in the molten steel incorporated into the low melting point inclusions.

これら介在物の量と大きさを低減するためには、製造の各工程(取鍋精錬−RH処理−連続鋳造)において、溶鋼中への介在物の混入を防止する、又は、溶鋼中の介在物を除去する等の介在物低減対策が必要である。 In order to reduce the amount and size of these inclusions, in each manufacturing process (ladle refining-RH treatment-continuous casting), prevention of inclusions in the molten steel or inclusions in the molten steel It is necessary to take measures to reduce inclusions such as removing objects.

溶鋼中への取鍋スラグの巻込みは、RH処理において、溶鋼流速が大きい場合や、スラグ/メタル界面の擾乱が激しい場合に、その頻度が大きくなり、混入するスラグ系介在物の量と大きさが、ともに増大する。 Entrainment of ladle slag in molten steel increases in frequency when the molten steel flow velocity is high or when the slag / metal interface is severely disturbed in the RH treatment, and the amount and amount of slag-based inclusions mixed in are large. Both increase.

RH処理の終了後は、真空槽内の溶鋼を取鍋に戻すため、真空槽内の減圧状態を大気圧へ戻す「復圧」を実施するが、復圧時には、真空槽内に吸い上げられていた溶鋼、及び、浸漬管内に貯留していた溶鋼が、急激に降下して取鍋内に戻るので、急激に降下する溶鋼が誘起する溶鋼の下降流速は非常に大きく、スラグ/メタル界面が激しく搖動し、スラグが溶鋼に巻き込まれるとともに、巻き込まれたスラグは取鍋の深部まで引き込まれることになる。 After the RH treatment is completed, in order to return the molten steel in the vacuum chamber to the ladle, "reinforcement" is performed to return the decompression state in the vacuum chamber to atmospheric pressure, but at the time of restoration, it is sucked up in the vacuum chamber. Since the molten steel and the molten steel stored in the immersion pipe rapidly descend and return to the ladle, the falling flow velocity of the molten steel induced by the rapidly descending molten steel is very large, and the slag / metal interface is violent. As the slag sways and gets caught in the molten steel, the slag that gets caught is pulled deep into the ladle.

また、復圧時の溶鋼環流ガス流量が、RH処理中の溶鋼環流ガス流量と同じ強環流条件であれば、溶鋼は、復圧中も、スラグ巻込みの臨界溶鋼流速を超える流速で環流することになるので、真空槽内のスラグは、常に、溶鋼中に巻き込まれ易い状態におかれることとなる。 Further, if the molten steel recirculation gas flow rate at the time of recompression is the same strong recirculation condition as the molten steel recirculation gas flow rate during the RH treatment, the molten steel recirculates at a flow rate exceeding the critical molten steel flow velocity involving slag even during the recompression. Therefore, the slag in the vacuum chamber is always in a state where it is easily caught in the molten steel.

さらに、復圧中、溶鋼環流ガスを溶鋼中に供給し続けるので、復圧時、真空槽内に堆積しているスラグが、溶鋼環流用ガスを供給する浸漬管を通って取鍋中に戻る途中、上記ガスによる攪拌によりスラグが溶鋼中に懸濁し、取鍋の深部に浸入する。その結果、鋼の清浄性が悪化する。 Further, since the molten steel recirculation gas is continuously supplied to the molten steel during the recompression, the slag accumulated in the vacuum chamber at the time of recompression returns to the ladle through the immersion pipe for supplying the molten steel recirculation gas. On the way, the slag is suspended in the molten steel by stirring with the above gas and penetrates into the deep part of the ladle. As a result, the cleanliness of the steel deteriorates.

特許文献1の方法では、環流式脱ガス処理の前半2/3を高環流とし、後半1/3を弱環流としているが、特許文献1に、復圧時の環流条件は記載されていない。また、環流式脱ガス処理の鋼板を弱環流にすると、溶鋼中の全酸素量T.Oを十分に低減できない可能性がある。 In the method of Patent Document 1, the first half 2/3 of the recirculation type degassing treatment is a high recirculation and the second half is a weak recirculation, but Patent Document 1 does not describe the recirculation conditions at the time of recompression. Further, when the recirculation type degassing steel sheet is weakly recirculated, the total oxygen content in the molten steel is T.I. It may not be possible to reduce O sufficiently.

特許文献2の方法では、取鍋における精錬を60分以下とし、環流式脱ガス装置による溶鋼の環流量を、全溶鋼の8倍以上として脱ガスを25分以上行なうが、特許文献2に、復圧時の環流条件は記載されておらず、また、溶鋼中へのスラグ巻込みに影響する環流条件も不明瞭である。 In the method of Patent Document 2, refining in the ladle is 60 minutes or less, the ring flow rate of the molten steel by the recirculation type degassing device is 8 times or more that of the total molten steel, and degassing is performed for 25 minutes or more. The recirculation conditions at the time of recompression are not described, and the recirculation conditions that affect the slag entrainment in the molten steel are also unclear.

特許文献3の方法では、環流式真空脱ガス装置の全処理時間の1/3〜1/2の前半を高環流状態とし、後半を弱環流状態としているが、特許文献1の方法と同様に、復圧時の環流条件は記載されておらず、また、後半を弱撹拌とするので、溶鋼の全酸素量T.Oを十分に下げることができない恐れがある。 In the method of Patent Document 3, the first half of the total processing time of the recirculation type vacuum degassing device is set to the high recirculation state and the latter half is set to the weak recirculation state, but the same as the method of Patent Document 1. , The recirculation conditions at the time of recompression are not described, and since the latter half is weakly agitated, the total oxygen content of the molten steel is T.I. There is a risk that O cannot be lowered sufficiently.

特許文献4の方法では、復圧時のガス種等が規定されているが、特許文献4に、真空槽内及び取鍋内にて溶鋼のスラグ巻き込みを抑制する復圧条件は記載されていない。特許文献5の方法では、真空槽内の圧力に応じた適切な攪拌ガス流速が規定されているが、特許文献5に、真空槽内及び取鍋内において、溶鋼中へのスラグ巻込みを抑制する復圧条件は記載されていない。 In the method of Patent Document 4, the gas type and the like at the time of decompression are specified, but Patent Document 4 does not describe the decompression condition for suppressing slag entrainment of molten steel in the vacuum chamber and the ladle. .. In the method of Patent Document 5, an appropriate stirring gas flow velocity according to the pressure in the vacuum chamber is defined, but in Patent Document 5, slag entrainment in molten steel is suppressed in the vacuum chamber and the ladle. The conditions for repressurization are not described.

本発明は、従来技術の現状に鑑み、溶鋼の真空脱ガス処理の復圧時において、非定常時に生じる溶鋼のスラグ巻込みを抑制して、鋼中の粗大なCaO含有介在物の量と大きさを低減し、清浄性の高い鋼を製造することを課題とし、該課題を解決する溶鋼の精錬方法を提供することを目的とする。 In view of the current state of the prior art, the present invention suppresses slag entrainment of molten steel that occurs during unsteady state during decompression of vacuum degassing treatment of molten steel, and the amount and size of coarse CaO-containing inclusions in the steel. An object of the present invention is to produce steel having high cleanliness by reducing slag, and an object of the present invention is to provide a refining method for molten steel that solves the problem.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、真空脱ガス処理の復圧時、溶鋼が上昇する浸漬管(以下「浸漬上昇管」ということがある。)側の溶鋼の盛上り高さを最適化すれば、真空槽内に集積するスラグが、浸漬上昇管内に浸入するのを抑制でき、さらに、スラグ系介在物が、取鍋の深部まで浸入するのを抑制でき、その結果、鋼中に存在するCaO含有介在物の量と大きさを大幅に低減できることを見いだした。 The present inventors have diligently studied a method for solving the above problems. As a result, if the rising height of the molten steel on the dipping pipe (hereinafter sometimes referred to as "immersion rising pipe") side where the molten steel rises during the repressurization of the vacuum degassing treatment is optimized, it will be accumulated in the vacuum chamber. It is possible to prevent the slag from infiltrating into the immersion riser pipe, and further to prevent the slag-based inclusions from invading deep into the ladle, resulting in the amount of CaO-containing inclusions present in the steel. We found that the size could be significantly reduced.

本発明は、上記の知見に基づいてなされたもので、その要旨は次の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)C、Si、Mn、P、及び、Sを含有する溶鋼に、真空槽に浸漬上昇管と浸漬下降管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽を減圧状態から大気圧へ復圧して、溶鋼の精錬を終了する精錬方法において、
(i)環流ガス吹込み口を備える浸漬上昇管側の真空槽内の溶鋼に、環流ガス吹込み口から環流ガスを吹き込み、
(ii)下記式(1)で定義し、下記式(2)を満たす高さΔh[m]の溶鋼の盛上りを形成して復圧処理を行なう
ことを特徴とする溶鋼の精錬方法。
(1) The molten steel containing C, Si, Mn, P, and S is subjected to vacuum degassing treatment with a degassing device equipped with a dipping rising pipe and a dipping descent pipe in the vacuum tank, and then the vacuum tank is depressurized. In the refining method that evacuates from to atmospheric pressure and finishes refining of molten steel
(I) Recirculation gas is blown into the molten steel in the vacuum chamber on the immersion riser pipe side provided with the recirculation gas inlet from the recirculation gas inlet.
(Ii) A method for refining molten steel, which is defined by the following equation (1) and is characterized in that a swelling of molten steel having a height of Δh [m] satisfying the following equation (2) is formed and a decompression treatment is performed.

Δh[m]=2.0×10-3・H-1.3・ε2/3 ・・・(1)
H[m]:浸漬上昇管の環流ガス吹込み位置から真空槽内の溶鋼湯面までの距離
ε[W]:下記式で定義する溶鋼攪拌力
ε[W]=0.00835・Uo2・Q0
o=(200/3π)・(Qo/D1 2・ρ)
o=11.4・G1/3・D1 4/3・ln(P3/P11/3
o[m/秒]:環流時の浸漬管内の溶鋼平均流速
o[t/分]:溶鋼環流量
G[NL/分]:吹き込みガス流量
1[m]:浸漬管の内径
1[Pa]:復圧開始前の真空槽内の圧力
3[Pa]:環流ガス吹込み位置における静圧
ρ[kg/m3]:溶鋼密度
Δh[m]>2dS2 ・・・(2) dS2=(4/3π)・(Vs/D2 2
s=(D1 2・dS1・π)/2
S2[m]:真空槽内のスラグ厚
s[m3]:真空槽内に持ち込まれるスラグ体積
2[m]:真空槽の内径
S1[m]:取鍋内のスラグ厚
Δh [m] = 2.0 × 10 -3・ H -1.3・ ε 2/3・ ・ ・ (1)
H [m]: Distance from the recirculation gas blowing position of the immersion riser pipe to the molten steel surface in the vacuum tank ε [W]: Molten steel stirring force ε [W] = 0.00835 ・ Uo 2・ as defined by the following formula Q 0
U o = (200 / 3π) ・ (Q o / D 1 2・ ρ)
Q o = 11.4 ・ G 1/3・ D 1 4/3・ ln (P 3 / P 1 ) 1/3
U o [m / sec]: Average flow velocity of molten steel in the immersion pipe during recirculation
Q o [t / min]: Molten steel ring flow rate
G [NL / min]: Flow rate of blown gas
D 1 [m]: Inner diameter of immersion tube
P 1 [Pa]: Pressure in the vacuum chamber before the start of repressurization
P 3 [Pa]: Static pressure at the recirculation gas blowing position
ρ [kg / m 3 ]: Molten steel density Δh [m]> 2d S2・ ・ ・ (2) d S2 = (4 / 3π) ・ (V s / D 2 2 )
V s = (D 1 2・ d S1・ π) / 2
d S2 [m]: Slag thickness in the vacuum chamber V s [m 3 ]: Slag volume brought into the vacuum chamber D 2 [m]: Inner diameter of the vacuum chamber d S1 [m]: Slag thickness in the ladle

(2)前記真空脱ガス処理をRH式精錬装置で行なうことを特徴とする前記(1)に記載の溶鋼の精錬方法。 (2) The method for refining molten steel according to (1) above, wherein the vacuum degassing treatment is performed by an RH type refining apparatus.

(3)前記RH式精錬装置で復圧を行なう際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする前記(2)に記載の溶鋼の精錬方法。 (3) When the repressurization is performed by the RH type refining apparatus, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion which is directly supplied into the vacuum chamber. The method for refining molten steel according to (2).

(4)前記復圧用ガスが不活性ガスであることを特徴とする前記(3)に記載の溶鋼の精錬方法。 (4) The method for refining molten steel according to (3) above, wherein the decompression gas is an inert gas.

(5)前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする前記(1)〜(4)のいずれかに記載の溶鋼の精錬方法。 (5) The molten steel is C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten iron according to any one of (1) to (4) above, wherein the method contains Fe and the balance is composed of Fe and unavoidable impurities.

(6)前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする前記(5)に記載の溶鋼の精錬方法。 (6) The molten steel further contains, in mass%, Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20. % Or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less , Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM The method for refining molten steel according to (5) above, wherein one or more of 0.010% or less and O: 0.003% or less are contained.

本発明によれば、真空脱ガス処理の復圧時、浸漬上昇管側の溶鋼に形成する盛上り高さを最適化して、浸漬上昇管側への真空槽内のスラグの流動を抑制し、粗大なCaO含有介在物の溶鋼中への混入を抑制できるので、鋼中の介在物の量及び大きさを大幅に低減することができ、清浄性が高く、機械特性に優れた鋼を提供することができる。 According to the present invention, when the pressure is restored in the vacuum degassing treatment, the rising height formed on the molten steel on the immersion riser pipe side is optimized to suppress the flow of slag in the vacuum chamber to the immersion riser pipe side. Since it is possible to suppress the mixing of coarse CaO-containing inclusions into the molten steel, the amount and size of inclusions in the steel can be significantly reduced, and a steel having high cleanliness and excellent mechanical properties is provided. be able to.

真空槽の浸漬上昇管と浸漬下降管を溶鋼とスラグに浸漬した態様を示す図である。It is a figure which shows the mode in which the immersion ascending pipe and the immersion descending pipe of a vacuum chamber are immersed in molten steel and slag. 真空槽内に溶鋼とスラグを上昇させた態様を示す図である。It is a figure which shows the mode which raised the molten steel and slag in a vacuum chamber. 真空脱ガス処理の通常の態様を示す図である。It is a figure which shows the normal mode of a vacuum degassing treatment. 復圧開始時の溶鋼とスラグの一態様を示す図である。It is a figure which shows one aspect of molten steel and slag at the start of recompression. 復圧処理中の溶鋼とスラグの一態様を示す図である。It is a figure which shows one aspect of molten steel and slag which is being recompressed. 復圧処理中の溶鋼とスラグの別の態様を示す図である。It is a figure which shows another aspect of molten steel and slag which is undergoing a decompression treatment. 図6に示す復圧処理の終期における溶鋼とスラグの態様を示す図である。It is a figure which shows the mode of molten steel and slag at the final stage of the decompression treatment shown in FIG. 復圧処理中の溶鋼盛上り高さとスラグの厚さの具体的な関係を示す図である。It is a figure which shows the concrete relationship between the slag height and the slag thickness during a pressure recovery process.

本発明の溶鋼の精錬方法(以下「本発明精錬方法」ということがある。)は、
C、Si、Mn、P、及び、Sを含有する溶鋼に、真空槽と浸漬管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽を減圧状態から大気圧へ復圧して、溶鋼の精錬を終了する精錬方法において、
(i)環流ガス吹込み口を備える浸漬上昇管側の真空槽内の溶鋼に、環流ガス吹込み口から環流ガスを吹き込み、
(ii)下記式(1)で定義し、下記式(2)を満たす高さΔh[m]の溶鋼の盛上りを形成して復圧処理を行なう
ことを特徴とする。
The method for refining molten steel of the present invention (hereinafter, may be referred to as “refining method for the present invention”)
The molten steel containing C, Si, Mn, P, and S is subjected to vacuum degassing treatment with a degassing device equipped with a vacuum tank and a dipping tube, and then the vacuum tank is depressurized from a reduced pressure state to atmospheric pressure. In the refining method to finish the refining of molten steel
(I) Recirculation gas is blown into the molten steel in the vacuum chamber on the immersion riser pipe side provided with the recirculation gas inlet from the recirculation gas inlet.
(Ii) It is characterized in that a swelling of molten steel having a height of Δh [m] that satisfies the following formula (2) is formed and a decompression treatment is performed, as defined by the following formula (1).

Δh[m]=2.0×10-3・H-1.3・ε2/3 ・・・(1)
H[m]:浸漬上昇管の環流ガス吹込み位置から真空槽内の溶鋼湯面までの距離
ε[W]:下記式で定義する溶鋼攪拌動力
ε[W]=0.00835・U0 2・Q0
0=(200/3π)・(Q0/D1 2・ρ)
0=11.4・G1/3・D1 4/3・ln(P3/P11/3
0[m/秒]:環流時の浸漬管内の溶鋼平均流速
0[t/分]:溶鋼環流量
G[NL/分]:吹き込みガス流量
1[m]:浸漬管の内径
1[Pa]:復圧開始前の真空槽内の圧力
3[Pa]:環流ガス吹込み位置における静圧
ρ[kg/m3]:溶鋼密度
Δh[m]>2dS2 ・・・(2) dS2=(4/3π)・(Vs/D2 2
s=(D1 2・dS1・π)/2
S2[m]:真空槽内のスラグ厚
s[m3]:真空槽内に持ち込まれるスラグ体積
2[m]:真空槽の内径
S1[m]:取鍋内のスラグ厚
Δh [m] = 2.0 × 10 -3・ H -1.3・ ε 2/3・ ・ ・ (1)
H [m]: Distance from the recirculation gas blowing position of the immersion riser pipe to the molten steel surface in the vacuum chamber ε [W]: Molten steel stirring power ε [W] = 0.00835 · U 0 2 defined by the following formula.・ Q 0
U 0 = (200 / 3π) ・ (Q 0 / D 1 2・ ρ)
Q 0 = 11.4 ・ G 1/3・ D 1 4/3・ ln (P 3 / P 1 ) 1/3
U 0 [m / sec]: Average flow velocity of molten steel in the immersion pipe during recirculation
Q 0 [t / min]: Molten steel ring flow rate
G [NL / min]: Flow rate of blown gas
D 1 [m]: Inner diameter of immersion tube
P 1 [Pa]: Pressure in the vacuum chamber before the start of repressurization
P 3 [Pa]: Static pressure at the recirculation gas blowing position
ρ [kg / m 3 ]: Molten steel density Δh [m]> 2d S2・ ・ ・ (2) d S2 = (4 / 3π) ・ (V s / D 2 2 )
V s = (D 1 2・ d S1・ π) / 2
d S2 [m]: Slag thickness in the vacuum chamber V s [m 3 ]: Slag volume brought into the vacuum chamber D 2 [m]: Inner diameter of the vacuum chamber d S1 [m]: Slag thickness in the ladle

以下、本発明精錬方法について説明する。 Hereinafter, the refining method of the present invention will be described.

前述したように、鋼中の非金属介在物のうち、特に、粗大なCaO含有介在物の個数及び大きさの増大は、鋼の機械特性、特に、延性、靱性、疲労特性等を阻害する要因である。本発明者らは、粗大なCaO含有介在物の個数及び大きさの増大を抑制する、又は、該個数及び大きさを低減する手法について鋭意検討した。 As described above, among the non-metallic inclusions in steel, an increase in the number and size of coarse CaO-containing inclusions is a factor that impairs the mechanical properties of steel, particularly ductility, toughness, fatigue properties and the like. Is. The present inventors have diligently studied a method for suppressing an increase in the number and size of coarse CaO-containing inclusions or reducing the number and size.

その結果、真空脱ガス処理の終了後、真空槽内に復圧用ガスを供給して、真空槽内の減圧状態を大気圧へ復圧する際、真空槽内において、浸漬上昇管側の溶鋼の盛上り高さを最適化すれば、有害なCaO含有介在物の溶鋼への混入を抑制して、鋼中の介在物を個数及び大きさを低減することができ、鋼の機械特性が向上することを見いだした。 As a result, after the vacuum degassing treatment is completed, when the depressurizing gas is supplied into the vacuum chamber to restore the depressurized state in the vacuum chamber to atmospheric pressure, the molten steel on the immersion riser pipe side is piled up in the vacuum chamber. By optimizing the climb height, it is possible to suppress the mixing of harmful CaO-containing inclusions into the molten steel, reduce the number and size of inclusions in the steel, and improve the mechanical properties of the steel. I found it.

最初に、真空槽内の溶鋼の盛上り高さ(以下「溶鋼盛上り高さ」ということがある。)と、真空槽内のスラグの厚み(以下「スラグ厚」ということがある。)の関係について説明する。 First, the height of the molten steel in the vacuum chamber (hereinafter sometimes referred to as the "height of the molten steel") and the thickness of the slag in the vacuum chamber (hereinafter sometimes referred to as the "slag thickness"). The relationship will be explained.

図1〜図3に、真空脱ガス処理の態様を示す。図1に、真空槽の浸漬上昇管と浸漬下降管を溶鋼とスラグに浸漬した態様を示し、図2に、真空槽内に溶鋼とスラグを上昇させた態様を示し、図3に、真空脱ガス処理の通常の態様を示す。 1 to 3 show an aspect of the vacuum degassing treatment. FIG. 1 shows a mode in which the immersion rising pipe and the immersion descending pipe of the vacuum tank are immersed in molten steel and slag, FIG. 2 shows a mode in which the molten steel and slag are raised in the vacuum tank, and FIG. The usual aspects of gas treatment are shown.

溶鋼に真空脱ガス処理を施す際、まず、図1に示すように、浸漬上昇管2aと浸漬下降管2bを備え、排気管4を介し排気装置(図示なし)に接続されている真空槽1を降下させ、又は、取鍋2を上昇させ、浸漬上昇管2aと浸漬下降管2bを、スラグ6aを通して溶鋼5aに浸漬する。 When performing a vacuum degassing treatment on molten steel, first, as shown in FIG. 1, a vacuum tank 1 provided with an immersion riser pipe 2a and a immersion lowering pipe 2b and connected to an exhaust device (not shown) via an exhaust pipe 4 Or the pan 2 is raised, and the immersion ascending pipe 2a and the immersion descending pipe 2b are immersed in the molten steel 5a through the slag 6a.

真空脱ガス処理を開始する際、浸漬上昇管2aと浸漬下降管2bの浸漬状態において、真空槽1内の大気を排気管4から排気して、真空槽1内を減圧状態にし、図2に示すように、真空槽1内に溶鋼5aとスラグ6aを吸い上げる。取鍋2内の溶鋼5aはスラグ6aに覆われているので、真空槽1内には、溶鋼5aとともにスラグ6aが吸い上げられ、吸い上げられた溶鋼5bはスラグ6bで覆われる。 When the vacuum degassing treatment is started, the air in the vacuum chamber 1 is exhausted from the exhaust pipe 4 in the immersed state of the immersion rising pipe 2a and the immersion descending pipe 2b, and the inside of the vacuum chamber 1 is depressurized. As shown, the molten steel 5a and the slag 6a are sucked up into the vacuum chamber 1. Since the molten steel 5a in the ladle 2 is covered with the slag 6a, the slag 6a is sucked up together with the molten steel 5a in the vacuum chamber 1, and the sucked molten steel 5b is covered with the slag 6b.

溶鋼5bがスラグ6bで覆われている状態で、浸漬上昇管2aに設けた環流ガス吹込み口3から、浸漬上昇管2a内の溶鋼に、環流ガス3a(アルゴン、窒素などの不活性ガス)を吹き込む。環流ガス3aの吹込みで生じるポンプ作用によって、浸漬上昇管2a内の溶鋼5bが上昇し、真空槽1内において、溶鋼5bの盛上り5cが形成され、真空槽1内の溶鋼5bは、浸漬下降管2bから、取鍋2へと、時計回りで循環する(図3中「矢印」参照)。 In a state where the molten steel 5b is covered with the slag 6b, the recirculation gas 3a (an inert gas such as argon or nitrogen) is introduced into the molten steel in the immersion riser pipe 2a from the recirculation gas inlet 3 provided in the immersion riser pipe 2a. Infuse. Due to the pumping action generated by the blowing of the recirculation gas 3a, the molten steel 5b in the immersion riser pipe 2a rises, a rise 5c of the molten steel 5b is formed in the vacuum tank 1, and the molten steel 5b in the vacuum tank 1 is immersed. It circulates clockwise from the descending pipe 2b to the pan 2 (see "arrow" in FIG. 3).

溶鋼5bの盛上り5cが、真空槽1の減圧雰囲気に曝されて、溶鋼5bに対する脱ガス処理が進行し、溶鋼5bが時計回りで循環する間、溶鋼5aに対する真空脱ガス処理が進行する。 The swelling 5c of the molten steel 5b is exposed to the reduced pressure atmosphere of the vacuum tank 1, and the degassing treatment for the molten steel 5b proceeds, and while the molten steel 5b circulates clockwise, the vacuum degassing treatment for the molten steel 5a proceeds.

真空脱ガス処理を終了する時、真空槽1内の減圧状態を大気圧へ戻すが、このとき、取鍋2へ戻る溶鋼5bの挙動と、真空脱ガス処理の間、浸漬下降管2bの上部に偏って滞留していたスラグ6bの挙動が、溶鋼5bが取鍋2へ戻った後の溶鋼5aの清浄性に大きく影響する。 When the vacuum degassing treatment is completed, the depressurized state in the vacuum tank 1 is returned to the atmospheric pressure. At this time, the behavior of the molten steel 5b returning to the ladle 2 and the upper part of the immersion lowering pipe 2b during the vacuum degassing treatment. The behavior of the slag 6b, which has been unevenly retained, greatly affects the cleanliness of the molten steel 5a after the molten steel 5b returns to the ladle 2.

図4に、復圧開始時の溶鋼とスラグの一態様を示す。図5に、復圧処理中の溶鋼とスラグの一態様を示す。 FIG. 4 shows one aspect of molten steel and slag at the start of recompression. FIG. 5 shows one aspect of molten steel and slag during the pressure recovery treatment.

図4に示すように、真空槽1内の減圧状態を大気圧に戻すと、真空槽1内の溶鋼5bの盛上り5cの高さは低くなり、それに伴い、浸漬上昇管2a近傍に存在するスラグは浸漬上昇管2a側に流動し、浸漬上昇管2aから、溶鋼5bとスラグ6bが取鍋2へ降下する。 As shown in FIG. 4, when the depressurized state in the vacuum chamber 1 is returned to the atmospheric pressure, the height of the slag 5c of the molten steel 5b in the vacuum chamber 1 becomes lower, and accordingly, it exists in the vicinity of the immersion riser pipe 2a. The slag flows toward the immersion riser pipe 2a, and the molten steel 5b and the slag 6b descend from the immersion riser pipe 2a to the ladle 2.

復圧処理中も、浸漬上昇管2aの環流ガス吹込み口3から環流ガス3aを供給するので、浸漬上昇管2a側の溶鋼5bとスラグ6bは、強攪拌されることになる。強攪拌によりスラグ6bが懸濁した溶鋼5bが浸漬管上昇管2aから取鍋2へ降下すると、溶鋼5a中にスラグ6bが懸濁した溶鋼域が形成され、取鍋2内の溶鋼5aの深部に浸入し、真空脱ガス処理を施した溶鋼の清浄性が低下する。 Since the recirculation gas 3a is supplied from the recirculation gas inlet 3 of the immersion riser pipe 2a even during the repressurization treatment, the molten steel 5b and the slag 6b on the immersion riser pipe 2a side are strongly agitated. When the molten steel 5b in which the slag 6b is suspended is lowered from the immersion pipe rising pipe 2a to the ladle 2 by strong stirring, a molten steel region in which the slag 6b is suspended is formed in the molten steel 5a, and the deep portion of the molten steel 5a in the ladle 2 is formed. The cleanliness of the molten steel that has been vacuum degassed is reduced.

そこで、本発明者らは、復圧処理時において、浸漬上昇管内に、真空槽1内に滞留するスラグを浸入させない手法について鋭意検討した。まず、本発明者らは、真空槽内の浸漬上昇管側に形成される溶鋼盛上り高さを、真空槽内に滞留するスラグ厚より高くすれば、真空槽内の浸漬下降管側に滞留するスラグはそのまま滞留し、浸漬上昇管側へは流動せず、浸漬上昇管内へのスラグの浸入は抑制されると発想した。 Therefore, the present inventors have diligently studied a method of preventing the slag staying in the vacuum chamber 1 from infiltrating into the immersion riser pipe during the pressure recovery treatment. First, if the height of the molten steel rising formed on the immersion rising pipe side in the vacuum chamber is made higher than the slag thickness retained in the vacuum chamber, the present inventors will stay on the immersion descending pipe side in the vacuum chamber. It was thought that the slag would stay as it was and would not flow to the immersion riser pipe side, and the infiltration of slag into the immersion riser pipe would be suppressed.

上記発想について、図面に基づいて説明する。 The above idea will be described based on the drawings.

図6に、復圧処理中の溶鋼とスラグの別の態様を示す。図7に、図6に示す復圧処理の終期における溶鋼とスラグの態様を示す。 FIG. 6 shows another aspect of molten steel and slag during the recompression treatment. FIG. 7 shows the mode of molten steel and slag at the final stage of the pressure recovery treatment shown in FIG.

図6に示す復圧処理中の溶鋼とスラグの態様において、浸漬上昇管2a側には、溶鋼5bの盛上り5cが形成されていて、浸漬上昇管2a側の溶鋼5bはスラグ6bで覆われていない。 In the mode of the molten steel and the slag during the pressure recovery treatment shown in FIG. 6, a swelling 5c of the molten steel 5b is formed on the immersion rising pipe 2a side, and the molten steel 5b on the immersion rising pipe 2a side is covered with the slag 6b. Not.

即ち、図3に示す真空脱ガス処理が終了した後、復圧処理を、真空槽1内の溶鋼5bの盛上り5cの高さが、真空槽1内において、浸漬降下管2bの上部に滞留するスラグ6bの厚さより高い状態で開始し、その状態を維持して復圧処理を進める。 That is, after the vacuum degassing treatment shown in FIG. 3 is completed, the depressurization treatment is performed so that the height of the swelling 5c of the molten steel 5b in the vacuum tank 1 stays in the upper part of the immersion descent pipe 2b in the vacuum tank 1. Start with a thickness higher than the thickness of the slag 6b to be slag, and proceed with the decompression treatment while maintaining that state.

高さが、スラグ6bの厚さより高い溶鋼5bの盛上り5cの存在により、復圧処理中、真空槽1内において、浸漬降下管2bの上部に滞留するスラグ6bは、そのまま滞留し、浸漬上昇管2a側に流動しないので、浸漬上昇管2aからは、溶鋼5bのみが取鍋2内に降下して、復圧処理が進行し、復圧処理の終期においても、図7に示すように、溶鋼5bのみが、浸漬上昇管2aから取鍋2内に降下する。 Due to the presence of the swelling 5c of the molten steel 5b whose height is higher than the thickness of the slag 6b, the slag 6b that stays in the upper part of the immersion descent pipe 2b in the vacuum chamber 1 during the pressure recovery treatment stays as it is and rises in immersion. Since it does not flow to the pipe 2a side, only the molten steel 5b descends into the ladle 2 from the immersion riser pipe 2a, and the pressure recovery treatment proceeds, and even at the end of the pressure recovery treatment, as shown in FIG. Only the molten steel 5b descends from the immersion riser pipe 2a into the ladle 2.

この点が、図4及び図5に示す従来の復圧処理と実質的に異なる点であり、本発明精錬方法の基本思想である。 This point is substantially different from the conventional decompression treatment shown in FIGS. 4 and 5, and is the basic idea of the refining method of the present invention.

溶鋼5bが浸漬上昇管2a内を降下する間、環流ガス吹込み口3から環流ガス3aを溶鋼5b内に吹き込むが、溶鋼5bを覆うスラグは存在しないので、溶鋼とスラグとの懸濁状態は生じない。 While the molten steel 5b descends into the immersion riser pipe 2a, the reflux gas 3a is blown into the molten steel 5b from the recirculation gas injection port 3, but since there is no slag covering the molten steel 5b, the suspended state of the molten steel and the slag is Does not occur.

本発明者らは、上記発想の下で、溶鋼盛上り高さとスラグ厚の具体的な関係について鋭意検討した。その結果、浸漬上昇管側の溶鋼盛上り高さが、浸漬下降管側のスラグ厚の2倍以下であると、浸漬下降管側に滞留しているスラグが浸漬上昇管側に流動して滞留し、図4及び図5に示す復圧処理となり、復圧処理中、溶鋼中へのスラグ巻込みが発生して、鋼中に粗大な介在物が残留することが解った。 Based on the above idea, the present inventors have diligently studied the specific relationship between the height of the molten steel rise and the slag thickness. As a result, when the height of the molten steel rising on the immersion rising pipe side is less than twice the slag thickness on the immersion descending pipe side, the slag staying on the immersion descending pipe side flows and stays on the immersion rising pipe side. Then, the pressure recovery treatment shown in FIGS. 4 and 5 was performed, and it was found that slag entrainment occurred in the molten steel during the pressure recovery treatment, and coarse inclusions remained in the steel.

図8に、復圧処理中の溶鋼の盛上り高さとスラグの厚さの具体的な関係を示す。 FIG. 8 shows a specific relationship between the rising height of the molten steel and the thickness of the slag during the pressure recovery treatment.

本発明精錬方法においては、復圧処理中、溶鋼が上昇する浸漬上昇管側に形成する溶鋼の盛上り高さを、下記式(1)で定義する。 In the refining method of the present invention, the rising height of the molten steel formed on the immersion rising pipe side where the molten steel rises during the repressurization treatment is defined by the following formula (1).

Δh[m]=2.0×10-3・H-1.3・ε2/3 ・・・(1)
Δh[m]は、浸漬上昇管の環流ガス吹込み位置から真空槽内の溶鋼湯面までの距離:H[m]と、下記式で定まる溶鋼攪拌力:ε[W] で定義できる。
ε[W]=0.00835・Uo 2・Qo
Δh [m] = 2.0 × 10 -3・ H -1.3・ ε 2/3・ ・ ・ (1)
Δh [m] can be defined by the distance from the recirculation gas blowing position of the immersion riser pipe to the molten steel surface in the vacuum chamber: H [m] and the molten steel stirring force: ε [W] determined by the following formula.
ε [W] = 0.00835 ・ U o 2・ Q o

o=(200/3π)・(Qo/D1 2・ρ)
o=11.4・G1/3・D1 4/3・ln(P3/P11/3
o[m/秒]:環流時の浸漬管内の溶鋼平均流速
o[t/分]:溶鋼環流量
G[NL/分]:吹き込みガス流量
1[m]:浸漬管の内径
1[Pa]:復圧開始前の真空槽内の圧力
3[Pa]:環流ガス吹込み位置における静圧
ρ[kg/m3]:溶鋼密度
U o = (200 / 3π) ・ (Q o / D 1 2・ ρ)
Q o = 11.4 ・ G 1/3・ D 1 4/3・ ln (P 3 / P 1 ) 1/3
U o [m / sec]: Average flow velocity of molten steel in the immersion pipe during recirculation
Q o [t / min]: Molten steel ring flow rate
G [NL / min]: Flow rate of blown gas
D 1 [m]: Inner diameter of immersion tube
P 1 [Pa]: Pressure in the vacuum chamber before the start of repressurization
P 3 [Pa]: Static pressure at the recirculation gas blowing position
ρ [kg / m 3 ]: molten steel density

そして、復圧処理を、上記式(1)で定義する溶鋼盛上り高さΔh[m]が下記式(2)を満たすように行なう。この点が、本発明精錬方法の特徴である。 Then, the pressure recovery treatment is performed so that the molten steel rise height Δh [m] defined by the above formula (1) satisfies the following formula (2). This point is a feature of the refining method of the present invention.

Δh[m]>2dS2 ・・・(2)
S2は、真空槽内を減圧状態にしたとき、浸漬上昇管と浸漬下降管から真空槽内に侵入するスラグの体積Vs[m3]で定まる真空槽内のスラグの厚さであり、下記式で定義できる。
Δh [m]> 2d S2 ... (2)
d S2 is the thickness of the slag in the vacuum chamber, which is determined by the volume V s [m 3 ] of the slag that enters the vacuum chamber from the immersion riser pipe and the immersion descending pipe when the inside of the vacuum chamber is depressurized. It can be defined by the following formula.

S2=(4/3π)・(Vs/D2 2
s=(D1 2・dS1・π)/2
2[m]:真空槽の内径
S1[m]:取鍋内のスラグ厚
d S2 = (4 / 3π) · (V s / D 2 2 )
V s = (D 1 2・ d S1・ π) / 2
D 2 [m]: Inner diameter of vacuum chamber d S1 [m]: Slag thickness in the ladle

本発明精錬方法において、真空脱ガス処理に供する、C、Si、Mn、P、及び、Sを含有する溶鋼は、通常の精錬工程(一次精錬)で精錬した、通常の成分組成の溶鋼でよい。なお、溶鋼の好ましい成分組成については後述する。 In the refining method of the present invention, the molten steel containing C, Si, Mn, P, and S to be subjected to the vacuum degassing treatment may be a molten steel having a normal component composition refined in a normal refining step (primary refining). .. The preferable composition of the molten steel will be described later.

一次精錬に続いて行なう真空脱ガス処理(二次精錬)を、RH式精錬装置を用いて行ない、真空脱ガス処理の終了後の復圧時、上記式(1)で定義する溶鋼の盛上り高さΔhが、上記式(2)を満たすように復圧処理を行ない、復圧後、溶鋼を鋳造する。鋳造は、通常の鋳造でよいが、連続鋳造が好ましい。 The vacuum degassing treatment (secondary refining) performed following the primary refining is performed using an RH type refining device, and when the pressure is restored after the vacuum degassing treatment is completed, the molten steel defined by the above formula (1) rises. The pressure recovery treatment is performed so that the height Δh satisfies the above formula (2), and after the pressure recovery, the molten steel is cast. The casting may be ordinary casting, but continuous casting is preferable.

例えば、転炉で一次精錬を行ない、次いで、転炉外で二次精錬を行なう精錬工程において、本発明精錬方法を適用すれば、溶鋼中へのスラグの巻込みを極力抑制できるので、本発明精錬方法は、高い清浄性が求められる鋼材、例えば、軸受用の鋼材の製造に好適である。 For example, if the refining method of the present invention is applied in a refining step in which primary refining is performed in a converter and then secondary refining is performed outside the converter, slag entrainment in molten steel can be suppressed as much as possible. The refining method is suitable for producing steel materials that require high cleanliness, for example, steel materials for bearings.

復圧時、真空槽内の浸漬上昇管側の溶鋼に、上記式(1)で定義する高さΔhの盛上りを形成するため、真空槽内に供給する復圧用ガスは、溶鋼環流用ガスを吹き込む部位及び真空槽内に直接供給する部位の一方又は両方から供給する。復圧用ガスを両方の部位から供給する場合、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることが好ましい。 At the time of recompression, the recompression gas supplied into the vacuum chamber is a molten steel recirculation gas in order to form a rise of height Δh defined by the above formula (1) on the molten steel on the immersion riser pipe side in the vacuum chamber. Is supplied from one or both of the part where the gas is blown and the part which is directly supplied into the vacuum chamber. When the decompression gas is supplied from both portions, it is preferable that the flow rate of the decompression gas supplied from the portion where the molten steel recirculation gas is blown is smaller than the flow rate of the molten steel recirculation gas during the vacuum degassing treatment.

復圧時、溶鋼環流用ガスを吹き込む部位から供給する復圧用ガスの流量を、真空脱ガス処理時の溶鋼環流ガスの流量より少なくすることにより、真空槽内における溶鋼のスラグ巻込みを、より抑制することができる。復圧用ガスは、溶鋼の汚染を防止する観点から、アルゴンや窒素などの、溶鋼と反応し難い不活性ガスが好ましい。 By making the flow rate of the recompression gas supplied from the part where the molten steel recirculation gas is blown at the time of recompression smaller than the flow rate of the molten steel recirculation gas at the time of vacuum degassing treatment, the slag entrainment of the molten steel in the vacuum tank is further improved. It can be suppressed. The decompression gas is preferably an inert gas such as argon or nitrogen that does not easily react with the molten steel from the viewpoint of preventing contamination of the molten steel.

真空脱ガス処理を施す溶鋼は、通常の成分組成の溶鋼、即ち、鋼の基本元素のC、Si、Mn、P、及び、Sを含有する溶鋼であれば、上記式(1)で定義する高さΔhで、上記式(2)を満たす溶鋼の盛上りを形成して、溶鋼中へのスラグ巻込みを抑制して、鋼材における介在物低減効果を得ることができるので、特定の成分組成の溶鋼に限定されないが、上記介在物低減効果が顕著に発現する溶鋼の好ましい成分組成について説明する。以下、%は質量%を意味する。 The molten steel to be subjected to the vacuum degassing treatment is defined by the above formula (1) if it is a molten steel having a normal composition, that is, a molten steel containing C, Si, Mn, P, and S, which are the basic elements of steel. At a height of Δh, a swelling of molten steel satisfying the above formula (2) can be formed, slag entrainment in the molten steel can be suppressed, and an inclusion reduction effect in the steel material can be obtained. Therefore, a specific component composition can be obtained. The preferable component composition of the molten steel, which is not limited to the molten steel of the above, but which remarkably exhibits the effect of reducing inclusions, will be described. Hereinafter,% means mass%.

C:1.20%以下
Cは、焼入れ後の鋼の強度や硬さを確保するのに有効な元素である。1.20%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下したりするので、Cは1.20%以下が好ましい。より好ましくは1.00%以下である。
C: 1.20% or less C is an element effective for ensuring the strength and hardness of steel after quenching. If it exceeds 1.20%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, C is preferably 1.20% or less. More preferably, it is 1.00% or less.

強度又は硬さをそれほど必要としない鋼種では、Cを必ずしも必要としないので、下限は特に限定しないが、Cは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Cは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, C is not necessarily required, so the lower limit is not particularly limited. However, since C is a basic element of steel and it is difficult to make it 0%, the lower limit is set. Does not include 0%. C is preferably 0.001% or more in order to secure the required strength and hardness.

Si:3.00%以下
Siは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.00%を超えると、硬くなりすぎて、切削工具の寿命が低下するので、Siは3.00%以下が好ましい。より好ましくは2.50%以下である。
Si: 3.00% or less Si is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.00%, it becomes too hard and the life of the cutting tool is shortened. Therefore, Si is preferably 3.00% or less. More preferably, it is 2.50% or less.

強度又は硬さをそれほど必要としない鋼種では、Siを必要としないので、下限は特に定めないが、Siは、鋼の基本元素であり、0%にすることは困難であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Siは0.001%以上が好ましい。 For steel types that do not require much strength or hardness, Si is not required, so the lower limit is not specified. However, Si is a basic element of steel and it is difficult to set it to 0%, so the lower limit is 0. Does not include%. Si is preferably 0.001% or more in order to secure the required strength and hardness.

Mn:1.60%以下
Mnは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。1.60%を超えると、焼入れ時に割れが発生し、また、硬くなりすぎて、切削工具の寿命が低下するので、Mnは1.60%以下が好ましい。より好ましくは1.20%以下である。
Mn: 1.60% or less Mn is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 1.60%, cracks occur during quenching and the cutting tool becomes too hard, which shortens the life of the cutting tool. Therefore, Mn is preferably 1.60% or less. More preferably, it is 1.20% or less.

強度又は硬さをそれほど必要としない鋼種は、Mnを必要としないので、下限は特に定めないが、Mnは、鋼の基本元素であるので、下限は0%を含まない。所要の強度や硬さを確保する点で、Mnは0.01%以上が好ましい。 A steel type that does not require much strength or hardness does not require Mn, so a lower limit is not particularly set. However, since Mn is a basic element of steel, the lower limit does not include 0%. Mn is preferably 0.01% or more in order to secure the required strength and hardness.

P:0.05%以下
Pは、不純物元素であり、靱性を阻害する元素である。Pが0.05%を超えると、靭性が著しく低下するので、Pは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Pを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
P: 0.05% or less P is an impurity element and is an element that inhibits toughness. If P exceeds 0.05%, the toughness is significantly reduced, so P is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if P is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

S:0.05%以下
Sは、Pと同様に、不純物元素であり、靱性を阻害する元素である。Sが0.05%を超えると、靭性が著しく低下するので、Sは0.05%以下が好ましい。より好ましくは0.03%以下である。下限は0%を含むが、Sを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
S: 0.05% or less S is an impurity element and an element that inhibits toughness, like P. If S exceeds 0.05%, the toughness is significantly reduced, so S is preferably 0.05% or less. More preferably, it is 0.03% or less. The lower limit includes 0%, but if S is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

好ましい成分組成の溶鋼は、鋼の機械特性及び/又は化学特性を阻害しない範囲で、上記基本元素以外に、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.01%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有してもよい。 In addition to the above basic elements, the molten steel having a preferable composition is 0.20% or less, Cr: 3.50% or less, Mo: 0.85%, as long as it does not impair the mechanical properties and / or chemical properties of the steel. Below, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.01% or less, Sb: 0.20% or less, Mg: It may contain one or more of 0.010% or less, Ca: 0.010% or less, REM: 0.010% or less, O: 0.003% or less.

Al:0.20%以下
Alは、脱酸元素であり、また、結晶粒を微細化する元素である。0.20%を超えると、粗大な酸化物系介在物が生成し、靭性及び延性が低下するので、Alは0.20%以下が好ましい。結晶粒の微細化効果を確保する点で、0.005%以上が好ましく、0.010%がより好ましい。
Al: 0.20% or less Al is a deoxidizing element and is an element that refines crystal grains. If it exceeds 0.20%, coarse oxide-based inclusions are formed and the toughness and ductility are lowered. Therefore, Al is preferably 0.20% or less. From the viewpoint of ensuring the effect of refining the crystal grains, 0.005% or more is preferable, and 0.010% is more preferable.

Cr:3.50%以下
Crは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。3.50%を超えると、靱性及び延性が低下するので、3.50%以下が好ましい。より好ましくは2.50%以下である。Crの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cr: 3.50% or less Cr is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 3.50%, the toughness and ductility decrease, so 3.50% or less is preferable. More preferably, it is 2.50% or less. From the viewpoint of ensuring the effect of adding Cr, 0.01% or more is preferable, and 0.05% or more is more preferable.

Mo:0.85%以下
Moは、焼入れ性を高めて強度や硬さの確保に有効な元素である。また、Moは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.85%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Moは0.85%以下が好ましい。より好ましくは0.65%以下である。Moの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Mo: 0.85% or less Mo is an element that enhances hardenability and is effective in ensuring strength and hardness. Mo is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.85%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, Mo is preferably 0.85% or less. More preferably, it is 0.65% or less. From the viewpoint of ensuring the effect of adding Mo, 0.005% or more is preferable, and 0.010% or more is more preferable.

Ni:4.50%以下
Niは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。4.50%を超えると、靱性及び延性が低下するので、Niは4.50%以下が好ましい。より好ましくは3.50%以下である。Niの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ni: 4.50% or less Ni is an element that enhances hardenability and is effective in ensuring strength and hardness. If it exceeds 4.50%, the toughness and ductility decrease, so Ni is preferably 4.50% or less. More preferably, it is 3.50% or less. From the viewpoint of ensuring the effect of adding Ni, 0.005% or more is preferable, and 0.010% or more is more preferable.

Nb:0.20%以下
Nbは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.20%を超えると、靱性及び延性が低下するので、Nbは0.20%以下が好ましい。より好ましくは0.10%以下である。Nbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Nb: 0.20% or less Nb is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering and softening resistance. If it exceeds 0.20%, toughness and ductility decrease, so Nb is preferably 0.20% or less. More preferably, it is 0.10% or less. From the viewpoint of ensuring the effect of adding Nb, 0.005% or more is preferable, and 0.010% or more is more preferable.

V:0.45%以下
Vは、炭化物、窒化物、及び/又は、炭窒化物を形成し、結晶粒の粗大化抑制や焼戻し軟化抵抗の向上に寄与する元素である。0.45%を超えると、靱性及び延性が低下するので、Vは0.45%以下が好ましい。より好ましくは0.35%以下である。Vの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
V: 0.45% or less V is an element that forms carbides, nitrides, and / or carbonitrides, and contributes to suppressing coarsening of crystal grains and improving tempering softening resistance. If it exceeds 0.45%, toughness and ductility decrease, so V is preferably 0.45% or less. More preferably, it is 0.35% or less. From the viewpoint of ensuring the effect of adding V, 0.005% or more is preferable, and 0.010% or more is more preferable.

W:0.30%以下
Wは、焼入れ性を高めて、強度や硬さの確保に有効な元素である。また、Wは、炭化物を形成して、焼戻し軟化抵抗の向上に寄与する元素である。0.30%を超えると、過冷組織が生じ、靱性及び延性が低下するので、Wは0.30%以下が好ましい。より好ましくは0.25%以下である。Wの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
W: 0.30% or less W is an element that enhances hardenability and is effective in ensuring strength and hardness. Further, W is an element that forms carbides and contributes to the improvement of temper softening resistance. If it exceeds 0.30%, a supercooled structure is formed and the toughness and ductility are lowered. Therefore, W is preferably 0.30% or less. More preferably, it is 0.25% or less. From the viewpoint of ensuring the effect of adding W, 0.005% or more is preferable, and 0.010% or more is more preferable.

B:0.006%以下
Bは、焼入れ性を高め、強度の向上に寄与する元素である。また、Bは、オーステナイト粒界に偏析して、Pの粒界偏析を抑制し、疲労強度の向上に寄与する元素である。0.006%を超えると、靱性が低下するので、Bは0.006%以下とする。好ましくは0.004%以下である。Bの添加効果を確保する点で、0.0005%以上が好ましく、0.001%以上がより好ましい。
B: 0.006% or less B is an element that enhances hardenability and contributes to the improvement of strength. Further, B is an element that segregates at the austenite grain boundaries, suppresses the grain boundary segregation of P, and contributes to the improvement of fatigue strength. If it exceeds 0.006%, the toughness decreases, so B is set to 0.006% or less. It is preferably 0.004% or less. From the viewpoint of ensuring the effect of adding B, 0.0005% or more is preferable, and 0.001% or more is more preferable.

N:0.060%以下
Nは、微細な窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.060%を超えると、窒化物が過剰に生成して、靱性が低下するので、Nは0.060%以下が好ましい。より好ましくは0.040%以下である。Nの添加効果を確保する点で、0.001%以上が好ましく、0.005%以上がより好ましい。
N: 0.060% or less N is an element that forms fine nitrides to refine crystal grains and contribute to improvement of strength and toughness. If it exceeds 0.060%, nitrides are excessively formed and the toughness is lowered. Therefore, N is preferably 0.060% or less. More preferably, it is 0.040% or less. From the viewpoint of ensuring the effect of adding N, 0.001% or more is preferable, and 0.005% or more is more preferable.

Ti:0.25%以下
Tiは、微細なTi窒化物を形成して結晶粒を微細化し、強度及び靭性の向上に寄与する元素である。0.25%を超えると、Ti窒化物が過剰に生成し、靱性が低下するので、Tiは0.25%以下が好ましい。より好ましくは0.15%以下である。Tiの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Ti: 0.25% or less Ti is an element that forms fine Ti nitrides to refine crystal grains and contribute to the improvement of strength and toughness. If it exceeds 0.25%, Ti nitride is excessively formed and the toughness is lowered. Therefore, Ti is preferably 0.25% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Ti, 0.005% or more is preferable, and 0.010% or more is more preferable.

Cu:0.50%以下
Cuは、耐食性の向上に寄与する元素である。0.50%を超えると、熱間延性が低下し、割れや疵が発生するので、Cuは0.50%以下が好ましい。より好ましくは0.30%以下である。Cuの添加効果を確保する点で、0.01%以上が好ましく、0.05%以上がより好ましい。
Cu: 0.50% or less Cu is an element that contributes to the improvement of corrosion resistance. If it exceeds 0.50%, the hot ductility is lowered and cracks and flaws are generated. Therefore, Cu is preferably 0.50% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Cu, 0.01% or more is preferable, and 0.05% or more is more preferable.

Pb:0.45%以下
Pbは、快削性の向上に寄与する元素である。0.45%を超えると、靱性が低下するので、Pbは0.45%以下が好ましい。より好ましくは0.30%以下である。Pbの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Pb: 0.45% or less Pb is an element that contributes to the improvement of free-cutting property. If it exceeds 0.45%, the toughness decreases, so the Pb is preferably 0.45% or less. More preferably, it is 0.30% or less. From the viewpoint of ensuring the effect of adding Pb, 0.005% or more is preferable, and 0.010% or more is more preferable.

Bi:0.20%以下
Biは、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Biは0.20%以下が好ましい。より好ましくは0.16%以下である。Biの添加効果を確保する点で、0.005%以上が好ましく、0.010%以上がより好ましい。
Bi: 0.20% or less Bi is an element that contributes to the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Bi is preferably 0.20% or less. More preferably, it is 0.16% or less. From the viewpoint of ensuring the effect of adding Bi, 0.005% or more is preferable, and 0.010% or more is more preferable.

Te:0.010%以下
Teは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Teは0.010%以下が好ましい。より好ましくは0.006%以下である。Teの添加効果を確保する点で、0.001%以上が好ましく、0.002%以上がより好ましい。
Te: 0.010% or less Te is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so the Te is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Te, 0.001% or more is preferable, and 0.002% or more is more preferable.

Sb:0.20%以下
Sbは、耐硫酸性及び耐塩酸性を主体とする耐食性の向上、及び、快削性の向上に寄与する元素である。0.20%を超えると、靱性が低下するので、Sbは0.20%以下が好ましい。より好ましくは0.15%以下である。Sbの添加効果を確保する点で、0.01%以上が好ましく、0.03%以上がより好ましい。
Sb: 0.20% or less Sb is an element that contributes to the improvement of corrosion resistance, mainly sulfuric acid resistance and hydrochloric acid resistance, and the improvement of free-cutting property. If it exceeds 0.20%, the toughness decreases, so the Sb is preferably 0.20% or less. More preferably, it is 0.15% or less. From the viewpoint of ensuring the effect of adding Sb, 0.01% or more is preferable, and 0.03% or more is more preferable.

Mg:0.010%以下
Mgは、快削性の向上に寄与する元素である。0.010%を超えると、靱性が低下するので、Mgは0.010%以下が好ましい。より好ましくは0.006%以下である。Mgの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以上がより好ましい。
Mg: 0.010% or less Mg is an element that contributes to the improvement of free-cutting property. If it exceeds 0.010%, the toughness decreases, so Mg is preferably 0.010% or less. More preferably, it is 0.006% or less. From the viewpoint of ensuring the effect of adding Mg, 0.0005% or more is preferable, and 0.0010% or more is more preferable.

Ca:0.010%以下
Caは、脱酸元素であり、脱酸反応で、凝集合し易い低融点のCaO−Al23系介在物を形成する元素である。0.010%を超えると、Al23系介在物が、低融点のCaO−Al23系介在物に複合化して粗大化する。粗大化したCaO−Al23系介在物は、圧延温度で液相化せず、粗大なまま鋼中に残存するので、Caは0.010%以下が好ましい。より好ましくは0.006%以下である。
Ca: 0.010% or less Ca is a deoxidizing element and is an element that forms CaO-Al 2 O 3 based inclusions having a low melting point that easily aggregates in the deoxidizing reaction. If it exceeds 0.010%, the Al 2 O 3 based inclusions are compounded with the low melting point CaO-Al 2 O 3 based inclusions and coarsened. The coarsened CaO-Al 2 O 3 system inclusions do not become liquid phase at the rolling temperature and remain in the steel in a coarse state. Therefore, Ca is preferably 0.010% or less. More preferably, it is 0.006% or less.

Caは、少ないほど好ましいので、下限は限定しないが、不可避的に0.0001%程度は残存するので、実用鋼上、0.0001%が実質的な下限である。 Since the smaller the amount of Ca, the more preferable it is, the lower limit is not limited, but since about 0.0001% inevitably remains, 0.0001% is a substantial lower limit in practical steel.

REM:0.010%以下
REM(希土類元素、La、Ce、Pr、及び、Ndの1種又は2種以上)は、Al又はAl−Siで十分に脱酸した溶鋼において、溶鋼中のCaOや、介在物中のCaOを還元して、CaO−Al23系介在物を改質する作用をなす元素である。0.010%を超えると、介在物中に、REM濃度の高い低融点の化合物相が出現し、介在物の凝集合が助長されて、粗大な介在物が生成するので、REMは0.010%以下が好ましい。より好ましくは0.007%以下である。
REM: 0.010% or less REM (one or more of rare earth elements, La, Ce, Pr, and Nd) is CaO in molten steel in molten steel sufficiently deoxidized with Al or Al-Si. , It is an element that reduces CaO in inclusions and modifies CaO-Al 2 O 3 based inclusions. If it exceeds 0.010%, a low melting point compound phase having a high REM concentration appears in the inclusions, and the aggregation of inclusions is promoted to form coarse inclusions, so that the REM is 0.010. % Or less is preferable. More preferably, it is 0.007% or less.

Al又はAl−Siで十分に脱酸した溶鋼において、REMの添加効果を確保する点で、0.0005%以上が好ましく、0.0010%以下がより好ましい。 In the molten steel sufficiently deoxidized with Al or Al—Si, 0.0005% or more is preferable, and 0.0010% or less is more preferable, from the viewpoint of ensuring the effect of adding REM.

O:0.003%以下
Oは、酸化物を形成する元素である。0.003%を超えると、粗大な酸化物が生成し、転動疲労寿命が低下するので、Oは0.003%以下が好ましい。より好ましくは0.002%以下である。下限は0%を含むが、Oを0.0001%以下に低減すると、精錬コストが大幅に上昇するので、実用鋼上、0.0001%が実質的な下限である。
O: 0.003% or less O is an element that forms an oxide. If it exceeds 0.003%, coarse oxides are generated and the rolling fatigue life is shortened. Therefore, O is preferably 0.003% or less. More preferably, it is 0.002% or less. The lower limit includes 0%, but if O is reduced to 0.0001% or less, the refining cost increases significantly, so 0.0001% is a practical lower limit for practical steel.

溶鋼の成分組成において、残部はFe及び不可避的不純物である。不可避的不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素であり、溶鋼の特性、さらに、溶鋼を鋳造した鋼の特性を阻害しない範囲で許容される元素である。 In the composition of molten steel, the balance is Fe and unavoidable impurities. The unavoidable impurities are elements that are inevitably mixed from the steel raw material and / or in the steelmaking process, and are acceptable elements as long as they do not impair the characteristics of the molten steel and the characteristics of the cast steel.

次に、本発明の実施例について説明する。ただし、本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例である。そのため、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. However, the conditions in this example are one condition example adopted for confirming the feasibility and effect of the present invention. Therefore, the present invention is not limited to this one-condition example. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

(実施例)
表1に示す成分組成の溶鋼に、転炉による一次精錬、LF処理及びRH処理による二次精錬を施し、連続鋳造して鋼を製造した。
(Example)
The molten steel having the composition shown in Table 1 was subjected to primary refining by a converter, secondary refining by LF treatment and RH treatment, and continuously cast to produce steel.

具体的には、270t転炉で一次精錬を施した溶鋼を出鋼する際、溶鋼を、Si、Mn、Alの1種又は2種以上にて脱酸し、脱酸した溶鋼に、LF処理の二次精錬に次いで、表1に示す条件で、RH処理で成分組成を調整し、清浄化処理を施した後、連続鋳造して鋳片とした。この鋳片を、加熱炉にて加熱保持した後、分塊圧延に供し鋼片とした。 Specifically, when the molten steel that has undergone primary refining in a 270t converter is ejected, the molten steel is deoxidized with one or more of Si, Mn, and Al, and the deoxidized molten steel is subjected to LF treatment. Following the secondary refining of No. 1, the component composition was adjusted by RH treatment under the conditions shown in Table 1, and after cleaning treatment, continuous casting was performed to obtain slabs. This slab was heated and held in a heating furnace and then subjected to block rolling to obtain a steel slab.

Figure 0006756264
Figure 0006756264

上記鋼片において、極値統計法により、予測面積30000mm2における非金属介在物の極値統計最大予測径[μm]を推定した。 In the above steel pieces, the maximum predicted diameter [μm] of the extreme value statistics of non-metal inclusions in the predicted area of 30,000 mm 2 was estimated by the extreme value statistical method.

極値統計による介在物の最大予測径(√area(max)の推定は、例えば、「金属疲労 微小欠陥と介在物の影響」(村上敬宜著、養賢堂、1993年発行、p.223−239)に記載の方法により行なうことができる。用いた方法は、二次元的検査により、一定面積内で観察される最大介在物径を推定するという二次元的手法である。 The maximum predicted diameter of inclusions (√area (max)) estimated by extreme value statistics is, for example, "Metal fatigue micro-defects and effects of inclusions" (Takayoshi Murakami, Yokendo, 1993, p. 223). -239) can be performed. The method used is a two-dimensional method of estimating the maximum inclusion diameter observed within a certain area by a two-dimensional inspection.

上記極値統計法を用いて、鋼片のL断面(ルーズ面の中心線と、この対向面の中心線、及び、鋳片の中心線を含む断面)のルーズ面側の1/4の位置から試料を採取して、光学顕微鏡で撮像した非金属介在物の画像から、検査基準面:100mm2(10mm×10mm)、検査視野:16、予測を行なう面積:30000mm2の介在物の最大予測径√area(max)を算出した。 Using the above extreme value statistical method, the position of 1/4 of the L cross section of the steel piece (the center line of the loose surface, the center line of the facing surface, and the cross section including the center line of the slab) on the loose surface side. samples were taken from the images of the nonmetallic inclusions captured by the optical microscope examination reference plane: 100mm 2 (10mm × 10mm) , the inspection field of view: 16, area make predictions: maximum expected inclusions 30,000 mm 2 The diameter √ area (max) was calculated.

具体的には、観察で得られた介在物の最大径の16個のデータ(16視野のデータ)を上記文献に記載の方法に従い、極値確率用紙にプロットして、最大介在物分布直線(最大介在物と極値統計基準化変数の一次関数)を求め、最大介在物分布直線を外挿することにより、面積:30000mm2における介在物の最大予測径√area(max)を推定した。 Specifically, 16 data (data of 16 fields) of the maximum diameter of the inclusions obtained by the observation are plotted on the extremum probability sheet according to the method described in the above document, and the maximum inclusion distribution straight line (data of the maximum inclusions) ( The maximum predicted diameter of inclusions √area (max) was estimated at an area of 30,000 mm 2 by obtaining the maximum inclusions and the linear function of the extremum statistical standardization variable) and extrapolating the maximum inclusion distribution straight line.

上記推定の結果を、表1に併せて示す。 The results of the above estimation are also shown in Table 1.

比較例No.1〜8は、真空脱ガス処理時の復圧処理において、浸漬上昇管側の溶鋼の盛上り高さ(Δh)を、真空槽内のスラグ厚(dS2)の2倍以下とした例であり、極値統計最大予測粒径に改善が見られない。 Comparative Example No. Examples 1 to 8 are examples in which the rising height (Δh) of the molten steel on the immersion riser pipe side is twice or less the slag thickness (d S2 ) in the vacuum chamber in the depressurization treatment during the vacuum degassing treatment. Yes, there is no improvement in the maximum predicted particle size of the extreme value statistics.

一方、発明例No.9〜20は、真空脱ガス処理時の復圧処理において、浸漬上昇管側の溶鋼の盛上り高さ(Δh)を、真空槽内のスラグ厚(dS2)の2倍よりも大きくした例であり、比較例に比べ、極値統計による最大予測粒径が21〜26μmで、良好な値を示している。 On the other hand, Invention Example No. 9 to 20 are examples in which the rising height (Δh) of the molten steel on the immersion riser pipe side is made larger than twice the slag thickness (d S2 ) in the vacuum chamber in the decompression treatment during the vacuum degassing treatment. Compared with the comparative example, the maximum predicted particle size by the extreme value statistics is 21 to 26 μm, which is a good value.

以上のとおり、発明例では、従来操業の比較例に比較し、介在物の粗大化が抑制されているので、機械特性に優れた鋼が得られることは明らかである。 As described above, in the invention example, the coarsening of inclusions is suppressed as compared with the comparative example of the conventional operation, so that it is clear that a steel having excellent mechanical properties can be obtained.

前述したように、本発明によれば、真空脱ガス処理の復圧時、浸漬上昇管側の溶鋼に形成する盛上りの高さを最適化して、浸漬上昇管側への真空槽内のスラグの流動を抑制し、粗大なCaO含有介在物の溶鋼中への混入を抑制できるので、鋼中の介在物の量及び大きさを低減することができ、清浄性が高く、機械特性に優れた鋼を提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, the height of the swelling formed on the molten steel on the immersion riser pipe side is optimized when the vacuum degassing treatment is restored, and the slag in the vacuum chamber to the immersion riser pipe side is optimized. Since it is possible to suppress the flow of coarse CaO-containing inclusions in the molten steel, the amount and size of inclusions in the steel can be reduced, the cleanliness is high, and the mechanical properties are excellent. Steel can be provided. Therefore, the present invention has high utility in the steel industry.

1 真空増
2 取鍋
3 環流ガス吹込み口
3a 環流ガス
4 排気管
5a、5b 溶鋼
5c 盛上り
6 6a、6b スラグ
1 Vacuum increase 2 Ladle 3 Recirculation gas inlet 3a Recirculation gas 4 Exhaust pipe 5a, 5b Molten steel 5c Rise 6 6a, 6b Slag

Claims (6)

C、Si、Mn、P、及び、Sを含有する溶鋼に、真空槽に浸漬上昇管と浸漬下降管を備える脱ガス装置で真空脱ガス処理を施した後、真空槽を減圧状態から大気圧へ復圧して、溶鋼の精錬を終了する精錬方法において、
(i)環流ガス吹込み口を備える浸漬上昇管側の真空槽内の溶鋼に、環流ガス吹込み口から環流ガスを吹き込み、
(ii)下記式(1)で定義し、下記式(2)を満たす高さΔh[m]の溶鋼の盛上りを形成して復圧処理を行なう
ことを特徴とする溶鋼の精錬方法。
Δh[m]=2.0×10-3・H-1.3・ε2/3 ・・・(1)
H[m]:浸漬上昇管の環流ガス吹込み位置から真空槽内の溶鋼湯面までの距離
ε[W]:下記式で定義する溶鋼攪拌力
ε[W]=0.00835・Uo 2・Q0
o=(200/3π)・(Qo/D1 2・ρ)
o=11.4・G1/3・D14/3・ln(P3/P11/3
o[m/秒]:環流時の浸漬管内の溶鋼平均流速
o[t/分]:溶鋼環流量
G[NL/分]:吹き込みガス流量
1[m]:浸漬管の内径
1[Pa]:復圧開始前の真空槽内の圧力
3[Pa]:環流ガス吹込み位置における静圧
ρ[kg/m3]:溶鋼密度
Δh[m]>2dS2 ・・・(2) dS2=(4/3π)・(Vs/D2 2
s=(D1 2・dS1・π)/2
S2[m]:真空槽内のスラグ厚
s[m3]:真空槽内に持ち込まれるスラグ体積
2[m]:真空槽の内径
S1[m]:取鍋内のスラグ厚
After vacuum degassing the molten steel containing C, Si, Mn, P, and S with a degassing device equipped with a dipping rising pipe and a dipping descent pipe in the vacuum tank, the vacuum tank is depressurized to atmospheric pressure. In the refining method that evacuates to and finishes the refining of molten steel
(I) Recirculation gas is blown into the molten steel in the vacuum chamber on the immersion riser pipe side provided with the recirculation gas inlet from the recirculation gas inlet.
(Ii) A method for refining molten steel, which is defined by the following equation (1) and is characterized in that a swelling of molten steel having a height of Δh [m] satisfying the following equation (2) is formed and a decompression treatment is performed.
Δh [m] = 2.0 × 10 -3・ H -1.3・ ε 2/3・ ・ ・ (1)
H [m]: Distance from the recirculation gas blowing position of the immersion riser pipe to the molten steel surface in the vacuum tank ε [W]: Molten steel stirring force defined by the following formula ε [W] = 0.00835 · U o 2・ Q 0
U o = (200 / 3π) ・ (Q o / D 1 2・ ρ)
Q o = 11.4 ・ G 1/3・ D1 4/3・ ln (P 3 / P 1 ) 1/3
U o [m / sec]: Average flow velocity of molten steel in the immersion pipe during recirculation
Q o [t / min]: Molten steel ring flow rate
G [NL / min]: Flow rate of blown gas
D 1 [m]: Inner diameter of immersion tube
P 1 [Pa]: Pressure in the vacuum chamber before the start of repressurization
P 3 [Pa]: Static pressure at the recirculation gas blowing position
ρ [kg / m 3 ]: Molten steel density Δh [m]> 2d S2・ ・ ・ (2) d S2 = (4 / 3π) ・ (V s / D 2 2 )
V s = (D 1 2・ d S1・ π) / 2
d S2 [m]: Slag thickness in the vacuum chamber V s [m 3 ]: Slag volume brought into the vacuum chamber D 2 [m]: Inner diameter of the vacuum chamber d S1 [m]: Slag thickness in the ladle
前記真空脱ガス処理をRH式精錬装置で行なうことを特徴とする請求項1に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 1, wherein the vacuum degassing treatment is performed by an RH type refining apparatus. 前記RH式精錬装置で復圧を行なう際、復圧用ガスを、溶鋼環流ガスを吹き込む部位、及び、真空槽内に直接供給する部位の一方又は両方から供給することを特徴とする請求項2に記載の溶鋼の精錬方法。 2. The second aspect of the present invention is that when the repressurization is performed by the RH type refining apparatus, the decompression gas is supplied from one or both of a portion where the molten steel recirculation gas is blown and a portion which is directly supplied into the vacuum chamber. The described method for refining molten steel. 前記復圧用ガスが不活性ガスであることを特徴とする請求項3に記載の溶鋼の精錬方法。 The method for refining molten steel according to claim 3, wherein the decompression gas is an inert gas. 前記溶鋼が、質量%で、C:1.20%以下、Si:3.00%以下、Mn:1.60%以下、P:0.05%以下、S:0.05%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする請求項1〜4のいずれか1項に記載の溶鋼の精錬方法。 The molten steel contains C: 1.20% or less, Si: 3.00% or less, Mn: 1.60% or less, P: 0.05% or less, S: 0.05% or less in mass%. The method for refining molten steel according to any one of claims 1 to 4, wherein the balance is composed of Fe and unavoidable impurities. 前記溶鋼が、さらに、質量%で、Al:0.20%以下、Cr:3.50%以下、Mo:0.85%以下、Ni:4.50%以下、Nb:0.20%以下、V:0.45%以下、W:0.30%以下、B:0.006%以下、N:0.060%以下、Ti:0.25%以下、Cu:0.50%以下、Pb:0.45%以下、Bi:0.20%以下、Te:0.010%以下、Sb:0.20%以下、Mg:0.010%以下、Ca:0.010%以下、REM:0.010%以下、O:0.003%以下の1種又は2種以上を含有することを特徴とする請求項5に記載の溶鋼の精錬方法。 In terms of mass%, the molten steel further contains Al: 0.20% or less, Cr: 3.50% or less, Mo: 0.85% or less, Ni: 4.50% or less, Nb: 0.20% or less, V: 0.45% or less, W: 0.30% or less, B: 0.006% or less, N: 0.060% or less, Ti: 0.25% or less, Cu: 0.50% or less, Pb: 0.45% or less, Bi: 0.20% or less, Te: 0.010% or less, Sb: 0.20% or less, Mg: 0.010% or less, Ca: 0.010% or less, REM: 0. The method for refining molten steel according to claim 5, wherein one or more of 010% and O: 0.003% or less are contained.
JP2016252047A 2016-12-26 2016-12-26 Refining method of molten steel Active JP6756264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016252047A JP6756264B2 (en) 2016-12-26 2016-12-26 Refining method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016252047A JP6756264B2 (en) 2016-12-26 2016-12-26 Refining method of molten steel

Publications (2)

Publication Number Publication Date
JP2018104764A JP2018104764A (en) 2018-07-05
JP6756264B2 true JP6756264B2 (en) 2020-09-16

Family

ID=62787246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016252047A Active JP6756264B2 (en) 2016-12-26 2016-12-26 Refining method of molten steel

Country Status (1)

Country Link
JP (1) JP6756264B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009630A1 (en) * 2020-07-09 2022-01-13 Jfeスチール株式会社 Method for refining molten steel

Also Published As

Publication number Publication date
JP2018104764A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6036997B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
EP3222740B1 (en) High-strength seamless steel pipe for oil wells and method for producing same
KR101830023B1 (en) Spring steel and method for producing same
JP6686837B2 (en) Highly clean steel manufacturing method
JP5218707B1 (en) Oil well steel pipe with excellent resistance to sulfide stress cracking
KR101271899B1 (en) High carbon and chromium bearing steel and method for manufacturing the same
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5803824B2 (en) Method of melting carburized bearing steel
JP5760683B2 (en) Manufacturing method of high fatigue strength steel slab
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JP5541310B2 (en) Manufacturing method of highly clean steel
JP5609946B2 (en) Spring steel with excellent fatigue resistance and method for producing the same
JP5845784B2 (en) Bearing material and manufacturing method of bearing material
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP6766687B2 (en) Refining method of molten steel
JP6957890B2 (en) Refining method of molten steel
JP6756264B2 (en) Refining method of molten steel
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP6816501B2 (en) Refining method of molten steel
JP6825399B2 (en) How to melt clean steel
KR101974326B1 (en) Abrasion resistance
JP5590056B2 (en) Manufacturing method of highly clean steel
JP2017166053A (en) Melting production method for high refined steel
JP7028376B1 (en) Manufacturing method of high cleanliness steel
JP5713529B2 (en) Steel material with excellent rolling fatigue life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200810

R151 Written notification of patent or utility model registration

Ref document number: 6756264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151